22003

he ar-
1. 14,

e for

RAM
able

ntrol
ymp.

nfig-
ton,

”»

ng,
Las

™
ring
01,
0ds
., R
1av-
vol.
lew

uc-

D,

= & 7

-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003 499

Gbit/s Lossless Data Compression Hardware

José Luis Nufiez, Member, IEEE, and Simon Jones, Senior Member, IEEE

Abstract—This paper presents the X-MatchPRO high-speed
lossless data compression algorithm and its hardware implemen-
tation, which enables data independent throughputs of 1.6 Gbit/s
compression and decompression using contemporary low-cost
reprogrammable field-programmable gate array technology. A
full-duplex implementation is presented that allows a combined
compression and decompression performance of 3.2 Gbit/s. The
features of the compression algorithm and architecture that
have enabled the high throughputs are described in detail. A
comparison between this device and other commercially available
data compressors is made in terms of technology, compression
ratio, and throughput. X-MatchPRO is a fully synchronous design
proven in silicon specially targeted to improve the performance of
Ghbit/s storage and communication applications.

Index Terms—Data compression, field-programmable gate ar-
rays (FPGAs), lossless circuits.

1. INTRODUCTION

OSSLESS data compression, where the original data is

reconstructed exactly after decompression is being ac-
cepted as a tool that can bring important benefits to a computing
system. Its applications have been increasing over the past years
thanks to a combination of pressure for more bandwidth allied
and to the need to improve storage capacity [1]-[5]. Lossless
data compression has been successfully applied to storage
systems (tapes, hard disk drives, solid state storage, file servers)
and communication networks (LAN, WAN, wireless). Data
compression is not being used to its full advantage in systems
that operate at bandwidths of over 1 Gbit/s due to performance
limitations encountered in the data compression hardware. This
paper describes the X-MatchPRO method and architecture
that uses a CAM-based dictionary where multiple symbols
are processed per cycle to deliver the required performance to
avoid becoming a bottleneck in a system operating at a gigabit
per second bandwith.

The remainder of this paper is organized as follows: Section II
presents a review of the area of lossless hardware-based data
compression. Section III describes the characteristics of the
X-MatchPRO algorithm. Section IV analyzes the X-MatchPRO
compression/decompression architecture. Section V compares
the X-MatchPRO compressor with other commercially avail-
able data compressor devices. Finally, Section VI concludes
this paper.

Manuscript received March 20, 2001; revised January 8, 2002 and September
26, 2002.

J. Nuiiez is with the Department of Electronic and Electrical Engineering,
University of Loughborough, Leicestershire LE11 3TU U.K.

S. Jones is with the Department of Engineering and Design, University of
Bath, Bath BA2 7AY, UK.

Digital Object Identifier 10.1109/TVLSI.2003.812288

1. BACKGROUND

A useful classification of lossless data compression systems
identifies two main components: a model and a coder [6]. The
purpose of the model is to identify where the redundancy is lo-
cated in the input data and signal repetitive data sequences to
the coder. The coder uses the information obtained from the
model to replace the input data for shorter codewords and to
produce a compressed output. Compression is obtained when-
ever the ratio of output bits to input bits is less than 1. Although,
some coding methods map better than others depending on the
chosen model, many different combinations between model and
coder are possible.

Modeling can be done mainly in two different ways: sta-
tistical or dictionary. Both methods have found their way to
hardware and software implementations of lossless data com-
pression systems.

1) Statistical Methods: Statistical methods show a clearer
separation between model and coder than dictionary methods.
Statistical modeling is based on assigning values to events de-
pending on their probability. The higher the value the higher
the probability. The accuracy with which this frequency distri-
bution reflects reality determines the efficiency of the model.
The best lossless compression figures reported in the literature
correspond to software based statistical methods [7] like Pre-
diction by Partial Matching (PPM) [8] and [9] and Dynamic
Markov Compression (DMC) [10]. These methods are based
on variable order Markov modeling [11], [12] where predic-
tions are done based on the symbols that precede the current
symbol. Statistical methods in hardware are restricted to simple
higher order modeling using binary alphabets that limits speed,
or simple multisymbol alphabets using zeroth-order models that
limits compression. Binary alphabets limit speed because only
a few bits (typically a single bit) are processed in each cycle
while zeroth-order models limit compression because they can
only provide an inexact representation of the statistical prop-
erties of the data source. Coding is typically performed with
methods like Huffman coding [13] or arithmetic coding [14],
the latter being preferred because its efficiency can be made
arbitrarily close to the entropy or information content of the
model by controlling its precision and therefore is optimal for
any model [15]. A few statistical data compressors have been re-
ported in the literature. A zeroth-order model associated with an
arithmetic coder is described by Boo ef al. in [16] for coding of
multilevel images. The probabilities in the model are stored in
cumulative format using reference probabilities to simplify the
update process. The arithmetic coding process has been sim-
plified by truncating the multiplier. An implementation of a
parallel binary arithmetic coder is done by Jiang in [17] using
an IBM Q-coder [18] as the building block. The Q-coder is a

1063-8210/03$17.00 © 2003 IEEE

500 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

seventh-order binary Markov model associated with a corre-
sponding binary arithmetic coder. The parallel implementation
in [17] processes 4 bits in parallel and since there are only 16
possible input combinations, parallel decoding is also possible.
The same technique is used in [19] to obtain a parallel imple-
mentation of a multi-alphabet arithmetic coder associated with
a byte-based zeroth-order model. The system processes 8 B at
a time, but parallel decoding is in this case unfeasible because
the number of possible input combinations is 2562, hence, the
complexity of the hardware is too high. The work presented by
the same author in [20] is the implementation of a byte-based
zeroth-order model associated with a multi-alphabet arithmetic
coder. Kuang et al. present another high-order binary model in
[21] that describes a tenth-order Markov model with associated
binary arithmetic coder. In this case, as with the IBM Q-coder,
the high-order binary Markov modeling uses fixed-order models
and not variable-order models such as PPM, because it is al-
ways possible to predict both symbols in a binary alphabet. The
chip has been implemented in a 0.8 yzm and clocks at 25 MHz.
The compression ratio is in the order of 0.5, while speed is data
dependent but typically around 3 Mbit/s. Hsieh and Wei de-
scribe a byte-based zeroth-order model associated to a multi-al-
phabet arithmetic coder in [22] for video compression. A sim-
ilar technique to [16] is used to store the frequency model using
some frequency counts as base and others as offsets from the
base. This technique simplifies model adaptation. The chip de-
scribed in [23] by Mukherjee et al. does not use arithmetic
coding but tree-based codes [24]. Huffman coding is the most
popular tree-based code, but others exist [25]. The code is static
and it does not adapt with changes in the incoming data source,
but since it is not hardwired but mapped to a memory device,
it can be changed to suit the application. A compression ratio
of 0.5 processing 8-bit symbols results in each symbol being
processed in approximately two memory cycles. They report
a compression performance of 95.2 Mb/s for compression and
60.6 Mb/s for decompression in a 2-ym SCMOS technology
with a clocking frequency of 83.3 MHz. An adaptive Huffman
code implementation in hardware is presented in [26]. This de-
sign is based on content addressable memory (CAM) modules to
speed up the tree adaptation process and achieves a throughput
of almost 1 bit/cycle. The model is again a zeroth-order model
but no details are available of the hardware implementation.

2) Dictionary Methods: Dictionary methods try to replace
a symbol or group of symbols by a dictionary location code.
The modeling stage is given extra importance while coding
is simplified. Some dictionary-based techniques use simple
uniform binary codes to process the information supplied by
the modeller. Both software and hardware based dictionary
models are very popular, achieving good throughput and com-
petitive compression. Utilities like Pkzip and ARJ in software,
or hardware algorithms like ALDC developed by IBM [27],
[28] and also available from AHA [29], and LZS developed
by STAC/Hifn [30], [31] illustrate this situation. These four
examples are Lempel-Ziv-1 (LZ1) derivatives [32]. The ALDC
chip is implemented in a 0.8-m CMOS technology and clocks
at 40 MHz to obtain a throughput of 320 Mb/s. The AHA
implementation achieves 320 Mb/s at a 40-MHz operation
and it is implemented in a 0.5-um CMOS technology. The

STAC/Hi/fn device has been implemented in a 0.35-m CMOS
technology. It clocks at 80 MHz with a throughput of 640 Mb/s.
The Hi/fn device is also a full-duplex architecture meaning that
it can compress and decompress simultaneously. Both of these
chips use CAM memory to store the dictionary and enable
parallel searching and adaptation. Surk presents a processing
element (PE)-based architecture for the LZ1 algorithm in [33].
Each PE compares the incoming input symbol with the symbol
it stores in one cycle and shifts the symbol to its neighbor. The
data input rate is constant and post-layout simulation indicates
a performance of 700 Mb/s in a 0.5-um CMOS technology. The
basic symbol is 7-bits wide so the compressor is only suitable
for the compression of ASCII coded text. Jung and Burleson
describe another LZ1 implementation for optimization of
wireless local area networks in [34]. The architecture includes
multichannel support being able to switch between different
dictionaries depending on the communication channel being
compressed. This improves compression since each channel
has its own dictionary but there is an overhead associated with
the multiplexing. A throughput of 50 Mb/s is reported based
on 1.2-um CMOS technology using a clock frequency of
100 MHz. Nusinov and Pasco also present an LZ1 derivative
for multichannel compression in [35]. The different dictionaries
are stored in RAM memory externally and the appropriate one
is uploaded in internal CAM. The chip clocks at 20 MHz and
has a throughput of 80 Mb/s.

Lempel-Ziv-2 (LZ2) [36] algorithms have not become as
widely used as LZ1 algorithms. The UNIX utility ‘compress’
uses LZ2 and the data compression Lempel-Ziv (DCLZ) family
of compressors initially invented by Hewlett-Packard [37] and
currently being developed by AHA [38], [39] also use LZ2
derivatives. The DCLZ family of devices clock at 40 MHz for a
throughput of 160 Mb/s based on a 0.5-um CMOS technology.
Bunton and Borriello present another LZ2 implementation
in [40] that improves on the [37] DCLZ. This new algorithm
uses a similar. dictionary structure to [37] but it offers a more
advanced dictionary maintenance mechanism where a tag is
attached to each dictionary location to identify which node
should be eliminated once the dictionary becomes full. The
design has been implemented in a 2-um CMOS technology
with a throughput of 160 Mby/s.

Other work that cannot be classified in the range of statistical
or dictionary coding includes the genetic algorithms (GA)
developed by the DCP Research Corp. in the DCP816 chip
[41]. This chip is implemented in a 1-ym CMOS technology
and has a throughput of around 1.68 Mb/s clocking at 40 MHz.
It supports multiple channels of compression/decompression
and uses 512 kB of external RAM per channel. Sakanashi ez al.
presents in [42] a device for printer image compression also
based on a genetic algorithm that is able to select the best group
of pixels to be used as context to predict the next input pixel de-
pending on the characteristics of the image being compressed.
The compressing method is lossless and it is associated to re-
configurable hardware such as an field programable gate array
(FPGA) plus a standard IBM QM-coder [43], a derivative from
the Q-coder, to perform the compression itself. Our own work,
the X-MatchPRO family of devices, belongs to the category of
dictionary-based compressors but they are not LZ derivatives.

NUNEZ AND JONES: Gbit/s LOSSLESS DATA COMPRESSION HARDWARE 501

RL (Run Length infemal) desciiption
Maich [Match [AddressfiMatch fype [Lherck| (Match] Address|Match Micioh) Maich
Aerals
o[1 0 _ [- -] 6,2 | 3 C 0o |2 0 _"(
Search uples = at | v_ T his atl
n | -
v v v Output L Output
(i} the_ 1 0 atl 1| Oue v_ 1 0 :-n 1
1 atli 1| FllMaich if the_ V| mssn atl 1 1 v_ 1
— ¢ — 1_ |
2 hung 0 hung N M
2 1 the 1| roa | o ot 1
- N Mageh - g
Reserved Resorved Reserved
RU @ 3| location At E 3 m‘°°°“°' U @ focation @ 3 location Ful Match I
courter fosgnal dondl counter fo signal Ry fo signal
RU uns counter Rl runs RU NS counter Rl s Run length output
Akromes D At v o3 v Lo ls s]
Cycleo 1
Maich Match Literals] Match[AddressiMatch Lorals Maich Maich Lorols
o |0) _ - - - - - - _ - o] o 1 v
atl at ot atv
| ' L
M v J v J 4
0 atl ' jo“’p"' 0 att 1 at) 1 0 :u 1 | Pofial Makch i
Output Output Output
1 his 0 1 s 0 this o 1 s 1
> — —
2 v_ 0 2 0 L /] 2
RU stars | RU - -]
Skl pipaline Reserved counter Resarved 3 Reserved Reserved
11 3| ocation |Z| 3 location RU D Jocaton E 3| locolion
RU o signal 1o sgnal counter tosgnal RU 1o signal
courter | RUl runs RilActve Il RU s RU runs counter RU runs
Emply pioeine RL fivisheell
Cycie 6 Cycle & Cyoe 7 Fueh RL code Crcle 8

* Adapiation = 1 => Load data from previous position
Adapiation = 0 => Keep cunent dato

Fig. 1. X-MatchPRO example.

X-MatchPRO originates from our previous research {44]-[48]
and advances in FPGA technology. The flexibility provided
by using this technology is of great interest since the chip
can be adapted to the requirements of a particular application
easily. The objective is then to use programmable hardware
able to obtain good compression ratios and still maintain a high
throughput so that the compression/decompression processes
do not slow the original system down.

III. THE X-MATCHPRO ALGORITHM

The X-MatchPRO algorithm uses a fixed-width dictionary of
previously seen data and attempts to match or partially match
the current data element with an entry in the dictionary. Each
entry is 4 B (tuple) wide and several types of matches are pos-
sible where all or some of the bytes at different positions within
the tuple match. Those bytes that do not match are transmitted as
literals. This partial match concept gives the name to the proce-
dure- the X referring to ‘don’t care.” At least 2 B have to match
and when no valid match is generated a miss.is codified adding
a single bit to the four-byte tuple. The dictionary is maintained
using a move to front (MTF) strategy [49] whereby a new tuple
is placed at the front of the dictionary while the rest move down
one position. When the dictionary becomes full the tuple placed
in the last position is discarded leaving space for a new one.
X-MatchPRO reserves one location in the dictionary to code
internal runs of full matches at location zero. Since the MTF
strategy forces anything that repeats to be stored at location zero

(top of dictionary), this run-length-internal (RLI) technique is
used to efficiently code any 32-bit repeating pattern.
The coding function for a match is required to code several
fields as follows. ~
A zero followed by:
If normal code:

1) Match location: It uses the binary code associated to
the matching location.

2) Match type: That indicates which bytes of the in-
coming tuple have matched. This is codified using a
static Huffman code based on the statistics obtained
through extensive simulation.

3) Any extra characters that did not match transmitted
in literal form.

If RLI code:

1) RLI location: The last address in the dictionary is
reserved to code RLI events.

2) Run length: 8 bits are used to indicate how many
32-bit repeating patterns have been observed. The
maximum run length that it is possible to process in
a single code is therefore 255.

‘The coding function for a miss has two fields as follows:
A one followed by:
1) The 4 B in literal form.
A data tuple (4 B) is added to the front of the dictionary while
the rest move one position down if a full match has not oc-
curred. The MTF technique is only applied when dealing with

502 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

Compression CAM-based model
U_datain
2
Pipeline
RO Packer
: ¥
SEARCH
REGSTER
2
164
2 NAH
CAM Dila
Provioss ‘@ %5
e |2 | PO
ou i
DICTIONARY .
{164 byls) Conkol
wou || oo a#m_u
wh b \

Fig. 2. Architecture of the compressor.

full matches. In this case, the tuples from the first location until
the location previous to the matching tuple move down one loca-
tion, while the matching tuple is placed at the front of the dictio-
nary. The algorithm is illustrated with an example in Fig. 1. The
example is based on a small dictionary of only four locations,
one of which is reserved to code RLI events. Each dictionary
location has a different address. The adaptation vector column
defines how the dictionary adapts for the next cycle so that a
1 means load data from north neighboring location, while a 0
means keep current data. Each cycle in the figure corresponds
to a different clock cycle. The search data in the cycle 1 of Fig. 1
generates a full match at location 1 and the corresponding output
is generated together with a new adaptation vector that will shift
the dictionary for cycle 2. The search data in cycle 2 cannot
be found in the dictionary so a miss is generated with the four
missing bytes being added to the output in literal form. The cycle
3 search generates a partial match where the two first bytes of
the search tuple are found in location two. The match type 3
signals this matching condition and the two missing bytes are
added to the output in literal form. Cycle 4 generates a new full
match this time at location 2. An RLI coding event is active in
cycles 5, 6, and 7. The RLI output is generated at cycle 8 when
the run stops with a length of 3. The RLI counter only incre-
ments when the search data is present at location 0. The code
generated at cycle 5 is removed from the output when the RLI
counter exceeds 1 because cycle 5 would be coded as part of the
runlength. This output code would have been needed if the RLI
counter had remained with a count of 1 indicating a single full
match at location 0 and not a valid runlength.

IV. THE X-MATCHPRO HARDWARE

X-MatchPRO uses a simple coprocessor style interface to
communicate with the rest of the system. Compression and
decompression commands are issued through a common 16-bit
control data port. A 3-bit address is used to access the internal

registers that store the commands plus information related
to compressed and uncompressed block sizes for reading or
writing. A total of six registers form the register bank. Three
registers are used to control the compression channel and the
other three for the decompression channel. The first bit in
the address line indicates if the read/write operation accesses
compression or decompression registers. The chip is designed
to compress any block size ranging from 8 B to 32 kB. A
decompression operation can be requested in the middle of a
compression operation and vice versa.

A. Compression Architecture

The compression architecture is based around a block of
CAM to realize the dictionary. This is necessary since the
search operation must be done in parallel in all the entries in the
dictionary to allow high- and data-independent throughput. The
length of the CAM varies with three possible values of 16, 32,
or 64 tuples trading complexity for compression. Dictionary
size is variable to be able to adapt algorithm complexity to
the resources available in the selected FPGA. The number
of tuples present in the dictionary has an important effect on
compression. In principle, the larger the dictionary the higher
the probability of having a match and improving compression.
On the other hand, a bigger dictionary uses more bits to code
its locations degrading compression when processing small
data blocks that only use a fraction of the dictionary length
available. The width of the CAM is fixed with 4 B/word and
its columns can be configured as selectable shift-registers to
implement the move to front adaptation policy.

Fig. 2 shows the compression architecture. There are three
major components in the compression architecture corre-
sponding to compression model, coder, and packer. Fig. 2 also
shows the location of the pipeline registers used to reduce
the clock period of the design. There are a total of five levels
of registers from input to output and the design supports
incremental transmission, which means that transmission of
compressed data present in the output buffers can start before

NUNEZ AND JONES: Gbit/s LOSSLESS DATA COMPRESSION HARDWARE

503

Provious31) Seachi3l) Provicun(30) Secrch(30) Provioust0] Secrchi0)
CAM cell CAM cell CAM cel
Move Move Move
Move(®) [. [
Makchis) [[Moch Nt [Maich o I P
Povow) [5oaoN pevow| [seacn Povous | [secro)
CAM ool camea| | T CAM cet
Move Move Move
Move2 [. [[_
Mokchz) Ned] [Malich Net] | Maich(z) -
CAM col oot | T cavont| |
Move Move Move
M) L 1 I ‘
Match{} Nexd| IMatch M Ned] l Moalch(1)
CAMcel| cAMom| T CAM ool
Move Move Move T
Maichi0) AMdatch Tmaich [Moo
Fig. 3. CAM-Based dictionary architecture.

the whole data block is compressed. These two features help to
maintain the latency of the design to a minimum.
1) The Compression Model Comprises:

a) Dictionary: CAM-based dictionary with 16, 32, or 64
tuples. The n-tuple dictionary is formed by a total of nx32 CAM
cells. Each cell stores one bit of a data tuple and it can main-
tain its current data, or load the data present in the cell above.
The dictionary architecture is illustrated in Fig. 3. The architec-
ture compares the search data with the data present in the dic-
tionary using one XOR gate to do the comparison of each input
bit plus (logz(dictionary width)) 2-input AND gates tree to ob-
tain a single comparison bit per dictionary position. The delay
of the search operation, although in principle is independent of
dictionary length, in practice the high fanouts and long wires of
large dictionaries degrade its speed considerably. An adaptation
vector named move in Fig. 3 and whose length equals the dictio-
nary length defines which cells keep its current data and which
cells load data from its north-neighboring cell.

b) Move generation logic: The adaptation vector move is
generated by the movement generation logic using the results
of the search operation present in the match vector of Fig. 3.
The movement generation logic function is to propagate up a
match position so all the dictionary cells located over the match
position and the match position itself load the data of their north
neighboring cells, while all the dictionary cells located down
the match position keep the current data. New data is always
inserted at the top of the dictionary so when a data element is
found in the dictionary it is promoted from its current position to
the top of the dictionary in a single cycle. The propagation delay
of the movement generation logic is O(log2(dictionary length))
2-input OR gates. Data flows toward the bottom of the dictionary
as it grows older. The oldest data element is always located at
the bottom of the dictionary and this is the one evicted from

the list when room is required for a data element new to a full
dictionary.

¢) Out of Date Adaptation (ODA) logic: ODA logic
forces the dictionary to adapt with previous match information
and breaks the critical path in compression improving speed.
In principle, the adaptation vector move must be generated
using the results of the current search operation available in the
match vector before the next cycle can start. This search and
adaptation operation forms a critical feedback loop specially
with large dictionaries because it depends with dictionary size
with O(1 + log,(dictionary width+ log, (dictionary length))
levels of logic and the search operation becomes critical since
the fanout of the search register is directly proportional to
dictionary length. It is not possible to add a pipeline register in
the feedback loop without affecting the algorithm functionality
so to further increase the speed of the circuit the algorithm is
modified introducing the ODA mechanism. ODA implies that
adaptation at time ¢ + 2 takes place using the match results
generated by the previously process data at time ¢ and not
the one at time ¢ + 1. This technique breaks the fundamental
feedback loop by adding a register between the search and
adaptation circuitry. The danger is that dictionary efficiency
could be lost if the ODA technique duplicates the same data in
different positions in the dictionary. Prior to adding a register
between the search and adaptation operations, the adaptation
vector at time ¢ provides information to reorder the dictionary
at time. ¢ + 1 and makes sure that data words are unique in
the dictionary. In ODA the adaptation vector at time ¢ is not
effective until time ¢ + 2 so adaptation at time ¢ + 1 could
insert a data element at the top of the dictionary that already
exists in some other dictionary location. After a few cycles the
same data could be stored in multiple dictionary positions and
dictionary efficiency would be lost degrading compression. The
way to avoid this is by forcing the current adaptation vector
to adapt not only the dictionary as before but also the next

504

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

Search fupies = at | at !
])_ y_] hung 1
I i ;
7 v \J v \d ¢ l l
1 the_ 1 1 at 1 [FtMateh Il 4 atl 1 1 ; ,,]
| } L | —
v 7 v v :]
0 atl 1 IFull Match 1l atd O |Full Maich If| 1 atl 1 1 :nl 1
0 hung 0 0 hung 0 hung
0 1 1 hung Y ratMatch il
| |
) v 0 0 v_ 0 0 v 1 [P Mateh 1l 4 ; *0
Data curent Data
Adaptation Adapfation Adaptation Adapfation agaptation Adapiation adagstation Adoaptation
Cycle 1
Cycle 2 Cycle 3 Cyclo 4
over
g : . over] _ung
|) . ! Ny v !
v \ 4 v A4 v A ﬁ ﬁi
1 hung 1 Ful il ! hung 1 1 over 1 | FulMatch i over 1
¥ 2 v v \ A\l v \ 4
1 v_ 0 1 hung 1 1 hung 0 1 over 1
1 at 0 0 v_ 1 1 v_ 0 0 hung 1| Portial Match It
| 4
L7 £ \ 4 v
1 hung 0| Ful Matchll| O atl 1| Missii 1 atl 0 o v 1
&W
Adapkation Adaoptation Adaptation Adaptation Adaptation
Cycle 5 Cycle 6 Cycle7 Cyclo 8

* Adapiation = 1 => Loaddotafrompreviouspodﬂon
Adaptation = 0 => Keep curent data

Fig. 4. Out of date adaptation example.

adaptation vector. Fig. 4 illustrates this process using a small
dictionary of only four positions in length and 4 B (tuple) in
width. Every cycle of Fig. 4 corresponds to a different cycle.
The multiple full-match events in cycles 2 and 5 show how the
search data could be found simultaneously at position 0 and at
position higher than zero, but in this case the match at position
0 is selected as valid. The next adaptation vector depicted at
the right of the dictionary depends exclusively on this match
information. Fig. 4 shows how ODA adapts the dictionary
at time ¢ + 2 using a modified adaptation vector originally
generated at time ¢ and how data duplication is restricted to
position 0 maintaining dictionary efficiency. For example, the
current adaptation vector depicted at the left of the dictionary
for cycle 3 is generated shifting down the next adaptation vector
of cycle 2, as indicated by the current adaptation vector of cycle
2. The current adaptation vector at cycle 3 adapts the dictionary
for cycle 4. By using this simple technique, the effect of ODA
in dictionary efficiency is negligible because in the worst case
only one dictionary position contains repeated information and
in the best case all the dictionary positions contain different
data. The logic cost of ODA is very small since the basic ODA
cell only contains a flip-flop and a multiplexor. Fig. 5 shows the
ODA logic plus the movement generation logic for a dictionary
of four positions.

d) Priority logic: This logic assigns a different priority
to each of the possible matches. A full match has the highest

priority while partial matches are assigned priorities according
to the number of matching bytes. The higher the number, the
higher the priority.

e) Best match decision logic: Logic that selects one of
the matches as the best for compression using the priority
information.

2) The Coder Comprises:

J) Main coder: Main X-MatchPRO coder whose function
is as follows: when a match is detected it assigns a uniform bi-
nary code of size log,(dictionary size) to the match location
preceded by a single bit set to 0, a static Huffman code to the
match type, and concatenates any necessary bytes that were not
found part of a match in literal form. There are 11 possible dif-
ferent match type combinations of 2, 3, or 4 B matching in the
tuple. The Huffman tree, obtained after extensive simulation,
has only four different code lengths of 2, 3, 4, and 5 bits. The full
match is the most probable match type and its Huffman code is
only 2-bits long. Matches of three nonconsecutive bytes are the
least probable and they are assigned 5-bit long Huffman codes.
If instead of a match a miss is detected, the first single bit is set
to 1 and the 4 B in literal form follow.

g) RLIcoder: The RLIcoder detects the existence of mul-
tiple full matches at location zero, using a counter. If the counter
exceeds the count of 1, then an RLI event becomes active, the
pipeline is empty from the previous code, and the output of the
chip is frozen while the run length is taking place. A maximum

NUNEZ AND JONES: Gbit/s LOSSLESS DATA COMPRESSION HARDWARE

505

Movement Generation Logic

Match(2) <

Match(1) =

_D : Move(1)

Maich{0)

Fig. 5. Adaptation logic architecture.

of 255 full matches at location O can be coded in a single RLI
codeword. The code corresponding to the last location in the
dictionary is reserved to signal RLI events.

3) The Packer Comprises:

h) Bit assembly logic: Logic that assembles the variable-
length codewords produced by the coder into 64-bit fixed length
codes which are then output to the width adaptation logic.

i) Width adaptation logic: This logic reads in 64-bit com-
pressed words from the bit assembly logic and writes out 32-bit
compressed words to the compressed output bus. It performs a
buffering function smoothing the data flow out of the chip to
the compressed port and it also transforms the data width from
64-bit to a more manageable 32-bit. It contains a total of 2 kB
of fully synchronous dual-port RAM organized in two blocks
of 256 x 32 bits to buffer compressed data before it is output to
the compressed data out bus.

B. Decompression Architecture

Fig. 6 shows the decompressor architecture. The decom-
pressor channel is also formed by three major components:
the decompression model, decoder, and unpacker. The number
of registers in Fig. 6 from input to output is again five, so
the latency of the compressor and decompressor channels is
comparable. The design supports incremental reception so
decompression of the compress block can start before the
whole data block has been received.

1) The Decompression Model Comprises:

Jj) Dictionary: Fully synchronous RAM-based dictionary
that stores the history data during a decompression operation.
The contents of the RAM dictionary during decompression must
be the same as the contents of the CAM dictionary during com-
pression in each cycle. Adaptation must take place in exactly the
same way to enable correct decompression of the compressed
block. The initialization of the compression CAM sets all words
to zero. This means that a possible input word formed by zeros
will generate multiple full matches in different locations. The
algorithm simply selects the full match closest to the top. This
operational mode, in effect, initializes the dictionary to a state
where all the words with location address higher than zero are
declared invalid without the need for extra logic. The reason is
that location x can never generate a match until the data con-
tents of location z — 1 are different from 0 because locations
closer to the top have higher priority generating matches. The
MTF adaptation mechanism shifts down the dictionary when
full matches are not detected and, therefore, ensures that the
last word from this initial state to be deleted from the dictionary
is always the word located at location 0O at time 0. This oper-
ational mode in compression enables the decompression RAM
dictionary to have only location 0 loaded with value O during
the initialization phase because references to RAM locations
higher than zero are not possible before their contents are up-
dated. This technique avoids having a long overhead equal to
dictionary size cycles to initialize each position in the RAM to

506 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

the CAM dictionary the savings in complexity allow having the
full-duplex architecture in a single device. This is true because
the basic pointer word width is 4, 5, or 6 bits depending on the
length of the dictionary. On the other hand, the basic data word
width is 32 bit. Each position in the pointer array is reset to a
value the same as its physical location in the array before each
decompression operation.

) Move generation logic: This logic generates the adap-
tation vector depending on the match type and match location.
The adaptation vector moves the CAM dictionary in compres-
sion and the pointer array in decompression.

m) ODA logic: This component forces the pointer array
to adapt with previous match information. The ODA logic in
decompression is used to replicate the adaptation process in the
compression dictionary. They have exactly the same function-

Unpacker
Decoder f Widh Acptofon g
Rl Decoder . Mah Decoder v 1 Y™
R
Polt.h Conr :
7 H
A : Omt
%.',‘, ol ALD R R
Lok Loaory——Lokn moxp | | B6x¥
ok w9 !
1 ol
BT oo £
s Doctg 6T g e in in
Conil 1%+ g | 4 Y
Unk o
™ ;
st
2
our
1 o REGISTER
im—nr—,
Fig. 6. Architecture of the decompressor.
a predefined value before each decompression operation. The Memory Compression
read and write addresses are also monitored for possible col-
lisions. If both addresses are the same, the algorithm needs to 07
read the data that is going to be written in that common address. '
This data is not present in the memory yet, but it is present in 0.6
the RAM data in bus. The RAM data is written in the memory 0.6 1 ey
normally but it is also latched temporarily in a register. Multi- 0.55 4 e
plexing logic selects the output coming from this register instead
of the output coming from the memory when the same address CR 05
is being read and written. The read address is also modified to 045 o s
an unused address to make it different from the write address 0.4
and avoid corrupting the RAM contents. 0.38 doo
k) Pointer array: The pointer array logic performs an in- ’
direction function over the read and write addresses that ac- 0.3 T T ' ' '
-cessed the RAM dictionary. It models the MTF maintenance 256 1k 4k 16k File
policy of the CAM dictionary moving pointers instead of data. Block size
The pointer array enaples mappi1_1g the CAM dictionary to RAM o = XMIGHPRO(8) — - XMaIhPRO(2)
for decompression. Since the pointer array is much smaller than T X-MalchPRO(64) TS
e ALDC —#—DCLZ

Fig. 7. Compression performance on the memory data set.

ality so both dictionaries are maintained in synchrony, although
its use to improve the timing characteristics of the design is re-
stricted to the compression channel.

n) Output tuple assembler: Module that assembles a de-
compressed tuple using dictionary information and any literal
characters present in the code.

2) The Decoder Comprises:

0) Main decoder: The main decoder obtains a match type
and a match location from the codeword supply by the bit un-
packer. The first bit defines if a miss or a match follows. If a
match is detected the next log, (dictionary size) following bits
in the codeword define the match location. The Huffman code

NUNEZ AND JONES: Gbit/s LOSSLESS DATA COMPRESSION HARDWARE

507

Disc Compression

0.55 -

CR 0.5

0.45 -

04 4

256 1k

— - — X-MatchPRO(16)
——a— X-MatchPRO(64)
—*-—ALDC

Fig. 8. Compression performance on the disc data set.

for the match type follows the match location code. If the match
is partial the missing bytes follow the match type. If instead of a
full or partial match a miss is detected the next 32 bits following
the first bit correspond to the four missing bytes.

P) RLI decoder: RLI decoder that when the match loca-
tion in the codeword corresponds to the last position of the dic-
tionary outputs match location 0 and match type 0 as many times
as the number of repetitions indicated in the next 8 bits that de-
fined the run length. A counter is loaded with the run length and
then it counts up until this value is reached. ‘

3) The Unpacker Comprises:

q) Bit disassembly logic: This logic unpacks 64 bits of
compressed data read from the internal buffers into variable-
length codewords. To be able to shift out old data and concate-
nate new data the codeword length must be supplied by the de-
coder logic. This feedback loop between the decoder logic and
the unpacker logic is illustrated in Fig. 6 with the signal match
width extending from the main decoder module to the code con-
catenate and shift module. The architecture of this module has
been parallelised so concatenation of new data is done in par-
allel to the decoding operation and only the shifting of old data
out must wait for the decoding operation to complete. This fed-
back loop remains, though, as the critical path of the design and
limits the maximum clock frequency.

r) Width adaptation logic: This logic performs the equiv-
alent but opposite function as its counterpart in the compression
channel. It reads in 32-bit of compressed data from the input
compressed bus and it writes out 64-bit of compressed data to
the bit disassembly logic when it requires more data. It per-
forms a buffering function smoothing the data flow in the chip
from the compressed port. It contains 2 kB of fully-synchronous

4k 16k File
Block size
— @~ -X-MatchPRO(32)
-4 28
—#—DCLZ

dual-port RAM organized in two blocks of 256 x 32 bits each
as in the packer.

V. PERFORMANCE COMPARISON

Our performance comparison is based on several lossless
compression devices currently commercially available. These
ASIC compressors are the ALDC1-408 (28] (IBM) and the
AHA3521 [29] (AHA) that implement the adaptive lossless
data compression (ALDC) (LZ1) algorithm by IBM, the
AHA3211 [39] that implements the DCLZ (LZ2) algorithm by
AHA and Hi/fn 9600 [31] that implements the Lempel-Ziv Stac
(LZS) (LZ1) algorithm by STAC/Hifn. Two data sets have been
chosen as representatives of network and computer-originated
traffic: the memory data set and the disc data set. The memory
data set is formed by data captured directly from main memory
in a UNIX workstation used in an engineering environment.
The disc data set is formed by typical data found in the hard
disk of the same workstation.

Figs. 7 and 8 show the compression performance comparison.
It is common in networking and storage applications that data
is present in small packets so the performance of these algo-
rithms is evaluated in function of four different block sizes plus
file-based compression. The “Y” axis is the compression ratio
(CR) defined as the ratio output bits/input bits so the smaller the
figure the better the compression. The “X” axis is the block size
defined as the number of bytes in a block data to be compressed
independently. This means that the dictionary is cleared each
time a data block is processed. Fig. 7 shows that the compression
performance in memory compression is competitive with other

508

TABLE 1
COMPARISON SUMMARY

X-MatchPROv4 Performance Summary.

[EEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

DEVELOPERS IBM Advance Hardware STAC System Design
Architectures (AHA) Electronics Group
Loughborough
University
CHIP* ALDC1-40S | AHA3521 { AHA3231 Hi/fn 9602 X-MatchPROv4 (16-word dictionary)
PROCESS IBM CMOS | 0.5 micron | 0.5 micron 0.35 micron | 0.18 micron 0.18 micron 0.25 micron
0.8 micron CMOS CMOS gate SRAM-CMOS | SRAM-CMOS FLASH-
triple-level array/std cell FPGA FPGA CMOS
gate Xilinx Altera FPGA
% array/std cell VIRTEX-E | APEX20KE Actel
o] é’ A500K
=] ProASIC
E COMPLEXITY | 70Kgates | NotStated | Not Stated 100 K gates 5367 LUTs 5040 LC‘s 9039 TILE‘s
A 55%ofa 60 % of a 70% of a
XCV400EBG | EP20K200EFC AS500K130-
432-8 484-1 BG456
CLOCK 40 MHZ 40 MHZ 40 MHZ 80 MHZ S0 MHZ 50 MHz 25 MHz
SPEED
THROUGHPUT 40 Mbytes/s 20 20 Mbytes/s | 80 Mbytes/s | 200 Mbytes/s 200 Mbytes/s 100 Mbytes/s
Mbytes/s
FULL-DUPLEX N/A N/A N/A 160 400 Mbytes/s 400 Mbytes/s 200 Mbytes/s
PERFORMANCE Mbytes/s
ALGORITHM ALDC ALDC DCZL LZs X-MatchPRO X-MatchPRO | X-MatchPRO
EXTERNAL RAM NO NO NO NO NO NO NO
REQUIRED
COMPRESSION 0.44 0.44 0.52 0.44 0.58 16 word 0.58 16 word 0.58 16 word
RATIO 0.53 32 word 0.53 32 word 0.53 32 word
0.51 64 word 0.51 64 word 0.51 64 word

implementations with a typical ratio of 0.5. Memory data ex-
hibits a strong 32-bit granularity because it is based on a 32-bit
operating system so it suits well the X-MatchPRO algorithm.
Compression improves with block size until a 4-Kbyte block
size is used. This is the natural block size for memory pages
and further increases in block size do not improve compression
significantly.

The disc data set of Fig. 8 is more textually bias with a lot
of database information so byte-oriented methods such as LZ
derivatives have an advantage. It shows that compression im-
proves with packet size until around 16 kB for the LZ-deriva-
tives and 4 kB for X-MatchPRO. The smaller X-MatchPRO dic-
tionaries tend to saturate earlier than their LZ equivalents. The
LZ typical dictionary size is much larger with a value of 512 lo-
cations in the IBM device and 2048 locations in the STAC/Hi/Fn
device.

Table I shows a summary of the features of these lossless
data compression devices. X-MatchPRO results are based on
three different dictionary sizes: 16, 32, and 64 locations. A
dictionary larger than 64 locations improves compression but
the flip-flop rich architecture of the dictionary demands larger
FPGAs. It is also necessary to replace the uniform binary
coding of the match locations by a more complex coding tech-
nique. Otherwise, the extra number of bits required to code the
match locations in a large dictionary damages the compression
ratio specially when compressing small packets. These three
X-MatchPRO implementations trade complexity for compres-
sion while speed remains invariant. The last column of Table I

summarizes the characteristics of the X-MatchPRO algorithm
as implemented in Xilinx, Altera, and Actel technologies. The
complexity figures correspond to the dictionary with 16 entries.
Doubling the dictionary size increases chip complexity by a
factor of 1.5 approximately.

The X-MatchPRO chips use a lower-clock frequency than the
ASIC implementations, but it can achieve higher throughput
thanks to its internal parallel architecture able to process 4 B
of input information in a single cycle while all the other solu-
tions only process a single byte. All these chips use CAM cir-
cuits to implement the dictionaries and in the case of the fastest
Hi/fn9600, ALDC1-40S and X-MatchPRO chips, each input
symbol can be processed in a single cycle. Adaptation in the
fast LZ1 implementations is based on keeping a window with
the most recently seen symbols in the dictionary. Symbols enter
and leave the dictionary in a first-in/first-out style, so model
adaptation is simplified if compared with X-MatchPRO, where
the best match must be resolved before the model is ready for a
new cycle. X-MatchPRO solves the adaptation feedback loop
that exists in its model with the use of the out-of-date adap-
tation mechanism that delays the arrival of match information
to the dictionary by one cycle without affecting its efficiency.
The packing and unpacking of compressed data is also simple
in the selected ASIC devices because they map variable-length
streams of symbols to fixed length codewords so the boundaries
between codewords are easily identifiable. On the other hand,
X-MatchPRO codewords are variable in length and their un-
packing is a more complex process and indeed, a performance

NUREZ AND JONES: Gbit's LOSSLESS DATA COMPRESSION HARDWARE

limitation factor in the chip. The complexity and performance of
the Altera Apex and Xilinx Virtex chips is comparable because
both use a hierarchical architecture with SRAM switches based
on logic cells (Altera) or logic elements (Virtex) with similar
complexity and identical feature size. Actel ProASIC devices,
on the other hand, use a flat architecture with fine-grained logic
cells that increases routing complexity and negatively affects
performance [50]. ProASIC feature size is also larger than the
Xilinx and Altera feature size and this is also a reason for lower
performance.

VI. CONCLUSION

X-MatchPRO offers an unprecedented level of compres-
sion/decompression throughput in a FPGA implementation of
a lossless data-compression algorithm for general applications.
The hardware architecture has been verified in three different
FPGA technologies. The fine granularity of the Actel ProASIC
devices has proven very efficient to implement the flip-flop
rich X-MatchPRO architecture. The higher granularity of the
Altera and Xilinx technologies combined with a more advanced
process have enabled throughputs well over the Gbit/s mark.
The full-duplex implementation effectively uses the memory
resources available in these FPGAs to simultaneously handle a
compressed and uncompressed data stream. The architecture
is easily scalable so it can be adapted to newer FPGAs with
higher gate counts with little effort. We aim to improve com-
pression for the disc data set by increasing dictionary length
and introducing more efficient coding techniques than simple
uniform binary coding for the match locations. We also expect
that an ASIC implementation of our algorithm will be able to
improve throughput by a typical factor of 3, if compared with a
similar feature size FPGA [Betz98].

REFERENCES

[1] K. Dickson, Cisco IOS Data Compression, Cisco Syst., San Jose, CA,
2000.
[2} Data Compression, Mitel Remote Access Solutions, Mitel Corp., Mitel
Networks, Kanata, ON, Canada, 2000.
[3] R. VanDuine, “Integrated Storage,” IBM Corp., Rochester, MN, 2000.
{4] D. Cressman, “Analysis of data compression in the DLT2000 tape
drive,” Digital Tech. J., vol. 6, no. 2, 1994.
[5] Data Compression Performance Analysis in Data Communications,
Hi/fn Inc., Pullman, WA, 1997.
[6] M. Nelson, The Data Compression Book. Englewood Cliffs, NJ: Pren-
tice-Hall, 1991.
[7]1 [Online] http://corpus.canterbury.ac.nz/results/cantrbry.html
[8] J. Cleary and I. Witten, “Data compression using adaptive coding and
partial string matching,” IEEE Trans. Commun., vol. 32, pp. 396402,
1984.
[91 A. Moffat, “Implementing the PPM data compression scheme,” IEEE
Trans. Commun., vol. 38, pp. 1917-1921, 1990.
[10] G.V.Cormack andR.N.S. Horspool, “Data compression using dynamic
Markov modeling,” Comput. J., vol. 30, no. 6, pp. 541-549, 1987.
[11] T.Bell, J. Cleary, and I. Witten, Text Compression. Englewood Cliffs,
NI: Prentice-Hall, 1990.
[12] Solving the Problems of Context Modeling, C. Bloom. (1998).
http://www.cbloom.com/papers/index.htrml [Online)
[13] D. Huffman, “A method for the construction of minimum redundancy
codes,” in Proc. LR.E, 1958, pp. 1098-1101.
[14] G. Langdon, “An introduction to arithmetic coding,” IBM J. Res. De-
velop., vol. 28, no. 2, pp. 135-149, Mar. 1984.
[15] A. Moffat, N. Sharman, I. Witten, and T. Bell, “An empirical evaluation
of coding methods for multi-symbol alphabets,” Inf. Process. Manage.,
vol. 30, no. 6, pp. 791-804, 1994.

509

[16] M. Boo, J. D. Bruguera, and T. Lang, “A VLSI architecture for arith-
metic coding of multilevel images,” IEEE Trans. Circuits Syst. II, vol.
45, pp. 163-168, Jan. 1998.

[17} J. Jiang, “A novel parallel design of a codec for black and white image
compression,” Signal Process. Image Commun., vol. 8, no. 5, pp.
465-474, 1996.

[18] W. B. Pennebaker et al., “An overview of the basic principles of the
Q-coder adaptive binary arithmetic coder,” IBM J. Res. Develop., vol.
32, no. 6, pp. 717-725, Nov. 1988.

[19] 1. Jiang and S. Jones, “Parallel design of arithmetic coding,” Proc. Inst.
Elect. Eng., pt. E, vol. 141, pp. 327-333, Nov. 1994.

[20] J.Jiang, “Novel design of arithmetic coding for data compression,” Proc.
Inst. Elect. Eng. Comput. Digital Tech., vol. 142, no. 6, pp. 419-424,
Nov. 1995.

[21] 8. Kuang, J. Jou, and Y. Chen, “The design of an adaptive on-line bi-
nary arithmetic—coding chip,” IEEE Trans. Circuits Syst. I, vol. 45, pp.
693-706, July 1998.

[22] M. Hsieh and C. Wei, “An adaptative multialphabet arithmetic coding
for video compression,” IEEE Trans. Circuits Syst. Video Technol., vol.
8, pp- 130-137, Apr. 1998.

{23] A. Mukherjee, N. Ranganathan, J. Flieder, and T. Acharya, “MARVLE:
a VLSI chip for data compression using tree-based codes,” IEEE Trans.
VLSI Syst., vol. 1, pp. 203-213, June 1993.

[24}1 R. M. Fano, Transmission of Information. Cambridge, MA: MIT
Press, 1949.

[25] P. Elias, “Universal codeword sets and representations of the integers,”
IEEE Trans. Inform. Theory, vol. 21, pp. 194-203, Mar. 1975.

[26] Y. Lin, “Design and hardware architectures for dynamic huffman
coding,” Proc. Inst. Elect. Eng. Comput. Digital Tech., vol. 142, no. 6,
pp. 411-418, Nov. 1995.

[27] J. M. Cheng and L. M. Duyanovich, “Fast and highly reliable IBMLZ1
compression chip and algorithm for storage,” in Proc. Hot Chips VII
Symp., Aug. 14-15, 1995, pp. 155-165.

[28] ALDC1-40S-M, IBM Corporation, IBM Microelectronics Division,
New York, 1994.

[29] AHA3521 40 Mbytes/s ALDC Data Compression Coprocessor IC, Ad-
vanced Hardware Architectures Inc, Pullman, WA, 1997.

[30] How LZS Compression Works, Hi/fn Inc, Los Gatos, CA, 1996.

[311 9600 Data Compression Processor, Hi/fn Inc, Los Gatos, CA, 1999.

[32] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” IEEE Trans. Inform. Theory, vol. IT-23, pp. 337-343, 1977.

[33] Y. Surk, T. Young, and K. Park, “A novel PE-based architecture for loss-
less LZ compression,” IEICE Trans. Fundamentals, vol. ES0-A, no. 1,
pp. 233-237, Jan. 1997.

{34] B. Jung and W. Burleson, “Performance optimization of wireless local
area networks through VLSI data compression,” Wireless Networks, vol.
4, pp. 27-29, 1998.

[35] E. Nusinov and J. Pasco-Anderson, “High performance multi-channel
data compression chip,” in Proc. IEEE Custom Integrated Circuits
Conf., 1994, pp. 203-206.

[36] J. Ziv and A. Lempel, “Compression of individual sequences via vari-
able rate coding,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 530-536,
1976.

[37] M. Bianchi, J. Katto, and D. Van Maren, “Data compression in a
half-inch reel-to-reel tape drive,” Hewlett-Packard J., vol. 40, no. 6, pp.
26-31, 1989.

[38] Primer: Data Compression Lempel-Ziv (DCLZ), Advanced Hardware
Architectures Inc., Pullman, WA, 1996.

[39] AHA3211 40 Mbytes/s DCLZ Data Compression Coprocessor IC, Ad-
vanced Hardware Architectures Inc., Pullman, WA, 1997.

[40] S. Bunton and G. Borriello, “Practical dictionary management for hard-
ware data compression,” Commun. ACM, vol. 35, no. 1, pp. 95-104,
1992.

[41] DCP816, DCP Research Corp., Edmonton, Alberta, Canada, 1995.

[42] H. Sakanashi et al., Evolvable Hardware Chip for High Precision
Printer Image Compression, 1998, vol. 1478, pp. 106-114. .

[43] M. Slattery and J. L. Mitchell, “The Qx-coder,” IBM J. Res. Develop.,
vol. 42, no. 6, pp. 767-784, 1998.

[44] S. Jones, “100 Mbit/s adaptive data compressor design using selectively
shiftable content-addressable memory,” Proc. Inst. Elect. Eng., pt. G,
vol. 139, no. 4, pp. 498-502, 1992.

[45] M. Kjelso, M. Gooch, U. Simm, and S. Jones, “Hardware data com-
pression and memory management for flash-memory disks,” in Proc.
ISIC-95, 6th Int. Symp. IC Technol., Syst. Applicat., 1995, pp. 161-165.

[46] M. Kjelso, M. Gooch, and S. Jones, “Design & performance of a main
memory hardware data compressor,” in Proc. 22nd Eur. Micro Conf.,
Prague, Czech Republic, Sept. 1996, pp. 423-430.

510 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 3, JUNE 2003

[47] J. Nuiiez, C. Feregrino, S. Bateman, and S. Jones, “The X-MatchL.ITE
FPGA-based data compressor,” in Proc. 25th Eur. Micro Conf., Milan,
Italy, Sept. 1999, pp. 126-133.

[48] J.L.Nufiez and S. Jones, “The X-MatchPRO 100 Mbytes/second FPGA-
based lossless data compressor,” in Proc. Design, Automation Test Eur.,
DATE Conf. 2000, 2000, pp. 139-142.

[49] J.L. Bentley, “A locally adaptive data compression scheme,” Commun.
ACM, vol. 29, no. 4, pp. 320-330, 1986.

[50] V. Betz and J. Rose, “How much logic should go in an FPGA logic
block?,” IEEE Design Test Comput., pp. 10-15, Jan.-Mar. 1998.

José Luis Niidiez (M’00) received the B.S. degree from the Universidad de La
Coruna, La Coruna, Spain, the M.S. degree from the Universidad Politécnica
de Cataluiia, Barcelona, Spain, both in electronics engineering, and the Ph.D
degree from Loughborough University, Leicestershire, U.K., in hardware archi-
tectures for high-speed data compression, in 1993, 1997, and 2001, respectively.

In 1997, he joined the Department of Electronic Engineering at Lough-
borough University, where he is currently a Research Fellow. His research
interests include lossless data compression, reconfigurable vector architectures,
FPGA-based design and high-speed data networks.

Republic of Ireland.

Simon Jones (SM’99) is currently Dean of Engi-
neering and Design at the University of Bath, U.K.,
where he leads a large research group addressing
the design of special-purpose processors for data
compression and Neural Networks. He also held
the ARM/Royal Academy of Engineering Research
Chair at Loughborough University, Leicestershire,
UK.

Dr. Jones is Chairman of the Inst. Elect. Eng.
Professional Network on System-on-Chip and is
currently Chairman of the IEEE for the U.K. and the

