SCR1 User Manual

Syntacore, scrl@syntacore.com

Version 1.1.3, 2021-02-08

Table of Contents

Revision history

1.

SCR1 overview
1.1. Version of SCR1
1.2. Key features

. Codebase overview

2.1. SCR1 repository content
2.2. SCR1 RTL source and testbench files

. Core configurations

3.1. Core and device identifiers

3.2. Recommended configurations

3.3. Fine-tuning options for custom configuration
3.4. Core integration options

3.5. Options for simulation

. Simulation environment

4.1. Requirements
4.1.1. Operating system
4.1.2. RISC-V GCC toolchain
4.1.2.1. Using pre-built binary tools
4.1.2.2. Building tools from source
4.1.3. HDL simulators
4.1.4. Tests preparation
4.2. Running simulation
4.2.1. Simulator selection
4.2.2. Architectural configuration
4.3. Targets
4.4. Simulation code
4.4.1. Tracelog
4.5. Testbench description

. SDK information
. Support

© 00 I OO O OO W W W N N N =

S e O ey
S I S T N O N N N T = I = = I = N = R =

Revision history

Revision
1.0.0
1.0.1
1.0.2
1.0.3
1.04
1.0.5
1.0.6
1.0.7
1.1.0

1.11
1.1.2
1.1.3

Date
2018-05-07
2018-09-19
2018-10-09
2019-03-19
2019-04-11
2019-05-07
2019-08-30
2019-10-28
2019-12-13

2020-07-15
2020-11-13
2021-02-08

Description

Initial version

RTL configurations and sim script update
Updated MIMPID

Updated to comply with MIMPID=0x19031802
Updated to comply with MIMPID=0x19040301
Updated simulation environment

Updated MIMPID=0x19083000

Updated chapter 'Test subset'

New SCR1 cluster diagram.

Detailed description on filelists.
Updated setup procedure for simulation.
More information on SCR1 SDK repo.

Updated Compliance tests, added TCM option
Updated to comply with MIMPID=0x20111300
Updated to comply with MIMPID=0x21020800

1. SCR1 overview

SCR1 is an open-source and free to use RISC-V compatible MCU-class core, designed and maintained
by Syntacore. See the LICENSE file in the root directory for details.

1.1. Version of SCR1

This document is relevant for SCR1 core with MIMPID value of 0x21020800.

1.2. Key features

* Open sourced under SHL-license (see LICENSE file) - unrestricted commercial use allowed
» RV32I or RV32E ISA base with optional RVM and RVC standard extensions
* Machine privilege mode only

* 2 to 4 stage pipeline

» Optional Integrated Programmable Interrupt Controller with 16 IRQ lines
» Optional RISC-V Debug subsystem with JTAG interface

* Optional on-chip Tightly-Coupled Memory

» 32-bit AXI4/AHB-Lite external interface

* Written in SystemVerilog

* Optimized for area and power consumption

* 3 predefined recommended configurations

* A number of fine-tuning options for custom configuration

* Verification suite provided

» Extensive documentation

For more information on core architecture see SCR1 External Architecture Specification (EAS).

2. Codebase overview

2.1. SCR1 repository content

Table 1: Directories and content
Folder
dependencies

riscv-tests

riscv-compliance

coremark

docs
scrl_eas.pdf
scrl_um.pdf

sim
tests/common
tests/riscv_isa
tests/riscv_compliance
tests/benchmarks/dhrystone21

tests/benchmarks/coremark

tests/isr_sample

tests/hello

verilator_wrap
src

includes

core

top

th

Description
Dependent submodules
Common source files for RISC-V ISA tests

Common source files for RISC-V Compliance
tests

Common source files for EEMBC’s CoreMark®
benchmark

SCR1 documentation

SCR1 External Architecture Specification

SCR1 User Manual

Tests and scripts for simulation

Common source files for tests

RISC-V ISA tests platform specific source files
RISC-V Compliance platform specific source files
Dhrystone 2.1 benchmark source files

EEMBC’s CoreMark® benchmark platform
specific source files

Sample program "Interrupt Service Routine"
Sample program "Hello"

Wrappers for Verilator simulation

SCR1 RTL source and testbench files
Header files

Core top source files

Cluster source files

Testbench files

2.2. SCR1 RTL source and testbench files

SCR1 source file lists of SCR1 can be found in ./src:

* core.files - all synthesized file sources of the SCR1 core

» ahb_top.files - synthesized file sources of AHB cluster

 axi_top.files - synthesized file sources of AXI cluster

 ahb_th.files - testbench file sources for AHB cluster (for simulation only)

* axi_tb.files - testbench file sources for AXI cluster (for simulation only)

Library with header files to include is ./sr¢/includes/

Below is a complete list of all source files.

Table 2: SCR1 RTL source and testbench files

Path

includes/scrl_ahb.svh

includes/scrl_arch_description.svh

includes/scrl_arch_types.svh
includes/scrl_csr.svh
includes/scrl_dm.svh
includes/scrl_hdu.svh
includes/scr1_ipic.svh

includes/scrl_memif.svh

includes/scrl_riscv_isa_decoding.svh

includes/scrl_scu.svh
includes/scrl_search_msl.svh
includes/scrl_tapc.svh

includes/scrl_tdu.svh

core/pipeline/scrl_ipic.sv

core/pipeline/scrl_pipe_csr.sv
core/pipeline/scrl_pipe_exu.sv
core/pipeline/scrl_pipe_hdu.sv
core/pipeline/scrl_pipe_ialu.sv
core/pipeline/scrl_pipe_idu.sv
core/pipeline/scrl_pipe_ifu.sv
core/pipeline/scrl_pipe_lsu.sv
core/pipeline/scrl_pipe_mprf.sv
core/pipeline/scrl_pipe_tdu.sv
core/pipeline/scrl_pipe_top.sv
core/pipeline/scrl_tracelog.sv

core/primitives/scrl_cg.sv

core/primitives/scrl_reset_cells.sv

core/scrl_clk ctrl.sv

Description

SCR1 header files

AHB header file

Architecture description file
Pipeline types description file
CSR mapping/description file

DM header file

HDU header file

IPIC header file

Memory interface definitions file
RISC-V ISA definitions file

SCU header file

Most significant one search function
TAPC header file

TM header file

SCR1 core source files

Integrated Programmable Interrupt Controller
(IPIC)

Control Status Registers (CSR)
Execution Unit (EXU)

Hart Debug Unit (HDU)

Integer Arithmetic Logic Unit (IALU)
Instruction Decoder Unit (IDU)
Instruction Fetch Unit (IFU)
Load/Store Unit (LSU)

Multi Port Register File (MPRF)
Trigger Debug Unit (TDU)

SCR1 pipeline top

Core tracelog module (for simulation only)
SCR1 clock gate primitive

SCR1 reset logic primitives

SCR1 clock control

Path
core/scrl_core_top.sv
core/scrl_dm.sv
core/scrl_dmi.sv
core/scrl_scu.sv
core/scrl_tapc.sv

core/scrl_tapc_shift_reg.sv

core/scrl_tapc_synchronizer.sv

top/scrl_dmem_ahb.sv
top/scrl_dmem_router.sv

top/scrl_dp_memory.sv

top/scrl_imem_ahb.sv
top/scrl_imem_router.sv
top/scrl_mem_axi.sv
top/scrl_tcm.sv
top/scrl_timer.sv
top/scrl_top_ahb.sv

top/scrl_top_axi.sv

th/scrl_memory_tb_ahb.sv
th/scrl_memory_tb_axi.sv
th/scrl_top_tb_ahb.sv
th/scrl_top_tb_axi.sv

th/scrl_top_tb_runtests.sv

Description

SCR1 core top

Debug Module (DM)

Debug Module Interface (DMI)
System Control Unit

TAP Controller (TAPC)

TAPC shift register

TAPC clock domain crossing synchronizer

SCR1 top cluster source files

Data memory AHB bridge
Data memory router

Dual-port synchronous memory with byte
enable inputs

Instruction memory AHB bridge
Instruction memory router
Memory AXI bridge
Tightly-Coupled Memory (TCM)
Memory-mapped Timer

SCR1 AHB top

SCR1 AXI top

Testbench files

AHB memory testbench
AXI memory testbench
SCR1 top testbench AHB
SCR1 top testbench AXI

Testbench run tests

3. Core configurations

3.1. Core and device identifiers

The table below shows SCR1 core and device identifiers.

Table 3: SCR1 core and device identifiers

Identifier name

MIMPID

MARCHID

MVENDORID

TAP_IDCODE

BUILD_ID

Description

SCR1 core implementation ID to read from corresponding CSR. The number
uniquely identifies the version of the SCR1 core RTL.

SCR1 core architecture ID to read from corresponding CSR. The number
identifies the SCR1 core from other RISC-V cores. Hardwired to 0x00000008

SCR1 core vendor ID to read from corresponding CSR. For commercial
manufacturing purposes, please overwrite this field to your JEDEC Standard
Manufacturer’s ID Code. Default value is 0x00000000

IDCODE to read from the corresponding TAPC register via JTAG. For
commercial manufacturing purposes, please overwrite this field to your JEDEC
Standard Manufacturer’s ID Code + part number and version. Default value is
0xDEB11001 (not JEDEC)

Device build ID. The number must be set in a external arch_custom.svh file for
a specific device build (e.g. for FPGA build in SCR1-SDK). Default value for
simulation = MIMPID

3.2. Recommended configurations

The table below shows three recommended SCR1 configurations for typical use cases. These
configurations can be easily enabled in scr1_arch_description.svh file, section "RECOMMENDED
CORE ARCHITECTURE CONFIGURATIONS". To select a configuration, uncomment the only relevant

define from the list.

Table 4: SCR1 recommended configurations

Options SCR1_CFG_RV3 SCR1_CFG_RV3 SCR1_CFG_RV3
2EC_MIN 2IC_BASE 2IMC_MAX

Instruction set RV32EC RV32IC RV32IMC
Pipeline stages 2 3 4
Number of GPRs 16 32 32
Hardware multiplier - - +

Fast 1-cycle multiplier - - +
Compressed instructions i i +
MTVEC base address writable bits 0 16 26
MTVEC mode writable - i +
External IRQ lines 1 16 16

Options SCR1_CFG_RV3 SCR1_CFG_RV3 SCR1_CFG_RV3

2EC_MIN 2IC_BASE 2IMC_MAX
Debug subsystem - + +
Number of hardware triggers 0 2 4
TCM + + +

3.3. Fine-tuning options for custom configuration

SCR1 has a number of fine-tuning options for custom configuration described in the table below. To
make your own design of these options, you need to edit scrl_arch_description.svh file:

* undefine all recommended configurations in the section "RECOMMENDED CORE
ARCHITECTURE CONFIGURATIONS" to enable custom configuration,
* select all the necessary options in section "CUSTOM CORE ARCHITECTURE CONFIGURATION™:
> to disable/enable an options - comment/uncomment the corresponding define,

o for numeric parameter - change it’s value.

Table 5: SCR1 configurable options

Name Description
RISC-V ISA options

SCR1_RVE_EXT Enable RV32E base integer instruction set, otherwise
RV32I will be used

SCR1_RVM_EXT Enable standard extension "M" for integer hardware
multiplier and divider

SCR1_RVC_EXT Enable standard extension "C" for compressed
instructions

SCR1_MTVEC_BASE WR_BITS Number of writable bits in MTVEC.base field

SCR1_MTVEC_MODE_EN Enable writable MTVEC.mode field to allow vectored

irq mode, otherwise only direct mode is possible

Core pipeline options (power-performance-area optimization)

SCR1_NO_DEC_STAGE Disable register between IFU and IDU

SCR1_NO_EXE_STAGE Disable register between IDU and EXU

SCR1_NEW_PC _REG Enable register in IFU for New PC value

SCR1_FAST MUL Enable fast one-cycle multiplication, otherwise
multiplication takes 32 cycles

SCR1_CLKCTRL_EN Enable global clock gating

SCR1_MPRF_RST_EN Enable reset for MPRF

SCR1_MCOUNTEN_EN Enable custom MCOUNTEN CSR for counter control

Uncore options
SCR1_DBG_EN Enable Debug Subsystem (TAPC, DM, SCU, HDU)
SCR1_TDU_EN Enable Trigger Debug Unit (hardware breakpoints)

Name Description
SCR1_TDU_TRIG_NUM
SCR1_TDU_ICOUNT_EN

Number of hardware triggers

Enable hardware triggers on instruction counter
SCR1_IPIC_EN Enable Integrated Programmable Interrupt Controller
SCR1_IPIC_SYNC_EN Enable 2-stage input synchronizer for IRQ lines
SCR1_TCM_EN Enable Tightly-Coupled Memory, default size is 64K

For synthesis if enable SCR1_CLKCTRL_EN code in scrl_cg.sv should be replaced

NOTE A . .
with implementation-specific clock gate.

3.4. Core integration options

SCR1 has a number options for integration into upper-level design. This options can be changed in
scrl_arch_description.svh file, section "CORE INTEGRATION OPTIONS™:

* to disable/enable an options - comment/uncomment the corresponding define,

» for numeric parameter - change it’s value.
Some options can be defined in the external file scrl_arch_custom.svh which is not presented in
the SCR1 repo, but can be used in upper-level project (e.g. open SCR1-SDK project and any other
custom FPGA, ASIC or SoC projects).
Table 6: SCR1 integration options
Name Description

Memory bridges bypass options

SCR1_IMEM_AHB_IN_BP

SCR1_IMEM_AHB_OUT_BP

SCR1_DMEM_AHB_IN_BP
SCR1_DMEM_AHB_OUT_BP
SCR1_IMEM_AXI_REQ_BP

SCR1_IMEM_AXI_RESP_BP

SCR1_DMEM_AXI_REQ_BP
SCR1_DMEM_AXI_RESP_BP

SCR1_ARCH_RST_VECTOR

SCR1_ARCH_MTVEC_BASE

Enable bypass on instruction memory AHB bridge
inputs

Enable bypass on instruction memory AHB bridge
outputs

Enable bypass on data memory AHB bridge inputs
Enable bypass on data memory AHB bridge outputs

Enable bypass on instruction memory AXI bridge
request

Enable bypass on instruction memory AXI bridge
response

Enable bypass on data memory AXI bridge request

Enable bypass on data memory AXI bridge response

Address constants

Reset vector value (start address after reset) (default
0x200)

MTVEC.base field reset value, or constant value for
MTVEC.base bits that are hardwired (default 0x1CO0)

Name Description

SCR1_TCM_ADDR_MASK Set TCM mask and size; size in bytes is two’s
complement of the mask value (default 0OXFFFF0000)

SCR1_TCM_ADDR_PATTERN Set TCM address match pattern (default 0x00480000)

SCR1_TIMER_ADDR_MASK Set timer mask (default OXFFFFFFEOQ)

SCR1_TIMER _ADDR_PATTERN Set timer address match pattern (default 0x00490000)

Target platform (enables target-specific constructs)

SCR1 _TRGT FPGA_INTEL Target platform is Intel FPGAs

SCR1_TRGT_FPGA_INTEL_MAX10 Target platform is Intel MAX 10 FPGAs (used in the
SCR1-SDK project)

SCR1_TRGT_FPGA_INTEL_ARRIAV Target platform is Intel Arria V FPGAs (used in the
SCR1-SDK project)

SCR1_TRGT_FPGA_XILINX Target platform is Xilinx FPGAs (used in the SCR1-SDK
project)

SCR1_TRGT_ASIC Target platform is ASIC

3.5. Options for simulation

The parameters below are used for simulation only to enable the simulation code and set up the
testbench. These options can be changed in scrl_arch_description.svh file, section "SIMULATION
OPTIONS"™:

* to disable/enable an options - comment/uncomment the corresponding define,

» for numeric parameter - change it’s value.

Table 7: SCR1 simulation options
Name Description

Simulation options

SCR1_TRGT SIMULATION Enable simulation code (automatically defined by root
makefile) (see Simulation code)

SCR1_TRACE_LOG_EN Enable tracelog (see Tracelog)

Addresses used in testbench (see Testhbench description)

SCR1_SIM_EXIT ADDR Write this address to exit the simulation (default
0x000000F8)

SCR1_SIM_PRINT ADDR Write this address to print a symbol in console (default
0xF0000000)

SCR1_SIM_EXT_IRQ_ADDR Write this address to generate external interrupts
(default 0xF0000100)

SCR1_SIM_SOFT_IRQ_ADDR Write this address to generate software interrupt
(default 0xF0000200)

4. Simulation environment

The project contains testbenches, test sources and scripts to quickly start the SCR1 simulation.
Before starting the simulation, make sure you have:

 installed RISC-V GCC toolchain,
* installed one of the supported simulators,

e initialized submodules with test sources.

4.1. Requirements

4.1.1. Operating system
GCC toolchain and make-scripts are supported by most popular Linux-like operating systems.

To run from Windows you can use an additional compatibility layer, such as WSL or Cygwin.

4.1.2. RISC-V GCC toolchain

RISC-V GCC toolchain is required to compile the software. You can use pre-built binaries or build
the toolchain from scratch.

4.1.2.1. Using pre-built binary tools

Pre-built RISC-V GCC toolchain with support for all SCR1 architectural configurations is available
for download from http://syntacore.com/page/products/sw-tools.

1. Download the archive for your platform.
2. Extract the archive to preferred directory <GCC_INSTALL_PATH>.
3. Add the <GCC_INSTALL_PATH>/bin folder to the $PATH environment variable:

export PATH=<GCC_INSTALL_PATH>/bin:$PATH

4.1.2.2. Building tools from source

You can build the RISC-V GCC toolchain from sources, stored in official repo https://github.com/
riscv/riscv-gnu-toolchain

Instructions on how to prepare and build the toolchain can be found on https://github.com/riscv/
riscv-gnu-toolchain/blob/master/README.md

We recommend using the multilib compiler. Please note that RV32IC, RV32E, RV32EM, RV32EMC,
RV32EC architectural configurations are not included in the compiler by default. If you plan to use
them, you will need to include the appropriate libraries by yourself before building.

After the building, be sure to add the <GCC_INSTALL_PATH>/bin folder to the $PATH environment

10

http://syntacore.com/page/products/sw-tools
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain/blob/master/README.md
https://github.com/riscv/riscv-gnu-toolchain/blob/master/README.md

variable

4.1.3. HDL simulators
Currently supported simulators:

e Verilator (last verified version: v4.102)

Intel ModelSim (last verified version: INTEL FPGA STARTER EDITION vsim 2020.1_3)

Mentor Graphics ModelSim (last verified version: Modelsim PE Student Edition 10.4a)
» Synopsys VCS (last verified version: vcs-mx_vL-2016.06)

¢ Cadence NCSim

Please note that RTL simulator executables should be in your $PATH variable.

4.1.4. Tests preparation
The simulation package includes the following tests:

* hello - "Hello" sample program

* isr_sample - "Interrupt Service Routine" sample program
* riscv_isa - RISC-V ISA tests (submodule)

* riscv_compliance - RISC-V Compliance tests (submodule)
* dhrystone21 - Dhrystone 2.1 benchmark

» coremark - EEMBC’s CoreMark® benchmark (submodule)

After the main SCR1 repository has been cloned execute the following command:
git submodule update --init --recursive

This command will initialized submodules with test sources.

4.2. Running simulation

To build RTL, compile and run tests from the repo root folder you have to call Makefile. By default,
you may simply call Makefile without any parameters:

make

In this case simulation will run on Verilator with following parameters: CFG=MAX BUS=AHB TRACE=0
TARGETS="hello isr_sample riscv_isa riscv_compliance dhrystone21 coremark".

Makefile supports:

e choice of simulator - run_<SIMULATOR>,

11

 architecture setup - CFG, BUS, ARCH, VECT_IRQ, IPIC, TCM,
 tests subset to run - TARGETS

* enabling tracelog - TRACE

and any additional options to pass to the simulator - SIM_BUILD_OPTS.

Example:

make run_ves CFG=CUSTOM BUS=AXI ARCH=I VECT_IRQ=1 IPIC=1 TCM=0 TARGETS="hello
isr_sample" TRACE=1 SIM_BUILD_OPTS="-qui"

Build and run parameters can be configured in the ./Makefile.

After all the tests have finished, the results can be found in build/<SIM_CFG>/test results.txt.

IMPORTANT To ensure correct rebuild, please call make clean between simulation runs.

4.2.1. Simulator selection
You may specify one of supported simulators run_<SIMULATOR> = <run_ves, run_modelsim,
run_ncsim, run_verilator, run_verilator_wf>:

make run_modelsim

Simulator run:

e run_verilator - Verilator (default)

* run_verilator_wf - Verilator with waveforms generation
* run_modelsim - ModelSim by Mentor Graphics or Intel

* run_vecs - Synopsys VCS

e run_ncsim - Cadence NCSim

For the run_verilator_wf option, a waveform is generated for all tests performed and saved in
./build/<SIM_CFG>/simx.vcd. The file can be opened by some waveform viewer, such as GTKWave.

4.2.2. Architectural configuration

You may specify configuration CFG = <MAX, BASE, MIN, CUSTOM> and external interface BUS = <AHB,
AXI>:

make CFG=BASE BUS=AXI

Configurations expand as follows:

* MAX - sets predefined configuration SCR1_CFG_RV32IMC_MAX (default)

12

* BASE - sets predefined configuration SCR1_CFG_RV32IC_BASE
* MIN - sets predefined configuration SCR1_CFG_RV32EC_MIN

* CUSTOM - could be used for any other custom configurations

For all predefined configurations, other architectural parameters are automatically set to a
deterministic state, both for compiling tests and SCR1 RTL.

For CUSTOM configurations, you can specify additional parameters:

* ARCH = <IMC, IC, IM, I, EMC, EM, EC, E> - RISC-V instruction set architecture. The parameter
defines the RISC-V instruction set architecture for compiling tests (automatically used by the
RISC-V toolchain): RV32I or RV32E base + optional standard extensions M and C. RTL options
SCR1_RVE_EXT, SCR1_RVM_EXT and SCR1_RVC_EXT must be defined accordingly.

* VECT_IRQ = <0, 1> - vectored mode to handle interrupts, otherwise direct mode is used. The
definition of the parameter VECT_IRQ is used in the test "isr_sample" to show various interrupt
call and handling scenarios. RTL option SCR1_MTVEC_MODE_EN must be defined for vectored
mode.

* IPIC = <0, 1> - using Integrated Programmable Interrupt Controller. The definition of the
parameter IPIC is used in the test "isr_sample"” to show various interrupt call and handling
scenarios. RTL option SCR1_IPIC_EN must be defined accordingly.

* TCM = <0, 1> - using Tightly Coupled Memory. Setting TCM option to 1 defines some tests to be
executed from Tightly Coupled Memory instead of external testbench memory. RTL option
SCR1_TCM_EN must be defined accordingly

Set of additional parameters for a CUSTOM configuration doesn’t enable the
IMPORTANT SCR1 RTL parameters. Please, don’t forget to manually set the corresponding
parameters in the file ./src/includes/scr1_arch_description.svh.

Additional parameters cannot be used for predefined configurations as they are
already hardcoded.

NOTE

Example:

make CFG=CUSTOM ARCH=I VECT_IRQ=1 IPIC=1 TCM=0

4.3. Targets

You can specify a test subset to run in a simulation:
* TARGETS = <hello, isr_sample, riscv_isa, riscv_compliance, dhrystone21, coremark>

To select only one target from the list, specify its name, for example:

make TARGETS=hello

13

To select multiple targets, list them in quotation marks separated by spaces, for example:
make TARGETS="dhrystone21 coremark"

Some of the tests depend on the selected architecture and therefore can not be used for all core
configurations (these are skipped automatically).

To select individual tests from a collection, you need:

* For the riscv_isa collection, go to ./sim/tests/riscv_isa/rv32_tests.inc and list the required tests
in the rv32_isa_tests.

» For the riscv_compliance collection, go to ./sim/tests/riscv_compliance/Makefile and list the
required tests in the compliance_set (specify the full path to each test).

4.4. Simulation code

You can add useful information about the simulation process: assertions, tracelog and instruction
statistics. The SCR1_TRGT SIMULATION parameter must be defined in
./src/includes/scr1_arch_description.svh section "SIMULATION OPTIONS" to enable all simulation
code. This parameter is automatically enabled when you run the make-script.

4.4.1. Tracelog

During the simulation, the following information can be written to a special file
tracelog_core_N.log in build directory:

e RTL_ID value
» Core reset events and time of their occurrence

* MPRF and CSR registers update information in the following format:
Time | Event | Curr_PC | Instr | Next_PC | Reg | Value

The following abbreviations of events are used:

* N-no event (regular register value update or cycle without updates)
* E - exception
* I-interrupt
* W - wakeup
Parameter SCR1_TRACE_LOG_EN and SCR1_TRGT_SIMULATION must be defined in

src/includes/scrl_arch_description.svh to enable tracelog. When using make-script, you can pass
parameter TRACE=1 to automatically enable tracelog generation for all selected tests.

14

4.5. Testbench description

SCR1 testbench consists of top level module and external memory. Two testbench configurations
are available depending on the memory interface used: AXI or AHB.

The desired configuration can be chosen by specifying the BUS=<AHB, AXI> option of make command
(for the full command refer to [Running simulations]). The default value is BUS=AHB.

The list of files for both configurations is provided in the table below.

Table 8: SCR1 Testbench files

Path Description
AXI Testbench
thb/scrl_memory_tb_axi.sv AXI memory testbench
th/scrl_top_tb_axi.sv SCR1 top testbench AXI
AHB Testbench
th/scrl_memory_tb_ahb.sv AHB memory testbench
tb/scrl_top_tb_ahb.sv SCR1 top testbench AHB

Both testbench memories have the size of 1024 kB.

If TCM is enabled its memory address ranges are cut from external memory address
ranges.

NOTE

Testbench memories provide the mechanism for generating interrupts and printing characters in
simulation console by writing data to the specific address. Also loading Program Counter with
Simulation Exit address value terminates the simulation. Defines for such addresses are located in
"SIMULATION OPTIONS" section of scrl_arch_description.svh. Default addresses map is shown in
Table 1.

Table 9: SCR1 Interrupts and Simulation Control Default Memory Map

Address Description
0xF0000100 External IRQs
0xF0000200 Software IRQ
0xF0000000 Print Character
0x000000F8 Simulation Exit

External 1-pin IRQ and IPIC IRQ lines share the same address. Make sure you are using the correct
width, depending on whether IPIC is enabled. External 1-pin IRQ (if IPIC disabled) and Soft IRQ
values should be placed in bit 0. IRQ Lines values (if IPIC enabled) uses 16 least significant bits of
write data.

If you need to use addresses map other than default make sure both RTL and test

NOTE
program use the same map.

15

5. SDK information

Open-source FPGA-based SDKs are available at the https://github.com/syntacore/scri-sdk.
Repo contains:

* Pre-build images and open designs for several standard FPGAs boards:
o Digilent Arty (Xilinx)
o Digilent Nexys 4 DDR (Xilinx)
o Arria V GX Starter (Intel)
o Terasic DE10-Lite (Intel)
» Software package:
> Bootloader
o Zephyr RTOS
o Tests and SW samples

e User Guides for SDKs and tools

16

https://github.com/syntacore/scr1-sdk

6. Support

For more information on SCR1 core, please write to scrl@syntacore.com.

17

mailto:scr1@syntacore.com

	SCR1 User Manual
	Table of Contents
	Revision history
	1. SCR1 overview
	1.1. Version of SCR1
	1.2. Key features

	2. Codebase overview
	2.1. SCR1 repository content
	2.2. SCR1 RTL source and testbench files

	3. Core configurations
	3.1. Core and device identifiers
	3.2. Recommended configurations
	3.3. Fine-tuning options for custom configuration
	3.4. Core integration options
	3.5. Options for simulation

	4. Simulation environment
	4.1. Requirements
	4.1.1. Operating system
	4.1.2. RISC-V GCC toolchain
	4.1.2.1. Using pre-built binary tools
	4.1.2.2. Building tools from source

	4.1.3. HDL simulators
	4.1.4. Tests preparation

	4.2. Running simulation
	4.2.1. Simulator selection
	4.2.2. Architectural configuration

	4.3. Targets
	4.4. Simulation code
	4.4.1. Tracelog

	4.5. Testbench description

	5. SDK information
	6. Support

