
Wishbone !
Register bank !
Interconnect !
Multi-master !
Multi-slave !
(Wrimm)!!
Version 0.1 July 2014!!!

Introduction!
!
Most FPGA projects I work on require control bits for various modules to configure their
operation, monitor their status, or activate their functions.!!
This always seems an ugly piece of the architecture. The rest of the design is nicely organized
in self contained units that are easy to chart in a simple block diagram. Then you have this
control structure that infests the entire design.!!
Developing and maintaing the register map is also a problem if the addresses of the registers
are spread all over the source code.!!
Re-developing an maintaining this same simple functionality again and for each project seemed
a large waste of time. Adding a new register to any of the projects frequently required modifying
several files and intimate knowledge of the operation of those files.!!
Over many years I have tried many solutions to this problem:!
• Initially I designed a new control system for each block. Obviously this quickly becomes

unmanageable.!
• Then I discovered Wishbone which provided a unified interface for all the blocks. Now I didn’t

have to remember the specific interface for each block. I could rely on the Wishbone spec to
set the standard for all interfaces.!

• In some designs all the blocks would have their own Wishbone interface, and I would have to
organize the address space by modifying code in each block. Then I moved to address
selection inputs on the instantiation of each block.!

• In other designs I would write a custom Wishbone slave just to provide all the register bits
required by the project. Then I could just connect register bits from this block to the other
blocks that didn’t have to understand Wishbone.!

• Next I moved to generic Wishbone slaves that provided banks of specific register types. Then
I didn’t have to modify the code every time I needed an additional register. This approach is
workable, but ultimately not very flexible.!!

All these approaches seemed sub-optimal for different reasons.!!
The initial goals of Wrimm were:!
• Provide register functionality to the system blocks.!
• Minimize coding necessary to add, remove, and change the specific registers required for a

project.!
• Efficiently and concisely manage the address space of the Wishbone bus, so address can be

organized sensibly, new address can be allocated, and the address map can be documented
without extensive research into source code.!

• Provide a stable reliable tested base design that does not require modification for each new
project.!!

To achieve these goals I researched the VHDL language and learned some new techniques.
The code of Wrimm may be unlike the code you are used to. It is different from most of the
other project code I have seen. On the other hand it is all synthesize-able VHDL.!!

An end result of this design methodology is a large reliance on synthesis optimization. Many
functions provided in the design of Wrimm may not be used in every instance. In this case the
synthesis tool is expected to optimize them away. Large blocks of logic are specified, then
handed to the tool for optimization. If you are uncomfortable with this approach you will likely be
uncomfortable with this project.!!
On the other hand, using these techniques enabled several other goals:!
• Multi-master arbitrated interconnect functionality!
• Interconnect functionality to support multiple slaves with partial address decoding.!!
So far my results have provided the fastest, smallest register interface designs I have ever
seen. YMMV.!!!

Source Code Structure & Customization Strategy!
The Wrimm interconnect and register functionality is contained in a single VHDL entity in
Wrimm.vhd. This code should not require modification from project to project.!!
The Wrimm entity relies on a package file, WrimmPackage. This file contains constant and
custom type declarations which must be modified to suit each project.!!
Take the port list of the Wrimm entity as an example. Nearly all the ports listed are of custom
types. These custom types are all declared in the WrimmPackage. This allows the SettingRegs
output of the Wrimm entity to provide what ever number of setting registers is declared in
WrimmPackage.!!
The WrimmPackage included in this project only contains example register and slave
parameters. Your new project will require changes to the constants declared in WrimmPackage.
If the changes follow the format of the example registers, you should not need to make any
changes to the Wrimm entity or architecture to support the custom features of your design.!!
Take a look at the implementation in the top level example Wrimm_Top and see if you like the
look of the result. Hopefully you will immediately see how easy it will be to add and change
registers as your design matures.!!!

Wishbone Interface (Wishbone Datasheet)!
Wrimm provides multiple slave and master interfaces. The number of slave and master
interfaces is defined in the WrimmPackage for each unique project.!!
To provide ports for n Wishbone interfaces, the Wrimm port list declares an array of Wishbone
port interfaces. This way any number of Wishbone masters and slaves may be supported
without changing the entity declaration or architecture implementation.!!
To support these arrays, WrimmPackage declares two VDHL record types: WbMasterOutType
and WbSlaveOutType. These two types contain all the required and supported optional
Wishbone signals (except clock and reset which are global).!!

!

Wishbone Datasheet Specs
General Description Wishbone Register Bank Interconnect Multi-master Multi-Slave

Wishbone Version B4

Type of Interface Slave and Multi-master Interconnect

Supported cycles Slave, Read/Write!
Slave, Block Read/Write!
Slave, RMW

ERR_I handling ERR_I passed on to master

ERR_O handling ERR_O returned for strobes to unrecognized addresses

RTY_I handling RTY_I passed on to master

RTY_O handling RTY_O never generated

Tags currently no tags supported

Data Port Size Port size configurable with constant declaration

Data Port granularity currently no sub port granularity supported

Data Port Operand size Operand size is the same as the declared port size

Data transfer ordering Big/Little Endian (port size=granularity)

Data transfer
sequencing

Undefined?

Clock Constraints Frequency dependent on implementation

Slave Interface(s) (Connected to Masters)
Signal Name WISHBONE Equiv.

WbClk CLK_I

Signal Name

!!

!!!!

WbRst RST_I

WbMasterIn(x).Strobe STB_I

WbMasterIn(x).WrEn WE_I

WbMasterIn(x).Addr ADR_I(0..n)

WbMasterIn(x).Data DAT_I(0..n)

WbMasterIn(x).Cyc CYC_I

WbMasterOut(x).Ack ACK_O

WbMasterOut(x).Err ERR_O

WbMasterOut(x).Rty RTY_O

WbMasterOut(x).Data DAT_O(0..n)

WISHBONE Equiv.Signal Name

Master Interface(s) (Connected to Slaves)
Signal Name WISHBONE Equiv.

WbClk CLK_I

WbRst RST_I

WbSlaveOut(y).Strobe STB_I

WbSlaveOut(y).WrEn WE_I

WbSlaveOut(y).Addr ADR_I(0..n)

WbSlaveOut(y).Data DAT_I(0..n)

WbSlaveOut(y).Cyc CYC_I

WbSlaveOut(y).Ack ACK_O

WbSlaveIn(y).Err ERR_O

WbSlaveIn(y).Rty RTY_O

WbSlaveIn(y).Data DAT_O(0..n)

Register Interface!
!
Wrimm provides three different register interfaces. These three type have proven through
experience to satisfy many register interface requirements. All three provide a data interface
between a controller and a module. The controller is a Wishbone master, in turn that Wishbone
master may be driven by some larger control system on chip or off chip. The module is the
stupid function on the other end of the register interface that communicates through these
dedicated signals.!!
1. Status registers allow controllers to monitor outputs from a module.!
2. Setting registers allow controllers to configure module parameters.!
3. Trigger registers allow controllers to initiate module activities.!!
Wrimm supports any number of each of these register types. Each of these register types is
configured differently in WrimmPackage and used differently by the system.!!
Status Registers!

Configuration
Status registers require a unique name for each register. These names are declared in the
StatusFieldType declaration in WrimmPackage. StatusA, StatusB, and StatusC are the status
registers declared in the example WrimmPackage.!!
Each status register can be any length from 1 to the data port width declared by WbDataBits.
The length of each register is defined with the BitWidth field of the StatusParams constant.!!
If the status register is less than WbDataBits, you can define its position in the logical register.
This location is defined with the MSBLoc field of the StatusParams constant. Bits are big
endian ordered so to left justify the field set MSBLoc => 0. The maximum MSBLoc is
(WbDataBits- Status register BitWidth).!!
The Wishbone bus address of each status register must be defined with the Address field. The
length of the address field must match the width of the Wishbone address bus which is defined
by the WbAddrBits constant.!

Interface
Status registers simply require connecting the output bits from the module to the register input
created by the status register definition. This can be done in the Wrimm incantation port map.!!
StatusRegs(StatusA)! => ModuleAStatusBits,!!

Setting Registers!

Configuration
Setting registers require a unique name for each register. These names are declared in the
StatusFieldType declaration in WrimmPackage. SettingX, SettingY, and SettingZ are the setting
registers declared in the example WrimmPackage.!!
Each Setting register can be any length from 1 to the data port width declared by WbDataBits.
The length of each register is defined with the BitWidth field of the StatusParams constant.!!
If the setting register is less than WbDataBits, you can define its position in the logical register.
This location is defined with the MSBLoc field of the SettingsParams constant. Bits are big
endian ordered so to left justify the field set MSBLoc => 0. The maximum MSBLoc is
(WbDataBits- Setting register BitWidth).!!
The Wishbone bus address of each status register must be defined with the Address field. The
length of the address field must match the width of the Wishbone address bus which is defined
by the WbAddrBits constant.!!
Setting registers can also be configured with a default value specified in the Default field. The
default value must be WbDataBits wide (not the defined BitWidth). If BitWidth is less than
WbData bits, the default should be right aligned regardless of MSBLoc.!

Interface
Setting registers each have two interface ports.!!
The first is an output port that provides the setting data to the module. The output port is
WbDataBits wide. Registers with BitWidth less than WbDataBits will provide the data right
aligned in the output port.!!
This port can be assigned in the port map of the Wrimm instantiation, or the port can be mapped
to a SettingArray signal, and each register mapped to its destination by selecting the array
element from that signal!!
SettingRegs(SettingX)! => ModuleXSettingReg,!
or!!
SettingRegs! ! ! => settingRegsSignal,!
and!
moduleXSetting! <= settingRegsSignal(SettingX);!!
Setting registers also provide an input to synchronously reset the register to its default value.!!
These reset bits are connected to the SettingRsts(RegName) ports.!!

Trigger Registers!

Configuration
Trigger registers require a unique name for each register. These names are declared in the
TriggerFieldType declaration in WrimmPackage. TriggerR, TriggerS, and TriggerT are the
trigger registers declared in the example WrimmPackage.!!
All trigger registers a 1 bit wide so their width does not need defined for each instance.!!
The position of the trigger bit in the logical register is defined with the MSBLoc field of the
TriggerParams constant. Bits are big endian ordered so to left justify the field set MSBLoc => 0.
The maximum MSBLoc is WbDataBits-1.!!
The Wishbone bus address of each trigger register must be defined with the Address field. The
length of the address field must match the width of the Wishbone address bus which is defined
by the WbAddrBits constant.!

Interface
Trigger registers require connecting trigger output bit to the module This can be done with the
same methods used by setting registers. The only difference is all trigger registers are one bit
wide.!!
Trigger registers also provide a synchronous clear signal, port TriggerClr(TriggerName). This
provides extended trigger pulses for modules operating on clocks slower than the Wishbone
clock. If a single cycle trigger pulse is sufficient, the trigger clear can be tied high. The trigger
register may be read by the master to see if the module has cleared it yet.!!

Acknowledgements!
!

