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A large percentage of filters implemented in the 
digital domain are Finite Impulse Response (FIR) 
filters. These filters are used over a wide range of 
sample rates and are well supported in terms of 
tools, software, and IP cores. Another type of digital 
filter is the Infinite Impulse Response (IIR) filter, 
which tends not to be so well supported and is 
generally used in the lower sample rates, that is, less 
than 200 kHz. The IIR filter, known as a recursive 
filter, uses feedback to compute outputs.

This white paper covers the different kinds of IIR 
filters and structures, and, with the use of The 
MathWorks® tools, shows how these structures can 
be mapped to the Xilinx® FPGA architecture. A final 
consideration is how to pipeline IIR filters to support 
higher sample rates.
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Introduction
The FIR filter is well understood and used within Digital Signal Processing (DSP). The 
FIR filter takes in input samples, processes them, and outputs the samples. The 
advantages of FIR filters are that they have linear phase that is stable, they are 
insensitive to quantization effects, easy to design, and do not suffer from limit cycle 
issues such as filter oscillating. 

The IIR filter is an alternative filter structure known as recursive, meaning the output 
samples are fed back to make a contribution to the next output. IIR filters tend to have 
better magnitude responses, require fewer coefficients, require less storage for 
variables, have lower latency, and are closer to analog models. 

Figure 1 shows the frequency response of a FIR filter and an IIR filter. This figure 
shows that for a sample rate of 100 MHz and a cut-off frequency of 10 MHz with stop 
frequency of 11 MHz, a 259th order was needed for the FIR filter implementation. 
However, only a 9th order filter was required for a sample rate of 100 MHz, and a cut-
off frequency of 10 MHz with stop frequency of 11 MHz. 

Looking at the phase response diagram in Figure 2, the phase for the FIR filter is linear, 
yet the phase for the IIR filter is not linear. There are IIR filters that provide a better 
phase response, but these are not considered in this paper. 

X-Ref Target - Figure 1

Figure 1: Filter Visualization Tool: Magnitude Response (dB)

http://www.xilinx.com


Introduction

WP330 (v1.2) August 10, 2009 www.xilinx.com  3

R

For example, a square wave contains odd harmonics of the fundamental frequency 
and produces a ringing output, as shown in Figure 3, because different frequency 
components have different delays through an IIR filter. However, the latency through 
the IIR filter is less.

X-Ref Target - Figure 2

Figure 2: Filter Visualization Tool: Phase Response

X-Ref Target - Figure 3

Figure 3: IIR vs. FIR Waveforms at 100 kHz
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Classical IIR Filters
A number of IIR filter formats can be used, depending upon the filter characteristics. 
The plots in Figure 4 show the magnitude response and phase response for the 
different IIR filters, apart from the Bessel filter.

Elliptic Filter 
Also known as Cauer filters, Elliptic filters are equiripple in both the passband and 
stopband. They generally meet filter requirements with the lowest order of any 
supported filter type. For a given filter order, passband ripple, and stopband ripple, 
elliptic filters minimize transition width.

Butterworth
The Butterworth filter provides the best approximation to the ideal lowpass filter 
response at analog frequencies. Passband and stopband response is maximally flat.

Chebyshev Type I
The Chebyshev Type I filter minimizes the absolute difference between the ideal and 
actual frequency response over the entire passband by incorporating equal ripple in 
the passband. Stopband response is maximally flat. The transition from passband to 
stopband is more rapid than for the Butterworth filter.

Chebyshev Type II
The Chebyshev Type II filter minimizes the absolute difference between the ideal and 
actual frequency response over the entire stopband by incorporating an equal amount 
of ripple in the stopband. Passband response is maximally flat. The stopband does not 
approach zero as quickly as the type I filter (and does not approach zero at all for even-
valued filter order n). The absence of ripple in the passband, however, is often an 
important advantage.

Bessel
Analog Bessel lowpass filters have maximally flat group delay at zero frequency and 
retain nearly constant group delay across the entire passband. Filtered signals 
therefore maintain their wave shapes in the passband frequency range. Frequency 
mapped and digital Bessel filters, however, do not have this maximally flat property. 
Bessel filters generally require a higher filter order than other filters for satisfactory 
stopband attenuation. As the MathWorks tools do not support the digital model of the 
Bessel, this format will not be covered in this document.

http://www.xilinx.com
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IIR Filter Structure
The IIR filter consists of a forward FIR filter, also known as all-zero filter, comprising 
of the numerator, or b, coefficients for the zeros, and a feedback FIR for the 
denominator, or a, coefficients for the poles. A way to express an IIR Filter is as a  
z-transfer function with numerator coefficients bi and denominator coefficients ai.

Equation 1

The time domain expression for the IIR is shown in Equation 2, and it can be seen that 
some delayed version of the y(n) output is playing a part in the output: 

Equation 2

a(i) and b(i) are the coefficients of the IIR filter. The expression is now showing 
summation, multiplication, and subtraction, which are basic DSP building blocks and 
can be implemented in FPGA architecture using tools like System Generator. The IIR 
filter can be implemented using different structures. Example structures considered 
are:

• Direct Form I
• Direct Form II
• Biquad

♦ Direct Form I/II
♦ Cascade Biquad 
♦ Parallel Biquad

X-Ref Target - Figure 4

Figure 4: Magnitude and Phase Response for Different IIR Filters
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• Pipelined IIR Biquad

Fixed-Point Implementations
To ensure satisfactory fixed-point operation of the IIR filter, we will examine the 
following in detail:

• Coefficient Quantization
• Internal Quantization
• Overflow
• Stability

Coefficient Quantization
Coefficient quantization affects the frequency response. To look at the effect of 
quantization, it is useful to look at the filter in the z-domain and use pole/zero plot. 
This shows how the zeros (depths in the frequency response plot) and poles (peaks in 
the frequency response plot) are positioned. In fact, the issue with IIR stability has to 
do with the denominator coefficients and their positions, as poles, on the pole/zero 
plot. See Figure 5.

The poles for the floating-point version of the plot are shown on the left, and it can be 
seen that they are within the unit circle, that is, the values of the coefficients are less 
than 1 and thus in the stable region. After the coefficients are quantized, these poles 
move, having an effect on the frequency response, and if they move onto the unit 
circle, that is, the poles equal 1, then potentially it is an oscillator, and if the poles 
become greater than 1, then the filter definitely becomes unstable. The embedded 
multipliers in the Spartan®-3 and Virtex®-4 FPGA families allow the coefficients to be 
up to 18 bits for unsigned and 25 bits on the XtremeDSP™ slice in the Virtex-5 FPGAs. 
The flexibility of the FPGA fabric allows larger multipliers to be constructed to reduce 
the effects of coefficient quantization.

Internal Quantization
With a DSP function, there are multiplication and addition/subtraction operations. 
However, there is bit growth due to these operations, and at some point, the bit widths 
have to be reduced. Operations like wrapping/saturation for the most significant bits 
and rounding/truncation for the least significant bits have to be used. More detail can 
be found in DSP reference books. The rounding process reduces the bit-width, but it is 

X-Ref Target - Figure 5

Figure 5: Denominator Coefficients and Pole Positions
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a source of noise and contributes to output round-off noise and, hence, affects the 
signal-to-noise ratio. The flexibility of FPGA architecture allows for increasing the 
word length and reducing the round-off noise. So, utilizing the XtremeDSP slices 
allows up to 40 bits growth on the Spartan-3A DSP FPGA and 48 bits on Virtex-4 and 
Virtex-5 FPGAs, with the additional advantage of lower power. Larger bit widths can 
be handled by cascading the XtremeDSP slice and guidance for this can be found in 
[Ref 1], [Ref 2], and [Ref 3]. 

Overflow
For a fixed-point implementation, there is a certain bit width and, hence, a range. As a 
result of calculations, the filter may exceed its maximum/minimum ranges. For 
example, a two's complement value of 01111000(+120) + 00001001(+9) = 
10000001 =(-127). So, the large positive number becomes a large negative number. 
This is known as wraparound, which can cause huge errors. Using saturation logic can 
deal with this situation. In the example, the results would be 01111111 (+127).

To minimize the effects of overflows, scaling can be used. Therefore, values can never 
overflow. There are different kinds of scaling and these tend to be used by DSP 
processors to fit within their fixed structure. However, this has an effect on the signal 
to noise ratios. 

Stability
Looking at just the feedback path of the reverse filter, it is basically a higher-order 
polynomial: 

1 + a1.Z-1 + a2.Z-2 + a3.Z-3 + . . . + an.Z-n

The MathWorks tools provide mathematical functions like roots to help solve these 
equations and provide the roots of the polynomial. A script can be used to determine 
the roots of the double-precision polynomial and output the magnitude, and so 
discover if any of the roots are >1, which indicates instability. It also indicates the 
number of poles that are close to the unit circle, and so can highlight which coefficients 
may need more attention and thus more precision bits. 

Higher-Order IIR Filter Coefficient Values 
Table 1 shows the coefficients for 9th direct form for the IIR Filter specification used
Table 1: Coefficients for 9th Direct Form 

Denominator Coefficient (an) Numerator Coefficient (bn)

b0 0.00245014558048 

a0 -7.04394978610584 b1 -0.00966138645865 

a1 22.98981235527600 b2 0.01939701064155 

a2 -45.39640044672937 b3 -0.02129070350197 

a3 59.59070437306473 b4 0.00964412229742 

a4 -53.82417235803681 b5 0.00964412229742 

a5 33.41364866776762 b6 -0.02129070350197 

a6 -13.73985515793203 b7 0.01939701064155 

a7 3.39583699025570 b8 -0.00966138645865 

a8 -0.38454626044234 b9 0.00245014558048
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Even though this is a 9th order filter, it actually has 19 coefficients; 10 for the 
numerator and 9 for denominator. This indicates the design challenge, as the 
numerator coefficients are fractional, whereas the denominator coefficients have an 
integer range as well as precision. So, both sets of coefficients require fixed-point 
representation with adequate range and precision. However, the numerator 
coefficients are symmetrical in this case and thus could be used to advantage in FPGA 
implementation.

For the numerator coefficients, increasing the bit width does improve the frequency 
response, but because the filter uses the embedded multipliers within the FPGA 
fabric, making use of the multiplier width which is 18 bits is recommended. However, 
to get greater improvement, it may require greater than 18 bits. Examining the binary 
representation of the coefficients might help. For example, the coefficient value 
0.00245014558048 if using 17 bits of precision results in 
00_0000_0001_0100_0001 for a two’s complement number. In order not to have 
the embedded multipliers spending time multiplying by all those zeros between the 
binary point and the first active 1, it is suggested to scale the numerator coefficients by 
powers of 2 and scale down the resulting products by the same power of 2 value.

For example, 18 bits for the denominator coefficients a3 requires 7 bits to represent the 
integer leaving just 11 bits to represent precision, which could lead to instability. One 
possible option is to increase the width but this would result in 25 x 18 multiplications, 
which is acceptable for DSP48E but could take two hardware multipliers in the other 
FPGA families. Another option is recognizing that 59.59070437306473 = 64 -
4.40929562693527 and 4.40929562693527 can be represented by FIX_18_14,  
that is, 18 bits value with 14 bits to right of the binary point. The multiplication by 64 
is nothing but a shift implemented via wire routing in FPGA. 

Direct Form I Structures
The structure can be seen as two FIR filters: one forward FIR filter comprising of the b 
coefficients and a reverse FIR using the a coefficients. The IIR structure can be re-
ordered in an alternative form. See Figure 6. The transpose Direct Form I structure is 
shown on the right. It has a centre spine consisting of delay elements and adders. 
There are two multipliers sections for the numerator and denominator coefficients 
feeding the spine. 

In the transpose IIR structure, the forward filter is followed by the all-pole filter. So, 
the signal is attenuated before it is applied to the higher gain of the all-pole filter. The 
forward filter is defined by the data input bit width. 

With the forward filter, there is more delay, hence, the use of pipeline registers. The all-
pole section, because of the feedback, is the limiting factor and runs slower. Because 
there can be a higher clock in the FPGA, multi-cycles are available for the 
implementation of the forward filter. The forward filter can be implemented using the 
Xilinx CORE Generator™ FIR Compiler allowing some level of abstraction, that is, 
down to designing to the lowest level, but providing access to the maximum 
performance available on the FPGA. For the all-pole filter, the data and coefficient 
width can be larger and would require larger multipliers.

http://www.xilinx.com
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Direct Form II Structures
For the Direct Form I architecture, it was mentioned that the forward and reverse FIR 
filter stages can be swapped. If this is done, then the center consists of two columns of 
delay elements. This can turned into a one column structure, known as canonical, 
meaning it requires the minimum amount of storage. In this case, distributed memory, 
which is available across the FPGA fabric, can be utilized. 

The Direct Form-II structure has the advantage over the Direct Form I as it requires 
less memory storage for the data samples. These types of filters are an all-pole filter 
followed by an all-zero (forward) filter. The issue is the high gain of the all-pole 
section. The adders are larger to handle the potential overflow. The advantage of the 
reduced storage is offset by the larger adders. Therefore, this structure tends to scale 
the input to reduce the gain, but this could result in a worse signal-to-noise ratio (SNR) 
for larger order filters. Therefore, it is best not to use this structure for greater than 2nd 
order.

X-Ref Target - Figure 6

Figure 6: Direct and Transposed Direct Form I Structures
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Figure 7: Direct and Transposed Direct Form II Structures
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BiQuad
The issue with Nth Order structures mentioned earlier is that as the order of the filter 
increases, so does the complexity of the implementation. This leads to worsening 
range and precision of numbers, and for larger number of taps, it becomes a challenge. 
The round-off errors that come from all the multiplications and additions contribute to 
rounding errors. This can be seen when looking at the difference between fixed-point 
implementation in System Generator and Simulink® models. The structure used to 
minimize quantization errors is the 2nd order filter, also known as a biquad. The 
transfer function is given in Equation 3.

Equation 3

The advantage of the 2nd order structure is that it is not so sensitive to coefficient 
quantization; that is, so many bits are not needed to represent coefficients values. Now 
the width of the embedded multipliers is sufficient to produce results better than the 
Nth order filter. By using the MATLAB FDATool, the 9th order filter can be broken 
down into a five second-order sections (SOS). The coefficients are shown in Table 2. 

The range of the coefficients are seen to now within a -2 to a +2 range. While 
previously there was wide range and precision for the denominator coefficients, a 
more limited range is now observed. Any increase in bit width can be assigned to the 
precision. The numerator coefficients are still symmetrical so pre-adders can be used 
to save multipliers. In this 9th order example, a total of 18 multiplications is required. 
Some of the multiplications are due to the scale factor for each biquad, and these can 
be on the input or output of the biquad. All the individual biquad gains can be 
multiplied together to give an overall gain.

Associated with each of the biquad sections are a couple of other parameters which 
affect SNR; specifically, scale factor and reordering of the biquad. The MathWorks 
FDATool has the following tool for use with SOS. See Figure 8. 

Table 2: SOS Coefficients

SOS 
Numerator Coefficients Denominator Coefficients

Scale 
b0 b1 b2 a0 a1 a2

SOS 1 1 1 0 1 -0.7641 0 0.0362

SOS 2 1 -0.5762 1 1 -1.5405 0.6717 0.3880

SOS 3 1 -1.3257 1 1 -1.5624 0.8241 0.69

SOS 4 1 -1.4972 1 1 -1.5799 0.9269 0.8422

SOS 5 1 -1.5441 1 1 -1.5969 0.9809 0.3002

H z( )
b0 b1Z 1– b2Z 2–+ +

1 a0Z 1– a1Z 2–+ +
------------------------------------------------=
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Scaling
Scaling can be used as a compromise between using the full dynamic range and 
maximizing SNR and keeping it low enough to minimize overflow. Scaling ensures 
that values rarely (or never) overflow. Saturation arithmetic can be used to ensure that 
if overflow occurs, its effects are greatly reduced. Scaling from the frequency response, 
known as Lp scaling, can be used. In summary, there are three types of scaling: L1, L2, 
and Linf; each type changes the numerator and scaling values.

• L1 is the most conservative scaling and ensures that there will be no overflow. 
This is the summation of the absolute values of the impulse response. 

• L2 is the absolute sum of the root-mean-square of the impulse response. 
• Linf is the maximum amplitude when looking at the frequency response of the 

transfer response.

For example, for L2 scaling, the SOS coefficients are shown in Table 3. 

The total number of actual multiplications requiring an embedded multiplier is now 
16, because some of the coefficients are powers of 2, which is nothing but a bit shift 
requiring zero logic. The scaling coefficients could be part of the numerator filter and 

X-Ref Target - Figure 8

Figure 8: Reordering and Scaling of Second-Order Sections

Table 3: SOS Coefficients for L2 Scaling

SOS Numerator 
Coefficients

Denominator 
Coefficients Scale 

SOS 1 0.76606 -0.4413 0.76606 1 -1.5405 0.6717 0.25

SOS 2 1.5087 -2 1.5087 1 -1.5624 0.8241 0.125

SOS 3 1.3358 -2 1.3358 1 -1.5799 0.9269 0.25

SOS 4 1.2952 -2 1.2952 1 -1.5969 0.9809 0.25

SOS 5 0.50872 0.50872 0 1 -0.7641 0 0.6166
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thus save another multiplication. In the example shown in Table 3, the scaling has 
been brought into the numerator coefficients as shown in Table 4

This example is for a total of 18 multiplications. Remember the all-pole section of the 
biquad cannot be run at clock rate. However, there are multiple clock cycles for the 
forward filter. 

BiQuad Structure 
The Direct Form I structure is shown in Figure 9 and its time domain difference 
equation is shown in Equation 4. 

y(n) = b0.x(n) + b1.x(n-1) + b2.x(n-2) + a1.y(n-1) + a2.y(n-2)
Equation 4

Two data storage areas for the time delayed input data x(n) and output data y(n) are 
required. The first stage is the all-zero filter which has a smaller gain than the all-pole 
filter. This means that the overflow logic and the rounding logic is on the output. The 
suggestion is that the full precision from the multipliers is carried through. The 
number of multiplications is three, and the number of additions is four. The key factor 
is that the size of the denominator coefficients can be 18 bits (within the width of the 
embedded multipliers).

The Direct Form II structure is shown in Figure 10 and time domain difference 
equation is shown in Equation . 

Table 4: Scaling in Numerator Coefficients

SOS Numerator 
Coefficients

Denominator 
Coefficients

SOS 1 0.0362 0.0362 0 1 -0.7641 0

SOS 2 0.3880 -0.5762*0.3880 0.3880 1 -1.5405 0.6717

SOS 3 0.69 -1.3257*0.69 0.69 1 -1.5624 0.8241

SOS 4 0.8422 -1.4972*0.8422 0.8422 1 -1.5799 0.9269

SOS 5 0.3002 -1.5441*0.3002 0.3002 1 -1.5969 0.9809

X-Ref Target - Figure 9

Figure 9: Direct Form I Structure
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d(n) = x(n) + d(n-1).a0 + d(n-2).a1 Equation 5

y(n) = d(n).b0 +d(n-1).b1+d(n-2).b2 Equation 6

 
 
This structure is favored by DSP processors because it requires less storage and takes 
fewer cycles. To reduce the number of numerator coefficients they are scaled, which 
can result in the following form requiring four multiplications and four additions. 
There tends to be scaling on the input to reduce the chances of overflow in the all-pole 
section of the filter for the d(n) signal. The multiplications are 18 x 18 and the full 36-
bit values for the feedback filter can be added together. The denominator coefficients 
are expressed as −ve values in the diagram, but these can be expressed as positive 
values. The outputs from the reverse filter can be added together before being 
subtracted from the x(n) input. At the output of the subtractor, rounding can take 
place so as to bring the result back within the 18 bits required for the delay stages. With 
this structure, there are two rounding points R: one at the d(n) stage and the other at 
the y(n) output.

By using Direct Form II structure, the numerator coefficients can be multiplied by the 
scaling factor. If there is a number of zeros between the binary point and the first 1, 
then power of two multiplications calculate the result, and division by the same power 
of two can be used. 

Cascaded BiQuad Structure
The basic biquad can be extended so as to provide better attenuation. It involves 
having more than one biquad cascaded. For higher order filters, several biquads are 
cascaded. Equation 7 is shown where * represents product, and N is the number of 
biquads. In this case, it’s five.

Equation 7

X-Ref Target - Figure 10

Figure 10: Direct Form II Structure
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Figure 11: Cascaded BiQuad Structure
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The cascaded biquads can be reordered to reduce the round-off noise. However, for N 
biquads, that becomes N possible options! To address this, we will consider the 
following Parallel structure option. 

Parallel BiQuad Structure
Another structure using biquads is the parallel form as shown in Figure 12. Again this 
structure has been utilized by processors.

There is an alternative structure which uses biquads. The equation for parallel form is 
shown in Equation 8. 

Equation 8

To get from cascade structure to a parallel structure, use the MATLAB residuez 
function. This function takes the polynomial coefficients and converts it to partial 
fractions. Second order sections and their coefficients are shown in Table 5. The 
denominator values are the same but the numerator coefficients are different. 

The structure is shown in Figure 12, with the biquads in parallel. If they are Direct 
Form I structure, even though more data storage is needed for the forward filter, the 
input storage for the forward filter is common to all phases of the parallel biquad. 

X-Ref Target - Figure 12

Figure 12: Parallel BiQuad Structure
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Thus, optimization can be implemented here. However, the forward filter numerator 
coefficients are not symmetrical, but there are fewer of them. 

The denominator section stays the same and the coefficients are the same value. So, 
rounding can be done prior to storing the internal value in the data storage, and then 
being applied to the adder stage. The adder stage can be implemented as an adder 
tree, or adder chain. Virtex-4, Virtex-5, and Spartan-3A DSP FPGAs have XtremeDSP 
slices in the fabric, which are well suited to adder chains as well as providing high 
performance. See [Ref 1], [Ref 2], and [Ref 3].

Higher Performance IIR Filters
With an IIR filter. the key requirement is that the calculations are performed within a 
sample period. Unlike the forward filter, the feedback filter cannot have any sample 
delays in it. So the question is: how can the feedback filter speed be increased. There 
are a couple of options:
1. Using multiple cycles: This option uses the fact that there is a higher clock in the system, 

or there could be a higher clock, introduced via the digital clock managers in Xilinx FPGA 
architecture. Then more pipelining stages can be added and still meet the requirement for 
getting the sample calculated for the next sample period. However, there is a limit on how 
many stages can be pipelined. For example, for a Virtex-4 FPGA, a clock rate of 400 MHz 
and a clock enable every four clock periods can result in a performance of 100 MHz. 

2. Pipelining the feedback filter: This option adds extra canceling poles and zeros in the Z-
plane to the original transfer function. There are a couple of methods: 

a. Cluster Lookahead Method: See [Ref 4] for more details, but essentially for this 
method, the active poles are clustered together and the lower coefficients are set to 
zero, leaving just the sample registers. However, this method can result in the final 
transfer function being unstable, even though the original filter was stable for a low 
number of pipeline stages, and is not investigated further.

b. Scattered Lookahead: See [Ref 5]. This method holds that for each pole M -1 additional 
poles/zeros are introduced at equal angles around the Z circle. This method ensures 
that the new transfer function is still stable. As an example for M = 3 stages of 
pipelining, adding poles and zeros at ae±ºj2Ð/M = ae±j are shown in Figure 13.

So, considering just the all-pole section of the biquad: 

X-Ref Target - Figure 13

Figure 13: Scattered Lookahead using Extra Poles
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Adding the extra poles/zeros gives Equation 9.

Equation 9

As shown, the poles are scattered, that is, the zero coefficients between Z-3 and Z-6. The 
intermediate Z still exist as registers, but there is no requirement for multiplication by 
a coefficient. These are the registers that are used as pipeline registers to speed up the 
recursive path. Looking at just the recursive section, the implementation is shown in 
Figure 14. The original recursive is shown Figure 14 (a), and the result of adding the 
extra poles giving the extra pipelines registers is shown in Figure 14 (b). The structure 
is changed to a transpose structure and the multiplier and adder are now registered, 
shown in Figure 14 (c). 

However, there is an increase in computation for the numerator as it is now a 4th order 
numerator, shown in Equation 9.

Multi-Cycle BiQuad
If the requirement is for less number of multipliers using the Direct Form II as an 
example, it is possible to create a multi-cycle of the equation which uses 5 cycles where 
one multiplier per biquad is used. 

Cycle 1: Accum = x(n) * scaling

Cycle 2: Accum = Accum + d(n-1) * a0 

Cycle 3: Accum = Accum + d(n-2) * a1

Cycle 4 Accum = Accum + d(n-1) * b1

Cycle 5: Accum = Accum + d(n-2) * b2. And output y(n).

By using an XtremeDSP slice in the FPGA and the appropriate opmode, the multi-
cycle biquad can be implemented. With the high performance of the XtremeDSP slices, 
higher sample rates can be supported.

X-Ref Target - Figure 14

Figure 14: Pipelined IIR Filter
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IIR Filter Structure Observations
IIR filter structure observations are as follows:

• FIR Filter
♦ Normal and easy to implement. The obvious choice implemented by many people. 

♦ Use cores to implement filter. 

• Higher Order IIR Filter 
♦ Nth order filter implemented with MAC for forward filter and parallel transpose for 

all-pole section. 

♦ The forward filter can be implemented using FIR compiler IP which supports up to 32 
bits input data. 

♦ Frequency response, peak error, and error variance not as good as FIR filter. 

♦ Complications due to bit growth and overflow. Would consider this for low order 
filters. 

• Cascade Biquad
♦ Filter implemented as a series of 2nd order filters. Gives better results than Nth order 

for similar number of multipliers. 

♦ Four multipliers per biquad. Limit on performance is the feedback path.

♦ Can be viewed as a basic IP block and cascaded as many times as required. 

♦ Filter also can be implemented as a series of 2nd order filters using multi-cycles to do 
the computation with one multiplier per biquad. Limit on performance is the 
feedback path. But, as FPGA clock rates increase can support increasing sample rates.

♦ Can be implemented in either Direct Form I or Direct Form II. 

• Parallel Biquad
♦ Filter implemented as 2nd order filters in parallel.

♦ The number of numerators is reduced and the data samples shared. The adder stage 
can be implemented using adder chain or accumulator. Advantage is that adder chain 
can deal with odd number of biquads. Time-division-multiplexed techniques can be 
used for the filter to reduce area with adder stage implemented using accumulator.

♦ Use the XtremeDSP slice to save on area and increase the performance. 

• Pipelined Filter
♦ Feedback section pipelined to allow increased performance.

♦ Dependent upon coefficient and data width, but as these increase more pipeline 
stages are needed, and the complexity of the forward filter increases. 

♦ The numerator order increases requiring more multipliers. However, due to higher 
clocks, this can be implemented using MAC techniques. Design is simplified by the 
use of FIR compiler IP. 
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Implementation of IIR Filters in Xilinx FPGAs
Although there is not a specific IIR Filter IP core, the basic DSP functions, that is, 
addition, accumulation, multiplication, and the more complex functions like filtering 
are available in the Xilinx CORE Generator software, System Generator software, and 
AccelDSP tools. 

The CORE Generator software delivers a library of parameterizable and fixed netlist 
LogiCORE IP cores with corresponding data sheets, designed and supported by 
Xilinx. The CORE Generator software can be accessed as a standalone tool or from the 
Xilinx ISE® design environment. Generating a core is straightforward. The output is 
an optimized core for the targeted FPGA device family that includes the following 
files:

• A tailored Xilinx implementation netlist
• VHDL or Verilog instantiation code
• VHDL or Verilog wrapper for simulation support
• A symbol for schematic capture tools

System Generator for DSP is a highly productive design environment for the 
development and prototyping of DSP systems using FPGAs. System Generator 
software enables the use of The MathWorks Simulink®/MATLAB modeling 
environments for FPGA design by providing a Xilinx-specific block set for use within 
the Simulink modeling environment. DSP algorithm developers who do not know 
HDL design techniques can quickly capture their designs and accelerate their 
simulations using push-button hardware co-simulation flows.

The AccelDSP Synthesis Tool is a high-level MATLAB language-based tool for 
designing DSP blocks for Xilinx FPGAs. This tool also has the ability to be imported 
into a System Generator design. The tool automates floating-to-fixed-point 
conversion, generates synthesizable VHDL or Verilog, and creates a test bench for 
verification. By offering such alternatives, the user can design in the environment that 
is most comfortable and can build systems without necessarily having to learn 
completely new FPGA design methodologies and hardware design languages, but 
still have access to the high performance architecture. 

Conclusions
This white paper has presented different structures of IIR filters and the issues that 
must considered when implementing on the latest FPGA architectures. Using FPGAs 
allows flexibility in implementation depending upon sample rates, and freedom of 
choice between the hard IP, like the XtremeDSP slices, and the general FPGA fabric if 
so required. Using The MathWorks with System Generator and AccelDSP tools adds 
an extra advantage, because it allows quick exploration and investigation of different 
techniques and implementations.

In building an IIR filter, even though the higher order structures can be built and the 
transpose structure can offer advantages because of the adder chain, the risks due to 
coefficient quantization might be too much. A starting point could be the Biquad, 
either in a cascaded or a parallel architecture. If higher performance is required and 
the extra area can be tolerated, then using higher clock rates and multiple cycles, or 
pipelining IIR filters, is suggested.
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