WISHBONE
DM A/Bridge
|P Core

Author: Rudolf Ussalmann
rudi @asics.ws

Rev. 1.2
July 27, 2001

Revision History

Rev. Date Author Description
0.1 23/1/01 Rudolf First Draft
Usselmann Internal release
0.2 28/1/01 RU First public release
0.3 13/3/01 RU - Removed buffers and all references to buffered transfers

- Updated WISHBONE interface signals
- Updated Pass-Through mode section
- Added Linked List Buffers

- Updated registers

- Added Bandwidth Allocation Section

0.4 16/3/01 RU - Added DMA Request and Acknowledge Section

- Added Forcing Next Descriptor Section

- Added NDn_|I signals

- Moved the USE_ED bit from COR to Channel CSR register
- Added SZ_WB bit to channel CSR register

1.0 00/3/01 RU - Added Appendix B: Core File Structure
- Modified Introduction
- Removed “Preliminary Draft” notice

1.01 8/4/01 RU - Corrected syntax and grammar
- Fixed some descriptions
- Clarified the linked lists

1.2 6/6/01 RU - Changed Register Order, major reorganization.

- Added Circular Buffer Support (Address Mask Registers).

- Added FIFO support in memory (Software pointer Register).
- Modified to support up to 31 channels.

- Modified to support 2,4 and 8 priority levels.

- Filled in Appendix A, Core HW Configuration.

- Added Circular Buffers Section.

- Added FIFO Buffers Section.

OpenCores WISHBONE DMA/Bridge Core July 27, 2001

1

| ntroduction

This core provides DMA transfers between two WISHBONE interfaces. Trans-
fers can a so be performed on the same WISHBONE interface. It can also act asa
bridge, allowing masters on each WISHBONE interface to directly access slaves
on the other interface.

Thisimplementation is designed to work with two WISHBONE interfaces run-
ning at the same clock.

The WISBONE specification and additional information about WISHBONE
SoC can be found at:
http://www.opencores.org/wishbone/

The Main features of the DMA/Bridge are:
* Upto 31 DMA Channels
e 2,4o0r8priority levels
* Linked List Descriptors Support
» Circular Buffer Support
* FIFO buffer support
» Hardware handshake support

WWWw.opencores.org Rev. 1.2 1of 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores

(This page intentionally left blank)

2 0of 33 Rev.1.2 WWW.0pencores.org

OpenCores WISHBONE DMA/Bridge Core July 27, 2001

2

Architecture

Below figureillustrates the overall architecture of the core.

Figure 1: CoreArchitecture Overview

|

WISHBONE IF 0
A

y

HW

Handshake DMA Pass-

Engine through
Interrupt <«——

A
y
WISHBONE IF 1

1

It consists of 3 main building blocks: Two WISHBONE interfaces, aDMA
engine and pass through logic.

2.1. WISHBONE Interface

The DMA/Bridge core has two master and slave capable WISHBONE inter-
faces. Both interfaces are WISHBONE SoC bus specification Rev. B compliant.

WWWw.opencores.org Rev. 1.2 3of 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores

Thisimplementation implements a 32 bit bus width and does not support other bus
widths.

2.2. DMA Engine

The DMA engineisaup to 31 channel DMA engine that supports transfers
between the two interfaces as well as transfers on the same interface (block copy).
Each channel can be programmed to have a different priority. Channels with the
same priority are serviced in around robin fashion.

2.3. PassThrough

This block performs the bridging operation between the two WISHBONE
interfaces. It includes a two entry deep write buffer in each direction. The write
buffer can be disabled if desired.

40of 33 Rev.1.2 WWW.0pencores.org

OpenCores

WISHBONE DMA/Bridge Core

July 27, 2001

3

Oper

ation

The WISHBONE DMA/Bridge consists of up to 31 DMA channels, the actual

DMA engine, and a channel prioritizing arbiter (see “Figure 2: DMA Engine”).

Figure2: DMA Engine

Channel
Priorities

Prioritizing
Arbiter

Channel 0

Channel 1

Channel n-1

Channel n

Y

xXcZ

¢

WISHBONE
Interface 0

DMA
Engine

Ml

“

WISHBONE
Interface 1

¢

3.1. Prioritizing Arbiter

The prioritizing arbiter will select the next channel to process, based first on

priority, and secondarily, if al priorities are equal, in around robin way. Each

channel has a 3" bit priority value associated with it. A value of 0 identifies a chan-
nel with very low priority, avalue of 7 identifies a channel with very high priority.

1. Implementation Dependent. This core supports 2, 4 and 8 priority levels. Please see Appendix A “Core
HW Configuration” on page 29 for more information.

WWW.opencores.org

Rev.1.2

5o0f 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores

Channels with the same priority are processed in around robin way, aslong as
there are no channels with a higher priority.

“Figure 3: Channel Arbiter” on page 6 illustrates the internal operation of the
channel arbiter.

Figure 3: Channel Arbiter

@ @ Channel priorities
‘: Priority O
Priority 1
Priority
@ Encoder
[}
[}
[}
Priority|n-1
Y
M Next
v Channel
X
@ Priority n

6 of 33 Rev.1.2 WWW.0pencores.org

OpenCores WISHBONE DMA/Bridge Core July 27, 2001

Care should be taken when using priorities, as channels with lower priorities
may be locked out and never serviced, if channels with higher priority are being
continuously serviced.

3.2. DMA Engine

The DMA engine can be programmed to perform various transfer operations.
This section will illustrate several transfer options and their operation.

3.2.1. Normal (Software) DM A Operation

Thisisasimple DMA operation performing a block copy. “Figure 4. Normal
DMA Operation” illustrates the operation.

Figure 4: Normal DMA Operation

Bus not relinquished until transfer (or one chunk transfer) is completed.
Main bus arbiter (external) is responsible for limiting bus time.

Transfers are

performed on ReadO | WriteO -~~~ ------~- Read N | Write N
the same interface

Different Interfaces |

\
|
Interface A |
|
\

Read0 | Read1 -~~~ Read N-1| Read N
|
Interface B | Write 0 | Write1 [~ - Write N-1| Write N
\
f Y
Start Done

(INT)

In this example the DMA engine performs a block copy from one location to
another, either on the same interface or on a different interface. The DMA engine

will leave the CYC_O1 signal asserted until it has completed the transfer. The
transfer begins when either the local controller/CPU writes to the channel CSR
register. When the transfer is completed, the DMA engine will assert an interrupt
(if enabled) or goto theidle state. If the auto restart bit (ARS) isset, it immediately
restarts the operation. When the ARS bit is set, the DMA engine will continue
restarting until the ARS bit is cleared in the channel CSR register. The software
can also force the channel to stop by writing a one to the STOP bit in the channel

1. CYC _OisaWISHBONE interface signal. See Section 5 “Core 10s’ on page 27 for more information.

WWWw.opencores.org Rev. 1.2 7 of 33

July 27, 2001

WISHBONE DMA/Bridge Core OpenCores

3.2.2.

CSR register. In this case the DMA channel will immediately stop and indicate an
error condition by setting the ERR bit in the channel CSR register and asserting an
error interrupt (if enabled).

If CHK_SZ isnot zero, the channel has to re-arbitrate for the interfaces after
each CHK _SZ of words has been transferred. Thisis particularly useful when set-
ting up all channels with the same priority and requiring “fair” bus usage distribu-
tion and low latency.

HW Handshake M ode

Below figureillustrates HW handshake DMA operations, where one full DMA
transfer requires more than one external trigger.

Figure5: HW Handshake DM A Operation

Bus not relinquished until a chunk completes.
Main bus arbiter is responsible for limiting bus time.

— ™

First Chunk Last Chunk

Transfers are

performed on RO[--—--- WNI---- RO[--—--- W N
the same interface

Different Interfaces |

DMA_ACK
INT

In thismodethe DMA enginewill wait for the external trigger (DMA_REQ) to
be asserted before starting the DMA transfer. Each time the trigger is asserted it
will transfer CHK _SZ number of words (one chunk). After each chunk transfer it
will assert DMA_ACK to acknowledge the transfer. After TOT_SZ number of
words have been transferred, an interrupt is asserted (if enabled).

After each chunk transfer the DMA channel hasto re-arbitrate internally for
the usage of the WISHBONE interfaces.

If the ARS bit is set, the DMA channel will reload the values programmed into
the channel registers and restart the operation. Thisloop will continue until the

8of 33

Rev.1.2 WWW.0pencores.org

OpenCores WISHBONE DMA/Bridge Core July 27, 2001

ARS bit is cleared or the STOP bit is set. When the STOP bit is set, the DMA
enginewill immediately stop the transfer, set the ERR bit, and assert an error inter-
rupt (if enabled).

3.3. Linked List Descriptors

In this mode the DMA engine will fetch the channel descriptors from memory
attached to interface 0. The descriptors are similar to the channel registers, except
that after completion anew descriptor may be loaded. The descriptors are provided
in alinked list format.

Figure6: Linked List Descriptor’

DESCn —» DESC _CSR » DESC _CSR

' DESC_ADRO | ' DESC_ADRO |

' DESC_ADR1 | ' DESC_ADR1 |

' DESC_NEXT | . DESC_NEXT | »

DESC_CSR: Conf. Bits Total Transfer Size
DESC_ADRO: Source Address (address 0)
DESC_ADR1: Destination Address (address 1)
DESC_NEXT: Next pointer
31 20 16 11 0
Reserved

Table 1. Definition of bitsin the DESC_CSR word

Bit # Description

20 EOL: If set, indicates that this is the last descriptor in the list
19 Increment Source Address (same as INC_SRC in CSR)

18 Increment Destination Address (same as INC_DSR in CSR)
17 Source Select (same as SRC_SEL in SCR)

16 Destination Select (same as DST_SEL in CSR)

11-0 | Total Transfer Size (same as TOT_SZ in SZ register)

To use external descriptors, the Linked List Descriptor Pointer register for the
appropriate channel must be programmed with the address of a valid descriptor.
The chunk size must also be set to the desired value in the channel SZ register.
Then the USE_ED bit in the channel CSR register must be set to enable external
descriptors. After that, the channel enable bit (CH_EN) must be set in the CSR of

WWWw.opencores.org Rev. 1.2 9 of 33

July 27, 2001

WISHBONE DMA/Bridge Core OpenCores

the channel. Now the DMA engine will start processing descriptors from memory.
Normal (Software) and hardware handshake modes are supported with external
descriptors. The ARS bit in the channel CSR register has no meaning when using
external descriptors and isignored.

When the DMA engine finishes processing a descriptor, it will attempt to load
the next descriptor, pointed to by the DESC_NEXT entry in the descriptor. If the
EOL bit in the current DESC_CSR entry is set, the DMA engine will stop, set the
DONE bit in the channel CSR register, and assert an interrupt, if enabled.

Note:

Bits 19-16 in the DESC_CSR register are copied to the channel CSR regis-
ter bits 4-1.

Bits11-0inthe DESC_CSR are copied to the channel SZ register bits 11-0.
DESC_ADRO is copied to channels address O register.

DESC_ADR1 is copied to channels address 1 register.

DESC_NEXT is copied to the channels DESC register.

3.4. Circular Buffers

Circular buffers are buffers that will never go beyond the allocated memory
space. These bufferswill “wrap-around” and start at the beginning f the buffer
when they have reached the last entry in the buffer. They are implemented by pro-
viding a Mask register for both the source and destination address. Thismask is
applied to the address when it is incremented. Only bitsthat are set to ‘1’ in the
mask will be incremented.

The lower four bits of the Address Mask are ignored, making the circular
buffer at least 4 entries (16 bytes) deep.

Figure7: Circular BuffersImplementation

1 — Address Mask
= +
% 4
g 4
> . > é 4
3 4 =
©
©
<
31
31
< 3
31 2 J
=
Next Address

10 of 33

Rev.1.2 WWW.0pencores.org

OpenCores WISHBONE DMA/Bridge Core July 27, 2001

3.5. FIFO Buffer Implementation

The DMA engine supports implementing FIFO style buffersin main memory.
Thisis accomplished using circular buffers and using a Software Pointer Register
to determine the last location software has read or written.

The Software Pointer Register iscompared to the current DMA Address, and if
they are equal, the DMA will stop processing the channel until the Software
pointer is updated. The software is responsible for properly updating the Software
Pointer Register.

Software Pointer is always compared to the DMA address that will be placed
on the WISHBONE Interface O.

3.6. Pass Through Operation

In pass through mode, this core acts as abridge. It does not add any functional -
ity to pass-through traffic. The pass-through logic is combinatoria only (e.g. in
pass-through mode signals are not latched). Below figure illustrates the pass-

though logic.
Figure 8: Pass Through Logic
DMA Engine
Interface 0 Interface 1
Master Master
< > Interface Interface < >
Slave e N— Slave
< > Interface Regist Interface < >
egister
< > File

3.7. Bandwidth Allocation

The CHK_SZ field can also be used to distribute bandwidth between channels.
Thisis done by setting up all channels with equal priority values. Then the band-
width for each channel can be calculated as follows:

[/ Calculate the total bandw dth available (100%
TOT BW= CH) CHK SZ + CHL OHK SZ +

WWWw.opencores.org Rev. 1.2 11 of 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores
CH)_BW= CH)_CHK SZ/ TOT_BW 100 // Channel 0O bandwi dth (percent)
CHL_ BW= OHl_OHK SZ/ TOT_BW 100 // Channel 1 bandwi dth (percent)
CH2_ BW= O 0K SZ/ TOT_BW 100 // Channel 2 bandwi dth (percent)
CH3 BW= OH8_OHK SZ/ TOT_BW 100 // Channel 3 bandwi dth (percent)
Exanpl e:

CHO K sz =8

CHL 0K Sz = 4

2 K Sz =14

B K sz =1

TOT_BW= 8+4+4+1 = 17 (100%
CHO_ BW= 8/17*100 = 47%
CHL_BW= 4/17*100 = 23.5%
CH2_BW= 4/17*100 = 23.5%
CH3_BW= 1/17*100 = 5. 8%

3.8. DMA Request and Acknowledge (HW Handshake)

In Hardware Handshake mode external request and acknowledge signals are
used to start atransfer of a chunk and indicate when the transfer has completed. If
CHK_SZ iszero, TOT_SZ number of words will be transferred.

Figure9: DMA_REQ/DMA_ACK Timing

CLK

CYC_O

ACK_|

DMA_REQ

DMA_ACK

0 or more cycles to complete the transfer

The DMA_ACK signa will be asserted one cycle after a chunk has been trans-
ferred. The chunk size may also be set to one, in which case only one WISH-

BONE? transfer will occur. If DMA_REQ is not de-asserted after DMA_ACK is
asserted, another transfer will be initiated, after the channdl has re-arbitrated for.

1. For simplicity reasons only a partial WISHBONE signal list is shown.

12 of 33

Rev.1.2 WWW.0pencores.org

OpenCores

WISHBONE DMA/Bridge Core July 27, 2001

Figure 10: Back to Back DMA Transfers

CLK

CYC_O

ACK_|

DMA_REQ

DMA_ACK

3.9. Forcing Next Descriptor

The DMA core provides a special feature that allows a device to force the
DMA engine to advance to the next descriptor in aLinked List. Thisfeature is par-
ticularly useful to devices that wish to keep a dedicated descriptor for a certain
piece of data (e.g one packet payload) but do not know the exact size of the data.

This feature only works with external descriptorsin linked lists and hardware
handshake mode.

There are two ways to force the next descriptor:

Thefirst way isto assert the NDn_| signal at |east two cycles before the
DMA_REQ nsignal. Inthis case the descriptor for the channel will be invalidated
and marked as “ serviced” and when the DMA_REQ n is asserted the next descrip-
tor will be fetched from the address pointed to by the current descriptor. If the cur-
rent descriptor’s EOL bit is set, the DMA channel will stop and clear the enable bit
in the channel’s CSR. To start DMA operation on this channel again, software has
to reset the DESCn register and the channel CSR register.

The second way isto assert NDn_| together with DMA_REQ _n. It must stay
asserted until DMA_ACK _nisasserted by the DMA, at which point NDn_| must
be de-asserted. In this case, the DMA will first finish transferring the current chunk
size and than invalidate the current descriptor by marking it “serviced”. If the
SZ_WB hit isset in the channel CSR register, the DMA will write the total number
of remaining bytes to be transferred back to the DESC_CSR in memory. This will
allow the software to easily track the actual number of bytes transferred.

WWWw.opencores.org Rev. 1.2 13 of 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores

(This page intentionally left blank)

14 of 33 Rev.1.2 WWW.0pencores.org

OpenCores WISHBONE DMA/Bridge Core July 27, 2001

A

Core Registers

This section describes all control and status register inside the WISHBONE
DMA/Bridge core. The Address field indicates arelative address in hexadecimal.
W dth specifies the number of bitsin the register, and Access specifiesthe valid
access typesto that register. RW stands for read and write access, RO for read only
access. A ‘' C appended to RW or RO indicates that some or al of the bits are
cleared after aread.

All RESERVED bhits should aways be written with zero. Reading RESERVED
bits will return undefined values. Software should follow this model to be compat-
ible to future releases of this core.

Table 2: Control/Status Registers

= | S §
Name S| 2| 8 Description
<|z| <
CSR 0 | 32| RW | Main Configuration & Status Register
INT_MSK_A 4 | 32| RW |Interrupt Mask for INTA_O output
INT_MSK_B 8 | 32| RW |Interrupt Mask for INTB_O output
INT_SRC_A c [32| RO |Interrupt Source for INTA_O output

INT_SRC_B 10 |32 | RO |Interrupt Source for INTB_O output

Channel 0 Registers
CHO_CSR 20 | 32| RW | Control Status Register
CHO_Sz 24 | 32| RW | Transfer Size
CHO_AO 28 | 32| RW |AddressO
CHO_AMO 2c | 32| RW | Address Mask 0
CHO_A1 30 | 32| RW |Address1
CHO_AM1 34 | 32| RW | Address Maskl

CHO_DESC 38 | 32| RW | Linked List Descriptor Pointer

CHO_SWPTR | 3c | 32| RW | Software Pointer

Channel 1 Registers

WWWw.opencores.org Rev. 1.2 15 of 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores
Table 2: Control/Status Registers
2 | S 2
Name = |2 8 Description
<|=z| <
CH1_CSR 40 | 32| RW | Control Status Register
CH1_Sz 44 | 32| RW | Transfer Size
CH1_AO 48 | 32| RW |AddressO
CH1_AMO 4c [32| RW | Address Mask O
CH1_A1l 50 | 32| RW |Address1
CH1_AM1 54 |32 | RW | Address Maskl
CH1_DESC 58 [32| RW | Linked List Descriptor Pointer
CH1 _SWPTR | 5¢ | 32| RW | Software Pointer
Channel 2 Registers
CH2_CSR 60 | 32| RW | Control Status Register
CH2_Sz 64 | 32| RW | Transfer Size
CH2_A0 68 [32| RW |AddressO
CH2_AMO 6c | 32| RW |Address Mask 0
CH2_A1 70 32| RW |Address1
CH2_AM1 74 | 32| RW | Address Maskl
CH2_DESC 78 [32| RW | Linked List Descriptor Pointer
CH2_SWPTR | 7c | 32| RW | Software Pointer
Channel 3 Registers
CH3_CSR 80 (32| RW | Control Status Register
CH3_Sz 84 | 32| RW | Transfer Size
CH3_AO 88 | 32| RW |AddressO
CH3_AMO 8c | 32| RW | Address Mask 0
CH3_A1l 90 |32 | RW |Address1
CH3_AM1 94 (32| RW | Address Maskl
CH3_DESC 98 (32| RW | Linked List Descriptor Pointer
CH3_SWPTR | 9¢c | 32| RW | Software Pointer
Starting Addr. | a0 Channel 4 Registers
Starting Addr. | cO Channel 5 Registers
Starting Addr. | e0 Channel 6 Registers
Starting Addr. | 100 Channel 7 Registers
16 of 33 Rev.1.2 WWW.0pencores.org

OpenCores WISHBONE DMA/Bridge Core July 27, 2001
Table 2: Control/Status Registers
2 | S 2
Name = |2 8 Description
<|=z| <

Starting Addr. | 120 Channel 8 Registers
Starting Addr. | 140 Channel 9 Registers
Starting Addr. | 160 Channel 10 Registers
Starting Addr. | 180 Channel 11 Registers
Starting Addr. | 1a0 Channel 12 Registers
Starting Addr. | 1cO Channel 13 Registers
Starting Addr. | 1e0 Channel 14 Registers
Starting Addr. | 200 Channel 15 Registers
Starting Addr. | 220 Channel 16 Registers
Starting Addr. | 240 Channel 17 Registers
Starting Addr. | 260 Channel 18 Registers
Starting Addr. | 280 Channel 19 Registers
Starting Addr. | 2a0 Channel 20 Registers
Starting Addr. | 2cO Channel 21 Registers
Starting Addr. | 2e0 Channel 22 Registers
Starting Addr. | 300 Channel 23 Registers
Starting Addr. | 320 Channel 24 Registers
Starting Addr. | 340 Channel 25 Registers
Starting Addr. | 360 Channel 26 Registers
Starting Addr. | 380 Channel 27 Registers
Starting Addr. | 3a0 Channel 28 Registers
Starting Addr. | 3cO Channel 29 Registers
Starting Addr. | 3e0 Channel 30 Registers

4.1. Main Configuration Status Register (CSR)

Thisisthe main configuration register of the DMA/Bridge core.
Table 3: CSR Register
P
Bit # § Description
<

311 RO | RESERVED

WWWw.opencores.org Rev. 1.2 17 of 33

July 27, 2001

WISHBONE DMA/Bridge Core

OpenCores

Table 3: CSR Register

)
w2
Bit # § Description
<«
0 RW | PAUSE
Writing a 1 to this register will pause the DMA engine (all channels).
Writing a 0 will enable/resume all operations.
Reading this bit will return the status of the DMA engine: 1-Paused; 0-
Normal Operation. The DMA engine will only pause after it has com-
pleted the current transfer.
Value after reset:
COR:00h

4.2. Interrupt Mask Register (INT_MSK n)

The interrupt mask registers define the functionality of the INTA_O and
INTB_O outputs. A bit set to alogical one enables the generation of the interrupt
for that source, a zero disables the generation of an interrupt. The interrupt mask
register INT_MSK_A specifies the behavior for the INTA_O output, the
INT_MASK_B register for the INTB_O output.

Table 4: Interrupt Mask Register

»

Bit # ;g Description
31 RO | RESERVED
30 RW | Interrupt Enable: Enable DMA Channel 30 Interrupts
29 RW | Interrupt Enable: Enable DMA Channel 29 Interrupts
28 RW | Interrupt Enable: Enable DMA Channel 28 Interrupts
27 RW | Interrupt Enable: Enable DMA Channel 27 Interrupts
26 RW | Interrupt Enable: Enable DMA Channel 26 Interrupts
25 RW | Interrupt Enable: Enable DMA Channel 25 Interrupts
24 RW | Interrupt Enable: Enable DMA Channel 24 Interrupts
23 RW | Interrupt Enable: Enable DMA Channel 23 Interrupts
22 RW | Interrupt Enable: Enable DMA Channel 22 Interrupts
21 RW | Interrupt Enable: Enable DMA Channel 21 Interrupts
20 RW | Interrupt Enable: Enable DMA Channel 20 Interrupts
19 RW | Interrupt Enable: Enable DMA Channel 19 Interrupts
18 RW | Interrupt Enable: Enable DMA Channel 18 Interrupts
17 RW | Interrupt Enable: Enable DMA Channel 17 Interrupts

18 of 33

Rev.1.2

WWW.0pencores.org

OpenCores

WISHBONE DMA/Bridge Core

July 27, 2001

Table 4: Interrupt Mask Register

»

Bit # ;g Description
16 RW | Interrupt Enable: Enable DMA Channel 16 Interrupts
15 RW | Interrupt Enable: Enable DMA Channel 15 Interrupts
14 RW | Interrupt Enable: Enable DMA Channel 14 Interrupts
13 RW | Interrupt Enable: Enable DMA Channel 13 Interrupts
12 RW | Interrupt Enable: Enable DMA Channel 12 Interrupts
11 RW | Interrupt Enable: Enable DMA Channel 11 Interrupts
10 RW | Interrupt Enable: Enable DMA Channel 10 Interrupts
9 RW | Interrupt Enable: Enable DMA Channel 9 Interrupts
8 RW | Interrupt Enable: Enable DMA Channel 8 Interrupts
7 RW | Interrupt Enable: Enable DMA Channel 7 Interrupts
6 RW | Interrupt Enable: Enable DMA Channel 6 Interrupts
5 RW | Interrupt Enable: Enable DMA Channel 5 Interrupts
4 RW | Interrupt Enable: Enable DMA Channel 4 Interrupts
3 RW | Interrupt Enable: Enable DMA Channel 3 Interrupts
2 RW | Interrupt Enable: Enable DMA Channel 2 Interrupts
1 RW | Interrupt Enable: Enable DMA Channel 1 Interrupts
0 RW | Interrupt Enable: Enable DMA Channel O Interrupts

Value after reset:

INT_MSK: 0000h

4.3. Interrupt Source Register (INT_SRCn)

This register identifies the source of an interrupt. INT_SRC_A register indi-
cates the source for INTA_O output, INT_SRC B register indicates the source for
INTB_O output. Whenever the function controller receives an interrupt, the inter-
rupt handler must read this register to determine the source and cause of the inter-
rupt. Some of the bitsin this register will be cleared after aread. The software
interrupt handler must make sure it keeps whatever information is required to han-
dle the interrupt.

Table5:

Interrupt Source Register

Bit #

Access

Description

31

RESERVED

WWW.opencores.org

Rev.1.2

19of 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores
Table5: Interrupt Source Register
Bit # % Description
<
30 RW | Interrupt Source: DMA Channel 30
29 RW | Interrupt Source: DMA Channel 29
28 RW | Interrupt Source: DMA Channel 28
27 RW | Interrupt Source: DMA Channel 27
26 RW | Interrupt Source: DMA Channel 26
25 RW | Interrupt Source: DMA Channel 25
24 RW | Interrupt Source: DMA Channel 24
23 RW | Interrupt Source: DMA Channel 23
22 RW | Interrupt Source: DMA Channel 22
21 RW | Interrupt Source: DMA Channel 21
20 RW | Interrupt Source: DMA Channel 20
19 RW | Interrupt Source: DMA Channel 19
18 RW | Interrupt Source: DMA Channel 18
17 RW | Interrupt Source: DMA Channel 17
16 RW | Interrupt Source: DMA Channel 16
15 RW | Interrupt Source: DMA Channel 15
14 RW | Interrupt Source: DMA Channel 14
13 RW | Interrupt Source: DMA Channel 13
12 RW | Interrupt Source: DMA Channel 12
11 RW | Interrupt Source: DMA Channel 11
10 RW | Interrupt Source: DMA Channel 10
9 RW | Interrupt Source: DMA Channel 9
8 RW | Interrupt Source: DMA Channel 8
7 RW | Interrupt Source: DMA Channel 7
6 RW | Interrupt Source: DMA Channel 6
5 RW | Interrupt Source: DMA Channel 5
4 RW | Interrupt Source: DMA Channel 4
3 RW | Interrupt Source: DMA Channel 3
2 RW | Interrupt Source: DMA Channel 2
1 RW | Interrupt Source: DMA Channel 1
0 RW | Interrupt Source: DMA Channel O
20 of 33 Rev.1.2 WWW.0pencores.org

OpenCores

WISHBONE DMA/Bridge Core July 27, 2001

Value after reset:

INT_SRC: 0000h

4.4. Channel Registers

Each channel has 4 registers associated with it. These registers have exactly the
same definition for each channel.

Figure 11: Channel Registers

CHn_CSR:
CHn_SZ:
CHn_AO:

CHn_AMO:
CHn_AL:

CHn_AM1:
CHn_DESC:

CHn_SWPTR:

Control/Status Bits

Transfer Size

Source Address

Source Address Mask

Destination Address

Destination Address Mask

Linked List Descriptor Pointer

Software Pointer
31 0

44.1. Channel CSR Register (CHn_CSR)

The configuration and status bits specify the operation mode of the channel, as
well as reporting any specific channel status.

Table 6: Channel CSR Register

w2
[7]
Bit # § Description
<
31:23 | RO | RESERVED
22 ROC | Interrupt Source: Channel transferred CHK_SZ
21 ROC | Interrupt Source: Channel Done
20 ROC | Interrupt Source: Channel Error
19 RO | RESERVED
18 RW | INE_CHK_DONE
Enable | Channel Interrupt after each CHK_SZ has been transferred
17 RW | INE_DONE
Enable | Channel Interrupt when Channel is Done
16 RW | INE_ERR
Enable | Channel Interrupt on Errors

WWW.opencores.org

Rev.1.2 21 of 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores
Table 6: Channel CSR Register
2
Bit # § Description
<
15:13 | RW | Channel Priority

(0 Indicating the lowest priority)

12 ROC | ERR
DMA channel stopped due to error

11 RO | DONE
DMA channel done
(This bit will not be set unless the ARS bit is cleared.)

10 RO | BUSY
DMA channel busy

9 WO | STOP
Writing a one to this bit will cause the DMA to stop its current transfer
and set the ERR bit.

8 RW | SZ_WB
Enables the writing back of the remaining size to the DESC_CSR when
USE_ED is set and NDn_I was asserted with DMA_REQ. See 3.9.
“Forcing Next Descriptor” on page 13 for more information.

7 RW | USE_ED
Use External Descriptor Linked List

6 RW | ARS
Automatically restart the channel when transfer completes
0: Auto restart disabled
1: Automatically restarts the DMA channel after TOT_SZ of bytes have
been transferred. The original values programmed into the channel reg-
isters are reloaded and the transfer starts al over again.

5 RwW | MODE
0: Normal Mode
1: HW Handshake Mode

4 RW | INC_SRC
0: Do not increment source address (Address 0)
1: Increment source address (Address 0)

3 RW | INC_DST
0: Do not increment destination address (Address 1)
1: Increment destination address (Address 1)

2 RW | SRC_SEL
0: Interface 0 is the source
1: Interface 1 is the source

1 RW | DST_SEL
0: Interface 0 is the destination
1: Interface 1 is the destination

0 RW | CH_EN
Channel Enabled

22 of 33 Rev.1.2 WWW.0pencores.org

OpenCores WISHBONE DMA/Bridge Core July 27, 2001
Value after reset:
CHn_CSR: 0000h
4.4.2. Channel Size Register (CHn_SZ)
Thetransfer size register specifiesthe total and “chunk” transfer sizes for each
channel.
Table 7: Channel Size Register
2
Bit # § Description
<«
31:25 | RO | RESERVED
24:16 | RW |CHK_SZ
Chunk transfer size. Specifies the number of words (4 byte entities) to
be transferred at one given time (not implying they are buffered, but that
they will be transferred for each start event in one bus request cycle). If
chunk size is zero, the DMA engine will always perform TOT_SZ trans-
fers. Maximum chunk size is 2K bytes.
15:12 | RO | RESERVED
11:0 RW | TOT_SZ
Total Transfer Size. Specifies the number of words (4 byte entities) to be
transferred. Maximum total transfer size is16K bytes.
Value after reset:
CHn_SZ: UNDEFINED
4.4.3. Channe AddressRegisters (CHn_Am)

The Address Registers specify the source and destination address. Address reg-
ister zero isthe source address, address register one is the destination address.
Both registers are 30 bits wide.

Table 8: Address Register

Bit # Description

Access

31:2 RW | Address

1.0 RO | RESERVED

Value after reset:
CHn_Am: UNDEFINED

WWWw.opencores.org Rev. 1.2 23 0of 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores
444. Channd AddressMask Registers (CHn_AMm)
The Address Mask registers specify the increment mask for the source and des-
tination address. Address Mask Register zero is applied to the source address,
Address Mask Register one to the destination address. Both registers are 28 bits
wide.
Table 9: Address Mask Register
Bit # ;é Description
314 RW | Address Mask
3.0 RO | RESERVED
Value after reset:
CHn_AMm: FFFFFFFCh
4.45. Linked List Descriptor Pointer (CHn_DESC)

The Linked List Descriptor Pointer register specifies the location of the Linked
List Descriptor. The value of this register will be overwritten with the Next pointer
in the Descriptor, after the descriptor has been fetched.

Table 10: Linked List Descriptor Pointer
Bit # ;é Description
31:2 RW | Address Mask
1:0 RO | RESERVED
Value after reset:
CHn_DESC: UNDEFINED
4.4.6. SoftwarePointer (CHn_SWPTR)

The Software Pointer is aregister that iswritten by software and indicates the
last location in acircular buffer that has been read/written. The DMA engine will
not cross the address pointed to by the Software pointer and stall the channel until

24 of 33 Rev.1.2 WWW.0pencores.org

OpenCores WISHBONE DMA/Bridge Core July 27, 2001

the software pointer has been updated. This feature enables the implementation of
FIFO buffersin memory.

Table 11: Software Pointer Register

Bit # Description

Access

31 RW | SWPTR_EN
1 - Enable Software Pointer
0 - Disable Software Pointer

30:2 RW | Software pointer
1:0 RO | RESERVED

Value after reset;
CHn_SWPTR: 0000h

WWWw.opencores.org Rev. 1.2 25 of 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores

(This page intentionally left blank)

26 of 33 Rev.1.2 WWW.0pencores.org

OpenCores WISHBONE DMA/Bridge Core July 27, 2001

CorelQOs

5.1. Interfacel Os

Both interfaces are WISHBONE Rev. B compliant. The DMA/Bridge core can
be aslave or master on either interface. Actual interface 0 signals are prefixed with
“WBO0_", interface 1 signalswith “WB1_". Both interfaces comprise of the follow-

ing signals.
Table 12: Host Interface (WI1SHBONE)
=
< | .8
Name |Z |8 Description
2z | &
(=
ADDR_| 32 | | | Address Input (for Slave)
ADDR_O | 32 | O | Address Output (from Master)
MDATA_ | | 32 | | | Master Interface Data Input
MDATA_O | 32 | O | Master Interface Data Output
SDATA | 32 | 1 | Slave Interface Data Input
SDATA O | 32 | O | Slave Interface Data Output
SEL_| 4 | | |Inputfor Slave. Indicates which bytes are valid on the data bus.

Whenever this signal is not 1111b during a valid access, the
ERR_O is asserted.

SEL O 4 | O | Output from Master. Indicates which bytes are valid on the data
bus. Whenever this signal is not 1111b during a valid access, the
ERR_O is asserted.

WE_I 1 I | Input for Slave. Indicates a Write Cycle when asserted high.
WE_O 1 | O | Output from Master. Indicates a Write Cycle when asserted high.
CYC_I 1 I | Input for Slave. Encapsulates a valid transfer cycle.

CYC_ O 1 | O | Output from Master. Encapsulates a valid transfer cycle.

STB_| 1 | | Input for Slave. Indicates a valid transfer.

STB_O 1 | O | Output from Master. Indicates a valid transfer.

WWWw.opencores.org Rev. 1.2 27 of 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores

Table 12: Host I nterface (WI1SHBONE)

= | £
Name E 9 Description
1
(=
ACK_O 1 | O | Output from Slave. Acknowledgment Output. Indicates a normal
Cycle termination.
ACK_I 1 | | Input for Master. Acknowledgment Output. Indicates a normal
Cycle termination.
ERR_O 1 | O | Output from Slave. Error Acknowledgment Output. Indicates an
abnormal cycle termination.
ERR_I 1 I | Input for Master. Error Acknowledgment Output. Indicates an
abnormal cycle termination.
RTY_O 1 | O | Output from Slave. Retry Output. Indicates that the interface is not
ready, and the master should retry this operation.
RTY I 1 I | Input for Master. Retry Output. Indicates that the interface is not
ready, and the master should retry this operation.

5.2. Additional Control |Os

This section describes additional control signals. Except for the clock and reset
signals all other signals are specia extensions and directly a part of the WISH-

BONE specification.
Table 13: Additional 10s
=
= |8
Name s |3 Description
Z | &
=]
CLK_I 1 | | Clock input
RST_|I I | Reset Input

DMA_REQ_| | 31 DMA Request (trigger input)
DMA_ACK_O | 31 | O | DMA Acknowledge (Asserted when the DMA is done with the

transfer)
ND_I 31 | | | Force Next Descriptor advancing
INTA_O 1 | O |Interrupt Output A
INTB_O 1 | O | Interrupt Output B

28 of 33 Rev.1.2 WWW.0pencores.org

OpenCores

WISHBONE DMA/Bridge Core July 27, 2001

Appendix A

Core HW Configuration

This Appendix describes the configuration of the core. This step is performed
before final Synthesis and tape-out of the core.

The source file “wb_dma_primitives.v” contains primitive functions that one
might want to optimize or replace for a specific technology or implementation.

The source file“wb_dma_defines.v” contains the configuration items
described in the following sections.

A.l. Channed Select

This section defines how many channels a given implementation supports. The
supported channels must be in sequence. Channel 0 is always present and can not
be removed. Any channel that should not be implemented must be commented out.

“define
“define
“define
“define
/] defi
/] defi
/] defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi

e e T)
~NN NN NN N N N N S N N N e N N e~

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

HAVE CHL
HAVE_CH2
HAVE_CH3
HAVE_CH4
HAVE_CHb
HAVE_CHb
HAVE_CH?
HAVE_CH8
HAVE_CHD
HAVE_CHLO
HAVE_CHL1
HAVE_CHL2
HAVE_CHL3
HAVE_CHL4
HAVE_CHL5
HAVE_CHL6
HAVE_CHL7
HAVE_CHL8
HAVE_CHL9
HAVE_CH20
HAVE_CH21
HAVE_CH22
HAVE_CH23
HAVE_CH24
HAVE_CH25
HAVE_CH26

RPRRRPRRPRRPRRRPRPRRRPRPRRRRPRRRRERRRRERRERRRRER

WWW.opencores.org

Rev.1.2 29 of 33

July 27, 2001

WISHBONE DMA/Bridge Core

OpenCores

“define
“define
“define
“define

~ N~~~
~ N~~~

In this example only channels 0 through 4 are implemented.

HAVE _CH27
HAVE_CH28
HAVE_CH29
HAVE_CH30

5.3. Auto Reload Support

This section defines which channels support the ARS (auto reload) feature. For
each channel that does support the ARS feature, the HAVE _ARSh value must be
setto ‘1. For channelsthat do not support the ARS featureto ‘' 0'. Channelsthat do
not support the ARS feature will ignore the ARS hit in the channel CSR register.

“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define
“define

In this example Channel 2 and 3 do not support the ARS feature.

HAVE_ARSO
HAVE_ARSL
HAVE_ARS?2
HAVE_ARS3
HAVE_ARSA
HAVE_ARS5
HAVE_ARS6
HAVE_ARS?
HAVE_ARSS
HAVE_ARS9
HAVE_ARS10
HAVE_ARS11
HAVE_ARS12
HAVE_ARSL3
HAVE_ARS14
HAVE_ARS15
HAVE_ARS16
HAVE_ARS17
HAVE_ARS1S
HAVE_ARS19
HAVE_ARS20
HAVE _ARS21
HAVE_ARS22
HAVE_ARS23
HAVE_ARS24
HAVE_ARS25
HAVE_ARS26
HAVE_ARS27
HAVE_ARS28
HAVE_ARS29
HAVE_ARS30

RPRRR

PRRRPRRPRRPRRPRRPRPRRRPRPRPRRPRRPRPRRRPRPRREPRPRRPRRPRLRRLROORE

5.4. Linked List Descriptors Support
This section defines which channels support the Linked List Descriptors. For

each channel that does support the Linked List Descriptors feature, the

HAVE_EDn value must be set to ‘1'. For channels that do not support the Linked
List Descriptorsfeatureto ‘0’. Channels that do not support Linked List Descrip-

300f 33

Rev.1.2

WWW.0pencores.org

OpenCores

WISHBONE DMA/Bridge Core

July 27, 2001

torswill ignore the USE_ED bit in the channel CSR register and will not have the

Linked List Descriptor Pointer register.

“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi
“defi

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

HAVE_EDO
HAVE_EDL

HAVE_ED2

HAVE_ED3

HAVE_ED4

HAVE_EDbG

HAVE_ED6

HAVE_ED?

HAVE_ED8

HAVE_ED9

HAVE_EDL0
HAVE_ED11
HAVE_ED12
HAVE_ED13
HAVE_ED14
HAVE_EDL5
HAVE_ED16
HAVE_EDL7
HAVE_ED18
HAVE_ED19
HAVE_ED20
HAVE_ED21
HAVE_ED22
HAVE_ED23
HAVE_ED24
HAVE_ED25
HAVE_ED26
HAVE_ED27
HAVE_ED28
HAVE_ED29
HAVE_ED30

PRRRPRRPRRPRRPRRPRRPRRPRRPRPRPRRPRPRPRRPRRPRPRRRPRPRRPRPOORRRE

In this example Channel 4 and 5 do not support the Linked List Descriptors
feature.

A.2. Circular Buffer Support

This section defines which channels support Circular Buffers. For each channel
that does supports Circular Buffers, the HAVE_CBUFn value must be setto *1'.
For channels that do not support Circular Buffersto ‘0. Channels that do not sup-
port circular bufferswill not have the Address Mask Registers (they will be forced
toall ‘1" internally) and will also not have the Software pointer register.

“define HAVE CBUFO 1
“define HAVE CBUF1 O
“define HAVE CBUF2 O
“define HAVE CBUF3 1
“define HAVE CBUF4 1
“define HAVE CBUF5 1
“define HAVE CBUF6 1
“define HAVE CBUF7 1
“define HAVE CBUF8 1
WWWw.opencores.org Rev. 1.2 31 0of 33

July 27, 2001 WISHBONE DMA/Bridge Core OpenCores

“define HAVE CBUF9 1
“define HAVE CBUF10 1
“define HAVE CBUF11 1
“define HAVE CBUF12 1
“define HAVE CBUF13 1
“define HAVE CBUF14 1
“define HAVE CBUF15 1
“define HAVE CBUF16 1
“define HAVE CBUF17 1
“define HAVE CBUF18 1
“define HAVE CBUF19 1
“define HAVE CBUF20 1
“define HAVE CBUF21 1
“define HAVE CBUF22 1
“define HAVE CBUF23 1
“define HAVE CBUF24 1
“define HAVE CBUF25 1
“define HAVE CBUF26 1
“define HAVE CBUF27 1
“define HAVE CBUF28 1
“define HAVE CBUF29 1
“define HAVE CBUF30 1

In this example Channel 1 and 2 do not support Circular Buffers.

A.3.Priority Levels Select

The two define statements below select the number of prioritiesthat the DMA
engine supports.

If PRI_8isdefined, 8 levelsof priorities are supported. If PRI_4 isdefined then
4 levels of priorities are supported. If neither is defined then two levels of priorities
are supported. PRI_4 and PRI_8 should never be both defined at the same time.

[/ define PR _8 1
“define PR 4 1

A.4.Register File Base Address Select

This define selects how the slave interface determinesif the internal register
file or pass through mode are selected.

This should be a smple address decoder. “wb_addr_i” isthe WISHBONE
address bus (32 bits wide).

“define REG SEL (wb_addr i [31:24] == 8 hff)

Note:

The entire pass-through mode is implemented in combinatorial logic only.
So the more address lines we look at and compare here the higher will be
theinitial delay when pass-through mode is selected. Here we look at the
top 8 address hit. If they are al 1, the register file is selected. Use thiswith
caution!!!

32 of 33 Rev.1.2 WWW.0pencores.org

OpenCores WISHBONE DMA/Bridge Core July 27, 2001

Appendix B

File Structure

This section outlines the hierarchy structure of the WISHBONE DMA/Bridge
core Verilog Source files.

Figure 12: DMA/Bridge Core Hierarchy Structure

Top Level

wb_dma_top.v

DMA Engine /
de.v
Wishbone Interface 0

. wb_dma_wb_if.v
Channel Select Register File Wishbone Interface 0

wb_dma_ch_sel.v wb_dma_rf.v wb_dma_wb_if.v /
Master interface Master interface

Priority Encoder \, gma_wh_mast.v wb_dma_wb_mast.v
wb_dma_pri_enc.v

Slave Interface Slave Interface
_ whb_dma_wb_slv.v wb_dma_wb_slv.v
Arbiter O

wb_dma_ch_arb.v

Arbiter 2
wb_dma_ch_arb.v

Arbiter 1 Arbiter 3
wb_dma_ch_arb.v wb_dma_ch_arb.v

WWWw.opencores.org Rev. 1.2 330f 33

	1 Introduction
	2 Architecture
	2.1. WISHBONE Interface
	2.2. DMA Engine
	2.3. Pass Through

	3 Operation
	3.1. Prioritizing Arbiter
	3.2. DMA Engine
	3.2.1. Normal (Software) DMA Operation
	3.2.2. HW Handshake Mode

	3.3. Linked List Descriptors
	3.4. Circular Buffers
	3.5. FIFO Buffer Implementation
	3.6. Pass Through Operation
	3.7. Bandwidth Allocation
	3.8. DMA Request and Acknowledge (HW Handshake)
	3.9. Forcing Next Descriptor

	4 Core Registers
	4.1. Main Configuration Status Register (CSR)
	4.2. Interrupt Mask Register (INT_MSK_n)
	4.3. Interrupt Source Register (INT_SRCn)
	4.4. Channel Registers
	4.4.1. Channel CSR Register (CHn_CSR)
	4.4.2. Channel Size Register (CHn_SZ)
	4.4.3. Channel Address Registers (CHn_Am)
	4.4.4. Channel Address Mask Registers (CHn_AMm)
	4.4.5. Linked List Descriptor Pointer (CHn_DESC)
	4.4.6. Software Pointer (CHn_SWPTR)

	5 Core IOs
	5.1. Interface IOs
	5.2. Additional Control IOs

	Appendix A Core HW Configuration
	A.1. Channel Select
	5.3. Auto Reload Support
	5.4. Linked List Descriptors Support
	A.2. Circular Buffer Support
	A.3. Priority Levels Select
	A.4. Register File Base Address Select

	Appendix B File Structure

