

Trigonometric functions
(degrees) in double FPU

Author: [M.ADITYA]

[muni_aditya@yahoo.com]

Rev. [0.1]

July 18, 2013

http://www.opencores.org/

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com ii

This page has been intentionally left blank.

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com iii

Revision History

Rev

.

Date Author Description

0.1 04/06/13 M.ADITYA It takes unsigned bit as input and gives out the

degree value in IEEE-754(double) format

i.e double precision floating point format.

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com iv

Contents
INTRODUCTION... 1

ARCHITECTURE .. 3

OPERATION….. .. 5

REGISTERS .. 8

LIST OF REGISTERS ... 8

REGISTER 1 – DESCRIPTION .. 8

IO PORTS.. 9

FUTURE SCOPE……………………………………………………..………………...10

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com 1 of 10

1

Introduction

In computing, floating point describes a method of representing an approximation

to real numbers in a way that can support a wide range of values. The numbers

are, in general, represented approximately to a fixed number of significant

digits (the mantissa) and scaled using an exponent. The base for the scaling is

normally 2, 10 or 16. The typical number that can be represented exactly is of the

form:

Significant digits × base
exponent

The term floating point refers to the fact that their radix point (decimal

point, or, more commonly in computers, binary point) can "float"; that is, it can be

placed anywhere relative to the significant digits of the number. This position is

indicated as the exponent component in the internal representation, and floating-

point can thus be thought of as a computer realization of scientific notation. Over

the years, a variety of floating-point representations have been used in computers.

However, since the 1990s, the most commonly encountered representation is that

defined by the IEEE 754 Standard.

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Significant_figures
http://en.wikipedia.org/wiki/Significant_figures
http://en.wikipedia.org/wiki/Exponentiation
http://en.wikipedia.org/wiki/Radix_point
http://en.wikipedia.org/wiki/Scientific_notation
http://en.wikipedia.org/wiki/IEEE_754

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com 2 of 10

Ranges of floating point units:

Double Precision Floating Point Numbers

The IEEE 754 standard defines how double precision floating point

number are represented. 64 bits are used to represent a double precision floating

point number.

The sign bit occupies bit 63. ‘1’ signifies a negative number, and ‘0’ is a

positive number. The exponent field is 11 bits long, occupying bits 62-52. The

value in this 11-bit field is offset by 1023, so the actual exponent used to calculate

the value of the number is 2^(e-1023). The mantissa is 52 bits long and occupies

bits 51-0. There is a leading ‘1’ that is not included in the mantissa, but it is part

of the value of the number for all double precision floating point numbers with a

value in the exponent field greater than 0.

Value = -1^(sign bit) * 2^(exponent – 1023) * 1.(mantissa)

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com 3 of 10

2

Architecture

BLOCK DIAGRAM HIERARCHY)

DIVIDOR

SIN_LUT

COS_LUT

TAN_LUT

CSC_LUT

SEC_LUT

COT_LUT

N-BIT

INPUT

ACTV INPUTS

3 BIT

64 BIT

OUTPUT ACTV

IF > 360

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com 4 of 10

BLOCK DIAGRAM (TOP LEVEL)

The input signals to the top level module are the following:

1. clk (global)

2. rst (global)

3. enable (set high to start operation)

4. actv (activation, 3 bits, 000 = sin_enable, 001 = cos_enable, 010 = tan_enable,

011 = csc_enable, 100 = sec_enable, 101 = cot_enable)

5. Degrees (input operands can be changed to any number of bits, in this 32 bits)

6. data1 (output from operation, 64 bits)

DEGREES [N:0]

CLK

RST

ACTV [2:0]

ENABLE

OUTPUT

[63:0]

TOP MODULE

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com 5 of 10

3

Operation

In this version all the trigonometric modules are created as look up table (LUT). To

all the input values there is an equivalent double precision floating point unit value, to the

input an un-signed value is given. The input port bits can be configured to any number of

bits. It also supports all quadrants i.e. sine and cosecant is positive in first and second

quadrants and negative in third and fourth quadrants, tangent and cotangent are positive

in first and third quadrants and negative in second and fourth quadrants, cosine and secant

are positive in first and fourth quadrants and negative in second and third quadrants.

If the value of the degrees is greater than 360 then the value is passed into the divider

circuit, in this circuit the total value is divided by the value 360 and returns the remainder

value that is less than 360, then the value is given as degrees to the top module and

checks for the positive or negative quadrants. “ACTV” value decides which block to

activate and passes the corresponding input value to that block and the output value is the

same value as in the LUT or changed according to the corresponding quadrants.

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com 6 of 10

This architecture is created using look up table. But instead of creating the table

for all the values it is created only for the first 90 values and all the remaining values are

derived using these 90 values. From the top module using “ACTV” Input we can choose

which function to activate.

Case1:

If the given input value is less than 90 degrees from the top module “00” value is

passed on to the “quad” register, this register helps us to know in which quadrant the

value lies in. So that it can choose which value to be positive or negative in that particular

quadrant and the first bit changed to either 0 or 1 accordingly as required.

Case2:

 If the value is between 91 and 180, then the values should be subtracted from the

decimal value 180 so that value will be mirrored. For example the value of 89 and 91

would be the same. When the value is in between 90 and 180, 180 is subtracted from

input value as the value is less than 180, the resultant will be positive. In the same way

all the values can be mirrored using the existing 90 values, “01” value is passed on to

“quad” reg.

 E.X: if the input is 99 which is between 180 and 90, 180 is subtracted from

input value (i.e. 180 – 99) so the resultant value will be 81, the value of any function 99

and 81 will be equal. In this way using only 90 values the remaining values can be

derived which are between 90 and 180.

Case3:

 If the value is between 181 and 360, then the value should be subtracted from 180.

Again in this two things should be considered, after subtracting the input from 180 if the

value is less than 90 then the case 1 is repeated “10” value is passed on to quad, else if the

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com 7 of 10

resultant is greater than 90 then the case 2 is repeated, “11” value is passed on to the

“quad” register.

 E.X: if the value is 210,then the input value is subtracted from 180 (i.e. 210 –

180), the resultant is 30 which is less than 90 so the output will be 30 degrees value of the

function. The value of any function 30 and 210 are equal.

 E.X. if the value is 299, then the input value is subtracted from 180 (i.e. 299 –

180), the resultant is 119 which is greater than 90, so 180 is subtracted from the resultant

(i.e. 180 – 119), the resultant is 61. The output value of any function 61 and 299 are

equal.

Case4:

 If the value is greater than 360 then the value is passed on to divider module.

Modulo division is performed in this block, this division is performed until the remainder

value is less than 360, remainder value is taken and all the above cases will be repeated.

The respective “quad” value will be passed on to the respective module.

 In each case a “quad” value is passed based on the input degrees value, these

“quad” values are passed on to the respective module. Each module consist of the sign

value, they will be changed or remain the same according to the respective quadrants.

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com 8 of 10

4

Registers

List of Registers

Name Address Width Description

ACTV 3’b000 3 bit Activates the sine block

ACTV 3’b001 3 bit Activates the cosine block

ACTV 3’b010 3 bit Activates the tangent block

ACTV 3’b011 3 bit Activates the cosecant block

ACTV 3’b100 3 bit Activates the secant block

ACTV 3’b101 3 bit Activates the cotangent block

QUAD 2’b00 2 bit Specifies the value is in first quadrant

QUAD 2’b01 2 bit Specifies the value is in second quadrant

QUAD 2’b10 2 bit Specifies the value is in third quadrant

QUAD 2’b11 2 bit Specifies the value is in fourth quadrant

DATA1 output Bit Gives the final result

Table 1: List of registers

Register DATA1 – Description

Bit Access Description

63 sign It specifies whether the value is positive or negative

62-52 exponent These bits store the value of the exponent that is subtracted from

the bias

51-0 mantissa It consist of the fractional value of the number

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com 9 of 10

5

IO ports

Port Width Direction Description

CLK 1 bit Input Clock input, common for all blocks

RST 1 bit Input Resets all the values

ACTV 4 bits Input Activates the selected block

ENABLE 1bit Input Enables top block and a particular block

Input N bits Input Can be configured to any number of bits

Data1 64 bits Output Gives the 64 bit output result in double precision

floating point format

 OpenCores 7/18/2013

www.opencores.org muni_aditya@yahoo.com 10 of 10

6

Future scope

The logic can further be optimized, also to the input it needs to be changed from

signed to unsigned or 64 bit fpu format so that trigonometric functions can be calculated

in both degrees as well as radians. Inverse trigonometric functions, hyperbolic

trigonometric functions will be implemented.

