
 '

UART2BUS
Verificaiton Plan Opencores.com

Release in 26. June 2017

Hany Salah
VLSI Verification Engineer

Table of Contents
1 About the Document..1

Description...1
References..1
Log Details...1

2 Design Specifications..3
Design Port-list..3
Features..4

3 System Behavioral Description...6
4 Verification Levels & Required Tools...7

Verification Levels...7
Required Tools...7
Environment Configurations..7

5 Methodology & Test Scenario...9
Methodology..9
Testing Scenario...12

6 Coverage..16

I

Illustration Index
Design Entity..3
TestBench Architecture...9

II

Index of Tables
Log details..1
Design Port-List..3
Environment Configurations..7
Transaction Attributes...10
UART Tests..12
Coverage Analysis..16

III

UART2BUS Verificaiton Plan January 2016

1 About the Document

1.1 Description
This document describes the verification plan used to verify UART2BUS Open-cores project
Released by Moti Litochevski

1.2 References
• Bruce Wile, John Goss, Wolfgang Roesner – Comprehensive Functional Verification – The

Complete Industry Cycle – Systems on Silicon (2005).
• System Verilog For Verification – a guide to learning the test-bench language features by

Chris Spear Gregory J Tumbash (2012).
• A Practical Guide to Adopting the Universal Verification Methodology (UVM) by Sharon

Rosenberg, Kathleen Meade – Cadence Design Systems (2010).

1.3 Log Details

Table 1: Log details

Version Date Editor Description

1 December 23, 2015 Hany Salah • Document creation

• Add Design Entity

2 December 24, 2015 Hany Salah • Add Design Specifications

• Add System Behavioral Description

• Modify Design Entity

3 December 25, 2015 Hany Salah • Improve System Behavioral Description

• Modify Design Specifications

4 December 29, 2015 Hany Salah • Modify System Behavioral Description.

• Create Test Plan.

5 December 30, 2015 Hany Salah • Improve Test Plan (UART Features).

6 December 31, 2015 Hany Salah • Add Transaction Content.

7 January 01, 2016 Hany Salah • Improve Test Plan (Non UART Features &

Combined Tests & change the tests
serialization).

8 January 11, 2016 Hany Salah • Add Buad Rate Testbench calculations.

• Modify System Behavioral Description

9 January 19, 2016 Hany Salah • Add UART specifications (start, stop bits).

1

UART2BUS Verificaiton Plan January 2016

Version Date Editor Description

10 January 24, 2016 Hany Salah • Divide UART fields into commands

• Add Environment Configurations

11 January 29, 2016 Hany Salah • Modify Test Plan

• Modify Environment Configurations

12 June 25, 2017 Hany Salah • Add the coverage plan

• Add coverage driven test

2

UART2BUS Verificaiton Plan January 2016

2 Design Specifications

2.1 Design Port-list

Table 2: Design Port-List

Name Polarity Width Direction Description

clock 1-bit IN Global Core Clock signal

reset high 1-bit IN Global Core Asynchronous Reset

int_address 16-bit OUT Address Bus To Register File

int_wr_data 8-bit OUT Write Data To Register File

int_write high 1-bit OUT Write Control To Register File

int_read high 1-bit OUT Read Control To Register File

int_rd_data 8-bit IN Data Read From Register File

int_req high 1-bit OUT Request Internal bus access

int_gnt high 1-bit IN Grant Internal bus access

ser_in 1-bit IN Serial Data Input

3

figure 1: Design Entity

UART2BUS Verificaiton Plan January 2016

Name Polarity Width Direction Description

ser_out 1-bit OUT Serial Data Output

2.2 Features
• UART Commands are divided into fields and each field includes one byte or more.

• Each byte is sent in between two standard bits; start and stop.

• Start bit is zero while the stop bit is one.

• Support two modes of operation

◦ Text mode command

▪ All values are in HEX format.

▪ Space is represented as 0x20

▪ Tab is represented as 0x09

▪ LF is represented as 0x0A

▪ CR is represented as 0x0D

▪ Both spaces and tabs are considered as white spaces.

▪ Both LF and CR are considered as End Of Line (EOL).

▪ Includes only two commands; address read and address write commands

• Address read command

◦ 'R' or 'r'.

◦ White space single or multiple

◦ Address to read in 4-digit HEX

◦ CR or LF character

• On the reception of EOL characters, the core will read the given address and

transmit the read value in two HEX character followed by both LF and CR.
• Address write command

◦ 'W' or 'w'.

◦ White space single or multiple

◦ Data to write in 2-digit HEX

◦ White space single or multiple

◦ Address to write 4-digit Hex

◦ CR or LF character

• On the reception of EOL characters, the core will write the received data to the

given address. No transmission is sent back to the sender.
◦ Binary mode command

▪ Support single command with configurable number of bytes

▪ The first Byte is full of zeros as indicator to the binary command.

▪ The second Byte is as following

4

UART2BUS Verificaiton Plan January 2016

• Bits [7:6]: not used.

• Bits [5:4]: represent the command type

◦ 2'b001: NOP Command, Send ACK if requested.

◦ 2'b01: Read Command.

◦ 2'b10: Write Command.

◦ 2'b11: Invalid.

• Bits [3:2]: not used.

• Bits [1]2: Auto Increment Enable

◦ 1'b0: Auto Increment Enable.

◦ 1'b1: Auto Increment Disable.

• Bits [0]: ACK Flag

◦ 1'b0: Send no acknowledge byte at the command completion

◦ 1'b1: Send acknowledge byte at the command completion

▪ The third byte is used to hold the address high byte.

▪ The forth byte is used to hold the address low byte.

▪ The fifth byte is used to represent the length of buffer to read or write data.

• "0” Value indicates maximum buffer length which is 256 bytes.

▪ The bytes numbered from 6 to (length-1) hold the data and its number should be

equal to the fifth byte content3.
◦ In response to binary command, the responder should react as following.

▪ The byte numbered from 1 to data length which is indicated by the request command

is filled with the requested data4.
▪ The following byte is the acknowledge5 one and contain the value of 0x5A.

1 NOP Command would be used to verify that the core responds to UART.
2 Auto Increment is often used when reading a buffer from RAM. Otherwise, it's more convenient to turn auto

increment off.
3 This field exists only in write commands.
4 This byte exists only is respond to read commands.
5 This byte exists only in case of acknowledge request in the command.

5

UART2BUS Verificaiton Plan January 2016

3 System Behavioral Description
UART2BUS module is designed to act as either transmitter or receiver. The main clock that the core
uses could be calculated from the following relationship

Where the buad frequency is the actual clock frequency that synchronize both the transmitter and
receiver through any data transfer.
Both ser_out & ser_in are high in idel state. Each line is only driven by one driver. When its driver
is going to start communication, it pulls it down for one baud clock cycle. It's defined as start bit.
After that the sent data will be forced bit by bit1. And finally one or two stop bits are followed the
last bit. The actual number of stop bits is configured through the VIP configurations, and they all
are 1's. UART2BUS polling the ser_in port to capture either the ASCII of 'r', 'R', 'w' and 'W' or the
full zero byte otherwise DUT make no response.

In case that the first captured field includes the ASCII of either 'R' or 'r', the DUT expects the
next field includes either single or multiple white spaces and then capture the following two fields
as the command address. Core wait the following character to be one of EOL and responds with the
read data in two hex characters followed by CR and LF characters. Each byte of the sent data
should be packed between start and stop bit(s) Any miss-order or non-expected input, core should
make no response.

In case that the first field includes the ASCII of either 'W' or 'w', the DUT expects the next
field includes either single or multiple white spaces and then capture the following field as the
command data. Then it also expects the following field to be single or multiple spaces to capture the
next word to be the command address. Finally, core wait the following character to be one of EOL.
Any miss-order or non-expected input, core should make no response.

In case that the first field includes zero byte, the DUT capture the following byte. Through
this byte, the core detect the command type. In case of invalid command, the core should make no
response even if the acknowledge request is activated. The DUT capture the following byte as an
address high byte and capture the next byte as an address low byte. The next byte determine the
actual data length in bytes. In case of write command, the data bytes follow the length byte. But in
case of read command, the command is ended at the end of length byte. Then the core should
respond with serial bytes of data equal to the length field in the command. Also according to the
acknowledge request bit in the command, the core should follow the data bytes with the unified
acknowledge byte.

Regardless of the received command mode or command type, The core will assert int_req
and then wait till int_gnt signal assertion and then release int_req. If the received command is write,
the core will load int_address port with the command address and assert int_write signal and load
int_wr_data with the data corresponding to the loaded address and then deactivate int_write signal
to terminate bus usage. If the data includes more than one byte, the core would load int_wr_data

1 Starting with either the MSB or the LSB is configured through the VIP configurations.

6

BaudFrequency=
16∗BaudRate

gcd (GlobalClockFrequecy , 16∗BaudRate)

UART2BUS Verificaiton Plan January 2016

port with successive bytes every clock cycle concurrently with increment the port address content
and keep int_write signal activated till finalize the data transmission. If the received command is
read, the core will load int_address port with the command address and assert int_read signal. The
core should wait the requested data on the next clock cycle and then disable int_read to terminate
the bus usage. If the requested data includes more than one byte, the incremental address will be
loaded to the address port every clock cycle and the corresponding data will be captured through the
following clock cycle and so on.

4 Verification Levels & Required Tools

4.1 Verification Levels
• The verification strategy would be black box strategy

4.2 Required Tools
• Sublime Text editor or any other text editor.

• Questasim Advanced Verification CAD

• Universal Verification Methodology package

4.3 Environment Configurations

Table 3: Environment Configurations

Field Description Possible Choices

Active Edge The active clock edge at which, the data is changed

on the UART buses

• Positive Edge

• Negative Edge

First Bit Represent the sequence through which the byte is

serialized

• Most Significant bit

• Least Significant bit

Data Mode The data representation through the text commands • ASCII

• Binary

Number of stop bits The number of stop bits sent after the latest bit of

each byte

• One bit

• Two bits

Number of bits The number of bits through each field transfer • Seven bits

• Eight bits

Parity Mode The used parity type through each byte. • Parity Off

• Parity Even

• Parity Odd

7

UART2BUS Verificaiton Plan January 2016

Field Description Possible Choices

Response Time Represent the maximum allowable time through

which DUT should respond to the driven request.

No limitations

False Data Enable Enable force false data on the output port within

the read command through the both modes; text,

binary

• Yes

• No

8

UART2BUS Verificaiton Plan January 2016

5 Methodology & Test Scenario

5.1 Methodology

Test-Bench Architecture
We proposed the following test-bench architecture to verify the functionality of UART2BUS
module.

• We provide C++ code besides the test-bench to calculate baud frequency to facilitate the

usage of UART test-bench.
• Our test-bench will operate on 40 MHz as global clock and 115.2 KHz as baud rate. And

then the D-baud frequency is 144 Hz.
• Scoreboard receives transaction from driver and then check the tested address in the register

file.
• Bus Functional Model BFM includes three different blocks that are described below

9

figure 2: TestBench Architecture

UART2BUS Verificaiton Plan January 2016

◦ UART BFM: That act as another UART device and talk with DUT through the two

protocol signals.
◦ RF BFM: That act as memory of 64K bytes and talk with DUT through non-protocol

signals
◦ Arbiter BFM: That act as internal bus arbiter.

Transaction Attributes
We propose the following transaction attributes so that we could implement our test plan

Table 4: Transaction Attributes

Type Identifier Description

Enumerate mode Represents the mode of command to be one of the following

options {text, command, wrong}. Wrong command mode is used

to send a tricky fault command to test our DUT.

Byte prefix_wrong Represents the wrong prefix that is used in case of wrong mode

selection.

Enumerate space_type1 Represents the type of the used white space in the first field to be

one of the following options {single, tab, wrong}. Wrong type

also is used to push tricky byte in the text mode.

Enumerate space_type2 Represents the type of the used white space in the second field to

be one of the following options {single, tab, wrong}. Wrong type

also is used to push tricky byte in the text mode.

Byte space_wrong1 Could hold all the 8-bit values except {single or tab} and is used

in case of space_type is wrong as the first wrong white space.

Byte space_wrong2 Could hold all the 8-bit values except {single or tab} and is used

in case of space_type is wrong as the second wrong white space.

Dynamic Array of Bytes _data Could hold all possible values and its length is constrained to be

equal to length_data.

Dynamic Array of Bytes false_data Used in case of driving inconsiderable data into the serial output

port while the DUT reply the read request command. It could

hold all possible values and its length is constrained to be equal

to length_data>

Integer Unsigned length_data Only in range of [1:256] and equal 1 in case of text command

mode.

Enumerate false_data_en Enable forcing false data within the read command.

10

UART2BUS Verificaiton Plan January 2016

Type Identifier Description

Enumerate eol_type Represents the type of end of line used to be one of the following

choices{cr, lf, wrong}. Wrong type is also used to push DUT in

tricky manner.

Byte eol_wrong Could hold all 8-bit values except {cr or lf} and is used in case of

eol_type is wrong.

Word address Could hold all the possible values.

Enumerate command Represents the command either to be one of the following

choices {read, write, NOP}

Enumerate ack_req Represents the acknowledge request{yes, no}

Enumerate inc_req Represents the incremental address feature request{yes, no}

Enumerate char_type Represents the type of prefix in text mode either to be {capital,

small}.

Enumerate arbit Represents the internal bus state either {accept, refuse}

Time Time before Idle Time before the main command start.

Time Time after Idle Time After the finish byte of the main command.

11

UART2BUS Verificaiton Plan January 2016

5.2 Testing Scenario

Simple Tests
Simple tests include single command per test in one mode which aim to make sure that the design
perform the basic operations correctly.

Table 5: UART Tests

S.N Feature Test Procedures

Write in Text Mode

1 Could write only a single byte.

• 'W' or 'w'

• Single space or Tab.

• Data

• Single space or Tab.

• Address

• EOL character

1. Apply UART write request using capital W.

2. Apply UART write request using small w.

3. Apply UART write request using single space only.

4. Apply UART write request using tab only.

5. Apply UART write request using both single space

and tab.

6. Apply UART write request using one wrong spaces.

7. Apply UART write request using two wrong spaces.

8. Apply UART write request to address 0.

9. Apply UART write request to full range address.

10. Apply UART write request with data equal 0.

11. Apply UART write request with full range data.

12. Apply UART write request using different EOL

character.

13. Apply UART Write request using wrong prefix

Read in Text Mode

2 Could read only a single byte

• 'R' or 'r'.

• Single space or tab.

• Address

• EOL

And the response should be

• the read data immediately

• both LF & CR

1. Apply UART read request using capital R.

2. Apply UART read request using small r.

3. Apply UART read request using single space.

4. Apply UART read request using tab.

5. Apply UART read request using both space and tab.

6. Apply UART read request using one wrong space.

7. Apply UART read request using two wrong spaces

8. Apply UART read request to address 0.

9. Apply UART read request to full range address.

10. Apply UART read request with data equal 0.

11. Apply UART read request with full range data.

12. Apply UART read request using different EOL

12

UART2BUS Verificaiton Plan January 2016

S.N Feature Test Procedures

character.

13. Apply UART read request using wrong prefixe

NOP in Command Mode

3 Could send NOP command with acknowledge

request.

• Unified Prefix

• Answer should be only a unified

acknowledge character.

• The address content shouldn't be

affected.

1. Apply UART NOP command with acknowledge bit

request and right command mode prefix.

2. Apply UART NOP command with wrong command

prefix and acknowledge request.

3. Apply several UART NOP command to different

locations with different data lengths.

4 Could send NOP command with non

acknowledge request acknowledge request

• Unified Prefix.

• No answer should be exist.

• The address content shouldn't be

affected regardless of command data.

1. Apply UART NOP command with non-

acknowledge bit request and right command mode

prefix.

2. Apply UART NOP command with wrong command

prefix and non-acknowledge request.

3. Apply several UART NOP command to different

locations with different data lengths and non-

acknowledge request.

Write in Command Mode

5 Could send write command including

• Unified Prefix

• 16-bit address.

• Data length varies from 1 to 256 bytes.

• Incremental address ability.

• Acknowledge request.

1. Apply UART write command with wrong prefix.

2. Apply UART write commands to different

addresses.

3. Apply UART write commands with several data

lengths

4. Apply UART write command to address 0 with

random data.

5. Apply UART write command to address 0xFFFF

with random data.

6. Apply UART write command with acknowledge

request.

7. Apply UART write command with non-

acknowledge request.

8. Apply UART write command including single byte.

9. Apply UART write command including non-

incremental address bit.

10. Apply UART write command including

13

UART2BUS Verificaiton Plan January 2016

S.N Feature Test Procedures

incremental address bit.

Read in Command Mode

6 Could send read command including

• Unified Prefix.

• 16-bit addresses.

• The length of requested data would

vary from 1 to 256 bytes.

• Acknowledge request.

1. Apply UART read command with wrong prefix.

2. Apply UART read commands to different

addresses.

3. Apply UART read commands with several data

lengths

4. Apply UART read command to address 0 with

random data.

5. Apply UART read command to address 0xFFFF

with random data.

6. Apply UART read command with acknowledge

request.

7. Apply UART read command with non-acknowledge

request.

8. Apply UART read command including single byte.

9. Apply UART read command including non-

incremental address bit.

10. Apply UART read command including

incremental address bit.

Internal Bus

7 Should request to access the internal bus and

wait for grant

1. Apply UART read or write commands and give the

UART the bus grant.

2. Apply UART read or write commands and give no

agreement to access internal bus

Invalid Commands1

8 Make no response towards invalid commands 1. Apply Invalid UART command in form of write

binary command.

2. Apply Invalid UART command in form of read

binary command.

Combined Tests
Combined tests include more than one command per test and aim to put the DUT into highly
complicated processes. And also verify the bus functional model besides the DUT.

1 Invalid commands in frame similar to binary command frame

14

UART2BUS Verificaiton Plan January 2016

S.N Feature Test Procedures

9 Able To receive commands in text mode and

command mode without reconfiguration

1. Apply read command in text mode.

2. Apply write command in command mode.

3. Apply read command in command mode.

4. Apply write command in text mode.

10 Able to distinguish between the valid and

invalid commands and also able to miss the

invalid commands in series of valid

commands from different types and modes.

1. Apply four valid commands

2. Apply invalid command

3. Apply valid command.

4. Apply two invalid commands

5. Apply valid command

15

UART2BUS Verificaiton Plan January 2016

5.3 Coverage Driven Test
The coverage driven test named “cover_driven_test” is used to randomize the all valid tests
(without any wrong white-spaces, EOL, or prefix) and make iterations till the coverage hit the
maximum. The minimum coverage requirements are stated in the following table

Table 6: Coverage Threshold in coverage driven test

Covergroup parameter name Minimum Threshold

trans_attrib hit_mode_cov 90%

text_mode_cov hit_text_cov 90%

binary_mode_cov hit_bin_cov 90%

To know about the testbench covergroups, refer to the Coverage Statistics
The coverage is being updated using uvm_resources_db mechanism to update the fields
“text_coverage”, “binary_coverage”, and “general_coverage” in the database named
“coverage_cloud”.
After every iteration, the test layer read the cloud data and build the decision based on the
parameters in the table above.

16

Opencores.com Verificaiton Plan UART2BUS

6 Coverage
Table 7: Coverage Analysis

S.N Covergroup Coverpoint Description Coverbins Notes

1 trans_attrib communication_mode The command mode text, binary -

wrong_mode_text, wrong_mode_bin illegal_bins1

address The address of the command - -

2 text_mode_cov command The type of command in text mode read, write

nop, invalid_read, invalid_write illegal_bins

first_white_space_field The type of the first white space field in text

command

Tab, Single Space

wrong space illegal_bins

second_white_space_field The type of the first white space field in text

command

Tab, Single Space

wrong space illegal_bins

end_of_line_field The type of eol character cr, lf

wrong eol illegal_bins

prefix_character_type The type of prefix character R for read W for write cap,small

3 binary_mode_cov command The type of the command in binary mode read, write, nop

1 The DUT is not implemented to overcome invalid wrong inputs like EOL/Whitespace characters and also command prefix. So it is hang-up in such a
case. so the invalid input options are put as illegal_bins in the coverage below

17

Opencores.com Verificaiton Plan UART2BUS

S.N Covergroup Coverpoint Description Coverbins Notes

invalid_read, invalid_write illegal_bins

acknowledge_require-

ment

The ask for acknowledge yes, no

incremental_address_req-

uirement

The ask for incremental address yes, no

Length_of_data The length of binary data within command zero

[1:256]

[257:$ illegal_bins

18

	1 About the Document
	1.1 Description
	1.2 References
	1.3 Log Details

	2 Design Specifications
	2.1 Design Port-list
	2.2 Features

	3 System Behavioral Description
	4 Verification Levels & Required Tools
	4.1 Verification Levels
	4.2 Required Tools
	4.3 Environment Configurations

	5 Methodology & Test Scenario
	5.1 Methodology
	Test-Bench Architecture
	Transaction Attributes

	5.2 Testing Scenario
	Simple Tests
	Combined Tests

	5.3 Coverage Driven Test

	6 Coverage

