
YAHAMM
Yet Another Hamming Encoder and Decoder
—
Design

Nicola De Simone (ndesimone@opencores.org)
Version 0.1

Contents

1 General structure 2

2 matrix pkg 3

3 Encoder 3

4 Decoder 3

5 yahamm pkg 5



The present document assumes that the reader is familiar with the Spec-
ification Document and with the references Hamming code [1] and Ham-
ming(7,4) [2] and with the terminology used therein. No additional
knowledge is needed, apart from basic matrix algebra. Information al-
ready included in those documents are not be duplicated.

1 General structure

The user connects the encoder entity in yahamm_enc to the decoder entity
yahamm_dec, as described by the specification document. No other logic is
needed. The amount of code in those two entities is kept to the minimal
by choice. In the encoder the core functionality is in the synchronous
logic:

code_sys <= to_slv(xor_multiply_vec(G, data_i_padded));

corresponding to the math operation:

code sys = G data i padded

where G is the code generator matrix in systematic form, data_i_padded
the input data and code_sys the code word in systematic form.

Similarly, in the decoder the core functionality is in the synchronous logic:

syndrome <= xor_multiply_vec(H, code_nonsys);

corresponding to the math operation:

syndrome = H code nonsys

where H is the parity-check matrix in non-systematic form, code_non_sys
the input data in non-systematic form and syndrome the error syndrome
vector that identifies the patterns of errors.

There is some more logic in the decoder entity yahamm_dec to implement
the counters of errors corrected or detected and the position of the error.

The higher complexity is hidden inside the package yahamm_pkg where
there are the functions to create the code generator matrix and the parity-
check-matrix, to calculate the number of parity bits, block length, to
swap between systematic and non-systematic form, to multiply two ma-
trices or matrix and vector. matrix_pkg contains some help functions for
yahamm_pkg.

One parity bit If the encoder and the decoder are configured with the
generic ONE_PARITY_BIT set to true, their behavior change to a simple
one parity bit encoder and decoder. This is still described and handled
with same matrix formalism of the Hamming code, so all math functions
accept a parameter ONE_PARITY_BIT and behave differently in this case.

Additional parity bit (SECDED) Hamming codes can be extended
by an extra parity bit. This way, it is possible to increase the minimum
distance of the Hamming code to 4, which allows the decoder to distin-
guish between single bit errors and two-bit errors. Thus the decoder can
detect and correct a single error and at the same time detect (but not
correct) a double error. If the decoder does not attempt to correct errors,
it can detect up to three errors [1].

2 YAHAMM Design



EXTRA_PARITY_BIT adds an extra row and extra column to the parity-
check matrix and it’s handled as a special case in the construction of the
code generator matrix.

Bus padding Incoming data bus data_i are zero-padded on the most
significant bit to length 2r − r − 1, where r is the number of parity bits
NPARITY_BITS specified by generic. This allow the user to use a data bus
of any width, ideally the smallest necessary in order to economize routing
resources, while the logic for the Hamming code can operate with the
standard block length for any given number of parity bits.

2 matrix pkg

File matrix pkg.vhd.

3 Encoder

See Fig. 1. Entity yahamm_enc, file yahamm enc.vhd. Latency 1.

Figure 1: Encoder structure.

Input data data_i are zero-padded, then multiplied by the code generator
matrix G in systematic form (see Sec. 5) to compute the code word in
systematic form. Note that the only synthesized logic up to this point are
the xor operations used to perform the product with the code generator
matrix.

The code word in systematic form had the data in lower significant bits,
routed on the output port data_o, and the parity bits in the highest
significant bits, route on the output port parity_o. data_valid_o is the
synchronous clear signal en_i delayed.

4 Decoder

See Fig. 2. Entity yahamm_dec, file yahamm dec.vhd. Latency 2.

Input parity bits parity_i together with zero-padded input data data_i

form the systematic code word. This is swapped to non-systematic form

YAHAMM Design 3



Figure 2: Decoder structure.

4 YAHAMM Design



CORRECT

false true

EXTRA_PARITY_BIT
0

Correction disabled

(SEC)

syndrome
0 no error
6= 0 wrong_bit <= syndrome

1

(SECDED)
syndrome’s MSB

’0’ ’1’

syndrome’s LSBs
0 no error

SEC
wrong_bit <= extra_bit

6= 0
DED

no correction
SEC

wrong_bit <= syndrome LSBs

Table 1:

multiplying for the swapping matrix S (see Sec. 5). The non-systematic
code word is multiplied by the parity-check matrix H in non-systematic
form (see Sec. 5) to compute the syndrome. Note that the only synthe-
sized logic up to this point are the xor operations used to perform the
product with the parity-check matrix.

A non zero syndrome means indicates an error. There are different
possibilities, depending on the user choice of the value of the generics
CORRECT and EXTRA_PARITY_BIT, as show by Table 1. A combinatorial
logic (see Correction Assessment in Fig. 2) determines if the correction
has to be done (correction_en signal|) and the position of the wrong
bit (wrong_bit signal). In the SECDED configuration (CORRECT true and
EXTRA_PARITY_BIT 1), a double error can be detected observing that the
syndrome is odd with only the extra parity bit ’1’, and no correction is
done.

In the Single Event Detected case (SEC), and with CORRECT generic set
to true, the wrong bit is then corrected in the non-systematic form of the
code word. This is then swapped to systematic form and data_o data
output is the least signal part of this code word.

Independently from the configuration of the generic CORRECT, Single
Error and Double Error are counted (cnt_proc process). Note that it is
not possible to count Double Error unless the EXTRA_PARITY_BIT generic
has value 1. Counters are connected to the ports cnt_errors_corrected_o
and cnt_errors_detected_o and can be synchronously cleared with the
input cnt_clr.

Independently from the configuration of the generic CORRECT, the
position of the wrong bit in case of Single Error is used to flip the
corresponding bit in the internal log_wrong_bit_pos_data_o_nonsys

that, after form swapping and slicing, is mapped to the output ports
log_wrong_bit_pos_data_o and log_wrong_bit_pos_parity_o.

5 yahamm pkg

File yahamm pkg.vhd.

function calc nparity bits

YAHAMM Design 5



function calc_nparity_bits (

k : natural;

ONE_PARITY_BIT : boolean := false)

return natural;

r parity bits can cover up to 2r − 1 bits, including data and parity bits.
That is 2r − r − 1 data bits. The function returns the smallest r such
that 2r − r− 1 ≥ k, where k is the message length (number of data bits).
It returns 1 if ONE_PARITY_BIT is true, by definition.

function calc block length

function calc_block_length (

k : natural;

ONE_PARITY_BIT : boolean := false)

return natural;

Length of message bits plus parity bits. r parity bits can cover up to
2r − 1 bits, including data and parity bits. The function returns 2r − 1
where r := calc_nparity_bits(k). It returns k+1 if ONE_PARITY_BIT
is true.

function calc block length

function calc_block_length (

k : natural;

ONE_PARITY_BIT : boolean := false)

return natural;

Length of message bits plus parity bits. r parity bits can cover up to
2r − 1 bits, including data and parity bits. The function returns 2r − 1
where r := calc_nparity_bits(k). It returns k+1 if ONE_PARITY_BIT
is true. Note that block length does not depend from EXTRA_PARITY_BIT;
this is an arbitrary choice to simplify the code.

function check parameters Sanity check on the generic settings for
yahamm_enc and yahamm_dec entities. It works in both synthesis and
simulation.

function get parity check matrix )

function get_parity_check_matrix (

MESSAGE_LENGTH : natural;

EXTRA_PARITY : natural range 0 to 1 := 1;

ONE_PARITY_BIT : boolean := false)

return matrix_t;

It returns the non-systematic form of parity check matrix, built following
the general algorithm described in [1].

E.g. we want to get the parity-check matrix for the code Hamming(7,4)
that encodes four bits of data into seven bits by adding three parity
bits. The matrix has dimension 3x7 if no extra parity bit is added. The
following snippet of test-bench:

entity test is

end entity test;

architecture std of test is

6 YAHAMM Design



constant MESSAGE_LENGTH : natural := 4;

constant EXTRA_PARITY_BIT : natural range 0 to 1 := 0;

constant ONE_PARITY_BIT : boolean := false;

constant NPARITY_BITS : natural := calc_nparity_bits(MESSAGE_LENGTH, ONE_PARITY_BIT);

constant BLOCK_LENGTH : natural := calc_block_length(MESSAGE_LENGTH, ONE_PARITY_BIT);

constant H : matrix_t(0 to NPARITY_BITS + EXTRA_PARITY_BIT - 1,

0 to BLOCK_LENGTH + EXTRA_PARITY_BIT - 1) :=

get_parity_check_matrix(MESSAGE_LENGTH, EXTRA_PARITY_BIT, ONE_PARITY_BIT);

begin

process is

begin

pretty_print_matrix(H);

stop(0);

end process;

end architecture std;

outputs the parity-check matrix H: in non-systematic form:

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

If in the above code, EXTRA_PARITY_BIT is 1, the output is:

1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 0

0 0 0 1 1 1 1 0

1 1 1 1 1 1 1 1

A right-most column and a bottom row has been added to the previous
parity-check matrix. The addition of ’1’ in the bottom row means that
the forth parity bit encodes the parity for the entire code word. No change
on the existing parity bits (’0’ in the last column for those parity bits).

If in the above code, ONE_PARITY_BIT is true, the output is:

1 1 1 1 1

That means that the only parity bit encodes the parity of the entire code
word.

function get form swap matrix )

function get_form_swap_matrix (

MESSAGE_LENGTH : natural;

EXTRA_PARITY : natural;

ONE_PARITY_BIT : boolean := false)

return matrix_t;

Returns a n× n matrix S to convert a n-row matrix or vector from non-
systematic form Mns to systematic form Mbs and vice-versa:

Ms = Mns S

YAHAMM Design 7



The construction of the matrix can be understood by noticing that the
systematic form of the parity-check matrix H for the Hamming(n, k)
code is:

H := (A|In−k) (1)

where In−k is the (n−k)× (n−k) identify matrix . This can be obtained
by swapping the columns 2r−1-th of the identify matrix In corresponding
to the position, in the non-systematic form, of the parity bits r with the
column n−k+ r. Note that since S = ST = S−1, the matrix can be used
to transform from systematic to non-systematic form and vice-versa.

Example:

entity test is

end entity test;

architecture std of test is

constant MESSAGE_LENGTH : natural := 4;

constant EXTRA_PARITY_BIT : natural range 0 to 1 := 0;

constant ONE_PARITY_BIT : boolean := false;

constant NPARITY_BITS : natural := calc_nparity_bits(MESSAGE_LENGTH, ONE_PARITY_BIT);

constant BLOCK_LENGTH : natural := calc_block_length(MESSAGE_LENGTH, ONE_PARITY_BIT);

constant H : matrix_t(0 to NPARITY_BITS + EXTRA_PARITY_BIT - 1,

0 to BLOCK_LENGTH + EXTRA_PARITY_BIT - 1) :=

get_parity_check_matrix(MESSAGE_LENGTH, EXTRA_PARITY_BIT, ONE_PARITY_BIT);

constant swap_matrix : matrix_t(0 to BLOCK_LENGTH + EXTRA_PARITY_BIT - 1,

0 to BLOCK_LENGTH + EXTRA_PARITY_BIT - 1) :=

get_form_swap_matrix(MESSAGE_LENGTH, EXTRA_PARITY_BIT, ONE_PARITY_BIT);

begin

process is

begin

pretty_print_matrix(H);

pretty_print_matrix(swap_matrix);

pretty_print_matrix(xor_multiply(H, swap_matrix));

pretty_print_matrix(xor_multiply(xor_multiply(H, swap_matrix), swap_matrix));

stop(0);

end process;

end architecture std;

Outputs:

-- parity-check matrix, non-systematic form

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

-- form-swap matrix

0 0 0 0 1 0 0

0 0 0 0 0 1 0

8 YAHAMM Design



0 0 1 0 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

-- parity-check matrix, systematic form

1 0 1 1 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1

-- parity-check matrix, non-systematic form

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

The first three matrices are: the parity-check matrix for Hamming(7,4) in
non-systematic form, the form swapping matrix, the parity-check matrix
in systematic form. Note the identity matrix in the right-most columns
in the systematic form of the parity-check matrix. The forth matrix is
the parity-check matrix obtained by multiplying its systematic form for
the form-swap matrix.

If EXTRA_PARITY_BIT is 1, the matrix has an additional column and row.
Last column is the same as in the identity matrix (no swapping).

function get code generator matrix

function get_code_generator_matrix (

MESSAGE_LENGTH : natural;

EXTRA_PARITY : natural range 0 to 1 := 1;

ONE_PARITY_BIT : boolean := false)

return matrix_t;

Returns the code generator matrix in systematic form. The construction
algorithm, as suggested in [1], Sec. Construction of G and H, is based on
the comparison of G in systematic form:

G := (Ik|AT ) (2)

with the expression of the parity-check matrix in systematic form in Eq. 2.
So the left hand side of H in systematic form can be transposed and
combined with the Ik identity matrix.

E.g. we want to get the code generator matrix for the code Hamming(7,4)
that encodes four bits of data into seven bits by adding three parity
bits. The matrix has dimension 7x4 if no extra parity bit is added. The
following snippet of test-bench:

architecture std of test is

constant MESSAGE_LENGTH : natural := 4;

constant EXTRA_PARITY_BIT : natural range 0 to 1 := 0;

constant ONE_PARITY_BIT : boolean := false;

constant NPARITY_BITS : natural := calc_nparity_bits(MESSAGE_LENGTH, ONE_PARITY_BIT);

constant BLOCK_LENGTH : natural := calc_block_length(MESSAGE_LENGTH, ONE_PARITY_BIT);

constant G : matrix_t(0 to BLOCK_LENGTH + EXTRA_PARITY_BIT - 1,

YAHAMM Design 9



0 to BLOCK_LENGTH - NPARITY_BITS - 1) :=

get_code_generator_matrix(MESSAGE_LENGTH, EXTRA_PARITY_BIT, ONE_PARITY_BIT);

begin

process is

begin

pretty_print_matrix(G);

stop(0);

end process;

end architecture std;

Outputs:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 1

0 1 1 1

1 1 0 1

If in the above code, EXTRA_PARITY_BIT is 1, the output is:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 1 1

0 1 1 1

1 1 0 1

1 1 1 0

A bottom row has been added to the previous code generator matrix,
based on the parity of the rows of the parity-check matrix.

If in the above code, ONE_PARITY_BIT is true, the output is:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1

Where the result is a row of ’1’ at the bottom of an identity matrix. That
means that the code word is the message plus its parity bit.

References

[1] Wikipedia. Hamming code — Wikipedia, the free encyclopedia, 2017.
[Online; accessed 19-Mar-2017].

[2] Wikipedia. Hamming(7,4) — Wikipedia, the free encyclopedia, 2017.
[Online; accessed 19-Mar-2017].

10 YAHAMM Design


