Table of contents

1. Overview
1.1 block diagram of v586 system board with nexys4 board
1.2 block diagram inside artix7-100 fpga

2. Boot up sequence information

2.1 boot code inside FPGA

2.2 external spi flash organisation

2.3 hardware init

2.4 linux kernel configuration and launch

3. Embedded Software

3.1 Linux configuration for general features : cpu & legacy devices
3.2 Linux device description for the board spi components

3.3 buildroot compilation and utilities

3.4 micropython

4.What could have been done better
4.1 initial ramdisk

4.2 PSRAM interface

4.3 other board support

4.4 SPI speed

4.5 add features and capabilities

Annexs

A1 Xilinx tool Vivado

A2 SPI

A3 AXI4 AMBA

A4 ASM

A5 FPGA PIN XDC comments

1. OVERVIEW
The v586 is made of a CPU that executes 586 opcodes but also a system around that brings the

minimum vital functions to boot Linux in text mode.
This system is meant to be used with DIGILENT NEXY S4 board with ARTIX-7 fpga.

In a nutshell the system has to be seen in 2 parts :

a) is written in VERILOG , it is the CPU plus the interfaces — inside the FPGA

b) the components outside the FPGA that are driven by interfaces : SD connector, SPI flash, UART,
CLOCK input, switches and Leds, and many more as described in the NEXY S4 board manual.

1.1 Block diagram of v586 system board with nexys4 board

In grey, the arrows represent an AXI4 protocol interface, in red the connections are not AXI4 but
off-FPGA connections to NEXY S4 components like UART, SPI, PSRAM and Leds.

All what is inside ARTIX?7 (in blue) is verilog code that has to be compiled with Virtuoso.

All what is in RED arrows are off-fpga connections and they have to be coherent with DIGILENT
specification and signal routing in the PCB as it is described in NEXY S4 board manual.

The FLASH SPI 128MB will play an essential role in the system boot and configuration.

The system has 16MByte of RAM, this is an external chip. This chip can be accessed with
conventional SRAM signaling or Synchronous SRAM (with a clock) —i.e. this design will not
work on NEXYS4 DDR unless the PSRAM interface in changed by a AXI4/DDR interface.

The FPGA contains RAM inside also but it is way to small to run linux by several order. Some
micro-controller projects are designed to use very small RTOS (few kBytes) and these projects can
be run only with FPGA ressources. Which is not the case here since we target Linux.

1.2 Block diagram inside artix7-100 fpga

The system inside the FPGA has a central processor that communicates with the rest of the world

with 4 types of interfaces :

a) clock and reset inputs

b) memory map through an AXI4 32bits R/W with burst for unaligned access and cache refill.

c) io map through an AXI4 32bits , no burst.
Note: x86's unlike RISCs like ARM have a memory space plus an IO space. Nowadays a
peripheral for x86 can be memory mapped (like ARM) or io mapped. Most legacy functions
like interrupt controller and timers are usually found in the io space for historical reasons.

d) interrupt interface , with acknowledge and vector input.

Inside the Periph block we translate AXI protocol into a simplified chipselect/write enable protocol.

I0 RANGE ADRESS PERIPH NAME Comments
0x3F8-0x3FF UART 16750 Uses IRQ4
0xA0-0xA1 0x20-0x21 Primary & Secondary 8259

0x40-0x43 Timer 8253

0x2E-0x2F 0x290-0x291 IT87xx (only GPIO part) see IT87xx datasheet
0x500-0x504 Simplified SPI interface Only to read SPI flash

Table 1: IO Map with address ranges for the system

The memory region contains 16MB or sram and 512 bytes of ROM.
The ROM is inside the FPGA and the RAM access are going to the PSRAM interface.

MEMORY RANGE ADDRESS | REGION NAME Comments
0x0-0x090000 RAM LOW LEGACY 640k dos area
0x090000-0x0f0000 RAM LOW NOT LEGACY Normally old PC wouldn't have

RAM there but video controller
and other periphs. Not clear if
linux by default will use this
amount of RAM.

0x0f0000-0xOfffff Boot ROM

0x0100000-0xOBFFFFF HIGH MEM above 1MB Rest of 15MBytes

Note: old PC have a special region betwenn 640k and 1MB for video buffer and bios but here the
“hole” is way smaller to hold the small boot code.

2. Boot up sequence information
In this section we will find explanation of the boot code inside the FPGA , how the SPI is expected
to be organised by the boot code, some hardware initialization and finaly the linux configuration.

2.1 boot code inside FPGA
this section gives some hints on the boot code found in the test.s file

.code32

/* start protected mode , no more CS/DS prefix */

start:

movl $0x01,%eax

movl %eax , %cr0 e > This section of code sets protected mode as per x86-32 manual
.code32

ljmp $0x0 , $0x0ffc20

.org 0x020

/* select boot type */
movl $0x500, %edx
inb (%dx) , %al

and $3 , %al

cmp $1 , %al

jz boot_test - > this section tests of SWland SW2 of the board to see if it copies first the spi to boot linux or not.
cmp $2, %al

Jjz boot_ram

cmp $3, %al

Jjz boot_spi

Jjmp boot_linux

boot_spi:
movl $0x1000, %esp - initialize the stack pointer to some value and also initialize the UART for 115200 bauds , start/stop bits.
call init_uart

call banner ----> print something on the uart to show that everything went ok so far, and the uart is working ok

mov $6,%al

mov $0x500,%edx
out %al,(%dx)
mov $2,%al

mov $0x500,%edx
out %al,(%dx)
movb $0x03,%bl
call send8b_spi ~ ------ > sends some commands to the SPI flash on 0x500 port to initialize SPI flash.
movb $0x3F,%bl
call send8b_spi
movb $0xFF,%bl
call send8b_spi
movb $0xF0,%bl

call send8b_spi

mov $0xOFFFF0,%edi
mov $0x0c0000,%esi ----> copy 3MByte from SPI , this is the vmlinux.bin kernel as compiled for x86 target, see more details in the embedded sw
call fill_spi

call banner ----> print something

mov $6,%al

mov $0x500,%edx
out %al,(%dx)
mov $2,%al

mov $0x500,%edx
out %al,(%dx)
movb $0x03,%bl
call send8b_spi
movb $0x7F,%bl
call send8b_spi = -—-- > transfers also 2Mbyte from SPI at for the initial ramdisk as compiled by buildroot , more details in sw section
movb $0xFF,%bl
call send8b_spi
movb $0xF0,%bl
call send8b_spi

mov $0x3FFFF0,%edi
mov $0x080000,%esi
call fill_spi

call banner
Jjmp boot_linux ----- > jump to configure &prepare linux boot section

fill_spi:

call recv32b_spi
mov %ebx ,%eax
rol $8,%eax

mov %al , (%edi)
inc %edi

rol $8,%eax

mov %al , (%edi)
inc %edi

rol $8,%eax

mov %al , (%edi)
inc %edi

rol $8,%eax

mov %al , (%edi)
mov (%edi), %bl
cmp %al , %bl
Jjz okpass

push edi

push esi

call banner

pop esi

pop edi

okpass:

inc %edi

dec %esi

Jjnz fill_spi

ret

// send %bl to spi , msb first
send8b_spi:

movw $0x500,%dx
movb $8,%cl

rol $1,%bl

nextbit:

mov %bl , %al
and $1, %al

outb %al, (%dx)
or $2, %al

outb %al, (%dx)
xor $2, %al

outb %al, (%dx)
rol $1,%bl

dec %cl

Jjnz nextbit

ret

//init spi

mov $6,%al

mov $0x500,%edx
out %al,(%dx)
mov $2,%al

mov $0x500,%edx
out %al,(%dx)
mov $0xF0,%bl
call sen8b_spi
mov $6,%al

mov $0x500,%edx
out %al,(%dx)

ret

// receive spi to %ebx
recv32b_spi:
movw $0x504,%dx
movb $32,%al
outb %al, (%dx)
mov $30,%ecx
waitloop:

dec %ecx

Jjnz waitloop

in (%dx), %eax

in (%dx), %eax

in (%dx), %eax
mov %eax,%ebx
ret

boot_linux:
movl $0x1000, %esp

call init_uart

/* setup ebda ptr at 0x40e*/
movl $0x0fff00 , %ebx

movl $0x040e , %ecx

mov %ebx , (%ecx)

/* eax = ram size */
/* ebx = ramd size */
/* ecx = ptr to cmdline */

mov $0x90000, %edi
mov $0x400 , %ecx
mov $0 , %eax

rep
stosl

/* command line */
mov $0x90800, %edi
mov %edi , 0x90228
mov $0xfff20, %esi
mov $0x100 , %ecx
rep

movsb

/* loader type */
mov $1, %al
mov %eax , 0x90210

/* mem size */
movl $0x003c00 , %eax
mov %eax , 0x901e0

/* initrd start */

mov $0x00400000 , %eax
/*mov $0, %eax */

mov %eax , 0x90218

/* initrd size */

movl $0x00200000 , %eax
/* movl $501047 , %eax */
/* movl $0 , %eax */

mov %eax , 0x9021c

/* row cols */
mov $80,%al
mov %al,0x90007
mov $25,%al

> configure linux by wrtting several value into “magic” ram location in the 0x90000 ram section

mov %al,0x9000e
call banner

movl $0x00090000, %esi
limp $0x10, $0x00100000 ~ ----------- > JUMP to LINUX KERNEL as copied from spi flash , and that is the END of boot INIT.

boot_test:
mov $0x1000,%esp
call init_uart

mov $0 , %bl
loopboot:
call sendchar
incb %bl
Jjmp loopboot

sendchar:

push %eax

push %edx

/* wait if there is character to be sent */
wait_rdy:

movl $0x3fd, %edx
in (%dx),%al

andb $0x20,%al

Jjz wait_rdy

movl $0x3f8, %edx
mov %bl, %al
outb %al, (%dx)
pop %edx

pop %eax

ret

init_uart:

/* set 8N1 flow dlab =1*/
movl $0x3fb, %edx

movb $0x83 , %al

outb %al , (%dx)

/* set DLL divisor 1 = 115200 bauds , 2= 57600 bauds , ...*/
movl $0x3f8, %edx

movb $1 ,%al

outb %al , (%dx)

movl $0x3f9, %edx

movb $0 ,%al

outb %al , (%dx)

/* set 8N1 flow dlab=0*/
movl $0x3fb, %edx
movb $0x3 , %al

outb %al , (%dx)

/* disable fifo*/
movl $0x3fa, %edx
movb $0x7 , %al
outb %al , (%dx)

75)

movb $0 ,%al
movl $0x3f9, %edx
outb %al , (%dx)
movl $0x3fc, %edx
outb %al , (%dx)
/* test char */
movl $0x3f8, %edx
ret

boot_ram:

mov $200,%ecx
mov $aabb1122,%ebx
mov %ebx , %eax
mov %ebx , (%ecx)
mov $0 , %ebx
mov (%ecx), %ebx
cmp %ebx , %eax
Jjz testok

movl $0x3f8, %edx
movb $0x41 , %al
addb %bl , %al

2.2 external spi flash organisation

ADRESS RANGE INSIDE EXTERNAL SPI SECTION NAME

0x0 FPGA BIT FILE FROM VIVADO

0x400000 (4MB limit) vmlinux.bin , the linux kernel uncompressed and
stripped off from ELF information

0x800000 (8MB limit) Initramfs.cpio.gz , the compressed cpio.gz
initram file from buildroot.

Note : in order to have the FPGA automatically load the FPGA BIT file from SPI, we need to put
jumper on the board on the “QSPI” position for “MODE”

2.3 hardware init
Most is explained inside the boot code description

2.4 linux kernel configuration and launch

Most is explained inside the boot code description.

We can explain here that the Linux kernel is configured with 2 inputs:

a) several value in the 0x90000 region , like ram size information

b) a string (with terminal 0) , also location in the 0x90000 region , that is the BOOT KERNEL
CONFIGURATION, it is found inside the boot and is equal to :

console=ttyS0,115200n8 root=/dev/ram0 rw

This line syntax is pure Linux convention , in case of troubleshooting it is useful to add debug to
have more verbosity on linux boot messages :

console=ttyS0,115200n8 root=/dev/ram0 rw debug

3. Embedded Software

We have already seen that the boot code will copy some sections of the the external spi flash into
ram , the kernel and the ramdisk. The boot romm will then jump to first address of the vmlinux
kernel.

Here is how to generate the 2 files : the kernel and initial ramdisk.

3.1 Linux configuration for general features : cpu & legacy devices

Typically for these project we target the smallest linux kernel , the default configuration produces
large kernel of several Mbytes, and we have only 16MByte in the board. The target is to maintain
the kernel in the 1.7 to 2.5Mbytes. By experience , with these sizes we can have lot of funtionality.

The next task will also to add the right drivers and devices for the board peripherals.

Note: The GPIOs with IT87xx chip is very powerful since we can “BITBANG” several protocol
throught GPIOs to access board ressources such as accelerometer and SD card.

Linux kernel 3.19 configuration: download from kernel.org
.config - Lim] (ernel Configu

Linux/xB6 3.19.0 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---» {or empty submenus ----}.
Highlighted letters are hotkeys. Pressing =Y=> includes, =N=> excludes, =M= modularizes features.
Press «<Esc@»«=Esc> to exit, «<¥> for Help, =f= for Search. Legend: [*] built-in [] excluded

=M> module = > module capable

| 64-bit kernel

[] Enable loadable module support ----
[*] Enable the block layer ---=
Processor type and features ---»
Power management and ACPI options ---»
Bus options (PLI etc.) ---=
Executable file formats / Emulations ---=
[] Hetworking support ----
Device Drivers ---=»
Firmware Drivers ---»
File systems ---=
Kernel hacking ---=
Security options ---»
[*] Cryptographic API ---»
[1 Virtualization ----
Library routines ---»

a)We need to select block layer for the SD card support. It is a block device.

3.19.0 Kernel Configuration

General setup
Arrow keys navigate the menu. <Enter= selects submenus ---= (or empty submenus ----}.
Highlighted letters are hotkeys. Pressing <Y= includes, <N= excludes, =M= modularizes feature
Press «<Esc@z«<Esc> to exit, <7?> for Help, =f= for Search. Legend: [*] built-in [] excluded
=M> module = > module capable

[1 Compile also drivers which will not load

{} Local version - append to kernel release

[*] Automatically append version information to the version string
Kernel compression mode {Gzip) ---=

(essai) Default hostname

[*] Support for paging of anonymous memory {swap)

[*] System W IPC

[*] Enable process_wvm_readv/writev syscalls

[*] open by fhandle syscalls

[*] uselib syscall
IR) subsystem ----

Timers subsystem ---»
CPUfTask time and stats accounting ---=
RCU Subsystem ---»

[1 Kernel .config support
{16} Kernel log buffer size {16 == E4KB, 17 == 12BKB}

-*-. Control Group support ---=»
[*] Checkpoint/restore support
[*] Hamespaces support ---=

[*] Automatic process group scheduling

[*] Enable deprecated sysfs features to support old userspace tools
[*1 Enable deprecated sysfs features by default

[*] Kernel-=user space relay support {formerly relayfs)

[*] Initial RAM filesystem and RAM disk {(initramfs/initrd) support
() Initramfs source file(s)}

[*1 Support initial ramdisks compressed using gzip
[1 Support initial ramdisks compressed using bzip2
[1 Support initial ramdisks compressed using LZMA
[1 Support initial ramdisks compressed using XZ
[1 Support initial ramdisks compressed using LZ0
[1 Support initial ramdisks compressed using LZ4
[*] Fall back to defaults if init= parameter is bad
[*] Optimize for size
-*. Configure standard kernel features {expert users) ---»
[*] Embedded system

Kernel Performance Events And Counters ---»
[1 Enable WM ewvent counters for fproc/vastat
[1 Misable heap randomization

Choose SLAE allocator (SLAB) ---=
[1 Profiling support
[1 Optimize very unlikely/Llikely branches

Stack Protector buffer overflow detection {Mone) ---=
GCOV-based kernel profiling ----

b)we select initial ramdisk support and optimize for size and compressed initramfs with gzip.

DMA memory allocation support
] Symmetric multi-processing support
*- Processor feature human-readable names
*] gpio mmc w5BE platform
] Support for extended {non-PC)} =xB6 platforms
] Eurobraille/Iris poweroff module
1 Single-depth WCHAN output
] Linux guest support ----
] Memtest
Processor family (4B6) ---»
[1 Generic =B& support
[1 PentiumPro memory ordering errata workaround
[*] Supported processor vendors ---=
[1]
[*1

—————]

HPET Timer Support

Enable DMI scanning

Preemption Model {Voluntary Kernel Preemption {(Desktop)}) ---=
Local APIC support on uniprocessors

Machine Check f owverheating reporting

Enable VMBE support

Enable support for 16-bit segments

Toshiba Laptop support

[ell laptop support

Enable XB6 board specific fimups for reboot

CPU microcode loading support

Jdevjcpuf*fasr - Model-specific register support
Jdev/cpu/*fcpuid - CPU information support

High Memory Support {off)} ---=

Memory split {23G/1G user/kernel split) ---»

[1 PAE {Physical Address Extension)} Support

Memory model {(Flat Memory) ---»

] Allow for memory compaction

- Page migration

] Enable KSM for page merging

40906} Low address space to protect from user allocation
] Transparent Hugepage Support

] Enable cleancache driwer to cache clean pages if tmem is present
] Enable frontswap to cache swap pages if tmem is present
] Contiguous Memory Allocator

] Common API for compressed memory storage
] Low density storage for compressed pages

] Memory allocator for compressed pages

1 Use page table mapping to access object in zsmalloc

] Check for low memory corruption

4) Amount of low memory, in kilobytes, to reserve for the BIOS
] Math emulation

] MTRR {Memory Type Range Register) support

] *B& architectural random number generator

] Supervisor Mode Access Prevention

] Intel MPX {Memory Protection Extensions)

] Enable seccomp to safely compute untrusted bytecode

Timer frequency (188 HZ} ---=

[1 kexec system call

{Bx18008808) Physical address where the kernel is loaded

[1 Build a relocatable kernel

{Bx18008808) Alignment walue to which kernel should be aligned

[1 Disable the 32-bit vDS0 {needed for glibc 2.3.3)

¢) in processor type we select a low frequency for timer , 100Hz, and it is essentiam to select “math
emulation” and also to set the start address for kernel to 0x100000.
The gpio mmc v586 option is not necessary .

lguration

Bus options (PCI etc.)
Arrow keys navigate the menu. <Enter> selects submenus ---> {or empty submenus ----}.
Highlighted letters are hotkeys. Pressing =¥> includes, =N> excludes, =M> modularizes features.
Press =Esc»<Esc> to exit, =%= for Help, =/= for Search. Legend: [*] built-in [] excluded
<M> module =< > module capable

PCI support

*] ISA support

1 EISA support

] HatSemi S5Cx288 support

] One Laptop Per Child support

] PCEngines ALIX System Support (LED setup}
]

]

]

]

Soekris Engineering net5581 System Support (LEDS, GPID, etc)
Traverse Technologies GEOS System Support (LEDS, GPIO, etc)
PCCard (PCHMCIAfCardBus) support ----

Mark VWGA/VBESEFI FB as generic system framebuffer

d) for BUS options we only need ISA , we don't have PCI hardware of video card in 0xA000
segment.

xecutable file formats

Executable file formats [/ Emulations
Arrow keys navigate the menu. <Enter> selects submenus ---> {or empty submenus ----J}.
Highlighted letters are hotkeys. Pressing =¥> includes, <N> excludes, =M> modularizes features.
Press =Esc»<Esc> to ewxit, =7= for Help, =f= for Search. Legend: [*] built-in [] excluded
<M> module =< > module capable

[§] Kernel support for ELF binaries

[*] Hrite ELF core dumps with partial segments
[*] Kernel support for scripts starting with #!
[*] Kernel support for a.out and ECOFF binaries
[*] Kernel support for MISC binaries

[*] Emable core dump support

e) support for all type of binaries , especially the scripts starting with magic codes “#!”.

Device Drivers
Arrow keys navigate the menu. =Enter> selects submenus ---» {(or empty submenus ----}.
Highlighted letters are hotkeys. Pressing «=¥= includes, =N=> excludes, =M= modularizes features.
Press =zEsc»=Esc> to exit, «7= for Help, =/ for Search. Legend: [*] built-in [] excluded
=M> module = = module capable

| M Generic Driver Options ---»

fus devices ----
[] Memory Technology Dewice (MTD) support ----
[1 Parallel port support ----
[1 Plug and Play support ----

[*] Block dewices ---»

Misc devices ---=
[1 ATA/ATAPI/MFM/RLL support (DEPRECATED} ----

5CSI dewvice support ---»
[1 Serial ATA and Parallel ATA driwvers (libata) ----
[] Multiple dewvices driwer support {(RAID and LVM} ----
[1 Macintosh dewvice drivers ----

Input device support ---=

Character dewices ---»

IZC support ---=
[*] 5PI support ---=

[1 5PMI support ----
[1 H5I support ----
FPS support ---=
PTP clock support ---»
GPIO Support ---=
[lallas's 1l-wire support ----
Power supply class support ----
Adaptive Voltage Scaling class support ----
Hardware Monitoring support ----
Generic Thermal sysfs driver ----
Hatchdog Timer Support ----
Sonics Silicon Backplane ---=
Broadcom specific AMBA ---»
Multifunction dewice drivers --->»
[1 Voltage and Current Regulator Support ----
[1 Multimedia support ----
Graphics support ---»
[1 Sound card support ----
HID support ---=
USBE support ----
Ultra Wideband devices ----
MMC/SD/SDI0 card support ---»
Sony MemoryStick card support ----
LED Support ----
Accessibility support ----
EDAC (Error Detection And Correction} reporting ----
Feal Time Clock ----
[MA Engine support ----
Auxiliary Display support ----
Userspace I/0 drivers ----
Virtualization drivers ----
Virtio drivers ---»
Microsoft Hyper-V guest support ----
] Staging drivers ----
%BE Platform Specific Dewice Driwvers ----
] PlLatform support for Chrome hardware ----
Hardware Spinlock drivers ----
Clock Source drivers ----
[1 Mailbox Hardware Support ----
[*] IOMMU Hardware Support ----

[-y

- - -
—

f) device driver is key here , select gpio /SD and block devices as well as SPI. All this to bitbang SD
card throught GPIOs.

rnel Configuration

SPI support
Arrow keys navigate the menu. <Enter= selects submenus ---= (or empty submenus ----J.
Highlighted letters are hotkewys. Pressing =¥= includes, =<N> excludes, =M= modularizes features.
Press =Esc=<Esc> to exit, =<7> for Help, =f= for Search. Legend: [*] built-in [] excluded
<M> module =< > module capable

-§- SPI support]
[*] Debug support for SPI drivers

*** SPI Master Controller Drivers ***
1 Altera SPI Controller
- Utilities for Bitbanging SPI masters
] GPIO-based bitbanging SPI Master
] GPIO-based bitbanging SPI Master
1 (penCores tiny SPI
]
]
]

VSBE tiny SPI

%¥ilinx SPI controller common module
lesignWare SPI controller core support
*** SPI Protocol Masters ***

[*] User mode SPI device driver support
[1] Infineon TLEGZXE {(for power switching)

g) for SPI the choice GPIO_based bitbanging SPI master is the one. The others choices are just for

debug or the result of patching linux which are not yet functional.
fig - Lim 5 3.1 Kermel Configuration

GPIO Support
Arrow keys navigate the menu. <Enter> selects submenus ---» {or empty submer
Highlighted letters are hotkeys. Pressing <Y= includes, <N=> excludes, <M= m
Press =Esc=<Esc> to exit, =7> for Help, =f= for Search. Legend: [*] built-ir
=M= module = = module capable

[*]1 [ebug GPIO calls

[*1 Jsys/fclass/gpio/... {sysfs interface)

*** Memory mapped GPID drivers: ***

Generic memory-mapped GPIO controller support (MMIO platfor
ITBTE1E GPID support

F71BB2FG and FT1BBOF GPID support

SMSC SCH311x SuperIf0 GPLID

*x% J2C GPIO expanders: ***

*** PCI GPIO expanders: ***

*** SPI GPIO expanders: ***

Maxim MAXT3IB1 GPID expander

Microchip MCP23xxx If0 expander

Freescale MC33BBO high-side/low-side switch
x ACOT GPIO expanders: ***

*** |PC GPID expanders: ***

*** MODULbus GPIO expanders: ***

*** USE GPID expanders: ***

&

e e e

F— - —
e e

h) For the GPIO IT87xx support is the one , /sys/class/gpio is neat to control GPIOs from user space
with configfs method.

With IT87xx we have 16 GPIOs number under linux from 496 to 496+15.

bank A is 8 GPIOS from 496 to 496+7

bank B is 8 GPIOS from 496+8 to 496+15

.conflg - Linux/xB6 3.19.8 Kernel Configuration
» Device Drivers > MMC/SD/SDI0 card support

50/5DI0 card support

Arrow keys navigate the menu. <Enter= selects submenus ---= {(or empty submenu
Highlighted letters are hotkeys. Pressing <Y> includes, =N=> excludes, =M= mod
Press «<Esc@»<Esc> to exit, =7> for Help, =/= for Search. Legend: [*] built-in
=M> module = > module capable

-§- MMC/5D/SDIO0 card support]
[*]1] MM({ debugging
[*] HMMC host clock gating
*** MMC/SD/SDID Card Driwvers **=*

[*]1] HMMC block device driver
{B) Humber of minors per block dewice
[*] Use bounce buffer for simple hosts
[1] 5DI0 UART/GPS class support
[*]1] HMMC host test driver

*** MMC/SD/SDI0 Host Controller Drivers ***
1 Secure Digital Host Controller Interface support
1 SDHCI platform and OF driver helper
1 Hinbond WB3LS51xD SD/MMC Card Interface support
1 MMC /SD/SDIO owver SPI
1 Fenesas USDHIGROLE SDSSDIO Host Controller support

i) MMC over SPI is the choice to take. So SD card we need a device driver for IT87xx GPIOS, a
SPI — GPIO bitbanging master and a MMC/SD over SPI stack. But it is not enough to get SD
working we need also to declare DEVICEs , the stack is only for DRIVERs.

3.2 Linux device description for the board spi components

We have now configured Linux , but it is not enough , we need also to create a “board specific”
description file that will be placed inside the linux sources.

Inside ./arch/x86/platform/v586/v586.c

Also we need to declare and include this file as part of the Linux kernel by editing the
./arch/x86/platform/v586/Kconfig

and

Jarch/x86/platform/v586/Makefile

This is very common in embedded board world , but not necessary easy to do.
Example of v586.c file for board description , we will register devices :

#include <linux/kernel.h>
#include <linux/init.h>

#include <linux/io.h>

#include <linux/string.h>

#include <linux/module.h>
#include <linux/leds.h>

#include <linux/platform_device.h>
#include <linux/gpio.h>

#include <linux/spi/spi.h>
#include <linux/spi/spi_gpio.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/gpio.h>

static struct spi_gpio_platform_data spi_gpio_data = {
.sck =500, /* spi clock is GPIOA(4) */
.mosi = 502, /* data output from fpga to sd/spi is GPIOA(6) */
.miso = 503, /* data input from SD to FPGA is GPIOA(7) */
.num_chipselect = 1, /* one chip select that will be defined later on */

5

static struct platform_device v586_spi_gpio = {
.name = "v586_spi",
id=0,
.dev.platform_data = &spi_gpio_data,

b

static struct platform_device *v586_devs[] __initdata = {
&v586_spi_gpio,

}
static struct spi_board_info board_spi_devices[] = {
{
.modalias = "mmc_spi",
.max_speed_hz = 10000000,
.chip_select = 0,
.bus_num =0,
.controller_data = (void *) 498, /* the GPIOA(2) is the CARD select for SD*/
1
}
static int __init v586_init(void)
{
platform_add_devices(v586_devs, ARRAY_SIZE(v586_devs));
spi_register_board_info(board_spi_devices, ARRAY_SIZE(board_spi_devices));
return O;
}

module_init(v586_init);

MODULE_AUTHOR("Philip Prindeville <philipp@redfish-solutions.com>");
MODULE_DESCRIPTION("Traverse Technologies v586 System Setup");
MODULE_LICENSE("GPL");

NOTE ON SD CARD:
So we are using gpioA(2/4/6/7) for the SD card , but we need also to modify the XDC file for
virtuoso accordingly to wire those GPIOs to the right SD pins :

set_property PACKAGE_PIN E2 [get_ports {sdreset}]
set_property IOSTANDARD LVCMOS33 [get_ports {sdreset}]

set_property PACKAGE_PIN B1 [get_ports {gpioA[4]}]

set_property IOSTANDARD LVCMOS33 [get_ports {gpioA[4]}]
set_property PACKAGE_PIN C1 [get_ports {gpioA[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {gpioA[6]}]
set_property PACKAGE_PIN C2 [get_ports {gpioA[7]}]
set_property IOSTANDARD LVCMOS33 [get_ports {gpioA[7]}]
set_property PACKAGE_PIN D2 [get_ports {gpioA[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {gpioA[2]}]

we created an additional output to the virtuoso project , the sdreset, signal it is mandatory as
explained by DIGILENT in the NEXY4 manual (see NEXYS4 manual for more information about
E2/B1/C1/C2/D2 pin function of the FPGA)

3.3 buildroot compilation and utilities

3.4 micropython

