
U S E R ´ S M A N U A L :

WISHBONE BUILDER

THE WISHBONE SYSTEM-ON-CHIP (SOC)
INTERCONNECTION ARCHITECTURE FOR PORTABLE IP
CORES IS A FLEXIBLE DESIGN METHODOLOGY FOR

USE WITH SEMICONDUCTOR IP CORES. ITS PURPOSE

IS TO FOSTER DESIGN REUSE BY ALLEVIATING

SYSTEM-ON-CHIP INTEGRATION PROBLEMS. THIS IS

ACCOMPLISHED BY CREATING A COMMON INTERFACE

BETWEEN IP CORES. THIS IMPROVES THE

PORTABILITY AND RELIABILITY OF THE SYSTEM, AND

RESULTS IN FASTER TIME-TO-MARKET FOR THE END

USER.

THE WISHBONE STANDARD IS NOT COPYRIGHTED,
AND IS IN THE PUBLIC DOMAIN. IT MAY BE FREELY

COPIED AND DISTRIBUTED BY ANY MEANS.
FURTHERMORE, IT MAY BE USED FOR THE DESIGN

AND PRODUCTION OF INTEGRATED CIRCUIT

COMPONENTS WITHOUT ROYALTY OR OTHER FINANCIAL

OBLIGATION.

1

Table of Contents
Wishbone - overall description...3
Generator – overall description.. 4

PERL Facts.. 4
Interface specification...5

Syscon signals..5
INTERCON Signals...5

Signals Common to MASTER and SLAVE Interfaces.. 5
MASTER Signals..6
SLAVE Signals... 7

Tag types..9
Address tag..9
Cycle tag..9

Configuration options...10
Global configurations.. 10

Module name...10
Output type..10
Target technology..10
Data bus size... 10
Tag fields...11
Interconnection type ... 11

Shared bus ... 11
Crossbar switch.. 12
Interconnect specification...12
Multiplexor implementation...13
Optimize... 13

Master port(s) configuration.. 14
Slave port(s) configuration.. 15

OpenCore defined memory map...16
Supported datatype(s)... 17

2

Wishbone - overall description
The WISHBONE system-on-chip (SoC) architecture is a portable interface for use with
semiconductor IP cores. It is intended to be used as an internal bus for SoC applications. Its purpose
is to foster design reuse by alleviating system-on-a-chip integration problems. This is accomplished
by creating a common interface between IP cores. This improves the portability and reliability of the
system, and results in faster time-to-market for the end user. WISHBONE itself is not an IP core...it
is a specification for creating IP cores.

The WISHBONE standard is not copyrighted, and is in the public domain. It may be freely copied
and distributed by any means. Furthermore, it may be used for the design and production of
integrated circuit components without royalty or other financial obligation.

The specification for wishbone can be found at:

http://www.opencores.org/wishbone/specs/wbspec_b3.pdf

3

Generator – overall description

Generator flow

The wishbone generator is written in PERL.

PERL Facts
• Perl is a stable, cross platform programming language.
• It is used for mission critical projects in the public and private sectors.
• Perl is Open Source software, licensed under its Artistic License, or the GNU General Public

License.
• Perl was created by Larry Wall.
• Perl 1.0 was released to usenet's alt.comp.sources in 1987
• PC Magazine named Perl a finalist for its 1998 Technical Excellence Award in the

Development Tool category.
• Perl is listed in the Oxford English Dictionary.

PERL can be found at:

http://www.perl.org/get.html

The configuration of the wishbone arbiter for your applications is typed into a define file, typically
called “wishbone.defines”. The format and syntax of this file will be described later in this
document. The generator is called “wishbone.pl”. The generator is invoked by typing the following
in a shell / at the command prompt.

perl wishbone.pl [-nogui] [wishbone.defines]
The option -nogui runs the generator quitely. Otherwise a graphical GUI is used for the tailoring of
the arbiter. Independently of the GUI a define file is always generated.

4

wishbone.defines

PERL generator
wishbone.pl HDL

PERL interpreter

Interface specification

Syscon signals
CLK_O The system clock output [CLK_O] is generated by the SYSCON module. It

coordinates all activities for the internal logic within the WISHBONE interconnect.
The INTERCON module connects the [CLK_O] output to the [CLK_I] input on
MASTER and SLAVE interfaces.

RST_O The reset output [RST_O] is generated by the SYSCON module. It forces all
WISHBONE interfaces to restart. All internal self-starting state machines are forced
into an initial state. The INTERCON connects the [RST_O] output to the [RST_I]
input on MASTER and SLAVE interfaces.

INTERCON Signals

Signals Common to MASTER and SLAVE Interfaces
CLK_I The clock input [CLK_I] coordinates all activities for the internal logic within the

WISHBONE interconnect. All WISHBONE output signals are registered at the rising
edge of [CLK_I]. All WISHBONE input signals must be stable before the rising edge
of [CLK_I].

RST_I The reset input [RST_I] forces the WISHBONE interface to restart. Furthermore, all
internal self-starting state machines will be forced into an initial state.

DAT_I() The data input array [DAT_I()] is used to pass binary data. The array boundaries are
determined by the port size. Also see the [DAT_O()] and [SEL_O()] signal
descriptions.

TGD_I() Data tag type [TGD_I()] is used on MASTER and SLAVE interfaces. It contains
information that is associated with the data input array [DAT_I()], and is qualified by
signal [STB_I]. For example, parity protection, error correction and time stamp
information can be attached to the data bus. These tag bits simplify the task of
defining new signals because their timing (in rela tion to every bus cycle) is pre-
defined by this specification. The name and operation of a data tag must be defined in
the WISHBONE DATASHEET.

DAT_O() The data output array [DAT_O()] is used to pass binary data. The array boundaries are
determined by the port size. Also see the [DAT_I()] and [SEL_O()] signal
descriptions.

TGD_O() Data tag type [TGD_O()] is used on MASTER and SLAVE interfaces. It contains
information that is associated with the data output array [DAT_O()], and is qualified
by signal [STB_O]. For example, parity protection, error correction and time stamp
information can be attached to the data bus. These tag bits simplify the task of
defining new signals because their timing (in relation to every bus cycle) is pre-
defined by this specification. The name and operation of a data tag must be defined in
the WISHBONE DATASHEET.

5

MASTER Signals
ACK_I The acknowledge input [ACK_I], when asserted, indicates the termination of a normal

bus cycle. Also see the [ERR_I] and [RTY_I] signal descriptions.
ADR_O() The address output array [ADR_O(63..0)] is used to pass a binary address, with the

most signifi-cant address bit at the higher numbered end of the signal array. The lower
array boundary is specific to the data port size. The higher array boundary is core-
specific. In some cases (such as FIFO interfaces) the array may not be present on the
interface.

CYC_O The cycle output [CYC_O], when asserted, indicates that a valid bus cycle is in
progress. The signal is asserted for the duration of all bus cycles. For example, during
a BLOCK transfer cycle there can be multiple data transfers. The [CYC_O] signal is
asserted during the first data transfer, and remains asserted until the last data transfer.
The [CYC_O] signal is useful for interfaces with multi-port interfaces (such as dual
port memories). In these cases, the [CYC_O] signal re-quests use of a common bus
from an arbiter. Once the arbiter grants the bus to the MASTER, it is held until
[CYC_O] is negated.

ERR_I The error input [ERR_I] indicates an abnormal cycle termination.
LOCK_O The lock output [LOCK_O] when asserted, indicates that the current bus cycle is

uninterruptible. Lock is asserted to request complete ownership of the bus. Once the
transfer has started, the INTERCON does not grant the bus to any other MASTER,
until the current MASTER negates [LOCK_O] or [CYC_O].

RTY_I The retry input [RTY_I] indicates that the indicates that the interface is not ready to
accept or send data, and that the cycle should be retried.

SEL_O() The select output array [SEL_O()] indicates where valid data is expected on the
[DAT_I()] signal array during READ cycles, and where it is placed on the [DAT_O()]
signal array during WRITE cycles. Also see the [DAT_I()], [DAT_O()] and [STB_O]
signal descriptions.

STB_O The strobe output [STB_O] indicates a valid data transfer cycle. It is used to qualify
various other signals on the interface such as [SEL_O()]. The SLAVE must assert
either the [ACK_I], [ERR_I] or [RTY_I] signals in response to every assertion of the
[STB_O] signal.

TGA_O() Address tag type [TGA_O()] contains information associated with address lines
[ADR_O()], and is qualified by signal [STB_O]. For example, address size (24-bit,
32-bit etc.) and memory management (protected vs. unprotected) information can be
attached to an address. These tag bits simplify the task of defining new signals
because their timing (in relation to every bus cycle) isdefined by this specification.
The name and operation of an address tag must be defined in the WISHBONE
DATASHEET.

TGC_O() Cycle tag type [TGC_O()] contains information associated with bus cycles, and is
qualified by signal [CYC_O]. For example, data transfer, interrupt acknowledge and
cache control cycles can be uniquely identified with the cycle tag. They can also be
used to discriminate between WISHBONE SINGLE, BLOCK and RMW cycles.
These tag bits simplify the task of defining new signals because their timing (in
relation to every bus cycle) is defined by this specification. The name and operation of
a cycle tag must be defined in the WISHBONE DATASHEET.

6

ACK_I The acknowledge input [ACK_I], when asserted, indicates the termination of a normal
bus cycle. Also see the [ERR_I] and [RTY_I] signal descriptions.

WE_O The write enable output [WE_O] indicates whether the current local bus cycle is a
READ or WRITE cycle. The signal is negated during READ cycles, and is asserted
during WRITE cycles.

SLAVE Signals
ACK_O The acknowledge output [ACK_O], when asserted, indicates the termination of a

normal bus cycle.
ADR_I() The address input array [ADR_I()] is used to pass a binary address, with the most

significant address bit at the higher numbered end of the signal array. The lower array
boundary is specific to the data port size. The higher array boundary is core-specific.
In some cases (such as FIFO interfaces) the array may not be present on the interface.

CYC_I The cycle input [CYC_I], when asserted, indicates that a valid bus cycle is in
progress. The signal is asserted for the duration of all bus cycles. For example, during
a BLOCK transfer cycle there can be multiple data transfers. The [CYC_I] signal is
asserted during the first data transfer, and remains asserted until the last data transfer.

ERR_O The error output [ERR_O] indicates an abnormal cycle termination. The source of the
error, and the response generated by the MASTER is defined by the IP core supplier.
Also see the [ACK_O] and [RTY_O] signal descriptions.

LOCK_I The lock input [LOCK_I], when asserted, indicates that the current bus cycle is
uninterruptible. A SLAVE that receives the LOCK [LOCK_I] signal is accessed by a
single MASTER only, until either [LOCK_I] or [CYC_I] is negated.

RTY_O The retry output [RTY_O] indicates that the indicates that the interface is not ready to
accept or send data, and that the cycle should be retried. When and how the cycle is
retried is defined by the IP core supplier. Also see the [ERR_O] and [RTY_O] signal
descriptions.

SEL_I() The select input array [SEL_I()] indicates where valid data is placed on the [DAT_I()]
signal array during WRITE cycles, and where it should be present on the [DAT_O()]
signal array during READ cycles. The array boundaries are determined by the
granularity of a port. For example, if 8-bit granularity is used on a 64-bit port, then
there would be an array of eight select signals with boundaries of [SEL_I(7..0)]. Each
individual select signal correlates to one of eight active bytes on the 64-bit data port.
For more information about [SEL_I()], please refer to the data organization section in
Chapter 3 of this specification. Also see the [DAT_I(63..0)], [DAT_O(63..0)] an
[STB_I] signal descriptions.

DAT_I() The data input array [DAT_I()] is used to pass binary data. The array boundaries are
determined by the port size. Also see the [DAT_O()] and [SEL_O()] signal
descriptions.

DAT_O() The data output array [DAT_O()] is used to pass binary data. The array boundaries are
determined by the port size. Also see the [DAT_I()] and [SEL_O()] signal
descriptions.

ERR_O The error output [ERR_O] indicates an abnormal cycle termination.
RTY_O The retry output [RTY_O] indicates that the indicates that the interface is not ready to

accept or send data, and that the cycle should be retried.

7

ACK_O The acknowledge output [ACK_O], when asserted, indicates the termination of a
normal bus cycle.

SEL_I() The select input array [SEL_I()] indicates where valid data is placed on the [DAT_I()]
signal array during WRITE cycles, and where it should be present on the [DAT_O()]
signal array during READ cycles. Also see the [DAT_I()], [DAT_O()] and [STB_I]
signal descriptions.

STB_I The strobe input [STB_I] indicates a valid data transfer cycle. It is used to qualify
various other signals on the interface such as [SEL_I(7..0)]. The SLAVE must assert
either the [ACK_O], [ERR_O] or [RTY_O] signals in response to every assertion of
the [STB_I] signal.

WE_I The write enable input [WE_I] indicates whether the current local bus cycle is a
READ or WRITE cycle. The signal is negated during READ cycles, and is asserted
during WRITE cycles.

TGA_I() Address tag type [TGA_I()] contains information associated with address lines
[ADR_I()], and is qualified by signal [STB_I]. For example, address size (24-bit, 32-
bit etc.) and memory management (protected vs. unprotected) information can be
attached to an address. These tag bits simplify the task of defining new signals
because their timing (in relation to every bus cycle) is pre-defined by this
specification. The name and operation of an address tag must be defined in the
WISHBONE DATASHEET.

TGC_I() Cycle tag type [TGC_I()] contains information associated with bus cycles, and is
qualified by signal [CYC_I]. For example, data transfer, interrupt acknowledge and
cache control cycles can be uniquely identified with the cycle tag. They can also be
used to discriminate between WISHBONE SINGLE, BLOCK and RMW cycles.
These tag bits simplify the task of defining new signals because their timing (in
relation to every bus cycle) is pre-defined by this specification. The name and
operation of a cycle tag must be defined in the WISHBONE DATASHEET.

8

Tag types
The WISHBONE interface can be modified with user defined signals. This is done with a technique
known as tagging. Tags are a well known concept in the microcomputer bus industry.
They allow user defined information to be associated with an address, a data word or a bus cycle.
All tag signals must conform to set of guidelines known as TAG TYPEs. Table below lists all of
the defined TAG TYPEs along with their associated data set and signal waveform. When a tag is
added to an interface it is assigned a TAG TYPE from the table. This explicitly defines how the
tag operates. This information must also be included in the WISHBONE DATASHEET.

MASTER SLAVE
DESCRIPTION TAG TYPE Associated with TAG TYPE Associated with
Address tag TGA_O() ADR_O() TGA_I() ADR_I()
Data tag, input TGD_I() DAT_I() TGD_I() DAT_I()
Data tag, output TGD_O() DAT_O() TGD_O() DAT_I()
Cycle tag TGC_O() Bus cycle TGC_I() Bus cycle

Address tag
Burst Type Extension, BTE Bit pattern
Linear 00
Wrap-4 01
Wrap-8 10

Cycle tag
Cycle Type Identifier, CTI Bit pattern
Classic 000
Constant address burst 001
Incrementing address burst 010
End of burst 111

9

Configuration options
All configuration options resides in config file, “wishbone.defines” or similar.

All lines starting with # are comments.

Global configurations

Module name
The module/entity name is configurable.

Parameter function Valid values Default value
syscon Defines top module/entity name for

system controller
any syscon

intercon Defines top module/entity name for
interconnection

any intercon

filename Defines file name any wb_arbiter

Output type
The wishbone core generator can generate a functional description in either VHDL92 with
IEEE1164 type support or in Verilog HDL. Set parameter hdl to vhdl or verilog.

Parameter function Valid values Default value
hdl Defines output language vhdl, verilog,

perlilog
vhdl

signal_groups Defines if signal groups should be used 0,1 0

If signal_groups is defined top level entity will be using VHDL records. Type definitions will be
put in a package called intercon_types.

Target technology
For optimal performance/area efficiency target dependable optimasation is used. Target technology
is defined by parameter target_family.

Parameter function Valid values Default value
target Defines target technology generic

xilinx
altera

generic

Data bus size
The number of bits in data and adress buses is selectable.

Parameter function Valid values Default value
dat_size Defines data bus width 8, 16, 32, 64 32
adr_size Defines address bus width any 32

10

Note that any specific master or slave can have a narrower bus interface.

Tag fields
The user defined tag fields tga, tgc and tgd can be defined to any width and the signals can be
renamed to better suit a specific application. Width set to zero means that particular signal should
not be presented in design.

Parameter function Valid values Default value
rename_tgc Renames tgc signals on top level any cti
tgc Defines tag signal width any 3
endofburst Defines tag bit pattern indicating last

phase of burst transfer
any

111
rename_tga Renames tgc signals on top level any bte
tga Defines tag signal width any 2
rename_tgd Renames tgc signals on top level any tgd
tgd Defines tag signal width any 0

Interconnection type
The wishbone generator supports two types of interconnection types defined in the wishbone
specification:

1. shared bus

2. crossbar switch

Shared bus

Shared bus interconnection

The shared bus interconnection is useful for connecting two or more MASTERs with one or more
SLAVEs. A block diagram is shown in figure. In this topology a MASTER initiates a bus cycle to a
target SLAVE. The target SLAVE then participates in one or more bus cycles with the MASTER.

An arbiter (not shown in the Figure) determines when a MASTER may gain access to the shared
bus. The arbiter acts like a ‘traffic cop’ to determine when and how each MASTER accesses the
shared resource. Also, the type of arbiter is completely defined by the system integrator. For

11

example, the shared bus can use a priority or a round robin arbiter. These grant the shared bus on a
priority or equal basis, respectively.

The main advantage to this technique is that shared interconnection systems are relatively compact.
Generally, it requires fewer logic gates and routing resources than other configurations, especially
the crossbar switch. Its main disadvantage is that MASTERs may have to wait before gaining access
to the interconnection. This degrades the overall speed at which a MASTER may transfer data.

Crossbar switch

Crossbar switch interconnection

The crossbar switch interconnection is used when connecting two or more WISHBONE MASTERs
together so that each can access two or more SLAVEs. A block diagram is shown in figure. In the
crossbar interconnection, a MASTER initiates an addressable bus cycle to a target SLAVE. An
arbiter (not shown in the diagram) determines when each MASTER may gain access to the
indicated SLAVE. Unlike the shared bus interconnection, the crossbar switch allows more than one
MASTER to use the interconnection (as long as two MASTERs don’t access the same SLAVE at
the same time).

Under this method, each master arbitrates for a ‘channel’ on the switch. Once this is established,
data is transferred between the MASTER and the SLAVE over a private communication link. The
Figure shows two possible channels that may appear on the switch. The first connects MASTER
‘MA’ to SLAVE ‘SB’. The second connects MASTER ‘MB’ to SLAVE ‘SA’.

The overall data transfer rate of the crossbar switch is higher than shared bus mechanisms. For
example, the figure shows two MASTER/SLAVE pairs interconnected at the same time. If each
communication channel supports a data rate of 100 Mbyte/sec, then the two data pairs would
operate in parallel at 200 Mbyte/sec. This scheme can be expanded to support extremely high data
transfer rates.

One disadvantage of the crossbar switch is that it requires more interconnection logic and routing
resources than shared bus systems. As a rule-of-thumb, a crossbar switch with two MASTERs and
two SLAVEs takes twice as much interconnection logic as a similar shared bus system (with two
MASTERs and two SLAVEs).

Interconnect specification
To specify interconnect implementation it is sufficient to sepcify number of concurrent paths. A
value equal to one specifies a shared bus topology, a number greater than one specifies a crossbar
switch with the given number of paths.

12

Parameter function Valid values Default value
interconnect Specifies number of concurrent paths Sharedbus,

crossbarswitch
sharedbus

Multiplexor implementation
The multiplexors used in the design can be implemented in three ways:

1. with tristate buses

2. as an and-or structure

3. as multiplexors

Best choice is dependent on target technology and expected performance.

Parameter function Valid values Default value
mux_type Defines implementation style of

multiplexors
andor, tristate,
mux

andor

Optimize
The design can be optimized for are or speed. When optimizing for area some intermidiate signals
are being preserved and used for more purposes

Parameter function Valid values Default value
optimize Optimizes for speed or area speed, area speed

13

Master port(s) configuration
The actual number of master and slave devices connected to the wishbone system bus must be
defined. Implemenation support any number of master and slaves. The performance will degrade
with increasing number.

For each master port a section defines which signals should be present.

Parameter function Valid values Default value
dat_size Defines dat_i bus width 0, 8, 16, 24, 32, 64 dat_size
type Defines read and/or write functionallity ro, wo, rw rw
adr_o Defines address bus width 0-63 adr_size
lock_o Defines if lock output is present 0,1 1
err_i Defines if error input is supported 0,1 1
rty_i Defines if retry is supported 0,1 1
tga_o Defines address tag output 0,1 0
tgc_o Defines cycle tag output 0,1 0
priority Defines bus access for sharedbus systems any 1
priority_%slave Defines bus access for crossbarswitch

systems. A value of zero indicates that
slave is not used by current master.

any None, must be
defined

A wishbone bus master can be of three types:

1. ro – read only. The following signals are not present; we_o, dat_o

2. wo – write only. The following signal is not present; dat_i

3. rw – read/write. All signals are present.

Depending on priority each master is guaranteed a number of bus cycles according to its priority
over a period of Σpriority bus cycles. If no priority is defined priority equal to one is assumed. That
means that over a period equal to the sum of wishbone bus masters each master is guaranteed one
bus cycle.

For crossbarswitch systems prioritties are defined and handled per slave.

Master port configuration example:

master or32_i
priority=4
type=ro
lock_o=1
err_i=1
rty_i=1
tga_o=1
tgc_o=1

end master or32_i

Namning conventions; or32_i_dat_o or or32_i_o.dat_o depending on definition of signal_groups.

14

Slave port(s) configuration
For every slave unit the following must be defined:

Parameter function Valid values Default value
dat_size Databus width 0, 8, 16, 24, 32, 64 dat_size
type Defines read and/or write functionallity ro, wo, rw rw
adr_i_hi Addressbus width, upper (left) limit 0-31 31
adr_i_lo Addressbus width, lower (right) limit 0-31 2
lock_i Defines support for lock input 0,1 0
tga_i Defines address tag present 0,1 0
tgc_i Defines cycle tag present 0,1 0
err_o Indicates an abnormal cycle termination 0,1 0
rty_o Indicates that the interface is not ready and

that the cycle should be retried 0,1 0
baseaddr1 Base address(es) of module any --
size2 Memory size used by module any 0x0010_0000

For every wishbone slave a section of the define file is used. Each section starts and ends with
reserved words. Se example below:

slave uart16550
adr_i_hi=4
adr_i_lo=2
baseaddr=0x9000_0000
size=0x0100_0000

end slave uart16550

Slave_name must be unique.

Slave signals corresponding to wishbone slave will have the following namning conventions:
uart16550_dat_o or uart16550_o.dat_o depending on definition of signal_groups

1 Additional base adresses can be defined by adding baseaddr1 etc.
2 Additional size definition can be added by adding size1 etc.

15

OpenCore defined memory map
OpenRISC Reference Platform (ORP) Address Space

Start adr End adr cached Size
(Mb)

Content

0xf000_0000 0xffff_ffff Cached 256 ROM
0xc000_0000 0xefff_ffff Cached 768 Reserved
0xb800_0000 0xbfff_ffff Uncached 128 Reserved for custom devices
0xa600_0000 0xb7ff_ffff Uncached 288 Reserved
0xa500_0000 0xa5ff_ffff Uncached 16 Debug 0-15
0xa400_0000 0xa4ff_ffff Uncached 16 Digital Camera Controller 0-15
0xa300_0000 0xa3ff_ffff Uncached 16 I2C Controller 0-15
0xa200_0000 0xa2ff_ffff Uncached 16 TDM Controller 0-15
0xa100_0000 0xa1ff_ffff Uncached 16 HDLC Controller 0-15
0xa000_0000 0xa0ff_ffff Uncached 16 Real-Time Clock 0-15
0x9f00_0000 0x9fff_ffff Uncached 16 Firewire Controller 0-15
0x9e00_0000 0x9eff_ffff Uncached 16 IDE Controller 0-15
0x9d00_0000 0x9dff_ffff Uncached 16 Audio Controller 0-15
0x9c00_0000 0x9cff_ffff Uncached 16 USB Host Controller 0-15
0x9b00_0000 0x9bff_ffff Uncached 16 USB Func Controller 0-15
0x9a00_0000 0x9aff_ffff Uncached 16 General-Purpose DMA 0-15
0x9900_0000 0x99ff_ffff Uncached 16 PCI Controller 0-15
0x9800_0000 0x98ff_ffff Uncached 16 IrDA Controller 0-15
0x9700_0000 0x97ff_ffff Uncached 16 Graphics Controller 0-15
0x9600_0000 0x96ff_ffff Uncached 16 PWM/Timer/Counter Controller 0-15
0x9500_0000 0x95ff_ffff Uncached 16 Traffic COP 0-15
0x9400_0000 0x94ff_ffff Uncached 16 PS/2 Controller 0-15
0x9300_0000 0x93ff_ffff Uncached 16 Memory Controller 0-15
0x9200_0000 0x92ff_ffff Uncached 16 Ethernet Controller 0-15
0x9100_0000 0x91ff_ffff Uncached 16 General-Purpose I/O 0-15
0x9000_0000 0x90ff_ffff Uncached 16 UART16550 Controller 0-15
0x8000_0000 0x8fff_ffff Uncached 256 PCI I/O
0x4000_0000 0x7fff_ffff Uncached 1024 Reserved
0x0000_0000 0x3fff_ffff Cached 1024 RAM

16

