

USB Function

IP Core

Author: Rudolf Usselmann
rudi@asics.ws

Rev. 1.3
May 30, 2001

OpenCores USB Function Core May 30, 2001

Revision History

Rev. Date Author Description

0.1 6/1/01 Rudolf
Usselmann

First Draft

0.4 10/1/01 RU Dropped the linked list for endpoints idea, removed the buffer.
shared bit, added and modified registers.
Added Appendix B: Configuring the Core.

0.5 11/1/01 RU Changed buffer memory to a dual ported SSRAM.
Added quadruple buffering.
Filled in CSR register.
Added size field to end point buffers.

0.6 13/1/01 RU Added Change bars.
Changed buffer memory back to single port SSRAM.
Removed quadruple buffering (back to double buffering).
Enhanced the way buffers work, added description.
Added data organization section.
Added various references to latency and bandwidth requirements.
Added USB core behavior section.

0.7 15/1/01 RU Added frame number and time (FRM_NAT) register.
Filled in USB core behavior section.
Filled in most of the flowcharts.
Fixed endpoint interrupt register.
Added suspend output to wishbone IF.
Added names to some of the bits in the endpoint registers.

0.8 20/1/01 RU Changed document format to double sided.
Added Suspend and Resume Interrupts.
Added RX control of packet that are not MAX_PL_SZ.
Added vendor control IO port register and IOs.
Added Setup description.

0.9 31/1/01 RU Added DMA operations and signals.
Added separate core selects for registers and buffer memory.

0.9b 20/2/01 RU Some minor typing fixes.
Added a brief discussion about PID sequencing.
Modified the interrupts.
Modified the WISHBONE interface.

1.0 28/2/01 RU Added Buffer Overflow & Underflow descriptions.
Changed clock domain separation (Figure 1).
Removed document status “Preliminary Draft”.

1.1 7/3/01 RU Added USB device control flow charts.
Gave Names to Endpoint Registers.
Added Interrupt Section.
Added Suspend & Resume Section.
Added Appendix C: USB Core Structure.
Made various grammar and syntax corrections.
www.opencores.org Rev. 1.3 1 of 61

May 30, 2001 USB Function Core OpenCores

1.2 30/3/01 RU Rearranged Appendixes.
Moved Buffer Memory (SSRAM) outside the core.
Added Appendix describing SSRAM timing.
Filled in Core Configuration Appendix.
Modified DMA Operations section.
Added OTS_STOP bit in endpoint CSR register.
Added “OUT is smaller than MAX_PL_SZ” interrupt.
Fixed addresses of registers.

1.3 30/5/01 RU Fixed many syntax and grammar errors.
Removed Software model Section.
Added Appendix E: Software model, provided by Chris Ziomkowski
(chris@asics.ws).

Rev. Date Author Description
2 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

1
Introduction

The Universal Serial Bus (USB) has evolved to the standard interconnect
between computers and peripherals. Everything from a mouse to a camera can be
connected via USB. With the new USB 2.0 specification, data rates of over 480
Mb/s are possible.

The Universal Serial Bus is a point to point interface. Multiple peripherals are
attached through a HUB to the host.

This core provides a function (peripheral device) interface. It can be used to
interface almost any peripheral to a computer via USB. This core fully complies to
the USB 2.0 specification and can operate at USB Full and High Speed rates (12
and 480 Mb/s).

Note:
This specification assumes that the core will most likely be used in a high
speed environment and includes references to special high speed exten-
sions. However, when operation in full speed mode only, some of those
high speed extensions will not be used and the core will properly behave as
a full speed function only.
www.opencores.org Rev. 1.3 3 of 61

May 30, 2001 USB Function Core OpenCores

(This page intentionally left blank)
4 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

2
Architecture

The figure below illustrates the overall architecture of the core. The host inter-
face provides a bridge between the internal data memory and control registers to
the function controller. The data memory and control registers interface to the Pro-
tocol Layer (PL). The protocol layer interfaces to UTMI interface block. The
UTMI block interfaces to the PHY. Each of the blocks is described in detail below.

Figure 1: Core Architecture Overview

2.1. Clocks

The USB core has two clock domains. The UTMI interface block, runs off the
clock provided by the PHY. The maximum clock output from the PHY is 60 MHz.
The actual clock frequency depends on the operation mode (High Speed/Full

PHYPL

Function Interface
(Wishbone)

Function Micro controller

External

UTMI
I/F

Control/
Status
Registers

SSRAM USB
Connector

Clock Domain 1

Clock Domain 2

Memory
Interface
and
Arbiter

External
www.opencores.org Rev. 1.3 5 of 61

May 30, 2001 USB Function Core OpenCores

Speed). The UTMI block includes synchronization logic to the rest of the USB
core.

 All other blocks run off the clock from the host interface. Because of USB
latency requirements, the host interface must run at least at 60 MHz. The goal is
that the minimum frequency of the USB core host interface is at least 100Mhz.

2.2. Host Interface

The host interface block provides a consistent core interface between the inter-
nal functions of the core and the function-specific host or micro controller.
The host interface is WISHBONE SoC bus specification Rev. B compliant.

2.2.1. Bandwidth Requirement

The USB maximum theoretical throughput is 480Mb/s, which translates to 60
Mbytes/s. On a 32 bit bus, four bytes (one word) are transferred per cycle. The
minimum bandwidth requirement for the host is therefore 15 Mwords/s.

2.3. Memory Interface and Arbiter

The memory interface and arbiter arbitrates between the USB core and host
interface for memory access. This block allows the usage of standard single port
Synchronous SRAM. Besides arbitration it performs data steering and flow con-
trol.

2.4. SSRAM

The SSRAM is a single ported Synchronous SRAM block that is used to buffer
the input and output data.

2.5. Protocol Layer (PL)

The protocol layer is responsible for all USB data IO and control communica-
tions.

WISHBONE

COMPATIBLE
6 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

Figure 2: Protocol Layer Block

2.5.1. DMA & Memory Interface

This block interfaces to the data memory. It provides random memory access
and also DMA block transfers.

2.5.2. Protocol Engine

This block handles all the standard USB protocol handshakes and control cor-
respondence. Those are SOF tokens, acknowledgment of data transfers (ACK,
NACK, NYET), replying to PING tokens.

2.5.3. Packet Assembly

This block assembles packets and places them in to the output FIFO.

2.5.4. Packet Disassembly

This block decodes all incoming packets and forwards the decoded data to the
appropriate blocks.

Packet

Packet

Protocol
Engine

Assembly

D
M

A
 a

nd
M

em
or

y
In

te
rf

ac
e

Dis-
assembly

Control/Status Registers
www.opencores.org Rev. 1.3 7 of 61

May 30, 2001 USB Function Core OpenCores

2.6. UTMI I/F

This is the interface block to the UTMI compliant PHY (transceiver).

Figure 3: UTMI Interface Block

2.6.1. Interface State Engine

This block handles the interface state. It controls suspend/resume modes and
Full Speed/High Speed switching.

2.6.2. Speed Negotiation Engine

This block negotiates the speed of the USB interface and handles suspend and
reset detection.

2.6.3. Rx & Tx FIFOs

The FIFOs hold the temporary receive and transmit data.

2.6.4. Rx & Tx Bus Interface

These blocks ensure proper handshaking with the receive and transmit inter-
faces of the PHY.

Speed

Interface

Rx FIFO
Rx Bus

Tx Bus
Interface

State
Engine

Negotiation
Engine

Interface

Tx FIFO
8 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

3
Operation

This section describes the operation of the USB function controller. It first dis-
cusses the logical interface to the host micro controller (function) and then the log-
ical USB interface.

The USB core uses a local buffer memory which is used as a temporary data
storage. The memory size is user definable. Each endpoint has its own dedicated
input/output buffer. No software intervention is needed between different endpoint
accesses. Double buffers may be set up, reducing the latency requirement on the
software, and increasing USB throughput.

Figure 4: Logical Representation of USB

PHY

E 0

E 1

E n

USB Core

Registers

Host or
HUB

U
S

B
F

un
ct

io
n

Core
Logic

USB
Cable
www.opencores.org Rev. 1.3 9 of 61

May 30, 2001 USB Function Core OpenCores

3.1. Endpoints

This USB core supports up to 16 endpoints. The actual number of endpoints is
set before synthesizing the core.

The function controller must set up the endpoints by writing to the endpoint
registers: EPn_CSR, EPn_INT, EPn_BUFx.

The function controller must also assign actual endpoint numbers to each end-
point (EP_NO). The endpoint numbering in this specification refers to the physical
endpoints. The actual logical (the one that is matched against the endpoint field in
tokens from the host) must be set in the EPn_CSR register EP_NO field. The soft-
ware must make sure that all endpoints for a given transaction type are unique.

3.1.1. Buffer Pointers

The buffer pointers point to the input/output data structure in memory. A value
of all ones (7FFFh) indicates that the buffer has not been allocated. If all buffers
are not allocated, the core will respond with NAK acknowledgments to the USB
host.

This USB core supports a double buffering feature which reduces the latency
requirements on the functions micro controller and driver software. Double buffer-
ing is enabled when all buffer pointers have been set. Data is being retrieved/filled
from/to the buffers in a round robin fashion. When data is sent to/from an endpoint,
first buffer 0 is used. When the first buffer is empty/full, the function controller
may be notified via an interrupt. The function controller can refill/empty buffer 0
now. The USB core will now use buffer 1 for the next operation. When the second
buffer is full/empty, the function controller is interrupted, and the USB core will
use buffer 0 again, and so on. Any buffer that is not allocated will be skipped. A
buffer that has the used bit set will cause the core to stall, replying with NAK/
NYET acknowledgments to the host.

The Buffer Used bits indicate when a buffer has been used (this information is
also provided in the Interrupt Source register). The function controller must clear
these bits after it has emptied/refilled the buffer.

A buffer may be larger than the maximum payload size. In that case, multiple
packets will be sourced/placed from/to a buffer. A buffer for an OUT endpoint
must always be in multiples of maximum payload size. When the remaining space
in a buffer is less than the maximum payload size (because a one or more packets
with less than maximum payload were received), the buffer is considered full, and
the USB core will switch to the next buffer. For example, if the maximum payload
size is 512 bytes, the buffer may be 512, 1024, 1536, 2048, etc. bytes large. The
software should always check the buffer size field. It should be zero when the
entire buffer has been used. If the buffer size is not zero, then the size field indi-
cates how many bytes of the buffer have not been used. There is no such limitation
for IN buffers. The core will always transmit the maximum possible number of
bytes. The maximum possible number of bytes is always the smaller one of maxi-
mum payload size and remaining buffer size.
10 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

Figure 5: Buffer Operation

Control endpoints are somewhat special because they can receive and transmit
data. Therefore, for control endpoints, Buffer 0 is always an OUT buffer, and
Buffer 1 always an IN buffer. Data from SETUP and OUT tokens will therefore
always be written to Buffer 0. Data sent in response to an IN token is always
retrieved from Buffer 1.

Figure 6: Control Endpoint Buffer Usage

Initial Buffer

Initial Buffer
Size

Pointer

Buffer Pointer
after 1st
transaction

Buffer Size
after 1st
transaction

Max. Payload
Size

See Text

Max. Payload
Size

Local Buffer Memory

2nd Transaction

1st Transaction

Nth Transaction

. . .

Above

S
E

T
U

P
To

ke
n

D
AT

A
P

ac
ke

t

A
C

K
P

ac
ke

t

USB Host

USB IP Core

Buffer 0

DATA

IN
To

ke
n

D
AT

A
P

ac
ke

t

A
C

K
P

ac
ke

t

USB Host

USB IP Core

Buffer 1

DATA

O
U

T
To

ke
n

D
AT

A
P

ac
ke

t

A
C

K
P

ac
ke

t

USB Host

USB IP Core

Buffer 0

DATA

SETUP Stage DATA Stage STATUS Stage
www.opencores.org Rev. 1.3 11 of 61

May 30, 2001 USB Function Core OpenCores

3.1.2. Buffer Underflow

A buffer underflow condition occurs when either the function controller or
external DMA engine did not fill the internal buffer with enough data for one
MAX_PL_SZ packet. When an IN token is received in this condition, the USB
core will reply with a NACK to the host. No special handling is required by the
function controller. The UCB core will continue sending a NACK to each IN
token, as long as this condition is true.

When both buffers are not allocated or empty (USED bit set), a buffer under-
flow condition occurs as well.

3.1.3. Buffer Overflow

A buffer overflow occurs when a packet has been received that does not fit into
the buffer. The packet will be discarded and a NACK will be sent to the host.

Typically the buffer would be set up to hold one or more MAX_PL_SZ pack-
ets. There is no guarantee that the host will actually send MAX_PL_SZ packets,
and therefore the buffer will not be completely filled with MAX_PL_SZ data on
each transfer.

When a buffer overflow occurs, the USB core will discard the received data
and reply with a NACK to the host. It will continue discarding received data and
replying with NACK to each OUT token which payload size does not fit into the
buffer.

When both buffers are not allocated or full, the USB core will immediately
reply with a NACK when it receives an OUT token (it will not wait for the actual
data packet from the host).

3.1.4. Data Organization

Since the buffer memory is 32 bits wide and USB defines all transactions on
byte boundaries it is important to understand the relationship of data in the buffer
to actual USB byte sequence. This USB core supports Little Endian byte ordering.

Figure 7: Byte Ordering

The buffer pointer always points to byte 0. The USB core always fetches four
bytes from the buffer memory. The actual final byte that is transmitted in the Nth
transaction depends on the Buffer Size. The MaxPacketSize must always be a mul-
tiple of 4 bytes.

Byte 3 Byte 2 Byte 1 Byte 0

0781516232431
12 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

3.2. DMA Operation

DMA operation allows completely transparent data movement between the
USB core and the function attached to the WISHBONE bus. Once set up, no func-
tion micro controller intervention is needed for normal operations. Each endpoint
has an associated pair of DMA_REQ and DMA_ACK signals.

When the DMAEN bit in the channel CSR register is set, the USB core will use
the DMA_REQ and DMA_ACK signals for DMA flow control. The DMA_REQ
signal is asserted when the buffer contains data or when the buffer is empty and
needs to be filled. The DMA must reply with a DMA_ACK for each word (4 bytes)
transferred. In DMA mode, the USED bits are not used and always cleared.

In DMA mode, only one buffer (buffer 0) is used. Buffer 1 is never used in
DMA mode. Both buffer 0 and the external DMA must be set up to the same start-
ing location in the USB memory buffer (the actual address for the external DMA
will vary depending on the external address decoder for the USB core buffer
select). They must also be set up to equal buffer size and wrap around when the
amount of bytes specified has been transferred.

The buffer must hold at least one MAX_PL_SZ packet. Depending on DMA
and external bus latency it may be set up to hold more than one packet.

MAX_PL_SZ must be set in 4 byte multiples, as the USB core does not sup-
port byte transfers. For OUT endpoints it is impossible to guarantee that a received
packet will be in multiples of 4 bytes. The USB core provides a mechanism to
recover in those cases: Whenever the received packet is smaller than
MAX_PL_SZ, an interrupt may be generated to notify the function controller of
this condition. In addition buffer1 is set to the local buffer address of the packet
that was smaller than MAX_PL_SZ. The size field in buffer1 indicates the number
of actual bytes in that packet. The USB core will always pad the buffer to
MAX_PL_SZ bytes, so that DMA transfers can continue uninterrupted.

If the OTS_STOP bit is set in the endpoint CSR register, the endpoint will be
disabled to allow the function controller enough time to deal with the short packet.
The function controller must re-enable the endpoint by setting the EP_DIS field in
the endpoint CSR register to Normal Operation.

3.3. PID Sequencing

USB utilizes PID sequencing to keep data transfers synchronized. It also pro-
vides a mechanism to recover data and synchronization when synchronization is
lost. Synchronization can be lost due to corrupt packets, resulting in bad CRCs.
This USB core fully implements and follows the PID synchronization and recov-
ery as specified in the USB specification.

Isochronous endpoints provide no mechanism to automatically recover lost
data due to a loss of synchronization. The USB core will automatically resynchro-
nize with the host, however, since isochronous endpoints have no handshaking
stage, have therefore no way to inform the host of such failures. The USB core pro-
vides a “PID Sequencing Error” interrupt for this cases in order for the function
controller to be notified of such events. This interrupt will only be asserted for iso-
www.opencores.org Rev. 1.3 13 of 61

May 30, 2001 USB Function Core OpenCores

chronous OUT endpoints. For any other endpoints it has no meaning and is auto-
matically disabled.

3.4. USB Core Memory Size

This USB core includes a memory block which it uses for storing data and end-
point control information. The memory is 32 bits wide. Depending on the applica-
tion, the user should choose the appropriate memory size for the buffer memory.

Based on the actual number of endpoints and application, the memory can be
as small as 256 bytes. The maximum supported memory size is 128 Kilobytes.

3.5. USB Core Behavior

Below table illustrates the behavior of the USB core. It also summarizes all
“What if?” conditions. (This information is mostly copied from the USB 2.0 spec-
ification. Some items required interpretation of the information provided in the
USB 2.0 specification).

Table 1: Core Specification and Behavior

Condition/
Operation

Full Speed Mode Behavior High Speed Mode Behavior

Packet Sizes

Isochronous Transfer
Max. Payload size

1023 bytes 1024 bytes

Interrupt Transfer
Max. Payload size

64 bytes 1024 bytes

Bulk Transfer
Max. Payload size

8, 16, 32, 64 bytes 512 bytes

Timing

One Bit Time 83.33nS 2.0833 nS

UTMI Clock (UCLK) 16.67 nS 16.67 nS

Max. Inter Packet
Delay (measured on

the USB bus)

7.5 Bit Times (~622 nS) 192 Bit Times (400 nS)

UTMI Rx worst case
delay

17 UCLK (~283 nS) 63 Bit Times or 8 UCLK
(~132 nS)

UTMI Tx worst case
delay

5 UCLK (~83 nS) 16 Bit Times or 2 UCLK
 (~33 nS)

Worst Case USB core
allowed decision time

(Rx to Tx)

~256 nS (15 UCLK) 96 Bit Times or 12 UCLK
 (200 nS)

Worst Case USB core
allowed decision time

(Tx to Tx)

7.5 Bit Times or 37 UCLK
 (~622 nS)

192 Bit Times or 24 UCLK
 (400 nS)
14 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

Data PID sequencing

Isochronous Transfer
Data PID sequencing

Normal Endpoints use DATA0 only
High Speed High Bandwidth Endpoints perform data PID
sequencing depending on the number of transaction per microf-
rame and data flow:
IN Endpoints:
1 transaction (<1024 bytes each): DATA0 only
2 transaction (513-1024 bytes each): DATA1, DATA0
3 transaction (683-1024 bytes each): DATA2, DATA1, DATA0
OUT Endpoints:
1 transaction (<1024 bytes each): DATA0 only
2 transaction (513-1024 bytes each): MDATA, DATA1
3 transaction (683-1024 bytes each): MDATA, MDATA, DATA2

Interrupt Transfer
Data PID sequencing

DATA0/DATA1 toggle either continuously or on successful trans-
actions.

Bulk Transfer
Data PID sequencing

DATA0/DATA1 toggle ONLY on successful transactions.

Packet Errors and Mismatches

Packet with Address
Mismatch

Ignored, no action is taken.

Endpoint Field mis-
match

Ignored, no action is taken.
(The function controller may be interrupted.)

Packet with bad PID
checksum received

Ignored, no action is taken.
(The function controller may be interrupted.)

Token with bad CRC5
received

Ignored, no action is taken.
(The function controller may be interrupted.)

Packet with bad
CRC16

Ignored, no action is taken.
(The function controller may be interrupted.)

Unsupported token
(e.g. OUT endpoint

receives an IN token)

Ignored, no action is taken.
(The function controller may be interrupted.)

Tokens

PRE and SPLIT
tokens

Ignored, no action is taken.

SOF Token Frame number is recorded in the FRM_NAT register, if frame
number is the same as previous, the same frame number field
in the FRM_NAT register is increment. The frame time counter
in the FRM_NAT register is reset.

PING Token received
and have space for

MAX_PL_SZ

N/A
(Ignored, no action is taken.)

Issue ACK handshake

Table 1: Core Specification and Behavior

Condition/
Operation

Full Speed Mode Behavior High Speed Mode Behavior
www.opencores.org Rev. 1.3 15 of 61

May 30, 2001 USB Function Core OpenCores

PING Token received
and no space for

MAX_PL_SZ

N/A
(Ignored, no action is taken.)

Issue NAK handshake.

PING Token received
and HALT mode set

N/A
(Ignored, no action is taken.)

Issue STALL handshake.

IN Endpoint

IN Token received
and HALT mode set

Issue STALL handshake.

IN Token received
both buffers either

have the USED bit set
are not allocated

Issue NAK handshake.

IN Token received, can
transmit data

Send data packet.

Host sends ACK after
receiving data packet

Transaction successful, go to IDLE state.

No response from
host - time-out (also
corrupted response

from host)

Do not advance PID toggle bits and buffer pointers. Go to IDL
state. Host will retry IN token.

OUT Endpoint

OUT Token received
and HALT bit is set

Issue STALL handshake.

OUT Token received
and PID sequence

mismatch

Issue ACK (ignore data packet).

OUT Token received
both buffers have

either the USED bit
set or are not allo-

cated

Issue NAK handshake (ignore data packet)

OUT Token received
can accept data

Issue ACK handshake.

OUT Token received
can accept this data

and have room for one
more MAX_PK_SZ

Issue ACK response.

Table 1: Core Specification and Behavior

Condition/
Operation

Full Speed Mode Behavior High Speed Mode Behavior
16 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

OUT Token received,
can accept this data
and does not have
room for one more

MAX_PK_SZ

Issue NYET response.

Data packet CRC16
error or received next

token

Ignore, no acknowledgment, handle new token.

Control Endpoint

SETUP Stage Same as OUT Token Above

DATA Stage Same as IN Token above

STATUS Stage Same as OUT Token Above

Table 1: Core Specification and Behavior

Condition/
Operation

Full Speed Mode Behavior High Speed Mode Behavior
www.opencores.org Rev. 1.3 17 of 61

May 30, 2001 USB Function Core OpenCores

3.6. USB Core Flowcharts

Below flowcharts outline the basic operation of the USB core.

Figure 8: USB Core Main Flowchart

IDLE

Received
Token

No

Special
Token
Processing

Token
Corrupt?

Perform
Setup

Perform
IN Data
CycleCycle

Perform
Out Data
Cycle

Yes

Decode
Token

Unsupported

or Invalid Token

Report
Token
Error

PIN
G

/S
O

F

To
ke

n

S
E

T
U

P
To

ke
n

IN Token

OUT Token
18 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

3.6.1. Special Token Processing

The USB Core currently supports only two special tokens in addition to
SETUP, IN and OUT tokens. These tokens are SOF and PING. When a SOF token
is received, the FRM_NAT register is updated.

The PING token is a special query token for high speed OUT endpoints. It
allows the host to query whether there is space in the output buffer or not.

Figure 9: Special Token Processing Flowchart

Update
FRM_NAT

Reply
STALL

Register

Yes

No

Yes

No

Reply
ACK

Reply
NAK

Decode
Token

HALT
Mode?

Buffer
Available?

SOF

PING

Yes

NoHS
Mode?
www.opencores.org Rev. 1.3 19 of 61

May 30, 2001 USB Function Core OpenCores

3.6.2. IN Data Cycle

This section illustrates the decision flow for an IN token.

Figure 10: IN Data Cycle Flowchart

Reply
NAK

Reply
STALL

Send
Data
Packet

Yes

No

No

Yes

Wait for
ACK

Reply
ACK

Got
ACK

Time

Toggle
PID bits

Out

Advance
Buffer Ptr.

Buffer
Available?

HALT
Mode?
20 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

3.6.3. Out Data Cycle

This section illustrates the decision flow for an OUT token.

Figure 11: Out Data Cycle Flowchart

Reply
STALL

Reply
NAK

Yes

No

No

YesPID in
sequence?

HALT
Mode?

Yes

No

No

Yes

Reply
ACK

Reply
NYET

Got DATA

Yes

No

T
im

e
O

ut
 o

r

Advance
PID (i.a.)
Advance
Buffer Ptr.

Wait for
Data
Packet

Data
Accepted?

High Speed
Mode?

Next buffer
available?

packet

C
R

C
16

 e
rr

or
www.opencores.org Rev. 1.3 21 of 61

May 30, 2001 USB Function Core OpenCores

3.6.4. USB Device Control Processing

The USB provides a special mechanism to control the attached devices beyond
data exchange. Those special controls are: Reset, Suspend/Resume and Speed
Negotiation. Below flow chart illustrates the support provided by this USB core.

Figure 12: USB Device Control Processing

Power On/Function Reset

- Switch to FS mode
- Wait 100mS

Set Attached Flag

NORMAL OPERATION

IDLE asserted for
> 2.5uS but < 3.0mS

RESET

& FS mode

IDLE asserted for
> 3.0mS
& FS mode

SUSPEND

IDLE asserted
for > 3.0mS
& HS mode

- Switch to FS mode
- Wait 100uS

‘J’ asserted
SE0 asserted

‘J’ asserted

IDLE: ‘J’ for FS; ‘SE0’ for HS
FS: Full Speed
HS: High Speed
22 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

Figure 13: Suspend Control Processing

SE0 asserted
& HS Mode

SE0 asserted
& HS Mode

SUSPEND

‘K’ asserted
Funct. Resume
Request &
Suspended > 5mS

- Clear Suspend Mode

Normal Operation

- Set Suspend Mode

- Wait up to 10mS 1
- Drive ‘K’ for 1-15mS

SE0 asserted
& FS Mode

- Clear Suspend Mode

- Switch to HS mode

Reset

SE0 asserted
for > 2.5uS

1) A device can take up to 10mS to resume internally from a Suspend Mode.

SE0 asserted
& FS Mode
www.opencores.org Rev. 1.3 23 of 61

May 30, 2001 USB Function Core OpenCores

Figure 14: Reset Control Processing

3.7. Interrupts

The USB core provides two interrupt outputs (INT_A and INT_B). Both out-
puts are fully programmable. The programming for both outputs is identical to pro-
vide full flexibility to software. The intention is to have one high priority interrupt
and one low priority interrupt. The actual usage of the interrupts is up to the system
into which the USB core is incorporated.

The interrupt mechanism in the USB core consists of a two level hierarchy:
• The main interrupt source register (INT_SRC) indicates interrupts that

are endpoint independent. These interrupts indicate overall events that
have either global meaning for all endpoints or can not be associated
with an endpoint because of an error condition.

• The endpoint interrupt source registers indicate events that are specific
to an endpoint.

RESET

Normal Operation

- Signal Reset Internally

- Switch to HS mode

- Send Chirp ‘K’
 for 1 mS

- Wait for Chirp ‘K’

- Wait for Chirp ‘J’

Got Chirp ‘K’Got Chirp ‘J’

Got ‘SE0’

Got ‘SE0’

Chirp Count==6

Chirp Count==6

Got ‘SE0’
24 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

3.7.1. Timing

The interrupt outputs are asserted when the condition that is enabled in the
interrupt mask occurs. They remain asserted until the main interrupt register is
read.

3.7.2. Software Interaction

A interrupt handler should first read the main interrupt source register
(INT_SRC) to determine the source of an interrupt. It must remember the value
that was read until it is done, processing each interrupt source. If any of the bits 15
through 0 are set, the interrupt handler should also read the appropriate endpoint
interrupt register to determine endpoint specific events. Multiple interrupt sources
may be indicated at any given time. Software should be prepared to handle every
interrupt source it cares about.

Note:
When using both interrupt pins to service different events, or prioritizing
event handling, care must be taken not to lose interrupt sources, as the main
interrupt source register is cleared after a read.

3.8. Suspend & Resume

USB defines a protocol for suspending devices that are attached to the UCB
bus. Devices that are powered by USB bus must enter a low power mode when a
suspend signaling has been received. The USB core will assert and hold asserted
the SUSP_O for as long as the device must remain in the suspended state.

A device that has entered suspend mode can be “woken up” in two different
ways:

1. Resume Signaling from the USB.
2. Asserting the RESUME_REQ_I line.
www.opencores.org Rev. 1.3 25 of 61

May 30, 2001 USB Function Core OpenCores

(This page intentionally left blank)
26 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

4
Core Registers

This section describes all control and status registers inside the USB function.
The Address field indicates a relative address in hexadecimal. Width specifies the
number of bits in the register, and Access specifies the valid access types to that
register. RW stands for read and write access, RO for read only access. A ‘C’
appended to RW or RO indicates that some or all of the bits are cleared after a
read.

Table 2: Control/Status Registers

Name

A
dd

r.

W
id

th

A
cc

es
s

Description

CSR 0 32 RW Control/Status Register

FA 4 32 RW Function Address

INT_MSK 8 32 RW Interrupt Mask for endpoint independent sources

INT_SRC C 32 ROC Interrupt Source register

FRM_NAT 10 32 RO Frame Number and Time

UTMI_VEND 14 32 RW Vendor Specific IO port

Endpoint Registers

EP0_CSR 40 32 RW Endpoint 0: CSR

EP0_INT 44 32 RW Endpoint 0: Interrupt Register

EP0_BUF0 48 32 RW Endpoint 0: Buffer Register 0

EP0_BUF1 4c 32 RW Endpoint 0: Buffer Register 1

EP1_CSR 50 32 RW Endpoint 1: CSR

EP1_INT 54 32 RW Endpoint 1: Interrupt Register

EP1_BUF0 58 32 RW Endpoint 1: Buffer Register 0

EP1_BUF1 5c 32 RW Endpoint 1: Buffer Register 1

EP2_CSR 60 32 RW Endpoint 2: CSR

EP2_INT 64 32 RW Endpoint 2: Interrupt Register
www.opencores.org Rev. 1.3 27 of 61

May 30, 2001 USB Function Core OpenCores

EP2_BUF0 68 32 RW Endpoint 2: Buffer Register 0

EP2_BUF1 6c 32 RW Endpoint 2: Buffer Register 1

EP3_CSR 70 32 RW Endpoint 3: CSR

EP3_INT 74 32 RW Endpoint 3: Interrupt Register

EP3_BUF0 78 32 RW Endpoint 3: Buffer Register 0

EP3_BUF1 7c 32 RW Endpoint 3: Buffer Register 1

EP4_CSR 80 32 RW Endpoint 4: CSR

EP4_INT 84 32 RW Endpoint 4: Interrupt Register

EP4_BUF0 88 32 RW Endpoint 4: Buffer Register 0

EP4_BUF1 8c 32 RW Endpoint 4: Buffer Register 1

EP5_CSR 90 32 RW Endpoint 5: CSR

EP5_INT 94 32 RW Endpoint 5: Interrupt Register

EP5_BUF0 98 32 RW Endpoint 5: Buffer Register 0

EP5_BUF1 9c 32 RW Endpoint 5: Buffer Register 1

EP6_CSR a0 32 RW Endpoint 6: CSR

EP6_INT a4 32 RW Endpoint 6: Interrupt Register

EP6_BUF0 a8 32 RW Endpoint 6: Buffer Register 0

EP6_BUF1 ac 32 RW Endpoint 6: Buffer Register 1

EP7_CSR b0 32 RW Endpoint 7: CSR

EP7_INT b4 32 RW Endpoint 7: Interrupt Register

EP7_BUF0 b8 32 RW Endpoint 7: Buffer Register 0

EP7_BUF1 bc 32 RW Endpoint 7: Buffer Register 1

EP8_CSR c0 32 RW Endpoint 8: CSR

EP8_INT c4 32 RW Endpoint 8: Interrupt Register

EP8_BUF0 c8 32 RW Endpoint 8: Buffer Register 0

EP8_BUF1 cc 32 RW Endpoint 8: Buffer Register 1

EP9_CSR d0 32 RW Endpoint 9: CSR

EP9_INT d4 32 RW Endpoint 9: Interrupt Register

EP9_BUF0 d8 32 RW Endpoint 9: Buffer Register 0

EP9_BUF1 dc 32 RW Endpoint 9: Buffer Register 1

EP10_CSR e0 32 RW Endpoint 10: CSR

EP10_INT e4 32 RW Endpoint 10: Interrupt Register

Table 2: Control/Status Registers

Name

A
dd

r.

W
id

th

A
cc

es
s

Description
28 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

4.1. Control Status Register (CSR)

This is the main configuration and status register of the USB core.

EP10_BUF0 e8 32 RW Endpoint 10: Buffer Register 0

EP10_BUF1 ec 32 RW Endpoint 10: Buffer Register 1

EP11_CSR f0 32 RW Endpoint 11: CSR

EP11_INT f4 32 RW Endpoint 11: Interrupt Register

EP11_BUF0 f8 32 RW Endpoint 11: Buffer Register 0

EP11_BUF1 fc 32 RW Endpoint 11: Buffer Register 1

EP12_CSR 100 32 RW Endpoint 12: CSR

EP12_INT 104 32 RW Endpoint 12: Interrupt Register

EP12_BUF0 108 32 RW Endpoint 12: Buffer Register 0

EP12_BUF1 10c 32 RW Endpoint 12: Buffer Register 1

EP13_CSR 110 32 RW Endpoint 13: CSR

EP13_INT 114 32 RW Endpoint 13: Interrupt Register

EP13_BUF0 118 32 RW Endpoint 13: Buffer Register 0

EP13_BUF1 11c 32 RW Endpoint 13: Buffer Register 1

EP14_CSR 120 32 RW Endpoint 14: CSR

EP14_INT 124 32 RW Endpoint 14: Interrupt Register

EP14_BUF0 128 32 RW Endpoint 14: Buffer Register 0

EP14_BUF1 12c 32 RW Endpoint 14: Buffer Register 1

EP15_CSR 130 32 RW Endpoint 15: CSR

EP15_INT 134 32 RW Endpoint 15: Interrupt Register

EP15_BUF0 138 32 RW Endpoint 15: Buffer Register 0

EP15_BUF1 13c 32 RW Endpoint 15: Buffer Register 1

Table 3: CSR Register

Bit
A
cc

es
s

Description

7:5 RO RESERVED

4:3 RO UTMI Line State

2 RO Interface Status
1=Attached

Table 2: Control/Status Registers

Name

A
dd

r.

W
id

th

A
cc

es
s

Description
www.opencores.org Rev. 1.3 29 of 61

May 30, 2001 USB Function Core OpenCores

Value after reset:

CSR: 00 h

4.2. Function Address Register (FA)

The function address is set by the function controller when the function is con-
figured. This is done by exchanging control and status information with the host.

Value after reset:

FA: 00h

4.3. Interrupt Mask Register (INT_MSK)

The interrupt mask register defines the functionality of int_a and int_b outputs
in regard to events without associated endpoints.

A bit set to a logical 1 enables the generation of the interrupt for that source, a
zero disables the generation of an interrupt.

1 RO Interface Speed
1=High Speed Mode; 0=Full Speed Mode

0 RO 1=Suspend Mode

Table 4: Interrupt Mask Register

Bit #

A
cc

es
s

Description

31:25 RO RESERVED

24 RW Interrupt B Enable: Received a USB Reset

23 RW Interrupt B Enable: Received a UTMI Rx Error

22 RW Interrupt B Enable: Assert interrupt when Detached

21 RW Interrupt B Enable: Assert interrupt when Attached

20 RW Interrupt B Enable: Leave Suspend Mode (Resume)

19 RW Interrupt B Enable: Enter Suspend Mode (Suspend)

18 RW Interrupt B Enable: No Such Endpoint

17 RW Interrupt B Enable: PID Error (PID check sum error)

16 RW Interrupt B Enable: Bad Token (CRC 5 error)

15:9 RO RESERVED

Table 3: CSR Register

Bit
A

cc
es

s

Description
30 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001

Value after reset:

INT_MSK: 0000h

4.4. Interrupt Source Register (INR_SRC)

This register identifies the source of an interrupt. Whenever the function con-
troller receives an interrupt, the interrupt handler must read this register to deter-
mine the source and cause of the interrupt. Some of the bits in this register will be
cleared after a read. The software interrupt handler must make sure it keeps what-
ever information is required to handle the interrupt.

8 RW Interrupt A Enable: Received a USB reset

7 RW Interrupt A Enable: Received a UTMI Rx Error

6 RW Interrupt A Enable: Assert interrupt when Detached

5 RW Interrupt A Enable: Assert interrupt when Attached

4 RW Interrupt A Enable: Leave Suspend Mode (Resume)

3 RW Interrupt A Enable: Enter Suspend Mode (Suspend)

2 RW Interrupt A Enable: No such endpoint

1 RW Interrupt A Enable: PID Error (PID check sum error)

0 RW Interrupt A Enable: Bad Token (CRC 5 error)

Table 5: Interrupt Source Register

Bit #

A
cc

es
s

Description

31:29 RO RESERVED

28 ROC USB Reset

27 ROC UTMI Rx Error

26 ROC Detached

25 ROC Attached

24 ROC Resume

23 ROC Suspend

22 ROC No Such Endpoint

21 ROC PID Error (PID check sum error)

20 ROC Bad Token (CRC 5 error)

Table 4: Interrupt Mask Register

Bit #

A
cc

es
s

Description
www.opencores.org Rev. 1.3 31 of 61

May 30, 2001 USB Function Core OpenCores
Value after reset:

INT_SRC: 0000h

4.5. Frame Number and time register (FRM_NAT)

This register tracks the frame number as received from the SOF token, and the
frame time.

19:16 RO RESERVED

15 RO Endpoint 15 caused an Interrupt

14 RO Endpoint 14 caused an Interrupt

13 RO Endpoint 13 caused an Interrupt

12 RO Endpoint 12 caused an Interrupt

11 RO Endpoint 11 caused an Interrupt

10 RO Endpoint 10 caused an Interrupt

9 RO Endpoint 9 caused an Interrupt

8 RO Endpoint 8 caused an Interrupt

7 RO Endpoint 7 caused an Interrupt

6 RO Endpoint 6 caused an Interrupt

5 RO Endpoint 5 caused an Interrupt

4 RO Endpoint 4 caused an Interrupt

3 RO Endpoint 3 caused an Interrupt

2 RO Endpoint 2 caused an Interrupt

1 RO Endpoint 1 caused an Interrupt

0 RO Endpoint 0 caused an Interrupt

Table 6: Frame Number and Time Register

Bit #

A
cc

es
s

Description

31:28 RO Number of frames with the same frame number (this field may be used
to determine current microframe)

27 RO Reserved

26:16 RO Frame number as received from SOF token

15:12 RO Reserved

Table 5: Interrupt Source Register

Bit #

A
cc

es
s

Description
32 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
Value after reset:

FRM_NAT: 0000h

4.6. Vendor Specific IO Port (UTMI_VEND)

The UTMI specification allows for a vendor defined IO port. This port consists
of a 4 bit write port (to the UTMI device) and an 8 bit status port (status of the
UTMI device). This register provides access to this vendor specific control/status
port. A write to this register will write bits 3:0 to the VControl bus and assert
VControlLoad line. A read from this register will return the value present on the
VStatus lines 7:0. The actual meaning of the control and status bits is vendor spe-
cific and should be determined from the UTMI device vendors specification.

4.7. Endpoint Registers

Each endpoint has 4 registers associated with it. These registers have exactly
the same definition for each endpoint.

Figure 15: Endpoint Registers

11:0 RO Time since last SOF in 0.5 uS resolution

Table 6: Frame Number and Time Register

Bit #

A
cc

es
s

Description

Interrupt Source

Config/Status BitsEPn_CSR:

EPn_BUF0:

015162631

Interrupt MaskEPn_INT:

EPn_BUF1:

30 27

Buffer 1 PointerBuffer 1 SizeU

Buffer 0 PointerBuffer 0 SizeU

17
www.opencores.org Rev. 1.3 33 of 61

May 30, 2001 USB Function Core OpenCores
4.7.1. Endpoint CSR Register (EP_CSR)

The configuration and status bits specify the operation mode of the endpoint
and report any specific endpoint status back to the controller.

Table 7: Endpoint CSR

Bit #

A
cc

es
s

Description

31:30 RO UC_BSEL
Buffer Select
This bits must be initialized to zero (first Buffer 0 is used). The USB core
will toggle these bits, in order to know which buffer to use for the next
transaction.
00: Buffer 0
01: Buffer 1
1x: RESERVED

29:28 RO UC_DPD
These two bits are used by the USB core to keep track of the data PIDs
for high speed endpoints and for DATA0/DATA1 toggling.

27:26 RW EP_TYPE
Endpoint Type
00: Control Endpoint
01: IN Endpoint
10: OUT Endpoint
11: RESERVED

25:24 RW TR_TYPE
Transfer Type
00: Interrupt
01: Isochronous
10: Bulk
11: RESERVED

23:22 RW EP_DIS
Temporarily Disable The Endpoint
00: Normal Operation
01: Force the core to ignore all transfers to this endpoint
10: Force the endpoint in to HALT state
11: RESERVED

21:18 RW EP_NO
Endpoint Number

17 RW LRG_OK
1 - Accept data packets of more than MAX_PL_SZ bytes (RX only)
0 - Ignore data packet with more than MAXPL_SZ bytes (RX only)

16 RW SML_OK
1 - Accept data packets with less than MAX_PL_SZ bytes (RX only)
0 - Ignore data packet with less than MAXPL_SZ bytes (RX only)
34 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
Value after reset:

EPn_CSR: 0000h

4.7.2. Endpoint Interrupt Mask/Source Register (EP_IMS)

The interrupt register for each endpoint has mask bits for interrupt int_a and
interrupt int_b outputs and bits that indicate the interrupt source when an interrupt
has been received.

15 RW DMAEN
1: Enables external DMA interface and operation
0: No DMA operation

14 RO RESERVED

13 RW OTS_STOP
When set, this bit enables the disabling of the endpoint when in DMA
mode, an OUT endpoint receives a packet smaller than MAX_PL_SZ.
The disabling is achieved by setting EP_DIS to 01b

12:11 RW TR_FR
Number of transactions per micro frame (HS mode only)

10:0 RW MAX_PL_SZ
Maximum payload size (MaxPacketSize) in bytes

Table 8: Endpoint Interrupt Register

Bit #

A
cc

es
s

Description

31:30 RO RESERVED

29 RW Interrupt A Enable: OUT packet smaller than MAX_PL_SZ

28 RW Interrupt A Enable: PID Sequencing Error

27 RW Interrupt A Enable: Buffer Full/Empty

26 RW Interrupt A Enable: Unsupported PID

25 RW Interrupt A Enable: Bad packet (CRC 16 error)

24 RW Interrupt A Enable: Time Out (waiting for ACK or DATA packet)

23:22 RO RESERVED

21 RW Interrupt B Enable: OUT packet smaller than MAX_PL_SZ

20 RW Interrupt B Enable: PID Sequencing Error

19 RW Interrupt B Enable: Buffer Full/Empty

Table 7: Endpoint CSR

Bit #

A
cc

es
s

Description
www.opencores.org Rev. 1.3 35 of 61

May 30, 2001 USB Function Core OpenCores
Value after reset:

EPn_INT: 0000h

4.7.3. Endpoint Buffer Registers (EP_BUF)

The endpoint buffer registers hold the buffer pointers for each endpoint. Each
endpoint has two buffer registers, thus allowing double buffering. Each buffer reg-
ister has exactly the same definition and functionality (see discussion in section
3.1.1. “Buffer Pointers” on page 10 for more information).

Value after reset:

EPn_BUFm: FFFFFFFFh

18 RW Interrupt B Enable: Unsupported PID

17 RW Interrupt B Enable: Bad packet (CRC 16 error)

16 RW Interrupt B Enable: Time Out (waiting for ACK or DATA packet)

15:7 RO RESERVED

6 ROC Interrupt Status: OUT packet smaller than MAX_PL_SZ

5 ROC Interrupt Status: PID Sequencing Error

4 ROC Interrupt Status: Buffer 1 Full/Empty

3 ROC Interrupt Status: Buffer 0 Full/Empty

2 ROC Interrupt Status: Unsupported PID

1 ROC Interrupt Status: Bad packet (CRC 16 error)

0 ROC Interrupt Status: Time Out (waiting for ACK or DATA packet)

Table 9: Endpoint Buffer Register

Bit #

A
cc

es
s

Description

31 RW USED
This bit is set by the USB core after it has used this buffer. The function
controller must clear this bit again after it has emptied/refilled this buffer.
This bit must be initialized to 0.

30:17 RW BUF_SZ
Buffer size (number of bytes in the buffer) 16383 bytes max.

16:0 RW BUF_PTR
Buffer pointer (byte address of the buffer)

Table 8: Endpoint Interrupt Register

Bit #

A
cc

es
s

Description
36 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
5
Core IOs

This chapter lists all IOs of the USB core. Each clock domain is contained in a
separate subsection.

5.1. Host Interface IOs

The host interface is a WISHBONE Rev. B compliant interface. This USB core
works as a slave device only. When the intervention of the local microcontroller is
needed, it will assert INTA_O or INTB_O.

Table 10: Host Interface (WISHBONE)

Name

W
id

th

D
ir

ec
ti

on

Description

CLK_I 1 I Clock Input

RST_I 1 I Reset Input

ADDR_I 18 I Address Input
See Appendix A “Core HW Configuration” on page 41 for more
information.

DATA_I 32 I Data Input

DATA_O 32 O Data Output

ACK_O 1 O Acknowledgment Output. Indicates a normal Cycle termination.

WE_I 1 I Indicates a Write Cycle when asserted high.

STB_I 1 I Indicates the beginning of a valid transfer cycle for this core.

CYC_I 1 I Encapsulates an valid transfer cycle

Below signals extend the WISHBONE SoC standard interface.

INTA_O 1 O Interrupt Output A

INTB_O 1 O Interrupt Output A

DMA_REQ 15 O DMA Request
For each endpoint one line. Unused endpoints will tie their
DMA_REQ output to zero.
www.opencores.org Rev. 1.3 37 of 61

May 30, 2001 USB Function Core OpenCores
Address line 17 selects between the core’s buffer memory and register file.
When asserted high, the memory buffer is selected, when low, the register file.

5.2. UTMI IOs

The UTMI interface is a USB 2.0 UTMI specification Version 1.04 compliant
interface.

DMA_ACK 15 I DMA Acknowledgement
For each endpoint one line. Unused endpoints will ignore their
DMA_ACK line.

SUSP_O 1 O Suspend Output

RESUME_R
EQ_I

1 I Resume Request
(Connect to 0 (zero) when not used.)

Table 11: UTMI Interface

Name

W
id

th

D
ir

ec
ti

on

Description

phy_clk 1 I Clock

phy_rst 1 O Reset Output

DataIn 8 I Input Data

DataOut 8 O Output Data

TxValid 1 O Transmit Valid

TxReady 1 I Transmit Ready

RxActive 1 I Receiver Active

RxValid 1 I Receive Data Valid

RxError 1 I Receive Error

XcvSelect 1 O 1: Full speed transceiver selected
0: High Speed transceiver selected

TermSel 1 O 1: Full speed termination enabled
0: High speed termination enabled

SuspendM 1 O Places PHY into suspend mode

LineState 2 I Line State

OpMode 2 O Operation Mode Select

VControl-
Load

1 O Vendor Control Load

Table 10: Host Interface (WISHBONE)

Name

W
id

th

D
ir

ec
ti

on

Description
38 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
5.3. Buffer Memory Interface

This is the interface to the buffer memory that is internally used by the USB
core. It is a standard Synchronous SRAM.

The SRAM must use the PHY clock (phy_clk) as its clock input.

VControl 4 O Vendor Control data

VStatus 8 I Vendor Status data

Below signals extend the UTMI standard interface.

usb_vbus 1 I This signal should be connected to the Vcc pin of the USB con-
nector. It is used to detect if the core is connected to an USB
interface.
This input can also be tight to the core Vcc line if the core is
powered from the USB bus and this functionality is not needed.

Table 12: Synchronous SRAM Interface

Name

W
id

th

D
ir

ec
ti

on

Description

sram_adr 14 O SRAM Address lines
See Appendix A “Core HW Configuration” on page 41 for more
information.

sram_dout 32 O Output Data (To SRAM)

sram_din 32 I Input Data (From SRAM)

sram_re 1 O SRAM Read Enable

sram_we 1 O SRAM Write Enable

Table 11: UTMI Interface

Name

W
id

th

D
ir

ec
ti

on

Description
www.opencores.org Rev. 1.3 39 of 61

May 30, 2001 USB Function Core OpenCores
(This page intentionally left blank)
40 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
Appendix A
Core HW Configuration

This Appendix describes the configuration of the core. This step is performed
before final synthesis and tape-out of the USB core.

A.1. Endpoints

This core supports up to 16 individual endpoints. The actual functionality of
each endpoint is under function software control. An implementation may choose
how many endpoints it actually wants to support. The minimum number is 1 end-
point (Endpoint 0 must be always present), the maximum number of endpoints for
this USB core is 16 (inclusive endpoint 0).

To select the endpoints to be supported edit the “usb_defines.v” file. Look for
the following define statements:

d̀efine HAVE_EP1 1 // Endpoint 1 Present
d̀efine HAVE_EP2 1 // Endpoint 2 Present
d̀efine HAVE_EP3 1 // Endpoint 3 Present
d̀efine HAVE_EP4 1 // Endpoint 4 Present
d̀efine HAVE_EP5 1 // Endpoint 5 Present
d̀efine HAVE_EP6 1 // Endpoint 6 Present
d̀efine HAVE_EP7 1 // Endpoint 7 Present
d̀efine HAVE_EP8 1 // Endpoint 8 Present
//̀ define HAVE_EP9 1 // Endpoint 9 NOT Present
//̀ define HAVE_EP10 1 // Endpoint 10 NOT Present
//̀ define HAVE_EP11 1 // Endpoint 11 NOT Present
//̀ define HAVE_EP12 1 // Endpoint 12 NOT Present
//̀ define HAVE_EP13 1 // Endpoint 13 NOT Present
//̀ define HAVE_EP14 1 // Endpoint 14 NOT Present
//̀ define HAVE_EP15 1 // Endpoint 15 NOT Present

For each endpoint that should be present in the USB core, un-comment the
define statement. The “HAVE_EPn” tag indicates that an endpoint is present when
it is defined. The number “n” in the tag indicates the physical endpoint number
(which should not be confused with the logical endpoint number, which can be set
by software).

Endpoints must be defined sequential. In other words you must NOT define
endpoints 1, 4 and 6, and comment out endpoints 2,3 and 5.
www.opencores.org Rev. 1.3 41 of 61

May 30, 2001 USB Function Core OpenCores
A.2. USB Core WISHBONE Address Lines

The Address encoding and WISHBONE interface address bus size may also be
customized. Depending on the Buffer Memory size and the number of endpoints,
the address bus size may be reduced, or enlarged. The minimum Address bus size
must be able to address the buffer memory and select between the buffer memory
the and register file.

To modify the address bus size and decode logic, edit the “usb_defines.v” file,
and look for the following lines:

d̀efine UFC_HADR 17
d̀efine RF_SEL (!wb_addr_i[17])
d̀efine MEM_SEL (wb_addr_i[17])

The first define statement specifies the MSB of the address bus coming into the
USB core. With this setup, the core can support 128K bytes of buffer memory and
has one address line available to distinguish between Register File and Buffer
Memory Accesses.

The second define statement specifies how the USB core decodes register file
accesses. The “wb_addr_i” bus is the WISHBONE address bus. Any simple com-
binatorial statement is permitted here.

The third define statement specifies how the USB core decodes memory buffer
accesses. Again, any simple combinatorial statement is permitted.

Example
An application may choose to extend the address bus width by setting

UFC_HADR to 20. This means wb_addr_i will be 21 bits wide [20:0].

d̀efine UFC_HADR 20

Then the RF_SEL may be set to (wb_addr_i[20:17] == 4’h3) and MEM_SEL
to (wb_addr_i[20:17] == 4’h7).

d̀efine RF_SEL (wb_addr_i[20:17]==4’h3)
d̀efine MEM_SEL (wb_addr_i[20:17]==4’h7)

This means the register file will be in the address space 0x60000 through
0x7FFFF and the buffer memory in 0xE0000 through 0xFFFFF.

A.3. Buffer Memory

This USB core supports up to 128 Kilobytes of buffer memory. The minimum
memory size should be at least 256 bytes. The memory is organized in 4 byte
boundaries (words). This means a 4Kbyte buffer would be organized as 1024 *
32bit entries. The memory must always start at address zero of the USB core and
must be continued up to the last address.
42 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
To modify the buffer memory size, edit the “usb_defines.v” file, and look for
the following line:

‘define SSRAM_HADR 14

This statement specifies the MSB of the SSRAM address lines. In this case the
SSRAM will have 15 address lines [14:0], and be 2^15 (32K) words (4 byte quan-
tities) large.

Alteratively this can be overwritten by parameterizing the USB core when
instantiating it:

usbf_top #(SRAM_ADR_MSB) u0(<IO list>);

Now the value of SRAM_ADR_MSB will overwrite the setting of the define
statement.
www.opencores.org Rev. 1.3 43 of 61

May 30, 2001 USB Function Core OpenCores
(This page intentionally left blank)
44 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
Appendix B
USB Core Structure

This section outlines the hierarchy structure of the USB core Verilog Source
files.

Figure 16: USB Core Hierarchy Structure

usbf_top.v

utmi_if.v

Top Level

UTMI Interface

Protocol Layer Register File

Memory Arbiter Wishbone Interface
wb.vmem_arb.v

rf.v

primitives.v

pd.v

pa.v idma.v

pe.v

Endpoint Register Files

pl.v

utmi_ls.v
UTMI Line Status

Packet Disassembler

Packet Assembler

Protocol Engine

Internal DMA

SSRAM
ep_rf.v

“usb_defines.v” is included
by all modules.

(ep_rf_dummy.v is a place
holder for unused endpoints)
www.opencores.org Rev. 1.3 45 of 61

May 30, 2001 USB Function Core OpenCores
(This page intentionally left blank)
46 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
Appendix C
SSRAM Interface

This section describes the buffer memory interface and timing. The buffer
memory is a standard single ported Synchronous SRAM.

Figure 17: SSRAM Read Cycle

Figure 18: SSRAM Write Cycle

SSRAM_ADDR

PHY_CLK

SRAM_DIN

SRAM_RE

SRAM_WE

n

DATA[n]

SSRAM_ADDR

PHY_CLK

SRAM_DOUT

SRAM_RE

SRAM_WE

n

DATA

Data is written on this clock edge
www.opencores.org Rev. 1.3 47 of 61

May 30, 2001 USB Function Core OpenCores
(This page intentionally left blank)
48 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
Appendix D
UTMI PHY

This core requires an external PHY (transceiver) that complies with the UTMI
specification.

The UTMI specification can be downloaded from:
http://developer.intel.com/technology/usb/download/2_0_xcvr_macrocell_1_03.pdf

The following companies have announced PHY chips:

Lucent: USS2X1
http://www.lucent.com/micro/usb/usbdocs.html
[30/3/2001 - I was informed that the Lucent (now Agere) PHY is shipping! I am in
the process of acquiring some samples so I can build an FPGA prototype. RU]

NEC: uPD720120
http://www.necel.com/home.nsf/Main?ReadForm&Multimedia+Products

Philips: ISP1501
http://www.semiconductors.philips.com/pip/isp1501-01/

These are all I have found. If you know of others, please email me: rudi@asics.ws
www.opencores.org Rev. 1.3 49 of 61

May 30, 2001 USB Function Core OpenCores
(This page intentionally left blank)
50 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
Appendix E
Software Model

By Chris Ziomkowski (chris@asics.ws)

The embedded programming model consists of a low level driver that is either
integrated into an embedded operating system or exists in a standalone configura-
tion if an operating system is not necessary. The low level driver provides an
abstracted interface to the hardware so that higher level modules can access the
USB interface in a fashion consistent with other network interfaces, and represents
the combined levels 2 and 3 in the OSI model.

The embedded system architecture is shown in “Figure 19: Embedded System
Architecture” on page 53. Each interface of the device is logically independent,
and must receive distinct endpoints as required by the USB 2.0 specification. The
descriptors for the required interfaces and endpoints should be stored in a memory
structure that is abstractly represented as a database in the figure. Since these
assignments are generally fixed, it is assumed that the descriptors will be loaded
from a flash or other permanent storage device. The low level driver will use this
information to direct USB requests to the appropriate interface.

Device requests flow from the hardware serial interface engine through the
hardware endpoint interface buffers to the low level device drivers. Messages des-
tined for endpoint 0 first will be inspected by the USB dispatcher to determine if
they are standard device requests or class/vendor specific requests. Standard device
requests will be returned directly by the configuration and control subsystem. This
generally consists of returning static information stored in the descriptor database.
Class or vendor specific requests will be forwarded to the interface associated with
the specified endpoint or interface. The interface will then be responsible for
decoding the request and replying with the correct information.

Every endpoint interface consists of 0 or more endpoints. Each endpoint is
assigned a stream style memory buffer which can buffer reads and writes for
increased efficiency. The model assumes the high level interfaces are implement-
ing blocking reads and writes. In this configuration, a bulk or control endpoint
interface will be alerted to the end of transmission by a read returning 0 bytes. End
of transmission during a write be assumed if flush() is called on the buffer with any
www.opencores.org Rev. 1.3 51 of 61

May 30, 2001 USB Function Core OpenCores
number of bytes (including 0) less than MAX_PACKET_LENGTH. Isochronous
and interrupt endpoints do not have such limitations, as bytes will be read and writ-
ten to these interfaces as they become available.

In addition to the endpoint streams, each interface includes a control message
pipe connected to endpoint 0. Class and vendor device requests will be forwarded
over this message pipe to the appropriate interface. Thus, endpoint 0 can be logi-
cally shared between all the interfaces in a device, and the USB dispatcher will
guarantee atomicity during a transaction.

The exact implementation of the low level device drivers will be device and
operating system dependent, however the following logical flow diagrams repre-
sents the expected behavior. The flow charts describe most of the operation of the
USB dispatcher.

The high level interfaces should implement an API to the stream buffers as
described in the Programmer’s Guide document.
52 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
Figure 19: Embedded System Architecture

The embedded system architecture. Interaction with the hardware serial inter-
face engine is handled by the USB dispatcher.

FLASH

USB
Serial

Interface
Engine

PHY

To Host

Embedded Microkernel
USB Dispatcher

Standard Requests

USB Endpoint RAM USB Interrupt Registers

Interface 0

Endpoint Bundle
Stream Buffers Control Stream

Buffer

Endpoint
Stream
Bundle

Interface N

Endpoint Bundle
Stream Buffers Control Stream

Buffer

Endpoint
Stream
Bundle

Class/
Vendor
Requests

Class/
Vendor
Requests

Device
Initialization

Configuration
&

Control

Descriptors

Descriptors

...
www.opencores.org Rev. 1.3 53 of 61

May 30, 2001 USB Function Core OpenCores
Figure 20: Control Endpoint Receive Channel

Wait for interrupt
on control channel

Read Endpoint Register
Clear Interrupts

SETUP bit
set in register

NO

YES

state = DATA
setup descriptor

set bytes remaining

remaining
== 0 ?

Set arrival time.
state = STATUS

copy descriptor to active

YES

INFORM
READ

BUFFER

NO

START

1

3

Wait for read from
dest stream buffer

state ==
PAUSE ?

NO

1

YES

START

3

state == EROR/
IDLE ??

Delete packet
state = ERROR

YES

INFORM
PROTOCOL

ERROR

INFORM
PROTOCOL

STALL

SET
PROTOCOL

STALL
BIT

Delete packet
state = STALL

state == STALL

NO

room in
dest stream

buffer ?

NO

Subtract packet length
from remaining

copy data from endpoint
to dest stream buffer

state = DATA

YES

remaining
== 0 ?

state ==
PAUSE ?

NO

YES

state = PAUSE

NO

INFORM
READ

BUFFER

Set arrival time.
state = STATUS

copy descriptor to active

INFORM
READ

BUFFER

YES

1

packet len >
remaining ?

NO

YES

Delete packet
YES

NO

3

54 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
A control endpoint in receive mode. Bytes are received from the serial inter-
face engine and transferred to the destination stream buffer. Communications
external to the USB dispatcher are represented by circular states. Protocol stalls are
supported as required by the USB 2.0 specification.

Figure 21: Control Endpoint Transmit Channel

A control endpoint in transmit mode. Bytes are read from the interface stream
buffer and transferred to the serial interface engine. Communications external to
the USB dispatcher are represented by circular states. The transmission is consid-
ered complete upon receiving a flush from the stream buffer with a number of
bytes less than MAX_PL_SIZE.

Wait for MAX_PL_SZ bytes from
 source stream or fflush().

Protocol Stall
bit set ?

Discard data packet
YES

End Of
Message
bit set ?

available
bytes >= packet

len ?
Wait for xmit interrupt

NO

NO

YES

NO

packet len ==
MAX_PL_SZ?

YES

Copy packet from source stream
to endpoint xmit buffer

NO

YES

SET
END OF

MESSAGE
BIT

START

Wait for Protocol
Stall ioctl().

Bytes in
endpoint xmit

buffer?

Empty endpoint
xmit buffer

SET
PROTOCOL

STALL
BIT

NO

YES

START

INFORM
PROTOCOL

STALL
www.opencores.org Rev. 1.3 55 of 61

May 30, 2001 USB Function Core OpenCores
Figure 22: Isochronous Endpoint Receive Channel w/ Explicit
Feedback

A fully adaptive isochronous endpoint in receive mode and providing explicit
feedback. Bytes are read from the serial interface engine and transferred to the des-
tination stream buffer. The flow supports an endpoint with a natural size of 1 byte,
however natural sizes greater than 1 can be handled by watching the nLost variable
and slipping a frame when nLost is greater than the natural size for 2 consecutive
frames. (Indicating that a frame was lost in transmission.)

1

Wait for interrupt on endpoint

nFrames = FRAME_NAT - LAST_FRAME_NAT
Save FRAME_NAT in LAST_FRAME_NAT

nExpected = nFrames*AverageRate + Residual

Residual = fraction(nExpected)
nLost += Expected - Residual - nReceived

SAMP_COUNT_SUM -= SAMP_COUNT_PTR[i]
SAMP_COUNT_PTR[i]= SAMP_COUNT
SAMP_COUNT_SUM += SAMP_COUNT

USB_COUNT_SUM -= USB_COUNT_PTR[i]
USB_COUNT_PTR[i]= nFrames
USB_COUNT_SUM += nFrames

i = i + 1

i > N ? YES

AverageRate = SAMP_COUNT_SUM/USB_COUNT_SUM

NO

Available -= SAMP_COUNT

Available
< 0 ?

i = 0

nLost += Available
Available = 0

UNDERFLOW_INTERRUPT

YES

Room = Stream_Buffer_Size - Available

NO

nReceived
> Room ?

nLost += nReceived- Room
nReceived = Room

OVERFLOW_INTERRUPT

YES

Copy nReceived bytes toStream Buffer

NO

Wait for interrupt on device

Read nBytes from Stream Buffer

SAMP_COUNT += nBytes

1 N represents the size of the sample
buffer to average over when
calculating the relative average rate

The relative average rate is available
for transmission via an alternate
direction feedback endpoint in the
variable AverageRate

Frame slips can be implemented for
endpoints with natural sizes greater
than 1 by checking the nLost
variable and repeating the data as
necessary whenever nLost rises
above the natural size for 2
consecutive frames.

STARTSTART
56 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
Figure 23: Bulk/Interrupt/Isochronous Transmit

A bulk, interrupt, or isochronous channel in transmit mode. Bytes are read
from the interface stream buffer whenever more than MAX_PL_SIZE bytes are
available or a flush() occurs indicating a complete transmission. Bytes are copied
to the serial interface engine buffers as available space permits.

Wait for MAX_PL_SZ bytes from
 source stream or fflush().

End Of
Message
bit set ?

available
bytes >= packet

len ?
Wait for xmit interrupt

NO

YES

NO

packet len ==
MAX_PL_SZ?

YES

Copy packet from source stream
to endpoint xmit buffer

NO
SET

END OF
MESSAGE

BIT

START

YES
www.opencores.org Rev. 1.3 57 of 61

May 30, 2001 USB Function Core OpenCores
Figure 24: Bulk/Interrupt Receive

A bulk or interrupt channel in receive mode. Bytes are copied from the serial
interface engine and transmitted to the destination stream buffer as space permits.
A short packet signifies the end of transmission for the frame. The destination
interface stream will return 0 bytes to a blocking read to indicate end of transmis-
sion.

E.1. USB Core Programmer’s Guide

The Application Programming Interface (API) of a RTOS based device driver
is defined by an IO System API. An RTOS typically requires the USB driver to
provide functions implementing hardware and software initialization, open, close,
read, write and IO Control functions. This API is called by the IO system once the
driver is installed in the RTOS driver tables.

An example of this API is shown below:
• USB_init() – Software install and initialization, hardware

configuration

Wait for interrupt on endpoint

Short
Packet ?

START

Read Interrupt Register
Clear Interrupts

stream buffer
space >=

packet_len ?

YES

Wait for read on
stream buffer

NO

Copy short packet to stream
buffer

YES

Clear
Short Packet

Stop

MAX_PL_SZ
bytes in stream

buffer ??

NO
Wait for read on

stream buffer
NO

Copy MAX_PL_SZ bytes to
stream buffer

YES
58 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
• USB_open_interface() – Define a new interface and match it against
the descriptors

• USB_open() – Opens an Endpoint
• USB_close() – Closes an Endpoint
• USB_read() – Performs a read operation on an Endpoint
• USB_write() – Performs a write operation on an Endpoint
• USB_ioctl() – Performs IO Control operations on an end-

point or the USB core

E.1.1. USB_init()

The USB_init() function provides the calling application with the means to
install and initialize the driver while performing software and hardware configura-
tion. The typical initialization steps required for an RTOS based USB Driver are:

• Install the USB Driver in the RTOS IO System
• Acquire the interrupts used by the USB Core
• Acquire system resources needed by the USB Core
• Acquire system resources required for each endpoint
• Initialize the USB driver data structures for the controller and each end-

point
• Initialize the USB Registers to the default values
• Start the task implementing the Standard Request Processing
• Enable the Control Endpoint 0 and associated RAM buffers
• Enable the minimum supported set of supported USB interrupts such as

Suspend, Resume, Endpoint 0 ACK, and Endpoint 0 Short Packet
Receive.

E.1.2. USB_open_interface()

The USB_open_interface() function provides a mechanism to establish a map-
ping between a task id and the standard class definition which it is implementing.
The function call checks the defined descriptor database to determine the correct
InterfaceID that will then be mapped to the task id. From this point on, configura-
tion requests directed to a specific interface will be redirected to this task. A task
may open more than one interface.

E.1.3. USB_open()

The USB_open() function provides the mechanism to establish an endpoint to
interface mapping. The model should enforce the USB 2.0 restriction that an end-
point can only be opened by a single interface within an alternate definition. The
function call should also verify that the interfaces associated with the current
selected alternate definition are associated with the calling task and are configured
to open this endpoint.

The typical steps performed here will be:
• Verify USB Controller State is CONFIGURED if the Endpoint is not

the default Control Endpoint 0.
www.opencores.org Rev. 1.3 59 of 61

May 30, 2001 USB Function Core OpenCores
• Verify endpoint is not already open.
• Verify the Endpoint is valid for the current selected interface in this

alternate definition
• Initialize the RAM buffers associated with this endpoint.
• Initialize the USB registers which define this endpoint as Bulk, Inter-

rupt, Control, or Isochronous.
• Set the endpoint state to open

E.1.4. USB_close()

The USB_close() function should perform the inverse of the open functionality
above, and make sure all data structures and RAM buffers associated with an end-
point are freed.

E.1.5. USB_write()

The USB_write() function allows a USB application to write data to an IN or
Control endpoint.

The typical steps performed in a write call are:
• Verify endpoint number, type and direction
• Verify endpoint is in the open state
• If a control channel, acquire the semaphore to guarantee availability
• Transfer the data from the stream buffer to the USB RAM buffer for

this endpoint.
• If a control channel, wait for a packet from the USB Host to complete

the Control Status stage
• If a control channel, release the semaphore acquired earlier
• Return number of bytes transmitted or ERROR

E.1.6. USB_read()

The USB_read() allows a USB application to read data from an OUT or Con-
trol endpoint.

The typical steps performed in a read call are:
• Verify endpoint number, type and direction
• Verify endpoint is in the open state
• If a control channel, acquire the semaphore to guarantee availability
• Transfer the data from the USB RAM buffer for this endpoint to the

stream buffer.
• If a control channel, send a packet to the USB Host to complete the

Control Status stage
• If a control channel, release the semaphore acquired earlier
• Return number of bytes received or ERROR
60 of 61 Rev. 1.3 www.opencores.org

OpenCores USB Function Core May 30, 2001
E.1.7. USB_ioctl()

The USB_ioctl() function allows the application to read status and execute IO
Control functions. These IO Control functions provide the application with the
ability to control the USB interface.

Typical control mechanisms provided by this function are:
• Remote Wakeup
• Enter Suspend mode
• Exit Suspend mode (Resume)
• Reset USB Core
• Read current Start of Frame Time Stamp
• Return current Configuration, Interface, and Alternate Definition
• Get Endpoint status
• Initiate a Protocol Stall on an endpoint (control channel only)
• Enable/Disable an endpoint with the Halt bit
• Read arrival time for last message (control channel only)
www.opencores.org Rev. 1.3 61 of 61

	1 Introduction
	2 Architecture
	2.1. Clocks
	2.2. Host Interface
	2.2.1. Bandwidth Requirement

	2.3. Memory Interface and Arbiter
	2.4. SSRAM
	2.5. Protocol Layer (PL)
	2.5.1. DMA & Memory Interface
	2.5.2. Protocol Engine
	2.5.3. Packet Assembly
	2.5.4. Packet Disassembly

	2.6. UTMI I/F
	2.6.1. Interface State Engine
	2.6.2. Speed Negotiation Engine
	2.6.3. Rx & Tx FIFOs
	2.6.4. Rx & Tx Bus Interface

	3 Operation
	3.1. Endpoints
	3.1.1. Buffer Pointers
	3.1.2. Buffer Underflow
	3.1.3. Buffer Overflow
	3.1.4. Data Organization

	3.2. DMA Operation
	3.3. PID Sequencing
	3.4. USB Core Memory Size
	3.5. USB Core Behavior
	3.6. USB Core Flowcharts
	3.6.1. Special Token Processing
	3.6.2. IN Data Cycle
	3.6.3. Out Data Cycle
	3.6.4. USB Device Control Processing

	3.7. Interrupts
	3.7.1. Timing
	3.7.2. Software Interaction

	3.8. Suspend & Resume

	4 Core Registers
	4.1. Control Status Register (CSR)
	4.2. Function Address Register (FA)
	4.3. Interrupt Mask Register (INT_MSK)
	4.4. Interrupt Source Register (INR_SRC)
	4.5. Frame Number and time register (FRM_NAT)
	4.6. Vendor Specific IO Port (UTMI_VEND)
	4.7. Endpoint Registers
	4.7.1. Endpoint CSR Register (EP_CSR)
	4.7.2. Endpoint Interrupt Mask/Source Register (EP_IMS)
	4.7.3. Endpoint Buffer Registers (EP_BUF)

	5 Core IOs
	5.1. Host Interface IOs
	5.2. UTMI IOs
	5.3. Buffer Memory Interface

	Appendix A Core HW Configuration
	A.1. Endpoints
	A.2. USB Core WISHBONE Address Lines
	A.3. Buffer Memory

	Appendix B USB Core Structure
	Appendix C SSRAM Interface
	Appendix D UTMI PHY
	Appendix E Software Model
	E.1. USB Core Programmer’s Guide

