

WISHBONE
DMA/Bridge

IP Core

Author: Rudolf Usselmann
rudi@asics.ws
www.asics.ws

Rev. 1.5
January 27, 2002

OpenCores WISHBONE DMA/Bridge Core January 27, 2002

Revision History

Rev. Date Author Description

0.1 23/1/01 Rudolf
Usselmann

First Draft
Internal release

0.2 28/1/01 RU First public release

0.3 13/3/01 RU - Removed buffers and all references to buffered transfers
- Updated WISHBONE interface signals
- Updated Pass-Through mode section
- Added Linked List Buffers
- Updated registers
- Added Bandwidth Allocation Section

0.4 16/3/01 RU - Added DMA Request and Acknowledge Section
- Added Forcing Next Descriptor Section
- Added NDn_I signals
- Moved the USE_ED bit from COR to Channel CSR register
- Added SZ_WB bit to channel CSR register

1.0 00/3/01 RU - Added Appendix B: Core File Structure
- Modified Introduction
- Removed “Preliminary Draft” notice

1.01 8/4/01 RU - Corrected syntax and grammar
- Fixed some descriptions
- Clarified the linked lists

1.2 6/6/01 RU - Changed Register Order, major reorganization.
- Added Circular Buffer Support (Address Mask Registers).
- Added FIFO support in memory (Software pointer Register).
- Modified to support up to 31 channels.
- Modified to support 2,4 and 8 priority levels.
- Filled in Appendix A, Core HW Configuration.
- Added Circular Buffers Section.
- Added FIFO Buffers Section.

1.3 15/8/01 RU - Changed IO names to be more clear.
- Uniquifyed define names to be core specific.
- Added Section 3.10, describing DMA restart.

1.4 19/10/01 RU - Modified the core to be parameterized - Changed Appendix A.

1.5 25/01/02 RU - Minor Document Cleanup and Clarifications.
www.opencores.org Rev. 1.5 1 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores

(This page intentionally left blank)
2 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002

1
Introduction

This core provides DMA transfers between two WISHBONE interfaces. Trans-
fers can also be performed on the same WISHBONE interface. It can also act as a
bridge, allowing masters on each WISHBONE interface to directly access slaves
on the other interface.

This implementation is designed to work with two WISHBONE interfaces run-
ning at the same clock.

The WISBONE specification and additional information about WISHBONE
SoC can be found at:

http://www.opencores.org/wishbone/

The Main features of the DMA/Bridge are:
• Up to 31 DMA Channels
• 2, 4 or 8 priority levels
• Linked List Descriptors Support
• Circular Buffer Support
• FIFO buffer support
• Hardware handshake support
www.opencores.org Rev. 1.5 3 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores
4 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002

2
Architecture

Below figure illustrates the overall architecture of the core.

Figure 1: Core Architecture Overview

It consists of 3 main building blocks: Two WISHBONE interfaces, a DMA
engine and pass through logic.

2.1. WISHBONE Interface

The DMA/Bridge core has two master and slave capable WISHBONE inter-
faces. Both interfaces are WISHBONE SoC bus specification Rev. B compliant.

WISHBONE IF 1

DMA
Engine

Pass-
through

WISHBONE IF 0

HW
Handshake

Interrupt
www.opencores.org Rev. 1.5 5 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores

This implementation implements a 32 bit bus width and does not support other bus
widths.

2.2. DMA Engine

The DMA engine is a up to 31 channel DMA engine that supports transfers
between the two interfaces as well as transfers on the same interface (block copy).
Each channel can be programmed to have a different priority. Channels with the
same priority are serviced in a round robin fashion.

2.3. Pass Through

This block performs the bridging operation between the two WISHBONE
interfaces. It includes a two entry deep write buffer in each direction. The write
buffer can be disabled if desired.

WISHBONE

COMPATIBLE
6 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002

3
Operation

The WISHBONE DMA/Bridge consists of up to 31 DMA channels, the actual
DMA engine, and a channel prioritizing arbiter (see “Figure 2: DMA Engine”).

Figure 2: DMA Engine

3.1. Prioritizing Arbiter

The prioritizing arbiter will select the next channel to process, based first on
priority, and secondarily, if all priorities are equal, in a round robin way. Each

channel has a 31 bit priority value associated with it. A value of 0 identifies a chan-
nel with very low priority, a value of 7 identifies a channel with very high priority.

1. Implementation Dependent. This core supports 2, 4 and 8 priority levels. Please see Appendix A “Core
HW Configuration” on page 31 for more information.

Channel 0

Prioritizing
Arbiter

Channel
Priorities

Channel 1

Channel n-1

Channel n

WISHBONE
Interface 0

WISHBONE
Interface 1

DMA
Engine

M
U
X

...
www.opencores.org Rev. 1.5 7 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores

Channels with the same priority are processed in a round robin way, as long as
there are no channels with a higher priority.

“Figure 3: Channel Arbiter” on page 8 illustrates the internal operation of the
channel arbiter.

Figure 3: Channel Arbiter

Ch. n-1Ch. n

Ch. 1Ch. 0

Channel priorities

Priority
Encoder

M
U
X

Next
Channel

Priority 0

Priority n-1

Priority 1

Priority n

Ch. n-1Ch. n

Ch. 1Ch. 0

Ch. n-1Ch. n

Ch. 1Ch. 0

Ch. n-1Ch. n

Ch. 1Ch. 0
8 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002

Care should be taken when using priorities, as channels with lower priorities
may be locked out and never serviced, if channels with higher priority are being
continuously serviced.

3.2. DMA Engine

The DMA engine can be programmed to perform various transfer operations.
This section will illustrate several transfer options and their operation.

3.2.1. Normal (Software) DMA Operation

This is a simple DMA operation performing a block copy. “Figure 4: Normal
DMA Operation” illustrates the operation.

Figure 4: Normal DMA Operation

In this example the DMA engine performs a block copy from one location to
another, either on the same interface or on a different interface. The DMA engine

will leave the CYC_O1 signal asserted until it has completed the transfer. The
transfer begins when either the local controller/CPU writes to the channel CSR
register. When the transfer is completed, the DMA engine will assert an interrupt
(if enabled) or go to the idle state. If the auto restart bit (ARS) is set, it immediately
restarts the operation. When the ARS bit is set, the DMA engine will continue
restarting until the ARS bit is cleared in the channel CSR register. The software
can also force the channel to stop by writing a one to the STOP bit in the channel

1. CYC_O is a WISHBONE interface signal. See Section 5 “Core IOs” on page 29 for more information.

Read N-1 Read NRead 0 Read 1

Write 0 Write N-1Write 1 Write N

Read 0 Write 0 Read N Write N
Transfers are
performed on
the same interface

Different Interfaces

Interface A

Interface B

Start Done

Bus not relinquished until transfer (or one chunk transfer) is completed.
Main bus arbiter (external) is responsible for limiting bus time.

(INT)
www.opencores.org Rev. 1.5 9 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores

CSR register. In this case the DMA channel will immediately stop and indicate an
error condition by setting the ERR bit in the channel CSR register and asserting an
error interrupt (if enabled).

If CHK_SZ is not zero, the channel has to re-arbitrate for the interfaces after
each CHK_SZ of words has been transferred. This is particularly useful when set-
ting up all channels with the same priority and requiring “fair” bus usage distribu-
tion and low latency.

3.2.2. HW Handshake Mode

Below figure illustrates HW handshake DMA operations, where one full DMA
transfer requires more than one external trigger.

Figure 5: HW Handshake DMA Operation

In this mode the DMA engine will wait for the external trigger (DMA_REQ_I)
to be asserted before starting the DMA transfer. Each time the trigger is asserted it
will transfer CHK_SZ number of words (one chunk). After each chunk transfer it
will assert DMA_ACK_O to acknowledge the transfer. After TOT_SZ number of
words have been transferred, an interrupt is asserted (if enabled).

After each chunk transfer the DMA channel has to re-arbitrate internally for
the usage of the WISHBONE interfaces.

If the ARS bit is set, the DMA channel will reload the values programmed into
the channel registers and restart the operation. This loop will continue until the

Transfers are
performed on
the same interface

Different Interfaces

Interface A

Interface B

DMA_REQ_I

Bus not relinquished until a chunk completes.
Main bus arbiter is responsible for limiting bus time.

W N

R NR 0

W 0

R 0 W N

W N

R NR 0

W 0

R 0 W N

First Chunk Last Chunk

INT_O

DMA_ACK_O
10 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002

ARS bit is cleared or the STOP bit is set. When the STOP bit is set, the DMA
engine will immediately stop the transfer, set the ERR bit, and assert an error inter-
rupt (if enabled).

3.3. Linked List Descriptors

In this mode the DMA engine will fetch the channel descriptors from memory
attached to interface 0. The descriptors are similar to the channel registers, except
that after completion a new descriptor may be loaded. The descriptors are provided
in a linked list format.

Figure 6: Linked List Descriptor’

To use external descriptors, the Linked List Descriptor Pointer register for the
appropriate channel must be programmed with the address of a valid descriptor.
The chunk size must also be set to the desired value in the channel SZ register.
Then the USE_ED bit in the channel CSR register must be set to enable external
descriptors. After that, the channel enable bit (CH_EN) must be set in the CSR of

Table 1: Definition of bits in the DESC_CSR word

Bit # Description

20 EOL: If set, indicates that this is the last descriptor in the list

19 Increment Source Address (same as INC_SRC in CSR)

18 Increment Destination Address (same as INC_DSR in CSR)

17 Source Select (same as SRC_SEL in SCR)

16 Destination Select (same as DST_SEL in CSR)

11-0 Total Transfer Size (same as TOT_SZ in SZ register)

Total Transfer SizeConf. BitsDESC_CSR:

DESC_ADR1:

0162031

DESC_ADR0:

DESC_NEXT:

Destination Address (address 1)

Source Address (address 0)

Next pointer

11

Reserved

DESC_CSR

DESC_ADR0

DESC_ADR1

DESC_NEXT

DESC_CSR

DESC_ADR0

DESC_ADR1

DESC_NEXT

DESCn
www.opencores.org Rev. 1.5 11 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores

the channel. Now the DMA engine will start processing descriptors from memory.
Normal (Software) and hardware handshake modes are supported with external
descriptors. The ARS bit in the channel CSR register has no meaning when using
external descriptors and is ignored.

When the DMA engine finishes processing a descriptor, it will attempt to load
the next descriptor, pointed to by the DESC_NEXT entry in the descriptor. If the
EOL bit in the current DESC_CSR entry is set, the DMA engine will stop, set the
DONE bit in the channel CSR register, and assert an interrupt, if enabled.

Note:
Bits 19-16 in the DESC_CSR register are copied to the channel CSR regis-
ter bits 4-1.
Bits 11-0 in the DESC_CSR are copied to the channel SZ register bits 11-0.
DESC_ADR0 is copied to channels address 0 register.
DESC_ADR1 is copied to channels address 1 register.
DESC_NEXT is copied to the channels DESC register.

3.4. Circular Buffers

Circular buffers are buffers that will never go beyond the allocated memory
space. These buffers will “wrap-around” and start at the beginning f the buffer
when they have reached the last entry in the buffer. They are implemented by pro-
viding a Mask register for both the source and destination address. This mask is
applied to the address when it is incremented. Only bits that are set to ‘1’ in the
mask will be incremented.

The lower four bits of the Address Mask are ignored, making the circular
buffer at least 4 entries (16 bytes) deep.

Figure 7: Circular Buffers Implementation

M
U

X

‘1’ Address Mask

4

4

4

4

M
U

X

31

31

31

31

.A
dd

re
ss

 R
eg

is
te

r

Next Address

+

..
12 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002

3.5. FIFO Buffer Implementation

The DMA engine supports implementing FIFO style buffers in main memory.
This is accomplished using circular buffers and using a Software Pointer Register
to determine the last location software has read or written.

The Software Pointer Register is compared to the current DMA Address, and if
they are equal, the DMA will stop processing the channel until the Software
pointer is updated. The software is responsible for properly updating the Software
Pointer Register.

Software Pointer is always compared to the DMA address that will be placed
on the WISHBONE Interface 0.

3.6. Pass Through Operation

In pass through mode, this core acts as a bridge. It does not add any functional-
ity to pass-through traffic. The pass-through logic is combinatorial only (e.g. in
pass-through mode signals are not latched). Below figure illustrates the pass-
though logic.

Figure 8: Pass Through Logic

3.7. Bandwidth Allocation

 The CHK_SZ field can also be used to distribute bandwidth between channels.
This is done by setting up all channels with equal priority values. Then the band-
width for each channel can be calculated as follows:

// Calculate the total bandwidth available (100%)
TOT_BW = CH0_CHK_SZ + CH1_CHK_SZ + CH2_CHK_SZ + CH3_CHK_SZ

Master
Interface

Slave
Interface

Slave
Interface

Master
Interface

Interface 0 Interface 1

Register
File

DMA Engine
www.opencores.org Rev. 1.5 13 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores

CH0_BW = CH0_CHK_SZ/TOT_BW*100 // Channel 0 bandwidth (percent)
CH1_BW = CH1_CHK_SZ/TOT_BW*100 // Channel 1 bandwidth (percent)
CH2_BW = CH2_CHK_SZ/TOT_BW*100 // Channel 2 bandwidth (percent)
CH3_BW = CH3_CHK_SZ/TOT_BW*100 // Channel 3 bandwidth (percent)

Example:
CH0_CHK_SZ = 8
CH1_CHK_SZ = 4
CH2_CHK_SZ = 4
CH3_CHK_SZ = 1
TOT_BW = 8+4+4+1 = 17 (100%)
CH0_BW = 8/17*100 = 47%
CH1_BW = 4/17*100 = 23.5%
CH2_BW = 4/17*100 = 23.5%
CH3_BW = 1/17*100 = 5.8%

3.8. DMA Request and Acknowledge (HW Handshake)

In Hardware Handshake mode external request and acknowledge signals are
used to start a transfer of a chunk and indicate when the transfer has completed. If
CHK_SZ is zero, TOT_SZ number of words will be transferred.

Figure 9: DMA_REQ/DMA_ACK Timing

The DMA_ACK_O signal will be asserted one cycle after a chunk has been
transferred. The chunk size may also be set to one, in which case only one WISH-

BONE1 transfer will occur. If DMA_REQ_I is not de-asserted after
DMA_ACK_O is asserted, another transfer will be initiated, after the channel has
re-arbitrated for.

1. For simplicity reasons only a partial WISHBONE signal list is shown.

CYC_O

CLK

ACK_I

DMA_REQ_I

DMA_ACK_O

0 or more cycles to complete the transfer
14 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002

Figure 10: Back to Back DMA Transfers

3.9. Forcing Next Descriptor

The DMA core provides a special feature that allows a device to force the
DMA engine to advance to the next descriptor in a Linked List. This feature is par-
ticularly useful to devices that wish to keep a dedicated descriptor for a certain
piece of data (e.g one packet payload) but do not know the exact size of the data.

This feature only works with external descriptors in linked lists and hardware
handshake mode.

There are two ways to force the next descriptor:
The first way is to assert the DMA_ND_I signal at least two cycles before the

DMA_REQ_I signal. In this case the descriptor for the channel will be invalidated
and marked as “serviced” and when the DMA_REQ_I is asserted the next descrip-
tor will be fetched from the address pointed to by the current descriptor. If the cur-
rent descriptor’s EOL bit is set, the DMA channel will stop and clear the enable bit
in the channel’s CSR. To start DMA operation on this channel again, software has
to reset the DESCn register and the channel CSR register.

The second way is to assert DMA_ND_I together with DMA_REQ_I. It must
stay asserted until DMA_ACK_O is asserted by the DMA, at which point
DMA_ND_I must be de-asserted. In this case, the DMA will first finish transfer-
ring the current chunk size and than invalidate the current descriptor by marking it
“serviced”. If the SZ_WB bit is set in the channel CSR register, the DMA will
write the total number of remaining bytes to be transferred back to the DESC_CSR
in memory. This will allow the software to easily track the actual number of bytes
transferred.

3.10. Restarting DMA Transfers

In some cases it is desired to restart a DMA transfer. An example is a Ethernet
MAC, that needs to restart a transfer due to a collision or other errors. This can be
accomplished by asserting the DMA_REST_I for any given channel. This will

CYC_O

CLK

ACK_I

DMA_REQ_I

DMA_ACK_O
www.opencores.org Rev. 1.5 15 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores

reload the channels working registers with the original values that have been pro-
grammed either by software or from a previous descriptor fetch. This feature will
only work if the channel has been defined to support ARS, see Appendix A “Core
HW Configuration” on page 31 for more details.

The DMA_REST_I must only be asserted when there is no transfer in
progress.
16 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002

4
Core Registers

This section describes all control and status register inside the WISHBONE
DMA/Bridge core. The Address field indicates a relative address in hexadecimal.
Width specifies the number of bits in the register, and Access specifies the valid
access types to that register. RW stands for read and write access, RO for read only
access. A ‘C’ appended to RW or RO indicates that some or all of the bits are
cleared after a read.

All RESERVED bits should always be written with zero. Reading RESERVED
bits will return undefined values. Software should follow this model to be compat-
ible to future releases of this core.

Table 2: Control/Status Registers

Name

A
dd

r.

W
id

th

A
cc

es
s

Description

CSR 0 32 RW Main Configuration & Status Register

INT_MSK_A 4 32 RW Interrupt Mask for INTA_O output

INT_MSK_B 8 32 RW Interrupt Mask for INTB_O output

INT_SRC_A c 32 RO Interrupt Source for INTA_O output

INT_SRC_B 10 32 RO Interrupt Source for INTB_O output

Channel 0 Registers

CH0_CSR 20 32 RW Control Status Register

CH0_SZ 24 32 RW Transfer Size

CH0_A0 28 32 RW Address 0

CH0_AM0 2c 32 RW Address Mask 0

CH0_A1 30 32 RW Address 1

CH0_AM1 34 32 RW Address Mask1

CH0_DESC 38 32 RW Linked List Descriptor Pointer

CH0_SWPTR 3c 32 RW Software Pointer

Channel 1 Registers
www.opencores.org Rev. 1.5 17 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores

CH1_CSR 40 32 RW Control Status Register

CH1_SZ 44 32 RW Transfer Size

CH1_A0 48 32 RW Address 0

CH1_AM0 4c 32 RW Address Mask 0

CH1_A1 50 32 RW Address 1

CH1_AM1 54 32 RW Address Mask1

CH1_DESC 58 32 RW Linked List Descriptor Pointer

CH1_SWPTR 5c 32 RW Software Pointer

Channel 2 Registers

CH2_CSR 60 32 RW Control Status Register

CH2_SZ 64 32 RW Transfer Size

CH2_A0 68 32 RW Address 0

CH2_AM0 6c 32 RW Address Mask 0

CH2_A1 70 32 RW Address 1

CH2_AM1 74 32 RW Address Mask1

CH2_DESC 78 32 RW Linked List Descriptor Pointer

CH2_SWPTR 7c 32 RW Software Pointer

Channel 3 Registers

CH3_CSR 80 32 RW Control Status Register

CH3_SZ 84 32 RW Transfer Size

CH3_A0 88 32 RW Address 0

CH3_AM0 8c 32 RW Address Mask 0

CH3_A1 90 32 RW Address 1

CH3_AM1 94 32 RW Address Mask1

CH3_DESC 98 32 RW Linked List Descriptor Pointer

CH3_SWPTR 9c 32 RW Software Pointer

Starting Addr. a0 Channel 4 Registers

Starting Addr. c0 Channel 5 Registers

Starting Addr. e0 Channel 6 Registers

Starting Addr. 100 Channel 7 Registers

Table 2: Control/Status Registers

Name

A
dd

r.

W
id

th

A
cc

es
s

Description
18 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002

4.1. Main Configuration Status Register (CSR)

This is the main configuration register of the DMA/Bridge core.

Starting Addr. 120 Channel 8 Registers

Starting Addr. 140 Channel 9 Registers

Starting Addr. 160 Channel 10 Registers

Starting Addr. 180 Channel 11 Registers

Starting Addr. 1a0 Channel 12 Registers

Starting Addr. 1c0 Channel 13 Registers

Starting Addr. 1e0 Channel 14 Registers

Starting Addr. 200 Channel 15 Registers

Starting Addr. 220 Channel 16 Registers

Starting Addr. 240 Channel 17 Registers

Starting Addr. 260 Channel 18 Registers

Starting Addr. 280 Channel 19 Registers

Starting Addr. 2a0 Channel 20 Registers

Starting Addr. 2c0 Channel 21 Registers

Starting Addr. 2e0 Channel 22 Registers

Starting Addr. 300 Channel 23 Registers

Starting Addr. 320 Channel 24 Registers

Starting Addr. 340 Channel 25 Registers

Starting Addr. 360 Channel 26 Registers

Starting Addr. 380 Channel 27 Registers

Starting Addr. 3a0 Channel 28 Registers

Starting Addr. 3c0 Channel 29 Registers

Starting Addr. 3e0 Channel 30 Registers

Table 3: CSR Register

Bit #

A
cc

es
s

Description

31:1 RO RESERVED

Table 2: Control/Status Registers

Name

A
dd

r.

W
id

th

A
cc

es
s

Description
www.opencores.org Rev. 1.5 19 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores

Value after reset:

COR: 00 h

4.2. Interrupt Mask Register (INT_MSK_n)

The interrupt mask registers define the functionality of the inta_o and intb_o
outputs. A bit set to a logical one enables the generation of the interrupt for that
source, a zero disables the generation of an interrupt. The interrupt mask register
INT_MSK_A specifies the behavior for the inta_o output, the INT_MASK_B reg-
ister for the intb_o output.

0 RW PAUSE
Writing a 1 to this register will pause the DMA engine (all channels).
Writing a 0 will enable/resume all operations.
Reading this bit will return the status of the DMA engine: 1-Paused; 0-
Normal Operation. The DMA engine will only pause after it has com-
pleted the current transfer.

Table 4: Interrupt Mask Register

Bit #

A
cc

es
s

Description

31 RO RESERVED

30 RW Interrupt Enable: Enable DMA Channel 30 Interrupts

29 RW Interrupt Enable: Enable DMA Channel 29 Interrupts

28 RW Interrupt Enable: Enable DMA Channel 28 Interrupts

27 RW Interrupt Enable: Enable DMA Channel 27 Interrupts

26 RW Interrupt Enable: Enable DMA Channel 26 Interrupts

25 RW Interrupt Enable: Enable DMA Channel 25 Interrupts

24 RW Interrupt Enable: Enable DMA Channel 24 Interrupts

23 RW Interrupt Enable: Enable DMA Channel 23 Interrupts

22 RW Interrupt Enable: Enable DMA Channel 22 Interrupts

21 RW Interrupt Enable: Enable DMA Channel 21 Interrupts

20 RW Interrupt Enable: Enable DMA Channel 20 Interrupts

19 RW Interrupt Enable: Enable DMA Channel 19 Interrupts

18 RW Interrupt Enable: Enable DMA Channel 18 Interrupts

17 RW Interrupt Enable: Enable DMA Channel 17 Interrupts

Table 3: CSR Register

Bit #

A
cc

es
s

Description
20 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002

Value after reset:

INT_MSK: 0000h

4.3. Interrupt Source Register (INT_SRCn)

This register identifies the source of an interrupt. INT_SRC_A register indi-
cates the source for inta_o output, INT_SRC_B register indicates the source for
intb_o output. Whenever the function controller receives an interrupt, the interrupt
handler must read this register to determine the source and cause of the interrupt.
Some of the bits in this register will be cleared after a read. The software interrupt
handler must make sure it keeps whatever information is required to handle the
interrupt.

16 RW Interrupt Enable: Enable DMA Channel 16 Interrupts

15 RW Interrupt Enable: Enable DMA Channel 15 Interrupts

14 RW Interrupt Enable: Enable DMA Channel 14 Interrupts

13 RW Interrupt Enable: Enable DMA Channel 13 Interrupts

12 RW Interrupt Enable: Enable DMA Channel 12 Interrupts

11 RW Interrupt Enable: Enable DMA Channel 11 Interrupts

10 RW Interrupt Enable: Enable DMA Channel 10 Interrupts

9 RW Interrupt Enable: Enable DMA Channel 9 Interrupts

8 RW Interrupt Enable: Enable DMA Channel 8 Interrupts

7 RW Interrupt Enable: Enable DMA Channel 7 Interrupts

6 RW Interrupt Enable: Enable DMA Channel 6 Interrupts

5 RW Interrupt Enable: Enable DMA Channel 5 Interrupts

4 RW Interrupt Enable: Enable DMA Channel 4 Interrupts

3 RW Interrupt Enable: Enable DMA Channel 3 Interrupts

2 RW Interrupt Enable: Enable DMA Channel 2 Interrupts

1 RW Interrupt Enable: Enable DMA Channel 1 Interrupts

0 RW Interrupt Enable: Enable DMA Channel 0 Interrupts

Table 5: Interrupt Source Register

Bit #

A
cc

es
s

Description

31 RO RESERVED

Table 4: Interrupt Mask Register

Bit #

A
cc

es
s

Description
www.opencores.org Rev. 1.5 21 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores
30 RW Interrupt Source: DMA Channel 30

29 RW Interrupt Source: DMA Channel 29

28 RW Interrupt Source: DMA Channel 28

27 RW Interrupt Source: DMA Channel 27

26 RW Interrupt Source: DMA Channel 26

25 RW Interrupt Source: DMA Channel 25

24 RW Interrupt Source: DMA Channel 24

23 RW Interrupt Source: DMA Channel 23

22 RW Interrupt Source: DMA Channel 22

21 RW Interrupt Source: DMA Channel 21

20 RW Interrupt Source: DMA Channel 20

19 RW Interrupt Source: DMA Channel 19

18 RW Interrupt Source: DMA Channel 18

17 RW Interrupt Source: DMA Channel 17

16 RW Interrupt Source: DMA Channel 16

15 RW Interrupt Source: DMA Channel 15

14 RW Interrupt Source: DMA Channel 14

13 RW Interrupt Source: DMA Channel 13

12 RW Interrupt Source: DMA Channel 12

11 RW Interrupt Source: DMA Channel 11

10 RW Interrupt Source: DMA Channel 10

9 RW Interrupt Source: DMA Channel 9

8 RW Interrupt Source: DMA Channel 8

7 RW Interrupt Source: DMA Channel 7

6 RW Interrupt Source: DMA Channel 6

5 RW Interrupt Source: DMA Channel 5

4 RW Interrupt Source: DMA Channel 4

3 RW Interrupt Source: DMA Channel 3

2 RW Interrupt Source: DMA Channel 2

1 RW Interrupt Source: DMA Channel 1

0 RW Interrupt Source: DMA Channel 0

Table 5: Interrupt Source Register

Bit #

A
cc

es
s

Description
22 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002
Value after reset:

INT_SRC: 0000h

4.4. Channel Registers

Each channel has 4 registers associated with it. These registers have exactly the
same definition for each channel.

Figure 11: Channel Registers

4.4.1. Channel CSR Register (CHn_CSR)

The configuration and status bits specify the operation mode of the channel, as
well as reporting any specific channel status.

Table 6: Channel CSR Register

Bit #

A
cc

es
s

Description

31:23 RO RESERVED

22 ROC Interrupt Source: Channel transferred CHK_SZ

21 ROC Interrupt Source: Channel Done

20 ROC Interrupt Source: Channel Error

19 RW INE_CHK_DONE
Enable Channel Interrupt after each CHK_SZ has been transferred

18 RW INE_DONE
Enable Channel Interrupt when Channel is Done

17 RW INE_ERR
Enable Channel Interrupt on Errors

16 RW REST_EN
Hardware restart Enable

CHn_CSR:

CHn_A0:

CHn_SZ:

CHn_A1:

CHn_AM1:

CHn_DESC:

CHn_AM0:

CHn_SWPTR:

Transfer Size

Control/Status Bits

031

Destination Address

Source Address

Source Address Mask

Linked List Descriptor Pointer

Destination Address Mask

Software Pointer
www.opencores.org Rev. 1.5 23 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores
15:13 RW Channel Priority
(0 Indicating the lowest priority)

12 ROC ERR
DMA channel stopped due to error

11 RO DONE
DMA channel done
(This bit will not be set unless the ARS bit is cleared.)

10 RO BUSY
DMA channel busy

9 WO STOP
Writing a one to this bit will cause the DMA to stop its current transfer
and set the ERR bit.

8 RW SZ_WB
Enables the writing back of the remaining size to the DESC_CSR when
USE_ED is set and DMA_ND_I was asserted with DMA_REQ_I. See
3.9. “Forcing Next Descriptor” on page 15 for more information.

7 RW USE_ED
Use External Descriptor Linked List

6 RW ARS
Automatically restart the channel when transfer completes
0: Auto restart disabled
1: Automatically restarts the DMA channel after TOT_SZ of bytes have
been transferred. The original values programmed into the channel reg-
isters are reloaded and the transfer starts al over again.

5 RW MODE
0: Normal Mode
1: HW Handshake Mode

4 RW INC_SRC
0: Do not increment source address (Address 0)
1: Increment source address (Address 0)

3 RW INC_DST
0: Do not increment destination address (Address 1)
1: Increment destination address (Address 1)

2 RW SRC_SEL
0: Interface 0 is the source
1: Interface 1 is the source

1 RW DST_SEL
0: Interface 0 is the destination
1: Interface 1 is the destination

0 RW CH_EN
Channel Enabled

Table 6: Channel CSR Register

Bit #

A
cc

es
s

Description
24 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002
Value after reset:

CHn_CSR: 0000h

4.4.2. Channel Size Register (CHn_SZ)

The transfer size register specifies the total and “chunk” transfer sizes for each
channel.

Value after reset:

CHn_SZ: UNDEFINED

4.4.3. Channel Address Registers (CHn_Am)

The Address Registers specify the source and destination address. Address reg-
ister zero is the source address, address register one is the destination address.
Both registers are 30 bits wide.

Value after reset:

CHn_Am: UNDEFINED

Table 7: Channel Size Register

Bit #

A
cc

es
s

Description

31:25 RO RESERVED

24:16 RW CHK_SZ
Chunk transfer size. Specifies the number of words (4 byte entities) to
be transferred at one given time (not implying they are buffered, but that
they will be transferred for each start event in one bus request cycle). If
chunk size is zero, the DMA engine will always perform TOT_SZ trans-
fers. Maximum chunk size is 2K bytes.

15:12 RO RESERVED

11:0 RW TOT_SZ
Total Transfer Size. Specifies the number of words (4 byte entities) to be
transferred. Maximum total transfer size is16K bytes.

Table 8: Address Register

Bit #

A
cc

es
s

Description

31:2 RW Address

1:0 RO RESERVED
www.opencores.org Rev. 1.5 25 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores
4.4.4. Channel Address Mask Registers (CHn_AMm)

The Address Mask registers specify the increment mask for the source and des-
tination address. Address Mask Register zero is applied to the source address,
Address Mask Register one to the destination address. Both registers are 28 bits
wide.

Value after reset:

CHn_AMm: FFFFFFFCh

4.4.5. Linked List Descriptor Pointer (CHn_DESC)

The Linked List Descriptor Pointer register specifies the location of the Linked
List Descriptor. The value of this register will be overwritten with the Next pointer
in the Descriptor, after the descriptor has been fetched.

Value after reset:

CHn_DESC: UNDEFINED

4.4.6. Software Pointer (CHn_SWPTR)

The Software Pointer is a register that is written by software and indicates the
last location in a circular buffer that has been read/written. The DMA engine will
not cross the address pointed to by the Software pointer and stall the channel until

Table 9: Address Mask Register

Bit #
A

cc
es

s
Description

31:4 RW Address Mask

3:0 RO RESERVED

Table 10: Linked List Descriptor Pointer

Bit #

A
cc

es
s

Description

31:2 RW Address Mask

1:0 RO RESERVED

(This page intentionally left blank)
26 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002
the software pointer has been updated. This feature enables the implementation of
FIFO buffers in memory.

Value after reset:

CHn_SWPTR: 0000h

Table 11: Software Pointer Register

Bit #

A
cc

es
s

Description

31 RW SWPTR_EN
1 - Enable Software Pointer
0 - Disable Software Pointer

30:2 RW Software pointer

1:0 RO RESERVED
www.opencores.org Rev. 1.5 27 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores
28 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002
5
Core IOs

5.1. Interface IOs

Both interfaces are WISHBONE Rev. B compliant. The DMA/Bridge core can
be a slave or master on either interface. Actual interface 0 signals are prefixed with
“wb0_”, interface 1 signals with “wb1_”. Both interfaces comprise of the follow-
ing signals.

Table 12: Host Interface (WISHBONE)

Name

W
id

th

D
ir

ec
ti

on

Description

addr_i 32 I Address Input (for Slave)

addr_o 32 O Address Output (from Master)

m_data_i 32 I Master Interface Data Input

m_data_o 32 O Master Interface Data Output

s_data_i 32 I Slave Interface Data Input

s_data_o 32 O Slave Interface Data Output

sel_i 4 I Input for Slave. Indicates which bytes are valid on the data bus.
Whenever this signal is not 1111b during a valid access, the
ERR_O is asserted.

sel_o 4 O Output from Master. Indicates which bytes are valid on the data
bus. Whenever this signal is not 1111b during a valid access, the
ERR_O is asserted.

we_i 1 I Input for Slave. Indicates a Write Cycle when asserted high.

we_o 1 O Output from Master. Indicates a Write Cycle when asserted high.

cyc_i 1 I Input for Slave. Encapsulates a valid transfer cycle.

cyc_o 1 O Output from Master. Encapsulates a valid transfer cycle.

stb_i 1 I Input for Slave. Indicates a valid transfer.

stb_o 1 O Output from Master. Indicates a valid transfer.
www.opencores.org Rev. 1.5 29 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores
5.2. Additional Control IOs

This section describes additional control signals. Except for the clock and reset
signals all other signals are special extensions and directly a part of the WISH-
BONE specification.

ack_o 1 O Output from Slave. Acknowledgment Output. Indicates a normal
Cycle termination.

ack_i 1 I Input for Master. Acknowledgment Output. Indicates a normal
Cycle termination.

err_o 1 O Output from Slave. Error Acknowledgment Output. Indicates an
abnormal cycle termination.

err_i 1 I Input for Master. Error Acknowledgment Output. Indicates an
abnormal cycle termination.

rty_o 1 O Output from Slave. Retry Output. Indicates that the interface is not
ready, and the master should retry this operation.

rty_i 1 I Input for Master. Retry Output. Indicates that the interface is not
ready, and the master should retry this operation.

Table 13: Additional IOs

Name

W
id

th

D
ir

ec
ti

on

Description

clk_i 1 I Clock input

rst_i 1 I Reset Input

dma_req_i 31 I DMA Request (trigger input)

dma_ack_o 31 O DMA Acknowledge (Asserted when the DMA is done with the
transfer)

dma_nd_i 31 I Force Next Descriptor advancing

dma_rest_i 31 I Force Restart of current transfer

inta_o 1 O Interrupt Output A

intb_o 1 O Interrupt Output B

Table 12: Host Interface (WISHBONE)

Name

W
id

th

D
ir

ec
ti

on

Description
30 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002
Appendix A
Core HW Configuration

This Appendix describes the configuration of the core.
Almost all configurable items are passed to the core as parameters. This chap-

ter describes all parameters and other user adjustable defines.

A.1. Core Parameters

When instantiating the core, the user must pass various parameters to the core:

wb_dma_top#(rf_addr, pri_sel, ch_count,
ch0_conf ... ch30_conf) u0(<IO Ports ...>);

A.1.1. rf_addr

This 4 bit value is compared to WISHBONE address [31:28]. If it matches,
then the internal register file of the DMA is selected. Otherwise the DMA will
operate in Pass-Through Mode.

Note:
The entire pass-through mode is implemented in combinatorial logic only.

A.1.2. pri_sel

This two bit vector indicates how many priority levels the DMA core supports:
0 indicates 1 priority level
1 indicates 4 priority levels
2 indicates 8 priority levels

A.1.3. ch_count

This value indicates how many total DMA channels are supported.

A.1.4. chN_conf

This is a 4 bit vectors that specifies the abilities of each channel.

chN_conf[0]
www.opencores.org Rev. 1.5 31 of 33

January 27, 2002 WISHBONE DMA/Bridge Core OpenCores
 If set to ‘1’ indicates that this channel should be present. Channel 0 must be
always present and must not be removed

chN_conf[1]
A ‘1’ indicates that the channel supports “Automatic Reload” feature.Channels

that do not support the ARS feature will ignore the ARS bit in the channel CSR
register

chN_conf[2]
A ‘1’ indicates that the channel supports “External Linked List Descriptors”.

Channels that do not support Linked List Descriptors will ignore the USE_ED bit
in the channel CSR register and will not have the Linked List Descriptor Pointer
register.

chN_conf[3]
A ‘1’ indicates that the channel supports “Circular Buffers”.Channels that do

not support circular buffers will not have the Address Mask Registers (they will be
forced to all ‘1’ internally) and will also not have the Software pointer register.

A.2. Example
wb_dma_top
#(4'h1, // register file address

2'h1, // Number of priorities (4)
6, // Number of channels
4'hf, // Channel 0 Configuration:

// [0]=1 - Channel Exists
// [1]=1 - Channel Supports ARS

 // [2]=1 - Channel Supports ED
// [3]=1 - Channel Supports CBUF

4'hf, // Channel 1 Configuration
4'hf, // Channel 2 Configuration
4'hf, // Channel 3 Configuration
4'hf, // Channel 4 Configuration
4'hf, // Channel 5 Configuration
4'hf // Channel 6 Configuration

// Channel Configuration for Channel 7 - 30 will default to 4’h0
)

u0(<IO Ports ...>);
32 of 33 Rev. 1.5 www.opencores.org

OpenCores WISHBONE DMA/Bridge Core January 27, 2002
Appendix B
File Structure

This section outlines the hierarchy structure of the WISHBONE DMA/Bridge
core Verilog Source files.

Figure 12: DMA/Bridge Core Hierarchy Structure

wb_dma_top.v

Top Level

DMA Engine

Register FileChannel Select

Wishbone Interface 0
wb_dma_wb_if.v

wb_dma_ch_sel.v wb_dma_rf.v

wb_dma_ch_arb.v Priority Encoder

wb_dma_de.v

Arbiter

wb_dma_ch_pri_enc.v

Wishbone Interface 0
wb_dma_wb_if.v

Master interface
wb_dma_wb_mast.v

Slave Interface
wb_dma_wb_slv.v

Master interface
wb_dma_wb_mast.v

Slave Interface
wb_dma_wb_slv.v

Priority Encoder
wb_dma_pri_enc_sub.v
www.opencores.org Rev. 1.5 33 of 33

	1 Introduction
	2 Architecture
	2.1. WISHBONE Interface
	2.2. DMA Engine
	2.3. Pass Through

	3 Operation
	3.1. Prioritizing Arbiter
	3.2. DMA Engine
	3.2.1. Normal (Software) DMA Operation
	3.2.2. HW Handshake Mode

	3.3. Linked List Descriptors
	3.4. Circular Buffers
	3.5. FIFO Buffer Implementation
	3.6. Pass Through Operation
	3.7. Bandwidth Allocation
	3.8. DMA Request and Acknowledge (HW Handshake)
	3.9. Forcing Next Descriptor
	3.10. Restarting DMA Transfers

	4 Core Registers
	4.1. Main Configuration Status Register (CSR)
	4.2. Interrupt Mask Register (INT_MSK_n)
	4.3. Interrupt Source Register (INT_SRCn)
	4.4. Channel Registers
	4.4.1. Channel CSR Register (CHn_CSR)
	4.4.2. Channel Size Register (CHn_SZ)
	4.4.3. Channel Address Registers (CHn_Am)
	4.4.4. Channel Address Mask Registers (CHn_AMm)
	4.4.5. Linked List Descriptor Pointer (CHn_DESC)
	4.4.6. Software Pointer (CHn_SWPTR)

	5 Core IOs
	5.1. Interface IOs
	5.2. Additional Control IOs

	Appendix A Core HW Configuration
	A.1. Core Parameters
	A.1.1. rf_addr
	A.1.2. pri_sel
	A.1.3. ch_count
	A.1.4. chN_conf

	A.2. Example

	Appendix B File Structure

