USB1.1 Testbench Documentation
(Module: “usb_ocp_test”)

The diagram below shows as the testbench is implemented:

Testbench
Source / || PITY |« PHY .
Dest. 00 > OCP
® ® @) S _.
T ource /
S <«
USB 1.1 4 s
@)
-+ FIFOs
» Checker <
1 -HOST
2 — FUNCTION

Il - HOST TRANSCEIVER
% — FUNCTION TRANSCEIVER

Source/Dest. generates and receives packets, while that the Checker
verifies if the packets sent of a side arrive equal of the other side. The transceivers are
substituted by a direct connection (see “rx1_update” and “rx2_update” methods). Two
functions (“utmi_recv_pack” and “utmi_send_pack”) write directly in the HOST PHY

signals.

The Checker does the following verifications:

The packet PID is the expected?

The PID check field is correct?

The packets order is in complaince with the protocol?
The packet length is the expected?

The packet data is the expected?

The packet CRC is correct?

It follows a brief explanation of each testbench function:

show_errors — it shows how many errors had occurred until that instant.

crch — it calculates the CRC5 for packets of the following types: TOKEN or SOF.
crcl6 — it calculates the CRC16 for packets of the type DATA.

utmi_send_pack — it plays the role of transceivers. It writes in the HOST PHY
signals.

utmi_recv_pack — it plays the role of transceivers. It reads of the HOST PHY
signals.

recv_packet — it analyzes the content of the received through the
“utmi_recv_pack” function packet. It analyzes the packet length, verifies the
CRC16 and the PID check field.

send_token — it sends, through the “utmi_send_pack” function, a TOKEN packet
of the specified PID. It calculates the CRC5 through the “crec5” function and
calculates the PID check field.

send_sof — it sends, through the “utmi_send_pack” function, a TOKEN packet of
the SOF PID with the specified frame number. It calculates the CRC5 through
the “crc5” function and calculates the SOF PID check field.

send_data — it sends, through the “utmi_send_pack” function, a DATA packet of
the specified PID. It calculates the CRC16 through the “crc16” function and
calculates the PID check field.

send_setup — run a CONTROL TRANSFER: SETUP-> DATAO0-> ACK<-. The
packet fields are specified. It uses the following functions: “send_token”,
“send_data” and “recv_packet”. It verifies the packets order, PID and length.
data_in — run a IN TRANSACTION: IN-> DATAO0/DATA1<- ACK->. The choice
between DATAO or DATAL is fulfilled by the “setup_pid” signal. The packet
length 1is specified. It uses the following functions: “send_token” and
“recv_packet”. It verifies the packets order, PID, length and data.

data_out — run an OUT TRANSACTION: OUT-> DATAO/DATA1-> ACK<-. The
choice between DATAO or DATAL1 is fulfilled by the “setup_pid” signal. The
packet length is specified. It uses the following functions: “send_token” and
“utmi_recv_pack”. It verifies the packets order, PID and length.

setup0 — run the USB enumeration. It sets the USB address and receives the
descriptors. It uses the following functions: “send_setup”, data_in” and
“data_out”. The ENDPOINT O is tested.

inl — run ISOCHRONOUS IN TRANSACTIONS: IN-> DATAO<-. This function
does the following sequence: SOF-> IN-> DATAO<-. It receives packets with
random DATA of the ENDPOINT 1 (ISOCHRONOUS IN). It receives 4 packets
of each length. The length are the following values: 0, 32, 64, 96, 128, 160, 192,
224 and 256. The maximum packet length of this ENDPOINT is 256. It uses the
following functions: “send_sof”, “send_token” and “recv_packet”. It verifies the
packets order, PID, length and data.

out2 — run ISOCHRONOUS OUT TRANSACTIONS: OUT-> DATAO->. This
function does the following sequence: SOF-> OUT-> DATAO->. It sends packets to
ENDPOINT 2 (ISOCHRONOUS OUT). It sends 4 packets of each length. The
length are the following values: 0, 32, 64, 96, 128, 160, 192, 224 and 256. The

maximum packet length of this ENDPOINT is 256. It uses the following
functions: “send_sof”, “send_token” and “send_data”. It verifies the packets order,
PID, length and data.

in3 — run BULK IN TRANSACTIONS: IN-> DATAO0/DATAl<- ACK->. This
function does the following sequence: SOF-> IN-> DATAO/DATAl<- ACK->. It
receives packets with random DATA of the ENDPOINT 3 (BULK IN). It receives
4 packets of each length. The length are the following values: 0, 8, 16, 24, 32, 40,
48, 56 and 64. The maximum packet length of this ENDPOINT is 64. It uses the
following functions: “send_sof”, “send_token” and “recv_packet”. It verifies the
packets order, PID, length and data.

out4 — run BULK OUT TRANSACTIONS: OUT-> DATAO/DATA1-> ACK<-. This
function does the following sequence: SOF-> OUT-> DATAO0/DATA1-> ACK<-. It
sends packets to ENDPOINT 4 (BULK OUT). It sends 4 packets of each length.
The length are the following values: 0, 8, 16, 24, 32, 40, 48, 56 and 64. The
maximum packet length of this ENDPOINT is 64. It uses the following functions:
“send_sof”, “send_token”, “send_data” and “utmi_recv_pack”. It verifies the
packets order, PID, length and data.

in5 — run INTERRUPT IN TRANSACTIONS: IN-> DATAO/DATAl1<- ACK->.
This function does the following sequence: SOF-> IN-> DATAO0/DATA1<- ACK->
or SOF-> IN-> NACK<-. It receives packets with random DATA of the
ENDPOINT 5 (INTERRUPT IN). It receives 4 packets of each length. The length
are the following values: 0, 8, 16, 24, 32, 40, 48, 56 and 64. The maximum packet
length of this ENDPOINT is 64. It uses the following functions: “send_sof”,
“send_token” and “recv_packet”. It verifies the packets order, PID, length and
data.

out6 — run INTERRUPT OUT TRANSACTIONS: OUT-> DATAO0/DATA1->
ACKx<-. This function does the following sequence: SOF-> OUT-> DATA0/DATA1-
> ACK<-. It sends packets to ENDPOINT 6 (INTERRUPT OUT). It sends 4
packets of each length. The length are the following values: 0, 8, 16, 24, 32, 40,
48, 56 and 64. The maximum packet length of this ENDPOINT is 64. It uses the
following functions: “send_sof”, “send_token”, “send_data” e “utmi_recv_pack”. It
verifies the packets order, PID, length and data.

It follows a brief explanation of each testbench method:

rx1_update — it does HOST PHY and FUNCTION PHY direct connection.
rx2_update — it does HOST PHY and FUNCTION PHY direct connection.
watchdog — it updates the watchdog counter.

wd_cnt_mon — it halts the simulation if the watchdog counter to expire.
init — it initiates the simulation.

