i
i
i
[
i

Lossless Data Compression Programmable Hardware for High-speed Data
Networks

José Luis Nufiez, Simon Jones
Department of Electronic and Electrical Engineering
Loughborough University, Loughborough LE1] 3TU, UK
J-l.nunez-yanez@Iboro.ac.uk, s.r.jones@lboro.ac.uk

“Abstract

This paper presents a high-performance application
specific architecture for real time lossless data
compression, which enables data throughputs over 1.5
Gbits/s compression and decompression using
contemporary low-cost re-programmable FPGA
technology. The inplementation is embedded into a PCI-
based system and tested at speed using a PC as the host
computer. 4 single FPGA is used to map all the functions
in the system including the compression and
decompressor cores, DMA logic, control logic and
Master/Target PCI core. The independent compression
and decompression channels enable a combined
compression and decompression performance over 3
Gbits/s and robust self-checking hardware where each
compress block can be automatically decompress to
detect hardware failures or errors introduced by the
communication channel.

Index Terms-- data compression, lossless circuits, field-
programmable-gate-arrays.

1. Introduction

Lossless data compression is a key technology for
enabling higher speeds and lower cost in data
transmission and storage applications. It achieves this by
reducing the number of bits that must be transmitted or
stored while maintaining the exact information content of
the data source. The significant requirements for
bandwidth and capacity generated for data intensive
applications have demanded storage/communication
equipment that operate at speeds over the Gigabit/second
range. Storage area networks (SAN) using fibre channel
to communicate a set of high-capacity and high-speed
disk arrays (RAID) in a server farm environment or a
Gigabit Ethernet backbone connecting a group of
Ethernet LAN’s running at lower speeds are 2 examples
where Terabytes of data must be stored and transmitted at
high speeds. This paper presents a solution to the
bandwidth problem by describing the X-MatchPRO
hardware amenable algorithm and its hardware
architecture that enable the usage of compression

0-7803-7574-2/02/$17.00 ©2002 IEEE

290

at over the 1 Gbit/second while maintaining good
compression ratios.

The remainder of this paper is organized as follows:
Section 2 introduces the X-MatchPRO algorithm. Section
3 depicts the PCl-based system architecture paying
special attention to the compression/decompression cores.
Section 4 describes the hardware implementation based
on programmable technology. Section 5 compares its
performance against other lossless data compressor
devices. Finally, section 6 concludes this paper.

2. Algorithm Description

The X-MatchPRO algorithm uses a fixed-width
dictionary of previously seen data and attempts to match
or partially match the current data element with an entry
in the dictionary. Each entry is 4 bytes (tuple) wide and
several types of matches are possible where all or some of
the bytes at different positions within the tuple match.
Those bytes that do not match are transmitted as literals.
This partial match concept gives the name to the
procedure- the X referring to ‘don’t care’. At least 2
bytes have to match and when no valid match is generated
a miss is codified adding a single bit set to 1 to the 4-byte
tuple. The coding function for a match is required to
code 4 separate fields as follows:

‘A single bit set to 0 indicating a match.

‘The match location. It uses the phased binary code
(PBC) associated to the matching location. Phased binary
coding [1] is a technique used to code the locations of a
dictionary that starts empty and then grows, as new data
is processed. The advantage is that a smaller dictionary
uses fewer bits to code its positions so there is a
compression gain during the growing stage.

‘A match type. That indicates which bytes of the
incoming tuple have matched. This is coded using a static
Huffman code [2] based on the statistics obtained through
extensive simulation.

‘Any extra characters that did not match, transmitted in
literal form.

The dictionary is maintained using a Move To Front
(MTF) strategy whereby a new tuple is placed at the front
of the dictionary while the rest move down one position.
When the dictionary becomes full the tuple placed in the

last position is discarded leaving space for a new one. X-
MatchPRO reserves one location in the dictionary to code
internal runs of full matches at location zero. Since the
MTF strategy forces anything that repeats to be stored at
location zero (top of dictionary), this Run-Length-Internal
(RLI) technique is used to efficiently code any 32-bit
repeating pattern. Additionally an Out of Date
Adaptation (ODA) policy is used in X-MatchPRO for
throughput purposes. This means that dictionary
adaptation at time t+2 vector takes place using the
adaptation vector generated at time t. This ODA
technique does not affect compression because it is
designed to maintain dictionary efficiency avoiding the
danger of duplicating the same data tuple in several
dictionary positions.

3. System Architecture

The system architecture based on the PCI bus is
illustrated in Figure 2. The PCI core itself is obtained as a
standard piece of IP from a third party vendor whilst the
interface logic to the PCI core is designed to generate the
appropriate signals to both pieces of IP when the device is
mastering the PCI bus of being accessed through it.

Y

CLK Frequency = 33 Mhz '
i
|
|
|

It includes master control logic, target control logic and
DMA controller. The X-MatchPRO core has 2
independent compression and decompression engines that
can work simultaneously in full-duplex mode. Each of
these engines has 2 32-bit ports that are used to move data
to and from the PCI interface logic. Each of these ports
has its own buffering scheme formed by dual-port SRAM
memory blocks plus control logic that enable a smooth
flow of data during compression and decompression
operations. A hand-shaking protocol formed by bus
request, bus acknowledge and wait signals is used by
each of these 4 ports to input or output data to the PCI
core. Compression and decompression commands are
issued through a common 32-bit control data port. A 4-bit
address is used to access the internal registers that store
the commands, information related to compressed and
uncompressed block sizes and CRC (Cyclic Redundancy
Check) codes to verify the compression operations. Each
channel includes a CRC unit that calculates a 32-bit CRC
code using all the data that accesses the compression
engine or that leaves the decompression engine. A total of
10 registers form the register bank. 5 registers are used to
control the compression channel and the other 5 for the
decompression channel.

CLK Frequency = 33*3/2 = 49.5 Mhz

HCIBUS s
Ao
= -
™ FII0
)
| Uncompressed Input
|r 32
Mastr !
Coutml i
== r1c0Rg Log m&m 1t |
1
1
T
1
DHA i
Controller} 1
1
SYSTEM E -
MEMORY patfour Compressod loput 3T~
FII0
Decoder Unpacker
i It
:U 32 g ODA Buffer
:WW Logic] BIRIT || Main : ":EE I
i I |
| i
1 i
[} i
] He
]
1
1
1
[]

Figure 1. PCI-Based Hardware Architecture.

291

The first bit in the address line indicates if the read/write
operation accesses compression or decompression
registers. The device includes a test mode that
simultaneously decompresses the block being compressed
and reports any mismatches in the CRC codes using an
interrupt. It is designed to compress any block size
ranging from 8 bytes to 4 Gbytes. A decompression
operation can be requested in the middle of a compression
operation and vice versa.The architecture is based around
a block of CAM to realize the dictionary. This is
necessary since the search operation must be done in
parallel in all the entries in the dictionary to allow high
and data independent throughput. The length of the CAM
varies with values ranging from 16 to 1024 tuples (4-byte
locations) trading complexity for compression. Typically,
the devices complexity increases by a factor of 1.5 each
time the dictionary doubles. Dictionary size is variable to
be able to adapt algorithm complexity to the resources
available in the selected FPGA. The number of different
locations present in the dictionary has an important effect
on compression. In principle, the larger the dictionary the
higher the probability of having a match and improving
compression. On the other hand, our experimentation
shows that a diminishing return rule applies and when a
maximum size of around 1024 is reached further gains in
compression are negible.

5. Hardware Implementation

The hardware implementation is based on the Altera
APEX20KE PCI board that includes an APEX20K400E
device as the user programmable FPGA. This device is
used to implement the compression/decompression core,
the PCI core plus DMA controller and control logic
functions. The PCI core is available through the IP Altera
Megastore. Table 1 shows a summary of the
implementation - details based on a dictionary of 16
locations. The system gates and typical gates figures are
gate equivalent values available from the manufacture.
Typically, 6 typical gates are equivalent to 1 ASIC gate.
The complexity of X-MatchPRO is measured in logic
elements as used by the FPGA. The figure in X-
MatchPRO with a dictionary of 16 locations is
approximately equivalent to 40K ASIC gates increasing
to 600K ASIC gates for a 1024-location dictionary. The
FPGA implements a 33-MHz PCI core so in order to be
able to verify our compression/ decompression
technology at maximum throughput we have included a
PLL to generate a second clock at 49.5 MHz plus FIFO
memories to communicate the 2 clock domains at 33 and
49.5 MHz.

Table 1. Technology Details

Technology Details
Full-duplex X-MatchPRO PCI Core/FIFO’s'DMA controlier
. £
2 w | = ol E] 2 ol -~
2 |les s |2 2|2
E o8 (2. |8 (&8 |®E|E |B
Q —E | o g 3 9 S8 C]
b o2 | E b j g |® <EER = M
I N O R A W1E |® |E
= 3
7948 | 48% 83 40% | 49.5 | 3020 | 18% | 124 | 58% |33

A 32-bit interface maps well with our compressor able to
process 32-bit of data per clock cycle. Although the PCI

bus becomes a bottleneck because not enough bandwidth

is available to keep the core busy the core can run at its
maximum throughput of 49.5 Mhz * 4 Bytes = 198
Mbytes/second by reading and writing data to the internal
FIFO’s and this setup achieves the objective of
demonstrating the technology. We have used 2 BAR

(Base Address Register) out of a maximum of 6 to map

the registers of the design in the memory address space. ;
Bar 0 maps the compressor and decompressor register
file. Bar 1 is used to map the DMA registers. There are 2
registers that can be accessed in the DMA function and
they are used to store the source address in main memory
where the data block to be compressed or decompressed
can be found and the destination address where the results
of the operation should be written. These 2 registers are
32-bit wide so a full 4 Gbyte of memory space can be
addressed. Additionally, a reset command has been
mapped to address 0 in BAR 1 so writing to this location
resets the DMA and control logic to a known initial state.
The operational mode is simple: the host CPU starts
writing the internal registers of the system with data
indicating the memory address where the data block to be
processed starts, its size in bytes and the memory address
where the processed data block should be stored. Then
writes the instruction FIFO with a command indicaling , «
the operation to be executed compression of
decompression plus some additional control information.
After the command has been written the device takes
control of the PCI bus in master mode and transfers data
from main memory to the input FIFO, the core processes
this data and the output is written in the output FIFO.
Finally, the device writes the contents of the output FIFO
to main memory. When this process terminates an
interrupt is issued by the device so the host CPU can read
the internal status registers using the status FIFO and
verified that an abnormal termination has not taken place. §

rD

5 oss

6. Performance Benchmarking

Figures 2 shows the compression performance obtained
by the X-MatchPRO algorithm. The X axis varies the
block size that is compressed independently resetting the
dictionary between blocks. This means that no history
information is kept from the compression of one block to
be used in the compression of the next block. The Y axis
measures the compression performance as a ratio of
output bits to input bits so the smaller the value the better
the compression. We have selected the 3 hardware
amenable algorithms for the performance benchmarking.
The ALDC (Adaptive Lossless Data Compression) [3]
developed by IBM, the DCLZ (Data Compression
Lempel-ziv) [4] developed by Hewlett-Packer and the
LZS (Lempel-Ziv Stac) [5] developed by HiFn. These
methods are representative of the fastest and better
compressing technology available today. We have
increased dictionary size to the maximum allowed in each
algorithm to have a fair comparison of compression
performance. This value is up to 2048 locations for the
LZ algorithms and 1024 locations for X-MatchPRO.

08 -
075 .
07
065 -
06

05
045
04 -
035

256 1K 4

Block Size

R

File

T X-MatchPROWW_ 1024 % - LZ§ = =a= = DCZL -+ -# -« ALDC

Figure 2. Canterbury data set

The Canterbury data set [6] includes representative data
found in modern computer systems. It is biased to data
textual in nature such as book chapters, poetry, C and
Lisp source code or html web pages but it also includes
application data, excel files and fax images. From the
figure it can be observed that the performance of the 4
algorithms is similar with compression slightly better than
0.5. Compression improves with block size but it is also

293

noticeable a saturation effect after a block size of 4
Kbytes

7. Conclusions

This paper has presented a new method of performing
lossless compression based on parallel dictionary
architectures where each dictionary entry stores a
multiplicity of bytes instead of the classical approach of
storing a single byte. The algorithm uses an array of
techniques to compensate for the smaller number of
matches that are generated in a wider dictionary and
obtain competitive compression ratios. The hardware
architecture has been demonstrated using an Altera PCI
board that includes an APEX20KE FPGA device as its
programmable logic. Our test methodology has replaced
the classical test vector approach for self-checking
hardware where each compression operation is deemed to
be correct by simultaneously decompression of the data
being compressed. This has been made possible thanks to
the full-duplex architecture used in X-MatchPRO and the
usage of CRC codes for automatic verification. The
device has been successfully operated at 49.5 MHz
generating a throughput of 1584 Mbits/second since up to
4-bytes can be processed per clock cycle. The full-duplex
architecture operating in non-test mode allows
simultaneous compression and decompression of data
doubling the performance of the half-duplex device up to
3168 Mbits/second.

Acknowledgements: We acknowledge with gratitude the
equipment donation obtained from Altera corporation for
this project.

(1]
[2]

T. C. Bell, J. G. Cleary and I. H. Witten, ‘Text
Compression’, ,Prentice-Hall, NJ, 1990.

D. A. Huffman, ‘A Method for the Construction of
Minimum Redundancy Codes’, Proceedings of IRE, Vol.
40, pp. 1098-1101, 1951.

JM.Cheng and L.M.Duyanovich, ‘Fast and Highly
Reliable IBMLZ1 Compression Chip and Algorithm for
Storage’,Hot Chips VII Symposium, August 14-15, pp.
155-165, 1995.

AHA3211 40 Mbytes/s DCLZ Data Compression
Coprocessor IC’, Product brief, Advanced Hardware
Architectures Inc, 2635 Hopkins Court, Pullman, WA,
1997.

9600 Data Compression Processor’, Data Sheet, Hi/fn
Inc, 750 University Avenue, Los Gatos, CA, 1999,

R. Amold, T.Bell, ‘A Corpus for the Evaluation of
Lossless Compression Algorithms®, Data Compression
Conference, pp. 201-210, 1997.

B3]

[4]

5]
(6]

