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ABSTRACT

As FPGAs become larger and more powerful, they are in-

creasingly used as accelerator devices for compute-intensive

functions. Input/Output (I/O) speeds can become a bottle-

neck and directly affect the performance of a reconfigurable

accelerator since the chip will idle when there are no data

available. While PCI Express represents the currently fastest

and most expensive solution to connect a FPGA to a general

purpose CPU, there exist several applications with I/O re-

quirements for which Gigabit Ethernet is sufficient.

To this end, we present the design of an efficient UDP/IP

core for PC-FPGA communication that has been designed

to occupy a minimum amount of hardware resources on the

FPGA. An observation regarding the internet checksum al-

gorithm, allows us to reduce the hardware requirements for

computing the checksum. Furthermore, this property also

allows for initiating packet transmission immediately, i.e.,

the UDP/IP core can start a transmission without the require-

ment of receiving, storing, and processing user data before-

hand.

The UDP/IP core is available as open-source code. A

comparison with related work on UDP/IP core implemen-

tations shows that our implementation is significantly more

efficient in terms of resource utilization and performance.

The experimental results were obtained on a real-world sys-

tem and we also make available the PC software test appli-

cation that is used for performance assessment to allow for

reproduction of our results.

1. INTRODUCTION

A general problem of FPGAs is, that they often suffer from

Input/Output (I/O) bottlenecks, that is, their full process-

ing potential can not be exploited because of relatively slow

communication with the outer world. The outer world will

typically be a general purpose CPU that invokes compute

intensive functions on the FPGA.
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As FPGAs become more powerful in terms of available

reconfigurable hardware resources, they are increasingly used

as accelerator devices, for instance because of their inherent

ability to process more data in parallel. A common trend is

to connect a FPGA-based board to a general purpose proces-

sor, usually a personal computer (PC), for offloading com-

putationally intensive parts or functions of an application to

the FPGA. Function offloading to the FPGA can thus sig-

nificantly speed up the execution of scientific codes for in-

stance. To exploit the full acceleration potential of a recon-

figurable architecture, the time the FPGA idles because it is

waiting for an I/O operation should be minimized.

The fastest and most expensive interconnect technology

currently available for FPGAs is PCI Express. While PCI

Express appears to represent the ideal solution for commu-

nication between a host PC and a board, several drawbacks

exist. A dedicated PCI Express driver is required on the

PC side as well as a PCI Express enabled FPGA board.

Only recently, Xilinx made available a reference design for

Endpoint PCI Express solutions [1] which also includes PC

drivers for Linux and Windows operating systems. Simi-

lar PCI Express-based solutions are available for purchase

as commercial IP cores. In terms of programming over-

head, an Ethernet-based solution may be preferable due to

only a few lines of code are required to access the Ethernet

port of a PC. To this end, we present the implementation of

a hardware unit that allows for transmission of UDP (User

Datagram Protocol) [2] datagrams that are encapsulated into

Ethernet packets which comply with the 4th revision of the

Internet Protocol [3].

The Internet Protocol version 4 (IPv4) is the most widely

used Internet Layer protocol. We find that, the combination

of IPv4 with UDP, represents the optimal solution in terms

of hardware resource requirements for data transmission be-

tween a host PC and a FPGA board. Because of the compar-

atively small protocol overhead, UDP allows for high trans-

mission rates while—at the same time—requiring low pro-

gramming overhead on the PC side, i.e., programming in-

terfaces for UDP are well documented and readily available

for all common operating systems.



Most modern FPGAs contain EMAC (Ethernet Media

Access Controller) blocks that allow for direct access to ex-

ternal physical layer (PHY) devices on the board. A PHY

is required for the EMAC to connect to an external device,

for example, a network, a host PC, or another FPGA. One

can for instance deploy the Xilinx Core generator to config-

ure and generate EMAC wrapper files that contain a user-

configurable Ethernet MAC physical interface, e.g., MII,

GMII, SGMII, and to instantiate RocketIO serial transceivers,

clock buffers, DCMs etc. Xilinx also provides an optimized

clocking scheme for the physical interface as well as a sim-

ple FIFO-loopback example design which is connected to

the EMAC client interface.

Although the EMAC wrapper files greatly simplify the

usage of the EMAC, extra logic is required to create pack-

ets that comply with Transport Layer protocols and that will

be accepted by the Linux kernel. The Packet Transmitter

Unit (PTU) we present here can be connected directly to

the EMAC client interface, i.e., it can be used to replace

the FIFO-loopback example design, and also allows for en-

capsulating UDP packets within IPv4 packets (UDP/IP) by

using a very small fraction of hardware resources. On an

average-sized FPGA like the Virtex 5 SX95T, the UDP/IP

core occupies less than 1% of the available slices and can

operate at a frequency exceeding 125MHz, which is a pre-

requisite for achieving Gigabit speed.

The hardware unit is freely available for download as

open source code at: http://wwwkramer.in.tum.de/

exelixis/countIPv4.php and OpenCores.org (project

name: IPv4 packet creator and transmitter). The number of

downloads since the first release (January 07, 2010) amounts

to 189. The JAVA test-applications we used for performance

assessment are also included in these archives.

The remainder of this paper is organized as follows: Sec-

tion 2 describes the observation and underlying concept that

allowed us to minimize the required hardware resources and

to thereby singinificantly increase transmission speed. In

Section 3 we review related work on UDP/IP and TCP/IP

core implementations. The hardware architecture is described

in Section 4. In the following Section 5, we present de-

tails regarding the verification process (5.1), the setup of

the Ethernet-based communication platform (5.2), the com-

putational experiments (5.2.1 and 5.2.2), and provide in-

formation about resource utilization (5.3). In Section 5.3

we also conduct a performance comparison with a commer-

cially available UDP/IP core [4]. We conclude in Section 6.

2. MINIMIZING TRANSMISSION COST

The unit for transmitting UDP IPv4 Ethernet packets has

been designed and implemented within the framework of a

larger project that focuses on the implementation of a recon-

figurable accelerator [5, 6] that shall serve as a co-processor

for likelihood-based phylogenetic inference programs (pro-

grams for reconstruction of evolutionary trees from molec-

ular data) such as RAxML [7]. To minimize the FPGA re-

sources used for Ethernet communication, such that more

reconfigurable logic is available for the implementation of

the likelihood function accelerator modules, we assume that

errors in the data field occur so rarely, that a hardware im-

plementation of an error-recovery unit does not justify the

allocation of additional FPGA resources. Since the solu-

tion proposed here is geared towards direct communication

between a PC and a FPGA through an Ethernet cable, our

assumption is supported by the high experimental transmis-

sion success ratios that are provided in Section 5.2.

The underlying idea of our implementation is to deploy a

LUT (Look Up Table) that contains all static fields required

by the 802.3 MAC frame, as well as the IPv4, and UDP pro-

tocols. Although a LUT for the static fields has been used

before [4], we extend this approach in a way that minimizes

the required hardware resources. Furthermore, our approach

allows for immediate start of transmission, i.e., once a user-

send-request arrives at the input port of the packet transmit-

ter, the transmission of a packet can already commence dur-

ing the next clock cycle.

In the following, we describe how the LUT is initialized

(2.1), how the IPv4 header checksum is calculated (2.2), and

how a packet is transmitted (2.3).

2.1. LUT initialization

As already pointed out, the LUT is used to store the static

fields of the packet to be transmitted. These fields include

the destination MAC address, the source MAC address, and

the Ethertype; these are the main fields that form part of the

802.3 MAC frame. We also store the header fields of the

IPv4 and UDP header sections in the LUT.

The IPv4 header section contains the following fields:

Version, Header Length, Differentiated Services, Total Length,

Identification, Flags, Fragment Offset, Time to Live, Pro-

tocol, Header Checksum, Source Address, and Destination

Address [3]. If the Total Length andHeader Checksum fields

are excluded, all remaining fields are considered to be static,

since our focus is on a direct fast connection between a PC

and a FPGA. The UDP header section consists of the Source

Port, the Destination Port, the Length, and the Checksum [2].

As before, if the Length and Checksum fields are excluded,

the Port fields can be considered as being static.

All of the above static fields, are used to initialize the

LUT during the memory configuration process. We retrieve

the values of these fields once, by sending a basic packet

from the PC to the FPGA. By basic, we refer to a packet

that does not contain any data, that is, the Total Length field

of the IPv4 packet only refers to the length of the header

fields. The rationale for choosing this approach is provided

in Section 2.2. We used the Chipscope Pro Analyzer [8] to



monitor the data of the basic packet. As already mentioned,

it is sent only once, and since it is sent from the PC to the

FPGA, we need to switch the order of the address and port

fields prior to the initialization of the LUT. By interchang-

ing the values of those two fields, the data in the LUT now

correspond to a transmission from the FPGA to the PC.

2.2. Checksum calculation

As mentioned in Subsection 2.1, initially a basic packet is

generated and sent to the FPGA in order to retrieve the static

fields. Extra logic is required to calculate the values of the

non-static fields, that is, the Length and Checksum fields.

An adder is deployed to add the user data length to the con-

stant header length; a subtracter is required for calculating

the IPv4 checksum (see below).

The IPv4 protocol only provides checksum-based header

integrity, i.e., the computation of the checksum is conducted

on the header fields only. Since all fields in the header sec-

tion, except for Total Length, are constant, we investigated

how the IPv4 checksum field changes as a function of the

Total Length field.

The standard method to compute the checksum is de-

fined within RFC 791 [3]; it is defined as the 16-bit one’s

complement of the one’s complement sum of all 16-bit words

in the header. During the computation of the header check-

sum, the actual value of the checksum field is set to zero.

The term one’s complement sum is often confused with

one’s complement addition. While a one’s complement ad-

dition simply requires the sum of the one’s complement val-

ues of the numbers to be added, the one’s complement sum

is calculated as follows: Each time a carry-out, i.e, a 17th

bit, is produced, this bit should be added to the LSB (Least

Significant Bit). Figure 1 depicts an example for calculating

the one’s complement sum of three 16-bit values. During

the first addition, a carry-out is produced and added to the

LSB. During the second addition, no carry-out is produced,

thus the one’s complement sum has already been calculated.

The above example shows that associativity does not

hold calculating the one’s complement sum. In other words,

the result depends on the order of the operands. The calcula-

tion of the header checksum can be optimized by consider-

ing the specific position of the Total Length field in the IPv4

header section. As described in the IPv4 protocol [3], the To-

tal Length field is placed after the following fields: Version,

Header Length, and Differentiated Services. This position

corresponds to the second 16-bit operand, since the Version

and Header Length fields occupy 4 bits and the Differenti-

ated Services field 8 bits. Thus, the Total Length field, is

the second operand of the addition that needs to be initially

carried out, to then obtain the one’s complement sum of the

16-bit values in the header section. We take advantage of the

fact, that no carry-out can be produced by the first addition

and calculate the value of the header checksum by subtract-

Produced a carry−out

which is added back 

into the LSB

+

+

1 0 0 0  0 1 1 0  0 1 0 1  1 1 1 0

1 0 1 0  1 1 0 0  0 1 1 0  0 0 0 0

1   0 0 1 1  0 0 1 0  1 0 1 1  1 1 1 0

Second 16−bit value

     0 0 1 1  0 0 1 0  1 0 1 1  1 1 1 1

0 1 1 1  0 0 0 1  0 0 1 0  1 0 1 0

0   1 0 1 0  0 0 1 1  1 1 1 0  1 0 0 1

First 16−bit value

Third 16−bit value

No carry−out to swing arround 

One’s complement sum

Fig. 1. Calculation of one’s complement sum of three 16-bit

values. (http://mathforum.org/library/drmath/view/54379.html)

ing the Total Length from the checksum value of the afore-

mentioned basic packet. The first addition never produces a

carry-out, because the maximum length of every transmitted

packet does never require more than 12 bits. Thus, the initial

16-bit addition can not overflow.

The rationale for only using a single subtraction is, that

the base checksum value of the basic packet corresponds to

a checksum that was calculated using a reduced Total Length

value for the first addition that is required by the calcula-

tion of the one’s complement sum. This reduced value does

not include the length of the user-data that is attached to the

packet. Since the first addition does not produce a carry-out,

we can correct the calculated value of the header checksum,

which is already a one’s complement of the one’s comple-

ment sum, by simply subtracting the user-data length.

The UDP checksum can simply be set to zero without

the packet being rejected by the receiver [2], as long as the

header integrity of the IPv4 packet is maintained via a cor-

rect IPv4 checksum. UDP assumes that error checking and

correction is either not necessary or performed at the appli-

cation layer, thus avoiding error handling overhead at the

network interface level.

2.3. Temporal Work-Flow of a Transmission

The resource-efficient (in terms of hardware resources) meth-

od we propose for establishing point-to-point communica-

tion between a PC and a FPGA is illustrated in Figure 2,

while Figure 3 depicts the temporal work-flow of a trans-

mission.

Constant header fields that are stored in the LUT are

transmitted first during the time interval [t− tL1). This first

LUT-content transmission phase requires 16 clock cycles.

In parallel to this transmission, the Total Length (IPv4) and

Length (UDP) fields are calculated by the respective adders,

and the Header Checksum (IPv4) is computed by the sub-

tracter. At the 17th clock cycle, the transmission of LUT

contents stops, and the output of the adder that calculated

the Total Length is transmitted (interval: [tL1 − tA1)). This
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transmission requires 2 clock cycles. Then, a LUT-content

transmission phase starts again (interval: [tA1 − tL2)) and

stops only 6 clock cycles later when the Protocol field has

been transmitted. Thereafter, the Header Checksum field

that was calculated by the subtracter is transmitted (inter-

val: [tL2 − tS)). Then, the final LUT-content transmission

phase begins and several static fields are transmitted for 12

clock cycles (interval: [tS − tL3)). When the second and

final byte of the Destination Port has been sent, the output

of the adder that contains the UDP length is transmitted (in-

terval: [tL3 − tA2)). When all static and calculated fields

have been transmitted, we can start sending user-data (tA2).

The unit assumes that whatever data arrives at the input bus

is to be sent, that is, it is the user’s responsibility to partition

the data into bytes and send them to the transmitter unit at

the correct clock cycles, i.e., any incoming data before or af-

ter the user-data transmission clock cycles will be ignored.

Note that, the UDP checksum is considered as being a static

field set to zero, thus zeros are transmitted during the 2 clock

cycles that correspond to this field.

3. RELATED WORK

Traditional methods for PC-FPGA communication included

the use of the serial (UART) and parallel ports. Because of

their low transmission rates, those interfaces are frequently

not available any more on modern personal computers. In

principle, the same is true for current high-end FPGA boards,

which are typically not equipped with serial or parallel ports

any more. The old interfaces have been replaced by high-

speed communication ports, such as USB 2.0, 1000 BASE-

T (Gigabit Ethernet), or PCI Express.

Ethernet-based solutions appear to be the most attrac-

tive ones for PC-FPGA communication, when PCI Express-

based solutions are not necessarily required to accommodate

the I/O traffic of a FPGA design. Gigabit Ethernet allows for

using a standard network cable, while PCI Express requires

a PCI Express motherboard. In addition, Ethernet offers

higher transmission rates than USB 2.0. A thorough bib-

liographical search revealed that several alternative designs

that implement TCP/IP or UDP/IP protocols exist [4, 9, 10].

Kühn et al. used UDP/IP over Gigabit Ethernet [9], to es-

tablish high-speed PC-FPGA communication. The authors

use an operating system (Linux) that is running on the em-

bedded PPC (PowerPC). This represents the most straight-

forward solution as long as the available FPGA board is

equipped with PPC blocks. However, not all FPGAs contain

PPC blocks and the deployment of soft-coded processors

like Microblaze solely for transmission of Ethernet pack-

ets, may lead to a large and inefficient allocation of FPGA

area. Our approach allows for direct transmission of Ether-

net packets using the UDP/IP core in stand-alone mode, i.e.,

without the need for a processor and an operating system

that runs on it.

Three different stand-alone implementations of UDP/IP

stack cores have previously been presented in [4]; these de-

signs represent commercial IP cores. Löfgren et al. point

out that when it comes to the design of FPGA-based Eth-

ernet connected embedded systems, the priority and neces-

sity of requirements such as cost, area, flexibility etc. varies.

Because of this variation, a UDP/IP stack ”template” design

will thus not be suitable to accommodate distinct embedded

network system requirements [4]. Therefore, they present

three different implementations denoted as minimum, medium,

and advanced UDP/IP cores. Our minimal solution occupies

only 22% of the total hardware resources for the minimum

UDP/IP core, can be used to transmit and receive packets

at Gigabit speed (the minimum commercial IP core only op-

erates at 10/100 Mbps), and is available for download as

open-source code. More details and a resource usage com-

parison between our minimal approach and the minimum

UDP/IP core are provided in Subsection 5.3. We did not

conduct comparisons with the medium or advanced IP cores,

since they have been designed to provide increased flexibil-

ity and also comprise implementations of additional proto-

cols which are not necessary for establishing a direct PC-

FPGA communication.

Finally, Dollas et al. [10] presented an architecture for an

open TCP/IP core, comprising implementations of all nec-
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essary protocols (ARP, ICMP, UDP) such that the TCP/IP

stack is fully compatible with real-world applications. Due

to the complexity of their architecture that is due to sup-

porting a large number of protocols, a direct comparison to

our light-weight design would be unfair, in particular with

respect to resource utilization and because the design ob-

jectives of the architectures are significantly different. Fur-

thermore, a full TCP/IP core is not necessary for direct PC-

FPGA communication, since one can establish a connection

using fewer protocols and therefore less hardware resources.

4. THE PACKET TRANSMITTER ARCHITECTURE

In the following we describe the design of the reconfigurable

architecture that performs the transmission of UDP/IP Eth-

ernet packets. In Figure 4 we provide the block diagram of

the top-level unit.

The packet transmitter requires an active-high enable sig-

nal (start enable signal in Figure 4) that needs to be sent by

the application. This signal is delayed for one clock cycle

and inverted in order to be compliant with the active-low

start of frame signal of the EMAC. The start of frame out-

put port of the packet transmitter should be connected to

the start of frame input port of the EMAC. The delay by

one clock cycle is required to provide enough time for ad-

dressing the LUT and to make available the first datum for

transmission.

The TARGET EOF module is used for generating the

end of frame signal that should be connected to the respec-

tive input port of the EMAC. This module contains a 11-bit

counter and a comparator. The delayed start enable signal

is used to initialize the counter that counts the total number

of bytes that are transmitted at each clock cycle. The com-

parator is used to compare the number of transmitted bytes

to the Total Length value, which represents the point in time

at which the entire packet has been sent, i.e., the clock cy-

cle during which the last byte of user data will be sent to

the EMAC. Note that, the counter starts from position -X,

where X is the number of bytes that are being transmitted

before the IPv4 header section, i.e., the MAC addresses and

the Ethernet Type, as required by the 802.3 MAC frame.

The output signal of the comparator is inverted since EMAC

expects an active-low end of frame input.

The adder (ADD) that is located right below the TAR-

GET EOF module is used to add a constant value (base length)

to the number of user data bytes (user data length). The

base length value corresponds to the number of bytes in the

fields that precede the user data, excluding the bytes required

for the 802.3 MAC frame.

The SOURCE READY C component sets the value of

the source ready signal depending on the start enable and

end of frame signals respectively.

A subtracter (SUB) is used to compute the header check-

sum, as outlined in Section 2.2. The computation of the base

checksum value has already been described in detail in Sec-

tion 2.2. This value is hard-coded in the design.

The adder (ADD) below the checksum subtracter (SUB)

in Figure 4 calculates the length field of the UDP packet.

The base UDP length is the constant number of bytes for

the header section of the UDP frame, i.e., the Source and

Destination Ports, the Length, and the Checksum.

The LUT INDEX GENERATOR module is used to gen-

erate the correct LUT addresses at the corresponding clock

cycles. It is triggered by start enable signal, which, as pre-

viously mentioned, is delayed by one clock cycle. Once

the addressing process has been initiated, the counter is in-

cremented at each clock cycle to index the next memory

position in the LUT. As described in Section 2.3, some of

the fields that precede the user data are not static: the IPv4

header checksum, the Total Length field, and the UDP length.

The OVERRIDE LUT CONTROL component creates the

appropriate selection signals for the 4 to 1 multiplexer, such

that the LUT output is ignored and the non-static fields are

selected and sent at the respective clock cycles.

Finally, the TRANSMIT USR DATA module monitors

the addresses generated by the LUT INDEX GENERATOR

and activates a usr data request. In this way, the user ap-

plication is informed that the user data section of the UDP

packet will start after exactly c cycles, i.e., at the cth cycle
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after usr data request is set. When this point is reached, the

packet transmitter will forward to the EMAC whatever data

is received at the user input bus input port. In our experi-

mental setup we set c := 2 since the user data for transmis-

sion are stored in block rams and therefore one clock cycle is

required for addressing, and a second clock cycle is required

for retrieving user data from the block RAM component.

Figure 5 shows at which level we connected the UDP/IP

core to the EMAC, based on the wrapper files of the exam-

ple design provided by Xilinx. Note that, the design of the

Packet Receiver Unit (IPv4 UDP PACKET RECEIVER) is

trivial; we therefore do not provide a block diagram for this

component. The packet receiver unit consists of a counter,

a comparator, and logic. When a packet arrives, the incom-

ing bytes are counted and the comparator detects the last

byte of the header section, i.e., the UDP checksum field.

The header-section identification mechanism simply counts

the bytes that have been received and compares the value of

the byte counter to the fixed header-section length which is

known a priori. When the last byte of the UDP checksum

field has been received, which is the last byte of the header

section, the receiver module sets the usr data valid out sig-

nal and simply forwards the incoming bytes to the output

data bus which is connected to the user design, for instance

to a block RAM component.

5. EXPERIMENTAL RESULTS

Initially, we verified the functionality of the UDP/IP core

(Section 5.1). Thereafter, we provide a detailed description

of the experimental design and evaluate the core in terms

of transmission and success rates (Section 5.2). Finally,

Section 5.3 provides a performance and resource utilization

comparison with the minimum commercial UDP/IP core [4].

5.1. Verification

In order to verify the correctness of the proposed architec-

ture, we conducted extensive post place and route simula-

tions as well as tests on an actual FPGA device. As sim-

ulation tool, we used Modelsim 6.3f by Mentor Graphics.

For hardware verification we used the HTG-V5-PCIE devel-

opment platform equipped with a Xilinx Virtex 5 SX95T-1

FPGA. The Chipscope Pro Analyzer verification tool was

used to monitor the input and output ports of the EMAC

Local Link Wrapper, which were directly connected to the

respective ports of the UDP/IP core to track the expected

signals.

5.2. Experimental Evaluation

In order to measure the transmission rate and the success

rate of our Ethernet-based communication platform, we per-

formed two experiments (Subsections 5.2.1 and 5.2.2). The

FPGA board was connected to a DELL Latitude e4300 note-

book, which is equipped with an Intel Core 2 Duo P9400

CPU at 2.4GHz running under Linux. A standard CAT5

twisted-pair cable was used to connect the integrated Intel

82567LM Gigabit Ethernet port of the laptop to the Gigabit

Ethernet connector on the board. Since the board used for

our experiments is equipped with two PHY devices, we used

the connector that supports the SGMII interface and which is

connected to the RocketIO GTP/GTX of the Virtex-5 FPGA.

In order for the RocketIO transceiver to operate properly and

allow for Gigabit speed, we generated a 125MHz external

clock using the on-board oscillator that is directly connected

to the RocketIO transceiver. The UDP/IP core receives a

clock signal with the same frequency to smoothly operate

in conjunction with the EMAC. On the PC side we used a

JAVA application for transmitting and receiving UDP data-

grams. The current design does not include an implemen-

tation of the ARP protocol [11]. To send UDP packets to

the FPGA, a respective ARP cache entry must therefore be

added manually, every time the connection is reset.

5.2.1. FPGA→ PC Transmission

The aim of this first experiment was to determine what the

upper bound for one-way transmission is, i.e., only the FPGA

sends packets to the PC. For this experiment, the FPGA was

programmed to transmit UDP datagrams with 1,472 bytes at

a near-maximum rate. The size of the transmitted packets is

near the maximum length of 1,518 bytes for a non-VLAN

tagged frame, as specified in the IEEE STD 802.3 2002

specification [12]. The transmission rate is limited by the

speed at which the packet transmitter can send packets. The

implementation requires a gap of one clock cycle between

two packets. However, transmission of packets at this speed

can not be handled by the EMAC; as a result, most packets

could not be sent properly. For this reason, we introduced a

spacing of 40 clock cycles between packet transmissions.

The packets contained fixed, constant data in the data

field and we also attached a serial number to each of them to



facilitate detection of packet loss and/or corruption. On the

PC side, the packets were received and analyzed by a JAVA

program which is based on the NIO (New I/O) API [13] that

uses direct buffers to maximize performance.

The JAVA program counts the number of correctly re-

ceived packets (N RX) during a fixed time period of 10 sec-

onds. The number of packets actually sent by the FPGA

(N TX = N RX + N LOST ) is determined by compar-

ing the serial number of each incoming packet to the serial

number of the last packet received, i.e., the packet that ar-

rived exactly before the incoming packet. The real data rate

can be calculated, based on these two values, in MB/s as

RX = (N RX ∗ 1472Bytes)/(10Seconds ∗ 106). Fi-

nally, the transmission success ratio can be derived as fol-

lows: LR = N RX/N TX .

Our tests show a transmission rate higher than 115.6

MB/s and a success rate ranging between 98.83% and 99.25%.

The small percentage of packet loss is expected and it is

due to the design of the UDP/IP standard. When the op-

erating system or the receiving program on the PC can not

process the incoming data fast enough, arriving packets are

discarded. The UDP/IP standard provides no mechanism for

the sender to detect this type of packet loss, so reliable data

transmission has to be implemented at the application level

(e.g., the receiving application can send a re-transmission

request in case of a lost packet). Because of the very high

success rate that exceeds 98%, the impact on application

performance due to transmission reliability and infrequent

re-transmission requests will be insignificant.

We also investigated the impact on transmission quality

induced by increasing the time gap (number of cycles) be-

tween packet transmissions. For time gaps of 80 and 160

clock cycles, we observed a reduction of the transmission

rate while the success ratio remained in the 98.83% - 99.25%

range.

5.2.2. FPGA↔ PC Transmission

In the second experiment, we focused on two-way commu-

nication between the PC and the FPGA board. The Gigabit

Ethernet ports of the PC and the board can operate at full-

duplex, which means that the maximum transfer rate can be

simultaneously achieved by both the transmitting, as well as

in the receiving device. To measure the full-duplex transfer

rate we extended the previous experiment as follows:

We used two threads, a sender- and a receiver-thread.

The sender-thread continously transmits a fixed number of

packets (N DTX) at maximum speed. We set N DTX :=
106 for our experiment. The maximum speed is limited

by the PC hardware components and the operating system.

Once an incoming packet is registered by the FPGA, a reply-

packet filled with a predefined constant data-pattern is sent

back to the PC immediately, that is, the transmission of pack-

ets from the FPGA side is not continuous anymore, but is

FPGA Resources(Total) UDP/IP core % Total

# Slice Registers (58,880) 79 1%

# Slice LUTs (58,880) 155 1%

# Occupied Slices (14,720) 67 1%

Table 1. Resource utilization on a Virtex 5 SX95T-1 FPGA.

triggered by the incoming packet. On the PC side, the packet

that was sent by the FPGA is received by the receiver-thread.

Both threads measure the data rate of the outgoing and

incoming packets in the same way as in the first experiment.

In addition, the receiver thread counts the number of cor-

rectly received packets (N DRX), i.e., the packets with a

valid data-pattern. In analogy to the first experiment, the

success rate can be calculated as SR = N DRX/N DTX .

In contrast to one-way communication (FPGA → PC), here,

we measure the success rate for sending packets back and

forth between the PC and the FPGA while the connection is

utilized at maximum full-duplex speed.

The sender transmission rate was limited by the PC and

amounted to 113.11 MB/s, while the receiver rate was 111.67

MB/s. Both rates are close to the theoretical maximum of a

Gigabit Ethernet connection which is 125MB/s and our re-

sults demonstrate that full-duplex transfer rates can be used

and achieved in practice. The success rate is comparable to

the success rate of the one-way experiment and ranged be-

tween 98.7% and 99.2%.

5.3. Resource utilization and Comparison

As already mentioned, the board used for verification and

performance assessment of the UDP/IP core was equipped

with a Virtex 5 SX95T-1 FPGA. Table 1 shows the resources

occupied by the core on this FPGA.

Furthermore, since the core presented by Löfgren et al. [4]

was mapped to a Xilinx Spartan3 XC3S200-4, we reconfig-

ured and mapped our UDP/IP core to the same FPGA in

order to conduct a fair comparison to their minimum imple-

mentation. The reconfigured core for Spartan3 FPGAs is

also made available for download. Table 2 provides a re-

source consumption comparison between the minimum core

by Löfgren et al. [4] and our UDP/IP core. Note that, the

results that refer to our core are as they appeared in the Xil-

inx reports after the implementation process (post place and

route) while the results that refer to the commercial core

have been taken from [4]

As the results in Table 2 indicate, our component allows

for PC-FPGA communication at Gigabit speed, while only

utilizing a minimum of hardware resources. Our implemen-

tation occupies significantly less Xilinx Slices and does not

use any block RAMs. The core can also operate at a fre-

quency higher than 125MHz, which is required for operat-

ing at Gigabit speed.



Löfgren core our UDP/IP core

Xilinx Slices 517 111

Xilinx BRAMS 3 0

FMax(MHz) 90.7 131.8

Duplex Mode FULL FULL

Length(Bytes) 256 1472*

Speed(Mbps) 10/100 10/100/1000

ARP NO NO

RARP NO NO

ICMP NO NO

TCP”channel” NO NO

Table 2. Performance comparison on a Spartan3 XC3S200-

4 FPGA: UDP/IP core of [4] VS our implementation. *Note

that the Length(Bytes) in our implementation is limited by

the EMAC configuration (Xilinx EMAC wrapper files gen-

erated by Core generator).

6. CONCLUSION & FUTUREWORK

We presented a new architecture that allows for efficient

communication between a PC and a FPGA, both in terms

of hardware resource utilization as well as with respect to

achieving transmission rates and success ratios near the re-

spective maxima. The underlying idea that allows for imme-

diate transmission of packets, as soon as a usr send request

arrives, consists of storing all static fields of the header sec-

tion in a LUT and only using a subtracter to calculate the

header checksum field based on the Total Length value.

The UDP/IP core is available as open source code for

download at: http://wwwkramer.in.tum.de/exelixis/

countIPv4.php or at OpenCores.org (project name: IPv4

packet creator and transmitter). Since the release in early

January 2010 it is downloaded 6.5 times per day on average.

Thus, the main contribution of our paper consists in making

available an open-source, fast, and resource-efficient Giga-

bit Ethernet communication unit for FPGAs to the commu-

nity.

Future work will focus on designing a memory hierarchy-

based interface between a PC and a FPGA, that is, we in-

tend to improve the remote memory accesses of the recon-

figurable co-processor by utilizing on-board DRAM mem-

ory and providing a mechanism to transparently use user

address space on the PC from within the FPGA.
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