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1 Introduction

The aim of the project was to implement a complete processor that is still widely used
today. Of the many potential processors that were considered the one that was chosen
was a MIPS R3000 microprocessor due to its simple instruction encodings. The R3000
microprocessor is not just a processor as it also includes cache, memory management
and a coprocessor interface. (It is also capable of handling exact exceptions)

1.1 History of RISC

When the first processors and Instruction Set Architectures (ISAs) were created pro-
gramming was very difficult and so complex instructions that looked more like high
level languages were added to each ISA family. To allow old software to run on newer
computers the instruction sets were expanded and became more and more complex. To
add to the complexity issue memory prices were very high and to fit a program into a
very small space it was necessary to create instructions with varying lengths. Also
memory was a lot faster than the processor and so keeping all variables in memory was
quite logical. In a completely different direction to the CISC movement of increasingly
complex instruction sets the RISC adopted a totally different approach. By keeping all
instructions the same size decoding becomes simple. Having a large register bank
decreases memory accesses which are increasingly slow compared to the CPU speed
on modern computers. Implementing only simple and common operations the proces-
sor speed can be increased and chip area can be decreased. Having a much simpler base
architecture allows the CPU to implement other speed increasing methods much more
simply for example pipelining.

1.2 Load Store Architecture

MIPS microprocessor instructions only allow registers or small immediates to be oper-
ands of operations. CISC on the other hand often has instructions which use memory
stored data as operands. This makes the execution harder. For example the 8086
instruction ‘CMP AX, ES:[SI+02] firstly requires 2 to be added to Sl and the result to

be added to ES shifted by 4 this creating an effective address to load a 16 bit word (pos-
sibly non-word aligned so multiple loads are required) from memory then compare it to
AX and write the flags created by the comparison to the flags register for use by the
next conditional jump instruction. This scheme is difficult to implement and the
instruction goes several times through the ALU. MIPS microprocessor instructions
only go through the ALU once and never after a memory access. If an operand from
memory is required it is loaded into the register bank first and only then used in subse-
guent operations. This allows the creation of a very simple architecture which is easy to
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pipeline. A typical MIPS microprocessor uses a five stage execution pipeline as shown
in Figure 1 on page 2.
FIGURE 1. Five stage pipeline
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In a five stage pipeline there are two memory ports: one for instruction fetch and one
for data accesses. To deal with this either two separate memories can be used or swap
memory access between the two ports. This is called Harvord architecture.

1.3 History of pipelining

Pipelining is a method of getting more than one instruction to execute simultaneously.
By dividing the path that the instruction has to go through in the CPU into segments
and placing latches at the beginning of each segment instructions will take several
clocks to execute instead of one. But as MIPS microprocessor instructions only visit
each segment once they only occupy one segment allowing other instructions to come
straight after them and occupy other segments.

FIGURE 2. Five stage pipeline datapath
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There are problems that arise with pipelining. Firstly if an ALU instruction writes to a
register that is required in the next instruction the data in the register bank is not yet
updated when the second instruction requests it as the data is now at the end of the
ALU stage. The easiest way of getting the data back to the next instruction is to pick
off the result from the ALU stage and replace the register bank value with it. The same
can be done for data that is at the end of the memory stage. This still does not solve the
problem of using a result from a memory operation on the next cycle. This can be
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solved by the processor inserting a NOP instruction if it detects a dependency or the
compiler simply never using a result from a memory operation on the next cycle.

FIGURE 3. Five stage pipeline with
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1.4 Powerview

To design a MIPS microprocessor compatable CPU a schematic entry package called
Powerview was used. There was an option of using VHDL which would probably have
been easier but because many of the ideas implemented were new a more graphical
approach was favoured. As many hours were spent running simulations of the proces-
sor the graphical approach gave much better visibility of the instruction flowing
through the pipeline.

1.5 FPGAs

The idea of the project was not to implement the processor only in simulation but to
run it on real hardware. An FPGA (Field Programmable Gate Array) chip allows a
logic design to be downloaded to it. The target board has a ‘Xillinx Virtex XCV300’
chip. This allows up to 300,000 gates to be placed on the chip. It also has 64 Kbits of
RAM in 16 blocks called select RAMs. As gates are made from look up tables (LUTS)
it is possible use the LUTs as 32 bit RAM cells called RAM blocks. These RAM cells
use as much logic one latch.

1.6 Source Material
The information about MIPS microprocessors was taken from a book by Gerry Kane
and Joe Henrich called “MIPS RISC Architecture”. This book stated all information

needed to create an R3000 microprocessor. The book was written for people writing
software and so gave very little architectural detail.

2 MIPS Microprocessor Specifications

2.1 Instructions

All instructions are 32 bit and come in three formats (R-type, I-type and J-type). MIPS
instructions are three address operations taking two sources and one destination. The
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R-type (sometimes called Special) instructions allow a range of register to register
operations. The I-type instructions allow a 16 bit immediate to replace one of the oper-
ands. The I-type instruction format is also used for memory accesses and for condi-
tional branches. The J-type format has a 26 bitimmediate field and the only instruction
to use this format is a jump which places the value in the bottom 26 bits of the program
counter. A more detailed description of the instruction set is shown in appendix A.

FIGURE 4. Instruction encodings

31... .0
| RType | Rs | RT | RD SA Operation |
| I-Type | RS | RT | 16 bit Immediate |
| J-Type | 26 bit Immediate |

2.2 Registers

A MIPS microprocessor has 32 addressable registers. Register zero (R0) is special as it
is always equal to zero and writes to it are ignored. R31 is a normal register but when
executing any branch or jump with store return address, the next PC is stored in R31. In
addition to the addressable registers there are three more implemented registers. The
Program Counter (PC) is not a part of the main register bank. It is accessible directly
through Jump to Register (JR) for writing and Branch And Link (BAL) for reading.

The other two registers are LO and HI. These registers are used for the results of the
multiplier and divider. Although these can also be also accessed directly by Move To
and From LO and Hl instructions. All these registers are 32 bits wide although the bot-
tom two bits of the PC should always be zero.

2.3 Conditions

There are no condition flags but instead all branches are conditional on the values of
the registers in the main register bank. Each conditional branch instruction specifies
two registers (RS and RT) to be fetched and tested. A branch is conditional on the
results of two tests. The first is compare the two registers together to test whether they
are equal (RS=RT). The other test is simply to look at the sign value (bit 31) of the first
register (RS<0). By choosing the second register to be RO (RT=0) its becomes possible
to test RS for less than greater or equal to zero or any combination of the three. For an
unconditional branch the Branch if Greater or Equal to Zero instruction (BGEZ) is

used with RO as an operand. This condition will allays be true.

TABLE 1. Branch Condition Table

Equality
Test Sign Test
Required Required
Branch Condition Result Result
BEQ 1 X
BNE 0 X
BLTZ X 1
BGEZ X 0
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TABLE 1. Branch Condition Table

Equality

Test Sign Test

Required Required
Branch Condition Result Result
BLEZ 1 OR 1
BGTZ 0 OR 0

2.4 Memory

Memory access instructions are included in the I-type format. The source register (RS)
is added to the immediate to create an effective address which is used to reference the
memory. The second register (RT) is either used as the destination in a memory load or
as a source in a memory store. The memory is byte addressed but is 32 bit wide so all
word loads and stores have to be word aligned. Half word accesses have to be aligned
to half word boundaries. To help with unaligned loads and stores there are two more
memory access instructions. Load Word Left (LWL) and Load Word Right (LWR) in
combination allow word loads from unaligned addresses.

2.5 Pipeline Interlocking

MIPS stands for ‘Microprocessor without Interlocking Pipeline Stages’. In the MIPS
microprocessor this means that some instructions have an implicit delay before their
effect takes place. (This is not strictly true as the multiplier/divider has interlocking)
The general philosophy is to construct the hardware as simply as possible and, if a
result is not ready for use in the next instruction then not to stop the whole processor
but use the software to insert instructions into the space. The two main delays in the
MIPS microprocessor are branch shadows and memory load delays. There are others
but they happen very rarely and will be explained later.

2.5.1 Branch shadow

When a branch is executed the PC is only updated at the end of the next instruction.
This is because the MIPS microprocessor designers were using a pipeline that loaded
the next instruction from memory while decoding the current. By the time the current
instruction is decoded and the CPU detects it as a branch the next instruction is already
loaded. The PC is updated by the time the next instruction after that is loaded. The
branch shadow is filled with a useful instruction that the branch is not dependent on. If
this instruction can not be found then a NOP (Do nothing) instruction is placed to fill
the entry. Figure 5 on page 5 shows firstly the compiler unconditionally inserting a
NOP instruction into the branch shadow. Then later the NOP is replaced with an
instruction not related to the branch.

FIGURE 5. Assembly example

ADD R3, R3, R3

ADD R4, R5, R4

BGEZ R4, label <- Branch instruction
NOP <- Branch Shadow

A MIPS R3000 microprocessor on an FPGA 13 February 2002 5



ADD R4, R5, R4
BGEZ R4, label <- Branch instruction
ADD R3, R3, R3 <- Branch Shadow

2.5.2 Load Delay

Before a load can complete the address must be calculated and then the load from
memory can begin. As this uses two cycles the result is not ready for the next instruc-
tion to use as at the time it wants the value the instruction has only calculated the
address it is about to access. Again there is a empty entry into which a useful instruc-
tion can be inserted if possible. Figure 6 on page 6 shows the compiler unconditionally
inserting a NOP between the LW and the next instruction. The NOP is removed if the
next instruction does not use the result of the load or an instruction is moved into this
space from somewhere else in the code if it is unconditional of the load.

FIGURE 6. Assembly example

ADD R2, R3, R3
ADD R5, R4, R20
LW R1, 32(R5)

NOP

ADD R1, R1, R2

ADD R5, R4, R20
LW R1, 32(R5)

ADD R2, R3, R3
ADD R1, R1, R2

3 MIPS Microprocessor Construction

It was decided to create a simple version of the processor which can then be used as a
base for the fully implemented version. The smaller version of the processor is called
‘Little Star’. To allow extra features to be placed onto this processor later it is important

to make the base with the later components in mind.

3.1 Pipeline

It was an aim to reproduce the processor as it was designed originally and the correct
pipeline is essential in order to get the same instruction delay properties as the original
without using interlocking. The hints as to the construction of the pipeline come from
the non-interlocking properties shown above. Firstly examining the fact that consecu-
tive ALU instructions have no delay means that some form of forwarding is probably
taking place. The memory loads have to take the result from the ALU and then pass the
calculated address to the memory. The result is ready for use on the next cycle so again
a forwarding scheme must be used. The branch shadow on PC altering instructions
means that instruction prefetch happens irrespective of the instructions executed. The
fact that branch shadow is only one cycle deep means that the PC must be updated
within of one cycle of the instruction entering the CPU. By using these rules it is possi-
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ble to construct a simple pipeline that fits these requirements (Figure 7 on page 7).
FIGURE 7. Simple five stage
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There is a problem with this pipeline. The branch unit requires results of the tests on
values of registers. Although it is possible to read the registers and test if they match
the branch conditions within the decode cycle they will be the values from the register
bank rather than the data from the forwarding paths. If the code affected the register in
one of the three instructions previous to the branch conditional on this register then the
register bank would not be updated. To deal with this the Decode stage is cut down to
half a cycle. This way it is possible for the branch to complete within one cycle of the
instruction fetch and still get forwarded values only available at the beginning of the
ALU stage.

FIGURE 8. Improved five stage pipeline
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By also decreasing the write back stage down to half a cycle it is now possible to use a
register bank that does not need to have the ability of loading and storing simultane-
ously.

Merlhory Back

E Instruction*9gS ALU Data Write

3.2 Register Bank

The register bank is implemented using RAM blocks rather than explicit flip-flops
(Figure 9 on page 8). RAM blocks are single ported so two identical copies are
required to provide the two simultaneous register reads. Despite this they give a more
compact solution than explicit registers. Read and write access is achieved by dividing
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each clock cycle into two phases. In the write back half of a cycle the register address
to write to is sent to both RAM blocks. The data is written on the clock edge. To ensure
data is never written to register zero the write enable line is de-selected if the write
address is zero. The read portion of the cycle selects the address to be supplied to the
RAM blocks to be the register addresses from the current instruction. These are then
read for the next half cycle. After reading, the data is latched outside the register bank.
The RAM blocks are explicitly preset to zero so RO is never written to and will allays
be equal to zero.

FIGURE 9. Register Bank schematic
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3.3 ALU

The ALU is made from a logical unit and an arithmetic unit. The results from these are
then multiplexed and the desired value is selected. The arithmetic unit is little more
than a 32 bit adder with a switchable negator on the second input. The arithmetic unit
must also detect overflows. The adder is constructed from cells that contain fast carry
logic elements which are especially constructed for carry propagation to increase the
speed. Results of tests by Xilinx who design the FPGA chips show that 32 bit additions
can be done at speeds of over 200MHz when using fast carry logic units. The logical
unit was made with simplicity in mind rather than compactness or speed. Each pair of
bits is applied to all four logical operators (AND, OR, XOR, NOR) and the requested
one is multiplexed out with a four to one multiplexer.

3.4 Shifter

The construction of the shifter was quite complex because conventional barrel shifter
designs require a 32 by 32 grid of elements similar to a 32 input multiplexer. This
design is quite fast when designing with custom components but very large when con-
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sidered for a FPGA chip. To get round this problem a funnel-type shifter was used.
Firstly the value to shift by is negated if the shift is to the right. Then the value to be
shifted goes through a series of 5 multiplexers each rotating by a different amount
(1,2,4,8,16). Because the negator resolves the least significant bit of the ‘shift by value’
first the least significant rotate multiplexer must be the first in the series in order to get
a increase in speed. The series of multiplexers rotate the number to the correct position
and a mask must be used to cut out the unwanted part of the number. Left shifts mask
out the bottom bits and right shifts mask out the top bits. To make the design simple a
32 way demultiplexer selected with the ‘shift by value’ is used to signal the top bit of
the number for right shifts or the top bit to be discarded for left shifts. A series of OR
gates propagates the signal to all bits below it. This mask only works for left shifts and
has to pass through XOR gates to optionally invert it for use with right shifts. The mask
feeds select lines on a block of two to one multiplexers which select between the
rotated number and the fill bit. The fill bit is zero for all logical shifts but for the right
arithmetic shift it is equal to bit 31 of the pre-rotated input number. The resulting unit
allows right and left arithmetic and logical shifts.

FIGURE 10. Shifter Schematic

MUX2_1x32 MUX2_1x32 MUX2_1x32 MUX2_1x32 MUX2_1x32

3.5 Memory

The memory address is calculated by taking a register and adding the 16 bit offset
immediate just like an I-type ADD instruction. The other register is not used at this
point and is passed to a latch for use in the memory stage even if the instruction is a
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load. Passed to the memory stage is the source or destination register and the address to
access. Firstly looking at a store instruction as the memory is 32 bit wide and there are
no byte select lines on the on board RAM a whole word has to be stored at a time. All
store instructions with the exception of SW need to store only a part of the whole word.
This means that the word has to be loaded from memory, amended and written back.
The MIPS microprocessor supports byte, half and word accesses. In addition it also
supports word left and right instructions which rotate the value to be written to memory
and mask it into the lower or upper part of the word. Memory interface instructions are
described in more detailed in appendix A. To allow all the different memory accesses
for the first half of the cycle the memory word is loaded into a ‘Memory before write’
latch. The source register data is rotated dependant on the memory store type and the
two lowest bits of the address. The data to write to memory is then a combination of
bytes of the ‘Memory before write’ and the rotated register data. The memory loads are
done in a similar way. There is no need to load the ‘Memory before write’ latch. This
time the data from memory is rotated and then bytes are selected from this and the des-
tination register. To allow byte and half loads with a possible sign extension a method
of setting any byte to one or zero is used. The MIPS microprocessor is a Harvard archi-
tecture design so it needs to access instruction and data memory simultaneously. In the
‘Little Star’ this is achieved by taking advantage of the fact that the instruction fetch
and data access start half a clock cycle apart. The memory swaps between data and
instruction accesses with each phase of the clock. Mentioned before is the method of
storing by loading for half the cycle. To allow this two clocks must be used. The gen-
eral chip clock that drives the majority of the chip is in turn driven by an input clock
that is twice the frequency of the general clock. This input clock is used to get a half
partition of the half cycle devoted to the data store. The ‘Little Star’ must run very
slowly as a half clock must be longer than two memory accesses.

3.6 Branch

Each cycle the Program Counter updates to one of three values. The first possible value
is PC+4. This is the most common case and the PC+4 value is generated using an
incrementer. The second possibility is a JR instruction. This feeds a new number to the
PC from a general register. It is important to pass the number from the forwarding
paths if a newer valid value exists rather than directly from the register bank as the
value there might not be updated yet. The third option is a branch, to execute a condi-
tional branch firstly the conditions must be met. The two test registers are taken from
the forwarding paths and compared if equal. This result and the sign of the first register
are passed to the branch logic. The branch logic returns a flag to the multiplexer stating
whether to load the branch target or the PC+4 value. The branch target is calculated by
adding the current PC to the 16 bit sign extended immediate. There is one more case
that is not covered and that is the jump. The jump takes a 26 bitimmediate and places it
in the bottom of the PC preserving the top four bits. This encoding was done by reusing
the branch adder to save space. The bottom 26 bits from the PC are nulled leaving only
the top four bits from the old PC value to be passed to the adder. The immediate is
passed as a 26 bit rather than a 16 bit value. To record the return address the PC+4
value is latched and then multiplexed onto the pipeline as the result of the ALU stage.
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FIGURE 11. Branch Schematic
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3.7 Forwarding

The destination register number is usually explicitly specified in the instruction.
Instructions that branch and link the return address need to have the destination register
set to R31. All other instructions that do not have a destination have the destination reg-
ister number set to 0. Each instruction unconditionally fetches the two registers speci-
fied in the instruction from the register bank. The destination register number is passed
down with the instruction along the pipeline until it reaches the write back stage. The
requested source register number is compared to each of the destination register num-
bers flowing through the pipeline. If any of them match then the register bank value is
discarded and instead the value from the forwarding path is multiplexed in. It is impor-
tant that the value forwarding from the ALU stage takes priority over the one from the
memory stage so as to get the more recent value. The comparators that detect if register
numbers are equal also make sure that RO is never forwarded as any calculated value is
meant to be discarded and may be not equal to zero.

4 Advanced MIPS specifications

All these elements in combination make a processor capable of running MIPS code.
This simple version processor was called “Little Star”. At this point in the construction
a lot of testing took place to verify the underlying structure of the processor. Although
‘Little Star’ is capable of running code it does not implement some of the ‘advanced’
features of the original chip. The full R3000 microprocessor compatible chip is called
‘Yellow Star’ and includes a cache, memory management, coprocessors and exact
interrupt handeling. These additional features are described below.
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4.1 Cache

The original MIPS microprocessor had two caches: an instruction cache and a data
cache. Both are transparent to the user. The original design had four kilobyte direct
mapped caches. The caches are one word (four bytes) wide and mapped using the next
10 bits of the address. The cache outputs the data of the selected entry and a 20bit value
tag that is possibly the top of the physical address. As the caches are transparent to the
user they can be changed for different sizes and types. Some regions of virtual memory
are non cachable and this overrides he cache hit flag and cache writes.

4.2 Memory Management

The memory management on the MIPS microprocessor constitutes of a 64 entry TLB
(Translation Look-aside Buffer). This TLB is filled using software. The same TLB is
used for both instruction and data accesses but the ‘Yellow Star’ pipeline allows this as
the instruction and data accesses are offset by half a clock cycle. This means that a
TLB lookup is only half a cycle long. The TLB is fully associative with 4 Kbyte pages.
This leaves 20 bits that are used for lookup. If the 20 bits passed to the TLB from a vir-
tual address match an entry then the 20 bits of the physical address of the correspond-
ing entry are output and the hit line is raised. The 20 bits from the TLB are combined
with the bottom 12 bits of the virtual address to create a 32 bit physical address. The
entries in the TLB are modified by software. The programmer can enter the two 20 bit
translation fields (virtual and physical) along with a region of other information as a 64
bit value into any entry in the TLB. There is a six bit ASID (Addressable Space ID)
field to store the process ID number that the page is meant for. This allows the kernel to
swap processes without flushing every entry in the TLB. The other flags in the entry
are: Noncachable, Dirty (an exception is caused if trying to write to a non-dirty page),
Global (allows any process to access the page) and Valid. On a MMU exception the 64
bit entry that matched along with the virtual address are written to special registers for
the kernel to decide which page caused the exception and which to insert or amend.

4.3 Coprocessors

The MIPS microprocessor has an interface to handle up to four coprocessors. Coproc-
essors can have 32 general registers and 32 control registers although not necessarily
all are used. There are four R-type instructions that allow transfers of registers between
the general register bank and coprocessor general or control registers. These instruc-
tions have the same delay as a memory load instruction. Although not stated in the
sources all evidence points to the fact that the interface with the coprocessors happens
in the memory stage. There are memory load and store instructions that load and store
directly coprocessor general registers to memory. These instructions use the processor
main registers as an address base but use the coprocessor registers as a source or desti-
nation. Each external coprocessor has a flag line connected with the CPU that can be
tested and a conditional branch executed dependent on its value. Coprocessor instruc-
tions can be executed directly from the instruction stream. A 25 bit field specifies the
instruction while two of the remaining bits report the coprocessor number.
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4.4 Coprocessor Zero (CP0O)

Coprocessor Zero is an internal coprocessor which is used for controlling memory
management, exceptions and some other options. CPO has a selection of registers
which are used for controlling the behaviour of the processor.

4.4.1 CPO Interrupt

The status register is one of the more important registers. The register has several
fields. The current Kernel/User (KUc) flag states whether the CPU is in kernel mode.
The current Interrupt Enable (IEc) flag states whether external interrupts are turned on.
If cleared then external interrupts are ignored until the flag is set again. In an exception
these flags are copied to previous Kernel/User and Interrupt Enable (KUp and IEp) and
then cleared so the system moves to a kernel mode with external interrupts disabled.
The Return From Exception instruction writes the previous flags to the current flags.
All these flags are kept in the status register. The Interrupt Mask (IM) field has eight
flags to individually disable any of the external interrupts by clearing any of the flags.
The BEV flag controls the exception vector.

TABLE 2. Exception Vectors

Exception BEV=0 BEV=1

Reset - OxbfcO 0000
TLB Refill 0x8000 0000  OxbfcO 0100
Multiply/Divide*  0xbfcO 0300  OxbfcO 0300

Other 0x8000 0080 0OxbfcO 0180

The SU four bit entry controls the usability of each of the four coprocessors. If a bit is
set then the corresponding coprocessor is usable and does not cause a coprocessor
unusable exception when accessed. If the CPU is in kernel mode CPO is usable even if
the SU bit zero is not set. The Cause register has fields of what the cause of the excep-
tion was. The five bit Exception Code states the exception number.

TABLE 3. Exception Codes

Code

Number Exception Name

0 External Interrupt

1 TLB modification

2 TLB exception on a load or instruction fetch
3 TLB exception on a store

4 Address error on a load or instruction fetch
5 Address error on a store

8 Syscall

9 Break

10 Reserved instruction

11 Coprocessor Unusable

12 Arithmetic Overflow

13 Multiply/Divide (*Yellow Star SM’ only)
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The eight bit Interrupt Pending field indicates which interrupts are pending. The top six
bits are connected to the six external interrupt lines. The bottom two bits are writable
and allow the software to cause software interrupts. The two bit Coprocessor Error field
states which coprocessor was attempted to be accessed at the time of the Coprocessor
Unusable exception. The Branch Delay (BD) flag states if the exception was caused by
an instruction in a branch delay. The EPC register holds the address of the instruction
that caused the exception unless the BD flag in the Cause register is set in which case
the causing instruction is the next instruction. On any TLB or memory exception the
Bad virtual address register stores the address that caused the exception.

4.4.2 CPO Memory Management

Two registers (EntryHI and EntryLO) hold the 64 bit data value for transfers with the
TLB. EntryHI holds the Virtual Page Number and the ASID value. EntryLO holds the
Page Frame Number along with the four flags (Noncachable, Dirty, Valid, Global). To
access TLB values there are four instructions: a TLB Probe instruction probes the TLB
for an entry that matches the Virtual Page Number in EntryHI, The matching TLB
entry is the loaded into EntryLO and EntryHI, a TLB Read instruction reads the entry
pointed to by a the CPO Index register. The Index register is simply a six bit field that is
used to index the TLB. The TLB Write Index instruction writes the contents of
EntryLO and EntryHI registers to the TLB entry addressed by the Index register. The
TLB Write Random instruction writes to the TLB entry addressed by the Random reg-
ister. The Random register has a six bit field that is incremented every cycle. The Ran-
dom register never drops below eight to allow eight safe entries that will not get
overwritten by the operating system.

4.5 Exceptions

The behaviour of the MIPS microprocessor during an exception is to store the PC of
the instruction that faulted in a coprocessor register and to make sure that it and none of
the already fetched instructions succeeding it are executed. For most instructions this
stops the result value from being written to the register bank. The PC is changed to the
interrupt vector. The processor then continues from the interrupt vector running excep-
tion handling code.

4.6 Memory Map

The virtual memory is divided into kernel and user spaces. The bottom two gigabytes is
the user space whose addresses are mapped through the TLB. The top two gigabytes is
kernel space divided into three further parts. The first half gigabyte of kernel space is
unmapped and cached. The second half gigabyte of kernel space is unmapped and
uncached. For the two unmapped sections the virtual address has its top three bits
cleared so as to map the virtual sections to start at physical address zero. The remaining
gigabyte of kernel virtual space is mapped. An access from a non-kernel mode to any
kernel space results in an address error exception.
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FIGURE 12. Map of virtual and physical memory
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4.7 Multiplier Divider

The Multiplier Divider unit takes R-type instructions that designate two registers to be
acted upon. The results are written to two registers (HI and LO) with no delay. These
registers can be read to the register bank. This unit is interlocked and may cause the
whole processor to pause.

5 Advanced MIPS Microprocessor Construction

Taking ‘Little Star’ as a base the extra features can be added around it to create ‘Yellow
Star’. Unfortunately these features are heavily interlinked and so have to be added all at
the same time.

5.1 Cache

The two caches run independently but share the physical RAM due to design having
separate data and instruction memory ports. To share the RAM in the ‘Little Star’ it
was possible to swap resource allocation by clock phases. In the ‘Yellow Star a mem-
ory access is a lot longer than half a clock cycle as it runs from cache which is faster
than memory. Firstly to solve the sharing problem two cache busses are constructed to
allow the Harvord architecture to access both data and instruction caches at the same
time.

If a cache miss occurs the whole processor is paused for several cycles until the data or
instruction is loaded and the cache is refilled from the external memory. If the access is
a write then during the pause the instruction cache is supplied with the address being
written to. If the instruction cache signals a hit then the value in the cache must be
updated before the processor is released from the pause. This achieves instruction
cache coherency
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FIGURE 13. Cache bus structure
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As the cache in the original design was direct mapped this made the design very sim-
ple. It can simply be made out of RAM. The biggest RAM elements on the FPGA are
the select RAMs. All the select RAMs combined give a total of 64 Kbits of RAM. All
that needs to be stored in the cache is the 32 bit RAM value, the 20 bit physical address
and a valid bit. This makes up to a 53 bit field. Unfortunately multiplied by the 1024
entries this gives 53 Kbits of RAM used per cache. So there is not enough space on the
FPGA to fit both the caches. With the total of 64 Kbits of RAM space it is possible to
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create 512 entry caches instead as they are transparent to the user. The 32 bit RAM
value, the now 21 bit physical address and the valid bit now make a 54 bit field repro-
duced 512 times. This uses 27 Kbits per cache so for both the instruction and the data
cache only 54 Kbits of select RAMs are used. The two 2 Kbyte caches should give a
performance not much lower than that of the R3000 microprocessor. Other cache com-
binations are possible using the 64 Kbits given.

TABLE 4. Direct Mapped Caches

Entries Field(bits) RAM(Kbits)

1024 53 543
512 54 27
256 55 13.75
128 56 7

TABLE 5. Possible direct mapped cache combinations

Cachel Cache2

entries entries RAM
1024 128 60Kbits
512 512 54Kbits

The bus structure in Figure 13 on page 16 shows the cache bus attached to the memory
bus through bidirectional tristated link and not through the cache. The cache instead
writes and reads from the cache bus. This might seem quite strange but the reason
behind it is to allow more than one cache to sit on the cache bus. A victim cache that
caches values discarded by the main cache can be placed along side the main cache.
This also allows the use of write back caches rather than write through. This gives
many more possibilities.

TABLE 6. Multi Associative Caches

Entries Field(bits) RAM(Kbits)

1024 54 54
512 55 27.5
256 56 14
128 57 7.125

A large range of combinations becomes possible. For example the instruction cache
having a 512 entry direct mapped cache (27 Kbits), the data cache having two 256
entry multiassoceative caches (24 Kbits) and one 128 entry victim cache (7 Kbits). As
long as the caches have a protocol and a priority order then any number of caches of
any type and size can be used. There is a limit of using no more than 12 bits (4 Kbytes)
from the bottom of the address for lookup as this is the portion of the address that is not
affected by the memory management. To get around this limit multi-associative caches
can be used to break the 4 Kbyte barrier.
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5.2 Memory Management

The TLB in the R3000 microprocessor was constructed from a block of CAM (Contest
Addressable Memory). Although this would be the most logical method this would
require a tristate buffer for each of the 64 bits in the 64 entries giving a total of 4096
tristate buffers. The FPGA does have that many tristate buffers but this would make the
TLB take up over half the design space. Instead on ‘Yellow Star’ the TLBs is arranged
into a block eight by eight. Each element is only used for matching the incoming vir-
tual address. If an element hits (matches the incoming entry) then it discharges two
tristated lines, one going down, the other going across the array. The address of the
matching entry is then reconstituted into a six bit address. The six bit address is used to
lookup in a RAM block to get the actual 64 bit entry values. This entry is passed out for
use by either the memory address translation or TLB read instructions explained later.
The matching cells only hold the virtual address, the ASID field and the global bit. This
data is duplicated in the block RAMs. This is all that is needed to match an address. If
lookup address is in the kernel unmapped space then the input address is passed out
instead of the one looked up in the block RAM. The unmapped address will have its
top 3 bits cleared so they point to physical address starting at zero. If the uncached bit
is set in the hit page then the cache is ignored and a memory access is forced. If the
dirty bit is not set on a write an exception is triggered.

5.3 Coprocessors

The coprocessors have to link with the central processor to transfer data and to pick up
instructions. The only way the coprocessors can get instructions from the instruction
stream is to snoop on the instruction cache bus. Similarly the coprocessors need to load
and store memory and so need to be attached to the data cache bus. This theory is rein-
forced by the fact that transfers between the coprocessor and the CPU have a delay of
one cycle and so must happen in the memory stage. The coprocessors get their instruc-
tions by snooping the instruction cache bus. If there is a load from coprocessor instruc-
tion or a store coprocessor register to memory instruction then the coprocessor waits
two cycles before driving the cache bus with the requested register value. Similarly if
the a load from memory or store to coprocessor instruction the coprocessor waits two
cycles before catching the data and sending it to the correct register. It is important that
the coprocessors monitor the halt line from the main CPU so as to not to become
unsynchronized and take control of the data cache bus at the wrong point. Also the
coprocessors have to watch the exception flush line from the CPU to make sure if to
commit to instructions.

5.4 Coprocessor Zero

Coprocessor zero was interfaced into the processor just like all other coprocessors even
though it is special as it has many other connections to the CPU. The coprocessor zero
memory management instructions are executed in the memory stage where the data
access TLB lookup gets replaced with the CPO TLB operation. As an instruction can
never be a CPO instruction and a memory access it is perfectly legal to take control of
the TLB for this cycle. Most of the registers are writable but also get written when the
processor enters an exception. This is solved by multiplexing the write values making
sure the exception has priority when writing. Most of the construction of CPO is

A MIPS R3000 microprocessor on an FPGA 13 February 2002 18



FIGURE 15. Memory Management Unit Schematic

described in the MMU and exceptions sections. (Section 5.2 on page 18 and
Section 5.5 on page 19)

5.5 Exceptions

If an instruction causes an interrupt the processor carries on until the instruction is at
the end of the memory stage. This is the last point where the instruction can cause an
exception but can also be aborted and the processor flushed of all instructions. The
multiplexer in front of the PC is switched to load the interrupt vector value into the PC
(Figure 11 on page 11). All instructions flowing through the CPU have a copy of the
address where loaded from. This address is taken from the PC at the time of a load and
passed from latch to latch in each pipeline stage. If the preceding instruction is a
branch that is executed the carried instruction PC value is not updated as the instruction
is in a branch shadow. This allows the kernel to return to the code and re-execute the
instruction. If the instruction causes an interrupt the EPC (Exception Program Counter)
in the coprocessor is loaded with the carried instruction PC value. The processor enters
the kernel mode by clearing the user bit and disallows the interrupts by clearing the
interrupt enable flag. Before being cleared these two bits are stored in the previous user
mode and interrupt enable flags. In turn the ‘previous’ flags are stored in the old user
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mode and interrupt enable flags. If the exception was a memory management exception
then the accessed virtual address is stored in the FaultAddr register and the EntryHi
and EntryLo registers are filled with the faulting page entry in the TLB. If the TLB

fault was caused in the instruction fetch stage then the forwarded PC address of the
faulting instruction is passed onto the datapath in the ALU stage so in the memory
stage it recreates the MMU fault for recording. The exception code is carried along
with the PC of the instruction. If an instruction causes an exception in the further stages
of the pipeline the instruction’s carried exception code is checked for the valid flag and
if the instruction has not caused an exception yet then its code gets replaced with the
code of the exception just detected. This exception code gets written to a CPO register.
By recording these values to CPO it is possible to recover from any exception.

5.6 Memory Map

The processor has to communicate with the outside world and so a serial port was
memory mapped. The serial port has two ten entry input and output FIFOs. Reading
from the serial port gives: an eight bit value of the entry at the front of the input FIFO,
a valid bit of the value, and the output FIFO full bit. There are two addresses where the
serial port can be read. The first allows reading of the value and popping it off the stack
and the second allows a snoopy read. The input value valid bit is also connected to an
external interrupt input line. As the processor starts at the RESET vector the memory at
that address has to be a prewritten RAM. It is possible to preset the RAM blocks in the
FPGA. A very small program was written in the RAM blocks to take the data from the
serial port and write it to RAM and then execute it. Firstly it takes a three words as the
program counter to jump to when the program is loaded then, the start address where to
write the program and the length of the program in bytes. Then the program stream is
sent. The loaded program can be a more sophisticated loader. The board has two but-
tons and an eight segment bargraph display that are mapped. An extra button was
reserved for driving the reset line. There is a down-counter that can be set to a value
and every cycle when the processor was not halted it drops by one. When it reaches
zero it raises an interrupt line. This down-counter is only activated when the processor
is in interrupt enabled mode otherwise it does not count down. The main RAM was
mapped at the bottom two megabytes of the physical address space.

5.7 Multiplier and Divider

The multiplier and divider on the R3000 microprocessor have complex interlocking but
fit the pipeline. The interface to the multiplier and divider was left empty and the units
never implemented as they would have probably been too big for the FPGA. Also the
time scale was too tight to implement more large components with full testing. The
interface allows the unit to take the values from the forwarding paths or register bank
and act on them. The result is multiplexed onto the datapath at the end of the ALU
stage on a Move From HI/LO instruction. If the instruction comes before the multi-
plier/divider has finished the processor is paused until the data is ready. An element
makes sure that is the data ready signal comes at any point the processor is only
released on the same clock phase as it was halted. This allows an asynchronous multi-
plier/divider. A flag in Coprocessor zero register switches the processor into a ‘Yellow
Star SM’ (Software Multiplier). In this mode: multiply, divide and access HI/LO regis-
ter instructions cause an exception. These instructions cause a different exception code.

A MIPS R3000 microprocessor on an FPGA 13 February 2002 20



FIGURE 16. Physical Memory Map
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Another flag can switch the exception vector for these exceptions to (0xbfcO 0300) fast
Multiplier/Divider code.

6 Debug

6.1 Binutils and GCC

In order to write reasonable programs it is necessary to make an assembler and a com-
piler. GNU Binutils and GCC can be compiled to create a cross compiler for a MIPS-
unknown-elf. As there are no operating systems on the chip the target does not have
any way of input or output or any operating system functions. The compiler and assem-
bler need to be specially set up to create programs that can run on a system with no
operating system. A program (Progload) was written to get the three pieces of informa-
tion from compiled programs and then send them over the serial port. This allowed any
program to be compiled and then sent to the board for running.

6.2 Charlie’s Angel

Charlie’s Angel is a front end debugger for communicating with an external board
using a serial connection. The board must be running a program to process the com-
mands from the Charlie’s Angel. This program was written and then sent to the board
using Progload. The back end responds to a host of instructions from the front end. For
stepping or multi-stepping through code the chip uses the down counter to set the
number of instructions to take before interrupting back.
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FIGURE 17. Screenshot of Charlie’s Angel
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Both ‘Little Star’ and ‘Yellow Star’ were tested and debugged and functioned correctly
under many with many test programs including the SPIM (MIPS microprocessor soft-
ware simulator) self test code. A simplified version of ‘Little Star’ only allowing word
loads and stores was tested running code from the on-chip RAM blocks and achieved
speeds of 50 MHz correctly executing a range of instructions especially selected to use
the longest paths. This version is probably capable of running at higher speeds but the
on-board clock was limited to 50 MHz. ‘Yellow Star’ was tested running memory
mapped code from cache without fault. There are units installed in the processor to test
parameters like the cache hit rate and periods between branches and output the results
collected through memory mapped registers. Although these have been tested and
found to be working they still await execution of large complex code for valid results.
With the smaller programs executed for testing these units have replied 99.9% cache
hit rate as the cache is bigger than the program and all periods between branches being
eight or five as this was the loop length of the test program. The ‘Little Star’ is made
from 16,556 gates and could be further compressed while ‘Yellow Star’ uses 63,327
gates (Table 7 on page 23). These gate counts are derived from the simulator. Although
the Virtex claims to be capable of containing up to 300,000 gates a 30,000 gate design
uses a quarter of the chip. This is understandable as blocks that the Virtex is made from
can rarely be used to their full potential. This means that on a design like this the max-
imum gate count that can fit onto the Virtex is about 120,000 gates, enough for an array
of up to seven ‘Little Star’ processors. By optimising the design and halving the caches
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two ‘Yellow Stars’ can fit onto a Virtex and run in parallel. One ‘Yellow Star’ can emu-
late another device like a floating point unit.

TABLE 7. Gate count statistics

Component Gate count
Yellow Star 63,327
(excluding cache)

Little Star 16,556
MMU 30,892
ALU 2,102
Shifter 2,220
Register Bank 1,061

8 Conclusion

The project was completed successfully seemed to run all MIPS code correctly
although not fully tested yet. This was a very taxing project and a lot was learned from

it. One of the more important lessons is that testing does actually take longer than
implementation. Even though each unit was tested before being integrated with the
processor when competed they still failed in situations never conceived. To create a
large design on any platform it is important to use the components that are cheap in that
technology. On an FPGA, RAM blocks are very cheap and tristate buffers are costly.
To create a small and fast design RAM blocks were used where possible to replace
more expensive components. Tristate buffers were avoided and only used where neces-
sary e.g. Data cache bus can be driven by the: processor, memory, cache or coproces-
sors registers so having a 32 bit wide 20 input multiplexer would not be feasible.
Another good example of this is the construction of the TLB where again using a 64 bit
wide 64 input multiplexer would have been excessive to avoid tristate buffers. A com-
promise was reached and worked very well. The same problem arises in the construc-
tion of the register bank and the shifter but in these cases the solution was created
without the use of tristate buffers by using gates and RAM blocks. This is a common
theme that occurs when designing for FPGAs, a result bus has to be driven from a large
number of places. There is no one solution to the problem but new solution has to be
created every time very often they have similarities with the ones solved here. Greatest
lessons were in the ways to approach a problem.

After creating ‘Little Star’ a lot of time was spent trying to understand everything there

is to know about exceptions and caching. When designing the exception handling every
possible instruction and state was considered before any implementation was done.
The first implementation of the exception handling circuits used a multiplexer to read
in the exception vector to the PC and a few registers to store the instruction PC. This
took a few minutes to implement and more was learned from looking at an exception
happening in simulation than over the several days studying it. Inserting test unit into a
working project that will give a lot of useful information. Having a modular design

with clean interfaces allowed large changes very late in the construction which is what
happened several times but luckily without the need to make changes to the interfaces.
The processors can be used as a base for testing other units as they allow: compilation
of large pieces of code, step by step testing and high performance. Ultimately it is
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hoped that these processors could be placed into systems that can easily be placed to
monitor or control peripheral devices or test components.

MIPS(R) and R3000(R) are registered trademarks of MIPS Technologies, Inc. in the
United States and other countries. Charles Brej is not affiliated in any way with MIPS
Technologies, Inc.
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