uart6551sbi

© 2022 Robert Finch

Overview

A UART component (Universal Asynchronous Transmitter / Receiver) is used for the asynchronous transmission and reception of data. Asynchronous referring to the lack of a clock signal during transmission or reception.

uart6551sbi is a WDC6551 register compatible uart. The uart is a 8-bit peripheral device. The SBI version of the uart uses a simple synchronous bus interface like the 6502 bus.

Baud rate is controlled by clock divider which assumes a 50MHz baud reference clock input. If a different clock frequency is used, then the divider table will need to be updated. The baud rate may also be controlled via a clock divider register. This register is 24 bits so gives a minimum frequency of 2.98 Hz assuming a 50MHz clock. (50MHz / 2^24).

Note the use a reference clock separate from the bus clock. It is common in 65xx systems to create wait states by stretching the bus clock. This means the bus clock is not a suitable reference for other timing.

Special Features

- WDC6551 register compatibility
- Independent bus and baud clocks

Register Description

There are seventeen registers in the design. The function of the first four registers matches the 6551 function.

Reg	Moniker	Description
00	UART_TRB	Transmit and receive buffer. Data written is transmitted, on a read
		data available is read.
01	UART_STAT	Status Register. Returns status bits on a read, a write of any value
		will cause a reset of some of the command register bits
02	UART_CMD	Command register
03	UART_CTRL	Control register

UART_TRB (reg 0)

Data written to the register is transmitted. A register read returns data received by the uart. When the fifo's are enabled writing to this register writes to the transmit fifo. Reading this register reads the receive fifo.

UART_STAT (reg 1)

Uart status register. Writing any value to the status register resets some of the uart's command bits.

Bit	Status	
0	Parity Error	1 = parity error occurred, 0 = no error
1	Framing Error	1 = framing error
2	Overrun	1 = overrun
3	Rx Full	1 = receiver data available
4	Tx Empty	1 = open slot in transmit fifo

5	DCD	0 = data carrier present	
6	DSR	0 = data set ready	
7	IRQ	1 = irq occurred	

UART_LS (reg 11)

Uart line status register.

	Additional Line Status Byte	
0	reserved	
1	reserved	
2	reserved	
3	reserved	
4	Break received	1 if a break signal is received
5	Tx Full	1 = transmit fifo full
6	reserved	
7	G Rcv Err	1 = global receiver error (set if any error status is set)

UART_MS (reg 12)

Uart modem status

	Additional Modem Status Byte	
0	CTS	1 = CTS line changed state
1	DSR	1 = DSR line changed state
2	RI	1 = RI line changed state
3	DCD	1 = DCD line changed state
4	CTS	CTS state
5	reserved	
6	RI	RI state
7	reserved	

UART_IRQS (reg 13)

IRQ status register

	IRQ Status	
1,0	zero	these two bits are zero
2 to 4	IRQENC	encoded irq value (0 to 7)
5 to 6	reserved	
7	irq	IRQ is set

UART_CMD (reg 2)

Bit		
0	DTR	output $1 = low, 0 = high$
1	RxIe	receiver interrupt enable 0 = enabled, 1 = disabled
2,3	RTS Control	
	00	output RTS high
	01	output RTS low, enable transmit interrupt

	10	output RTS low,	
	11	output RTS low, send a break signal	
4	LLB	1 = local loopback (receiver echo)	
5 to 7	Parity Control		
	000	no parity	
	001	odd parity	
	011	even parity	
	101	transmit mark parity (parity error disabled)	
	111	transmit space parity (parity error disabled)	

UART_CMD2 (reg 9)

0	LSIe	line status change interrupt enable 1 = enabled
1	MSIe	modem status change interrupt enable 1 = enabled
2	RxToIe	receiver timeout interrupt enable 1 = enabled
3 to 7	reserved	

UART_CTRL (reg 3)

1_C1KL (105 3)	
Bit		
0 to 3	Baud Rate	
	0000 Use 16x external clock	This table is expanded using an extra control
	0001 50	bit #27.
	0010 75	
	0011 109.92	
	0100 134.58	
	0101 150	
	0110 300	
	0111 600	
	1000 1200	
	1001 1800	
	1010 2400	
	1011 3600	
	1100 4800	
	1101 7200	
	1110 9600	
	1111 19200	
4	Rx clock source	1 = external, $0 = $ baud rate generator
5,6	Word length	code for word length in bits
	00 8	
	01 7	
	10 6	
	11 5	
7	Stop Bit	
	0 1	
	1 1 if 8 bits and parity	
	1 1.5 if 5 bits and no parity	
	1 2 otherwise	

UART_CTRL2 (reg 15)

Controls the fifos

0	Fifo enable	1 = fifo's enabled
1	Rx Fifo Clear	1 = clear receiver fifo
2	Tx Fifo Clear	1 = clear transmit fifo
3	reserved	
4,5	Transmit Threshold	Threshold for DMA signal activation
	0 1 byte	If the transit fifo count is less than the
	1 ¼ full	threshold then a DMA transfer is triggered.
	2 ½ full	
	3 3/4 full	
6, 7	Receive Threshold	Threshold for DMA signal activation. If the
	0 1 byte	receive fifo count is greater than the threshold
	1 1/4 full	then a DMA transfer is triggered.
	2 ½ full	
	3 3/4 full	

UART_CTRL3 (reg 16)

0	hwfc	1 = automatic hardware flow control
1	reserved	
2	dmaEnable	1 = dma enabled
3	Baud Rate bit 4	Extended baud rate selection bit, used in
	10000 38400	combination with bits 0 to 3.
	10001 57600	
	10010 115200	
	10011 230600	
	10100 460800	
	10101 921600	
	10110 reserved	
	10111 reserved	
	11xxx reserved	
4,5	reserved	
6	selDV	1 = use clock divider register, $0 = $ use baud
		table
7	reserved	

Selecting the clock divider register as the baud source allows any programmable baud rate.

UART_CLKD0 (reg 4)

Bits 0 to 7 of the divider value.

UART_CLKD1 (reg 5)

Bits 8 to 15 of the divider value.

UART_CLKD2 (reg 6)

Bits 16 to 23 of the divider value.

OTHERS (reg 8, 10, 14)

Reserved

Bus Interface

The synchronous bus interface transfers data according to the bus clock. Write data is latched on the negative edge of the bus clock. The address, control, and data outputs are latched on the positive edge of the bus clock. There is no bus acknowledge; transfers are assumed to complete within one clock cycle.

Ports

Signal	I/O	Wid	Purpose
rst_i	I	1	reset
refclk_i	I	1	Reference clock (50 MHz)
ph2_i	I	1	bus clock input
cs_i	I	1	circuit/core select
irq_o	О	1	interrupt request
	SYNCHRONOUS BUS SIGNALS		
rw_i	I	1	Read (1) / write (0) enable
adr_i	I	5	address bits 0 to 4 (selects register)
dat_i	I	7	data input bus
dat_o	О	7	data output bus
	Modem Controls		
cts_ni	I	1	clear to send input active low.
rts_no	О	1	request to send output active low
dsr_ni	I	1	data set ready active low
dcd_ni	I	1	data carrier detect active low
dtr_no	О	1	data terminal ready active low
ri_ni	I	1	ring indicator active low
rxd_i	I	1	serial data input (receive)
txd_o	О	1	serial data output (transmit)
data_present	О	1	data is present in the receiver
rxDRQ_o	О	1	receiver DMA request
txDRQ_o	О	1	transmitter DMA request
xclk_i	I	1	external baud rate clock
RxC_i	I	1	external receiver clock