
Versatile FIFO
A versatile FIFO supporting both sync and async
implementations with multiple parallell channels

Brought to You By ORSoC / OpenCores

http://www.opencores.org/
http://www.orsoc.se/

Versatile FIFO

Legal Notices and Disclaimers

Copyright Notice
This ebook is Copyright © 2009 ORSoC

General Disclaimer
The Publisher has strived to be as accurate and complete as possible in the creation of this
ebook, notwithstanding the fact that he does not warrant or represent at any time that the
contents within are accurate due to the rapidly changing nature of information.

The Publisher will not be responsible for any losses or damages of any kind incurred by the
reader whether directly or indirectly arising from the use of the information found in this
ebook.

This ebook is not intended for use as a source of legal, business, accounting, financial, or
medical advice. All readers are advised to seek services of competent professionals in the
legal, business, accounting, finance, and medical fields.

No guarantees of any kind are made. Reader assumes responsibility for use of the
information contained herein. The Publisher reserves the right to make changes without
notice. The Publisher assumes no responsibility or liability whatsoever on the behalf of the
reader of this report.

Distribution Rights
The Publisher grants you the following rights for re-distribution of this ebook.

[YES] Can be given away.
[YES] Can be packaged.
[YES] Can be offered as a bonus.
[NO] Can be edited completely and your name put on it.
[YES] Can be used as web content.
[NO] Can be broken down into smaller articles.
[NO] Can be added to an e-course or auto-responder as content.
[NO] Can be submitted to article directories (even YOURS) IF at least half is rewritten!
[NO] Can be added to paid membership sites.
[NO] Can be added to an ebook/PDF as content.
[NO] Can be offered through auction sites.
[NO] Can sell Resale Rights.
[NO] Can sell Master Resale Rights.
[NO] Can sell Private Label Rights.

Back toTOC Copyright © 2009 ORSoC Page 2 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Table of Contents

Chapter 1 Introduction ______________________________ 4
Asynchronous FIFO implementation _________________________________ 4

Synchronous FIFO implementation __________________________________ 4

Multiple FIFO implementation ______________________________________ 5

Chapter 2 FIFO building blocks _______________________ 6
Dual port memory ___ 6

Single clock dual port RAM ______________________________________ 6

Single clock true dual port RAM __________________________________ 6

Dual clock dual port RAM _______________________________________ 7

Dual clock true dual port RAM ___________________________________ 7

Read and write pointers __ 8

FIFO flag generation ___ 8

Asynchronous compare ___ 9

Chapter 3 Example implementations __________________ 11
SD FLASH controller __ 11

Submodules __ 11

Recommended Resources ___________________________ 13

Back to TOC Copyright © 2009 ORSoC Page 3 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Chapter 1 Introduction
The FIFO implementation outlined in this document can easily be configured to suit the
following

• asynchronous FIFO with different clock domains for read and write sides

• synchronous FIFO with programmable flags

• multiple FIFO sharing the same memory resource

Asynchronous FIFO implementation

This configuration uses gray counter as FIFO pointers and an asynchronous compare
function. The read and write pointers are within different clock domains. To be able to
have glitch free compare function it is important that the pointers are clocked signals and
that no more than one signal can change its value on any clock signal.

For read and write pointers use "Versatile counter" found at OpenCores. Configured as
gray counter.

This FIFO has one clock domain for the write side and an other for the read side.

Synchronous FIFO implementation

Back to TOC Copyright © 2009 ORSoC Page 4 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

For minimal area and highest performance this implementation uses linear feedback shift
registers, LFSR, as memory pointers. The logic generating FIFO flags could either be a
compare function based on q_next from address counters or based on an up/down counter
keeping track of number of data words in memory.

For read and write pointers use "Versatile counter" found at OpenCores. Configured as
LFSR counter. This applies also to FIFO content counter.

This FIFO has one clock domain for the write side and the read side.

Multiple FIFO implementation
In some cases more than one FIFO can share the same memory. This makes better use of
the FPGA resources. Most FPGA has built-in memories with 4 kbits to 8 kbits. These
memories can in many cases be configured as true dual port memories, that is with read
and write possibilities on both sides.

This is the case for the following FPGA families

• ACTEL ProASIC3

• ALTERA Cyclone III

Many application have one wishbone interface and many FIFO channels with different
type of real time data. In this case only one FIFO can be written to from the system bus
side meaning that there is no problem sharing the dual port memory.

An example of a system that can use this type of implementation is a system with an
interface towards an external AC´97 compatible audio codec. The external interface is a bit
stream with audio data. System bus interface could have 6 FIFO channels (for 5.1 audio
support). From the system side there will be 6 individual FIFO queues. Internally all
queues can share one memory instance. A FSM will read out audio data from the FIFO
sequentially.

Back to TOC Copyright © 2009 ORSoC Page 5 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Chapter 2 FIFO building blocks

All FIFO implementations are based on the following building blocks. Each block is
available as a Verilog RTL module.

1. dual port memory

2. read and write pointers

3. logic generating FIFO empty and FIFO full
and optionally other FIFO flags

4. optional multiplexer used for multiple FIFO
queues sharing a common memory

From this a large number of different FIFO can be constructed. Pick your bricks

Dual port memory
There are a few variants of the dual port memory implementations. The memory could
have read/write support on both sides (true dual port) or have one read and one write side.
Also there can be one individual clock signals for read or write or one clock per side.

All variants come from the same source, dual_port_ram.v". The Makefile in rtl/verilog
builds all targets, make dual_port_ram.

Single clock dual port RAM

A dual port memory with one write side and one read side with one common read and
write clock.

Single clock dual port RAM

Filename versatile_fifo_dual_port_ram_sc_sw.v

Module name versatile_fifo_dual_port_ram_sc_sw

Parameters default value

DATA_WIDTH 8

ADDR_WIDTH 9

A side

d_a input

adr_a input

we_a input

B side

q_b output

adr_b output

common

clk input

Single clock true dual port RAM

A dual port memory with two read/write sides with one common clock.

Single clock dual port RAM

Back to TOC Copyright © 2009 ORSoC Page 6 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Filename versatile_fifo_dual_port_ram_sc_sw.v

Module name versatile_fifo_dual_port_ram_sc_sw

Parameters default value

DATA_WIDTH 8

ADDR_WIDTH 9

A side

d_a input

q_a output

adr_a input

we_a input

B side

d_a input

q_b output

adr_b output

we_b input

common

clk input

Dual clock dual port RAM

A dual port memory with one write side and one read side with individual read and write
clock.

Single clock dual port RAM

Filename versatile_fifo_dual_port_ram_dc_sw.v

Module name versatile_fifo_dual_port_ram_dc_sw

Parameters default value

DATA_WIDTH 8

ADDR_WIDTH 9

A side

d_a input

adr_a input

we_a input

clk_a input

B side

q_b output

adr_b output

clk_b input

Dual clock true dual port RAM

A dual port memory with two read/write sides with individual clocks.

Back to TOC Copyright © 2009 ORSoC Page 7 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Single clock dual port RAM

Filename versatile_fifo_dual_port_ram_sc_dw.v

Module name versatile_fifo_dual_port_ram_sc_dw

Parameters default value

DATA_WIDTH 8

ADDR_WIDTH 9

A side

d_a input

q_a output

adr_a input

we_a input

clk_a input

B side

d_a input

q_b output

adr_b output

we_b input

clk_b input

Read and write pointers
The read and write pointer are two instances of the same type of counters.

For FIFO implementations with two clock domains gray counter must be used to avoid
glitches on the FIFO flags.

For FIFO implementations with one clock domain either binary or LFSR counters could be
used. LFSR counters have one state shorter cycle but require less area and have no carry
chains. LFSR should be used when low area usage and/or high performance is important,
binary when memory depth is most important.

Note:
For gray type counter an optional binary count output can be used as write address while
the gray output is used for FIFO full and empty indications.

For all different counter types use Versatile counter. IP can be found at OpenCores.org
together with information on how to build application specific implementations.

FIFO flag generation
There are two different cases, one or two clock domains. For two clock domains the
compare logic will be asynchronous.

Programmable flags for FIFO with two clock domains are not supported in the current
release of versatile FIFO but might be included in future releases.

FIFO with one clock domain can have an optional up/down counter that keep track of
number of words currently in FIFO. From this counter additional FIFO flags can be
generated.

Back to TOC Copyright © 2009 ORSoC Page 8 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Asynchronous compare

The write pointer holds the next address to write to.

The read pointer holds the current address to read from.

When the write pointer equals the read pointer the FIFO is either empty or full. We need
something to distinguish empty or full condition. The memory can be divided into four
quadrants. The MSB of the pointers will have the following bit pattern (gray code):

Quadrant Pattern

Q1 00

Q2 01

Q3 11

Q4 10

We use signal direction to indicate whether FIFO is filling up or going empty.

• direction = 1 when write pointer is one quadrant behind read pointer

• direction = 0 when read pointer is one quadrant behind write pointer

• direction = 0 upon reset, in this case FIFO is empty

Direction set condition

write pointer read pointer direction_set

Q1 00 Q2 01 1

Q2 01 Q3 11 1

Q3 11 Q4 10 1

Q4 10 Q1 00 1

default 0

Direction clear condition

write pointer read pointer direction_clr

Q1 00 Q4 10 1

Q2 01 Q1 00 1

Q3 11 Q2 01 1

Q4 10 Q3 11 1

default 0

An SR-type flip-flop is used to generate signal direction.

Setting of direction is synchronous to write clock, clearing is synchronous to read clock.
Dual flip-flops clocked by write clock with asynchronous reset from async empty
synchronize FIFO flag. Analogous for empty flag.

Versatile_fifo_async_cmp

Filename versatile_fifo_async_cmp.v

Back to TOC Copyright © 2009 ORSoC Page 9 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Module name versatile_fifo_async_cmp

Parameters default value

ADDR_WIDTH 4

IO signals

wptr, rptr input

fifo_empty, fifo_full output

wclk, rclk, rst input

Back to TOC Copyright © 2009 ORSoC Page 10 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Chapter 3 Example implementations
SD FLASH controller

This example is a SD FLASH controller with a wishbone interface. We want to have FIFO
queues for the following

1. commands going from wishbone to SD card

2. command response going from SD card to wishbone

3. write data going from wishbone to SD card

4. read data going from SD card to wishbone

The wishbone side will have on clock domain and the SD card side an other. This makes it
possible to run the SD card at maximum specified speed.

All FIFO queues should share the same memory resource. The length of the queues should
be 512 bytes each.

The FIFO module will have the following IO signals:

Single clock dual port RAM

Filename sd_flash_fifo.v

Module name sd_flash_fifo

wishbone side signals

wb_adr_i[1:0] to select FIFO queue

wb_dat_i, wb_dat_o data buses

wb_re, wb_we read and write enable

fifo1_full, fifo2_empty, fifo3_full, fifo4_empty FIFO flags

wb_clk wishbone clock

SD side signals

sd_adr_i[1:0] to select FIFO queue

sd_dat_i, sd_dat_o data buses

sd_re, sd_we read and write enable

fifo1_empty, fifo2_full, fifo3_empty, fifo4_full FIFO flags

sd_clk sd clock

Back to TOC Copyright © 2009 ORSoC Page 11 / 13

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Submodules

The design will use the following modules

1. read and write pointers, 8 instances
9 bit gray counter with binary outputs
define file: sd_counter.xls
outfile : sd_counter.v

2. async compare, 4 instances

3. dual port memory; dual clock, dual way
2048 x 8

To generate design

make sd

The sd_counter spreedsheat looks like this:

Back to TOC Copyright © 2009 ORSoC Page 12 / 13

Name type
sd_counter GRAY

clear set cke rew
0 0 1 0

q q_bin z zq level1 level2
1 1 0 0 0 0

wrap wrap_around
0 1

length clear_value set_value wrap_value level1 level2
9

http://www.orsoc.se/
http://www.opencores.org/

Versatile FIFO

Recommended Resources
ORSoC – http://www.orsoc.se

ORSoC is a fabless ASIC design & manufacturing services company, providing RTL to
ASIC design services and silicon fabrication service. ORSoC are specialists building
complex system based on the OpenRISC processor platform.

Open Source IP – http://www.opencores.org

Your number one source for open source IP and other FPGA/ASIC related information.

Back to TOC Copyright © 2009 ORSoC Page 13 / 13

http://www.opencores.org/
http://www.orsoc.se/
http://www.orsoc.se/
http://www.opencores.org/

	Chapter 1 Introduction
	Asynchronous FIFO implementation
	Synchronous FIFO implementation
	Multiple FIFO implementation

	Chapter 2 FIFO building blocks
	Dual port memory
	Single clock dual port RAM
	Single clock true dual port RAM
	Dual clock dual port RAM
	Dual clock true dual port RAM

	Read and write pointers
	FIFO flag generation
	Asynchronous compare

	Chapter 3 Example implementations
	SD FLASH controller
	Submodules

	Recommended Resources

