
YAHAMM
Yet Another Hamming Encoder and Decoder
—
Specification

Nicola De Simone (ndesimone@opencores.org)
Version 0.1

Contents

1 Project files 2

2 Makefile 2

2.1 Analyze the VHDL . 2

2.2 Run the simulation . 2

2.3 Cleanup . 2

3 Encoder 3

4 Decoder 4

5 SEC-DED and other possibilities 5

Abstract

YAHAMM is a VHDL implementation of an Hamming encoder,
as entity yahamm enc, and and Hamming decoder, as entity ya-
hamm dec, of message length defined trough generic. All the math
needed to compute the code is internally implemented in VHDL
and it is transparent to the user. Single Error Correction and Dou-
ble Error Detection is also provided (see next for details). Encoder
has latency 1 clock cycle, decoder latency 2, independently from
their configuration.

1 Project files

The projects includes the file:

1. rtl/vhdl/yahamm enc.vhd: encoder entity

2. rtl/vhdl/yahamm dec.vhd: decoder entity

3. rtl/vhdl/matrix pkg.vhd: help functions for matrix manipulation

4. rtl/vhdl/yahamm pkg.vhd: core math functions

5. bench/vhdl/yahamm tb[0-3].vhd: test benches

6. sim/rtl sim/bin/Makefile: a set of rules for the analysis and simu-
lation with GHDL.

2 Makefile

The Makefile targets call ghdl for analyzing the VHDL and running sim-
ulations.

2.1 Analyze the VHDL

1. cd sim/rtl_sim/bin

2. make <vhdl file>

2.2 Run the simulation

1. cd sim/rtl_sim/bin

To simulate a single test-bench:

2 make simulate_tb[0..3]

or, to simulate all test-benches:

2 make simulate

Each test-bench will output “OK” if successful.

The simulation will create waveform as VCD compressed file in cd sim/rtl_sim/out.
They can be view, for example, with gtkwave by running:

3 make view_[0..3]

2.3 Cleanup

1. cd sim/rtl_sim/bin

2. make clean

2 YAHAMM Specification

3 Encoder

entity yahamm_enc is

generic (

MESSAGE_LENGTH : natural := 5;

EXTRA_PARITY_BIT : natural range 0 to 1 := 1;

ONE_PARITY_BIT : boolean := false

);

port(

clk_i, rst_i : in std_logic;

en_i : in std_logic := ’1’; -- Synchronous output enable .

data_i : in std_logic_vector(MESSAGE_LENGTH - 1 downto 0); -- Input data.

data_o : out std_logic_vector(MESSAGE_LENGTH - 1 downto 0); -- Out data.

data_valid_o : out std_logic; -- High when data_o is valid.

parity_o : out std_logic_vector(calc_nparity_bits(MESSAGE_LENGTH, ONE_PARITY_BIT) + EXTRA_PARITY_BIT - 1 downto 0) -- Parity bits.

);

end yahamm_enc;

Generics:

1. MESSAGE LENGTH: the data payload length, excluding parity
bits.

2. EXTRA PARITY BIT: if 1 the Hamming codes are extended by
an extra parity bit. This way the minimum Hamming distance
is increased to 4, which allows the decoder to distinguish between
single bit errors and two-bit errors. Thus the decoder can detect and
correct a single error and at the same time detect (but not correct) a
double error (SECDED). If the decoder does not attempt to correct
errors, it can detect up to three errors. . Default is 1.→ Sec 4

3. ONE PARITY BIT: if true the encoder does not perform Hamming
encoding but just adds a single parity bit to the message. Default
is false.

The generics MESSAGE LENGTH, EXTRA PARITY BIT and ONE PARITY BIT
must have the same values on both the encoder and the decoder instances.

Ports:

1. clk i: input reset, active high.

2. rst i: input reset, active high.

3. en i: input enable. When asserted input data are encoded. If de-
asserted, data and parity outputs are zero. Default is high.

4. data i: input data. Length equal to MESSAGE LENGTH.

5. data o: output data. Length equal to MESSAGE LENGTH.

6. data valid o: output valid signal for data o. This is just en i de-
layed by the core latency.

7. parity o: output parity bits. The length of this vectors corresponds
to the number of parity bits needed by the hamming code and it’s
computed by the VHDL function calc nparity bits(). One extra
parity bit is needed if the generic EXTRA PARITY BIT is true.
The user instantiating the entity and mapping that port can deter-
mine the length in three ways:

YAHAMM Specification 3

(a) Calculate the number of parity bits r needed for the specified
message length k, looking for the smallest r such that k ≥
2r − r − 1 for r ≥ 2.

(b) Use the script sw/calc_nparity_bits.sh.

(c) Connect a bus or arbitrary random length. Run any VHDL
analysis tool and use the syntax error you get to see which is
the right length.

4 Decoder

entity yahamm_dec is

generic (

MESSAGE_LENGTH : natural := 5;

CORRECT : boolean := true;

EXTRA_PARITY_BIT : natural range 0 to 1 := 1;

ONE_PARITY_BIT : boolean := false;

ERROR_LEN : natural := 16

);

port(

clk_i, rst_i : in std_logic;

cnt_clr_i : in std_logic := ’0’; -- Clear monitor counters.

en_i : in std_logic := ’1’; -- Input enable.

data_i : in std_logic_vector(MESSAGE_LENGTH - 1 downto 0); -- Input data.

parity_i : in std_logic_vector(calc_nparity_bits(MESSAGE_LENGTH, ONE_PARITY_BIT) + EXTRA_PARITY_BIT - 1 downto 0); -- Parity bits.

data_o : out std_logic_vector(MESSAGE_LENGTH - 1 downto 0); -- Out data.

dout_valid_o : out std_logic; -- data_o valid.

cnt_errors_corrected_o, cnt_errors_detected_o : out std_logic_vector(ERROR_LEN - 1 downto 0);

log_wrong_bit_pos_data_o : out std_logic_vector(MESSAGE_LENGTH - 1 downto 0);

log_wrong_bit_pos_parity_o : out std_logic_vector(calc_nparity_bits(MESSAGE_LENGTH, ONE_PARITY_BIT) + EXTRA_PARITY_BIT - 1 downto 0)

);

end yahamm_dec;

Generics:

1. CORRECT: if true, the core corrects detected errors. Default is true.

2. ERROR_LEN: bit length of the error counters provided on ports
cnt_errors_corrected_o and cnt_errors_detected_o.

3. MESSAGE_LENGTH: see Sec. 3.

4. EXTRA_PARITY_BIT: see Sec. 3.

5. ONE_PARITY_BIT: see Sec. 3.

The generics MESSAGE LENGTH, EXTRA PARITY BIT and ONE PARITY BIT
must have the same values on both the encoder and the decoder instances.

Ports:

1. cnt_clr_i: input synchronous clear of the error counters.

2. en_i: optional input enable. Can be connected to dout_valid_o

of the encoder to propagate a valid signal to the output port
data_valid_o: Default is high (data_valid_o will be always as-
serted in this case).

3. data_i: input data. It must be connected to the data_o of the
decoder. Length equal to MESSAGE LENGTH.

4 YAHAMM Specification

CORRECT

EXTRA_PARITY_BIT false true
false SED-DED SEC
true SED-DED-TED SEC-DED

Table 1: SEC = single bit error corrected, SED = single bit error detected,
DED = double bit error detected, TED = triple bit error detected

4. parity_i: input parity bits. It must be connected to the parity_o
of the decoder.

5. data_o: output data. Length equal to MESSAGE LENGTH.

6. data valid o: output valid signal for data o. This is just en i de-
layed by the core latency.

7. cnt_errors_corrected_o: counter of single errors corrected. It is
always zero if the generic CORRECT is false.

8. cnt_errors_detected_o: counter of errors detected. It includes
single, double and triple errors (not there’s no way to distinguish
between a single and a triple error), if the generic CORRECT is false,
otherwise it only counts double errors.

9. log_wrong_bit_pos_data_o: position of the single error in data_o.
Zero if the generic CORRECT is false or if it’s not a single error.

10. log_wrong_bit_pos_data_o: position of the single error in parity_o.
Zero if the generic CORRECT is false or if it’s not a single error.

5 SEC-DED and other possibilities

In order to have SEC-DED (Single Error Corrected - Double Error De-
tected) capability, user should leave the default values for the generics
EXTRA_PARITY_BITS to 1, and CORRECT to true.

Other choices can be made as described by the following table.

The generic EXTRA_PARITY_BITS set to true (default) adds a parity bit
so that the Hamming distance is 4 between two code words (number
of bits to flip in a code word to obtain another code word). With
EXTRA_PARITY_BITS set to false the Hamming distance will be 3.

The generic CORRECT set to true (default) corrects for single bit errors.
It can be set to false if only error detection is needed. This allows
triple error detection with EXTRA_PARITY_BIT set to true. Indeed, a
triple error is indistinguishable from a single error with an Hamming dis-
tance 4 and the correction would be wrong in this case. Similarly, with
EXTRA_PARITY_BIT set to false, hence with Hamming distance 3, a double
error is indistinguishable from a single error and the correction would be
wrong. Note that if CORRECT is false, the port cnt_errors_detected_o

provides the value of a counter that sums up any kind of error detected
(single, double and triple).

For most applications, SEC-DED configuration (the default) is the pre-
ferred choice. A communication channel can be considered reliable if the
probability of double error is negligible. A noisy channel showing double
errors detected is not to be trusted because event a corrected single error
may be a triple error and the correction would be wrong.

YAHAMM Specification 5

