
V65C816 General Purpose 16 Bit Microprocessor Datasheet
Design by: Valerio Venturi (valerioventuri@gmail.com)

The V65C816 is a VHDL RTL softcore 100% software compatible with the original silicon
WDC65C816 CPU but with some new instructions:

• two fast multiply 16X16-32 bit instructions
• multitasking context save and restore fast instructions
• two fast save and restore AXY instruction
• register exchange instructions
• Improved execution time for some instructions and addressing modes.
• All the two bytes unused opcodes are treated as NOPs.

New Opcodes:

PHR (0x42/0x8B) PusH Registers push C,X,Y to stack (flags: unaffected)
PLR (0x42/0xAB) PulL Registers C,X,Y in reversed order from stack (flags: unaffected)
SAV (0x42/0x90) (SAVE) push C,X,Y,P,PBR,D to stack (flags: unaffected)
RST (0x42/0x91) (RESTORE) pull C,X,Y,P,PBR,D in reversed order from stack (flags: all)
MPU (0x42/0x8E) MultiPly Unsigned 16X16->32 bit (flags: Z)
MPS (0x42/0x8F) MultiPly Signed 15X15->31 bit (with sign) (flags: NZ)
XYX (0x42/0xEB) eXchange Y and X (flags: unaffected)
XAX (0x42/0x0B) eXchange A and X (flags: unaffected)
XAY (0x42/0x2B) eXchange A and Y (flags: unaffected)
EXT (0x42/0xEC) EXTends sign of accumulator A to B
NEG (0x42/0xED) NEGates contents of accumulator

NOTE: all new instructions listed above must be preceded by a WDM (0x42) opcode

The WDM opcode in the 65C816 WDC was intended as a prefix for new opcodes since the CPU
used all 256 opcodes (included WDM), but it was never used because the WDC never made a
65C816 with new instructions, hence the WDM opcode in the silicon version it is currently
only a NOP.
In my version of the 65C816 all the instructions are treated with 9 bit length instead of
8 bit, the WDM opcode simply sets the 9th bit to '1' to distinguish the next opcode as
new instruction instead of one of the old ones.
But in addition to this WDM activates a non-interruptible (atomic) sequence that ends
with the end of the execution of the new instruction, therefore during a WDM->New Opcode
sequence all interrupts are masked (NMI included), this to guarantee that the execution
of the new instruction is incorruptible by other processes (such as interrupts mentioned
above).
Example:

 WDM ;now all interrupts are masked (IRQ and NMI)
 PHR ;interrupt mask ends at end of execution of this instruction
 NOP ;now interrupts are enabled (IRQ obviously if it was enabled before)

For what has been said it is therefore very important that the WDM instruction is
followed by a new operating code (among those defined) otherwise the behavior of the CPU
is unpredictable.

mailto:valerioventuri@gmail.com

Description of new instructions.

PHR
Native mode:
Pushes C,X,Y registers to stack, the size is always 16 bit regardless of status of MX flags.

 WDM ;new opcode prefix
 PHR ;pushes C,X,Y to stack (all registers are always saved as 16 bit size)

replaces:
 PHA
 PHX
 PHY
(assuming both MX flags are zero)

Emulation mode:
Pushes B,A,X,Y registers to stack, the size is always 8 bit
Example in emulation mode mode:
 WDM ;new opcode prefix
 PHR ;pushes B,A,X,Y

replaces:
 XBA
 PHA ;saves B
 XBA
 PHA ;saves A
 PHX
 PHY

PLR
Native mode:
Pulls C,X,Y registers from stack, the size is always 16 bit regardless of status of MX flags.

 WDM ;new opcode prefix
 PLR ;pulls C,X,Y from stack (all registers are always pulled as 16 bit size)

replaces:
 PLY ;pulls Y
 PLX ;pulls X
 PLA ;pulls C
(assuming both MX flags are zero)

Emulation mode:
Pulls B,A,X,Y registers, the size is always 8 bit.

 WDM ;new opcode prefix
 PLR ;pulls B,A,X,Y

replaces:
 PLY ;pulls Y
 PLX ;pulls X
 PLA ;pulls A
 XBA
 PLA ;pulls B
 XBA

Purpose of PHR/PLR instructions is to save and restore A,X,Y registers with only a instruction
instead three or more.
The PHR/PLR instructions don't affect the P register.

SAV
Native mode:
Pushes C,X,Y,P,PBR,D registers to stack, the size of C,X,Y is always 16 bit regardless of status of
MX flags.

 WDM ;new opcode prefix
 SAV ;pushes C,X,Y,P,PBR,D to stack (the registers C,X,Y are always saved as 16 bit size)

replaces:
 PHA
 PHX
 PHY
 PHP
 PHB
 PHD
assuming both MX flags are zero

Note: in native mode the instruction pushes P register to stack in order to remember the size of X,Y
registers (X flag), we must remember that the MSB portion of X,Y registers is always forced to zero
if X flag is set to '1'.
The RST instruction when pulls P from stack restores the MX flags before pull C,X,Y from stack.

Emulation mode:
Pushes B,A,X,Y,PBR,D registers to stack, the size is always 8 bit
 WDM ;new opcode prefix
 PHR ;pushes B,A,X,Y,PBR,D

replaces:
 XBA
 PHA ;pushes B
 XBA
 PHA ;pushes A
 PHX ;pushes X
 PHY ;pushes Y
 PHB ;pushes PBR
 PHD ;pushes D

Note: in emulation mode the instruction don't pushes P register to stack because the XY register are
always forced to 8 bit size.

RST
Native mode:
Pulls C,X,Y,P,PBR,D registers from stack, the size of C,X,Y is always 16 bit regardless of status of
MX flags.

 WDM ;new opcode prefix
 RST ;pulls C,X,Y,P,PBR,D from stack (registers C,X,Y are always pulled as 16 bit size)

replaces:
 PLD ;pulls D
 PLB ;pulls B
 PLP ;pulls P
 PLY ;pulls Y
 PLX ;pulls X
 PLA ;pulls A
(assuming both MX flags are zero)

Emulation mode:
Pulls B,A,X,Y,PBR,D registers, the size of XY is always 8 bit.

 WDM ;new opcode prefix
 RST ;B,A,X,Y,PBR,D

replaces:
 PLD ;pulls D
 PLB ;pulls B
 PLY ;pulls Y
 PLX ;pulls X
 PLA ;pulls A
 XBA
 PLA ;pulls B
 XBA

Purpose of SAV/RST instructions is to save and restore all registers with only a instruction instead
six or more, this is very useful in situations where a quick context switch is needed, for example
in a preemptive (interrupt-based) multitasking system.
The SAV instructions don't affect the P register, RST instead modifies all the flags of P (only when

in native mode).

MPU
This instruction performs a 16X16 bit unsigned multiply and returns a 32 bit result.
The register C and X must be loaded with the two factors and the multiply returns the 32 bit result
in C (LSB) and X (MSB).

Example, we want to multiply 1234 by 100:

 REP %00110000 ;set registers A,X to 16 bit size
 LDA factor1 ;loads factor1 to A
 LDX factor2 ;loads factor2 to X
 WDM ;new opcode prefix
 MPU ;multiply unsigned
 STA lsb_result ;save LSB result
 STX msb_result ;save MSB result

factor1 .word 1234
factor2 .word 100

lsb_result .word 0
msb_result .word 0

Note: the hardware multiplication is based on a loop which at each clock shifts the value contained
in the X register to the right and ends when the value is zero, therefore to speed up the execution
of the instruction it is better to load the smallest factor on the register X, of course if you know
it.

MPS
This instruction performs a 15X15 bit signed multiply and returns a 31 bit result.
The register C and X must be loaded with the two factors and the multiply returns the 31 bit signed
result in C (LSB) and X (MSB).

Example, we want to multiply 1234 by -100:

 REP %00110000 ;set registers A,X to 16 bit size
 LDA factor1 ;loads factor1 to A
 LDX factor2 ;loads factor2 to X
 WDM ;new opcode prefix
 MPS ;multiply signed
 STA lsb_result ;save LSB result
 STX msb_result ;save MSB result

factor1 .word 1234
factor2 .word -100

lsb_result .word 0
msb_result .word 0

Note: the hardware multiplication is based on a loop which at each clock shifts the value contained
in the X register to the right and ends when the value is zero, therefore to speed up the execution
of the instruction it is better to load the smallest factor on the register X, of course if you know
it.

Example of preemptive multitasking with V65C816

;this simple example is a preemptive multistasking for V65C816 for four tasks but could be extended
for more task if needed.

;RAM locations
ctask .byte 1 ;current task index
ntask .byte 1 ;number of defined tasks
ststsk .byte 4 ;status of task #0-3 (enable or disabled)
sptsk .byte 8 ;16 bit stack pointers of task #0-3

;we arrive here after reset
start sei ;masks IRQ interrupt
 clc
 xce ;set native mode
 sep %00110000 ;AXY=8 bit
 MX %11 ;tell to assembler AXY = 8 bit
 lda ssp+1 ;msb sp --> a
 xba
 lda ssp ;lsb sp --> a
 tcs ;a --> sp
 stz ready ;reset ready flag

 ;TASK INITIALIZATION
 lda numtsk ;initializes number of task
 sta ntask
 ldy #0
 tyx
 sty tmp1

res6 lda ssp+1,y ;msb sp --> a
 xba
 lda ssp,y ;lsb sp --> a
 tcs ;a --> sp
 lda pctask+1,y ;msb pc task --> a
 pha ;a --> stack
 lda pctask,y ;lsb pc task --> a
 pha ;a --> stack
 ldx tmp1
 lda #%00110100 ;0 --> a (task will be start with interrupt (IRQ) disabled,
ALU in binary mode and AXY = 8 bit)
 pha ;p --> stack
 lda emtask,x ;check if task is emulation or native mode
 sta emtsk,x ;saves the emulation/native mode flag for this task
 beq res7 ;if native mode
 lda #0 ;0 --> a (emulation mode)
 pha ;a --> stack
 pha ;a --> stack
 pha ;x --> stack
 pha ;x --> stack
 bra res8

res7 lda #0 ;0 --> a (native mode)
 pha ;a --> stack
 pha ;a --> stack
 pha ;x --> stack
 pha ;x --> stack
 pha ;y --> stack
 pha ;y --> stack
 lda #%00110000 ;task starts always in AXY = 8 bit
 pha ;p -> stack

res8 lda #0
 pha ;b -> stack
 pha ;d -> stack
 pha
res9 tsc ;sp --> a
 sta sptsk,y ;lsb sp --> sptsk
 xba
 sta sptsk+1,y ;msb sp --> sptsk
 ldx tmp1
 lda stasts,x ;status task --> a
 sta ststsk,x ;a --> ststsk+y
 iny ;y += 2
 iny
 inx
 stx tmp1

 cpx numtsk ;x < numtsk ?
 bcc res6 ;if yes repeat loop
 sep %00110000
 lda ssp+1 ;msb sp --> a

xba
 lda ssp ;lsb sp --> a
 tcs ;a --> sp
 stz ctask ;0 --> ctask (we start with task #0)
 ;HERE DO SOMETHING TO START A IRQ INTERRUPT GENERATED BY A FREERUN TIMER (ES: 1-
10 KHZ FREQ)

 brl task0 ;start task #0
 nop

 nop

;task #0:
task0 cli ;enables IRQ
task0_loop nop ;do something...
 brl task0_loop ;in this implementation tasks MUST BE a while loop

;task #1:
task1 cli ;enables IRQ
task1_loop nop ;do something...
 brl task1_loop ;in this implementation tasks MUST BE a while loop

;task #2:
task2 cli ;enables IRQ
task2_loop nop ;do something...
 brl task2_loop ;in this implementation tasks MUST BE a while loop

;task #3:
task3 cli ;enables IRQ
task3_loop nop ;do something...
 brl task3_loop ;in this implementation tasks MUST BE a while loop

;IRQ interrupt (task switcher)
irq wdm ;new opcode prefix
 sav ;save a,x,y,p,dbr,d on stack
 clc ;set native mode
 xce
 sep %00110000 ;a-x-y = 8 bit
 MX %11 ;tell to assembler AXY = 8 bit

 ror a ;carry --> bit 7 a (bit E --> bit 7 a)
irq1 ldx ctask ;current task index --> y
 sta emtsk,x ;saves emulation/native mode of interrupted task
 txa
 asl a ;multiply * 2
 tay
 tsc ;sp --> a
 sta sptsk,y ;save lsb sp
 xba
 sta sptsk+1,y ;save msb sp
 ldy ctask ;y = current task
irq2 iny ;y = y +1 (point to next task)
 cpy ntask ;reached end of number of task
 bcc irq3 ;if no
 ldy #0 ;0 --> y (restart scan of task list)
irq3 sty ctask ;y --> ctask (current task)
 tya ;test y
 tax ;copy to x
 beq irq4 ;if task #0
 lda ststsk,x ;the task to restart is enabled ?
 beq irq2 ;if no repeat the scan of task list
irq4 txa
 asl a ;multiply * 2
 tay
 lda sptsk+1,y ;get the sp of next task (msb)
 xba
 lda sptsk,y ;(lsb) sp
 tcs ;initializes sp of next task
 ldx ctask ;x is index of next task
 lda emtsk,x ;read the emulation/native mode of next task
 rol a ;transfer to C flag
 bit timer1_cli ;clear timer interrupt
 xce ;restore emulation/native mode of the next task
 wdm ;new opcode prefix

 rst ;restore a,x,y,p,dbr,d from stack
 rti ;returns from interrupt (and restart the next task)

pctask .word task0,task1,task2,task3 ;pointers of start PC tasks
ssp .word $02ff,$03ff,$04ff,$05ff ;top of stack pointer of tasks
stasts .byte $ff,$ff,$ff,$ff ;status of tasks, all are enabled
emtask .byte $00,$00,$00,$80 ;emulation/native mode of tasks
 ;$00=native mode; $80 =emulation mode
numtsk .byte 4 ;number of defined tasks

