

A-Z80 CPU
User’s Guide
An FPGA project recreating the Z80

© 2018 Goran Devic

3/10/2018

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 1

Revision History

Date Revision Change

2014-12-14 1.0 Initial revision.

2014-12-21 1.1 Added ZX Spectrum Turbo mode, speaker blink etc.

2015-01-22 1.2 Added section on file generators; other small updates.

2016-03-06 1.3 Added Xilinx support.

2017-01-07 1.4 Corrections and update.

2018-03-10 1.5 Corrections and update.

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 2

Table of Contents

Revision History .. 1

Introduction .. 3

Project Directory Structure ... 4

Environment ... 5

Test Boards ... 6

Simulation ... 7

Module simulations .. 7

Top-level simulations .. 10

Verification .. 12

Fuse tests .. 12

Selected functional tests ... 13

Z80 Assembly level tests ... 14

Tools .. 15

PLA Checker Tool .. 15

Arduino Tools .. 18

Integration .. 19

Interface .. 20

Sample Implementations .. 21

Simple host.. 21

Sinclair ZX Spectrum ... 24

Advanced Topics ... 26

Modifying the A-Z80 CPU Core ... 26

File Generators .. 28

Building the CPU ... 28

Verification/Tests .. 30

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 3

Introduction

A-Z80 is a conceptual implementation of the venerable Zilog® Z80 processor targeted to synthesize and

run on a modern FPGA device. It differs from the existing Z80 implementations in that it is designed

from the ground-up through the schematics and low-level gates.

This design is capable of mimicking the actual Z80 CPU and, through its architecture, it illustrates its

inner workings.

The A-Z80 implementation strives to be internally structurally identical to the original Z80. Using this

approach, the model achieves a full cycle accuracy and has identical behavior for all documented and

undocumented features (*). This is achieved not by explicitly hard-coding exceptions and quirks, but by

mimicking the actual design.

Various Zilog Z80 references are widely available so the CPU, its instructions and behavior will not be

covered in this document.

This document focuses on the structure and mechanics of working with the A-Z80 architecture; it should

help you understand it and incorporate it into your designs.

You can read more about the conception and implementation of the A-Z80 on its home website:

www.baltazarstudios.com .

If you simply want to integrate A-Z80 into your own project, you can skip to section Integration.

http://www.baltazarstudios.com/

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 4

Project Directory Structure

A-Z80 project can be downloaded from two locations:

• OPENCORES (SVN): http://opencores.org/project,a-z80

• Bitbucket (git): https://bitbucket.org/gdevic/a-z80 .

The following table describes the directory structure:

Directory Sub-directory Description

cpu Contains all core files of the A-Z80 CPU

 alu Arithmetical and Logical Unit files

 bus Various bus-related files

 control Control unit files

 registers Register block files

 toplevel A-Z80 top level interfaces and projects

docs Documentation and images of schematics

host Several implementations using A-Z80 on Altera and Xilinx boards

 basic_de1 Basic computer for testing and verification, uses UART, Altera DE1

 basic_nexys3 The same but for Xilinx Nexys3 board

 zxspectrum_de1 Sinclair ZX Spectrum implementation for Altera DE1 board

resources General project resources and scripts

tools Building and testing utilities and misc. files

 Arduino Software for Arduino Mega dongle to interface with a Z80

 dongle Dongle and simulation scripts and golden files

 z80_pla_checker Windows utility to test and create A-Z80 PLA tables

 zmac Z80 test and verification assembler files

http://opencores.org/project,a-z80
https://bitbucket.org/gdevic/a-z80

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 5

Environment

A minimal set of tools needed to compile various parts of the project is:

• Altera Quartus II Web Edition (free) OR

• Xilinx ISE Webpack (free) OR

• Lattice ICECube toolchain from Synopsys

• ModelSim (Altera edition, free) – needed for simulation of various modules

• Python 3.5 (or newer) – needed to change or recompile A-Z80 files

• Microsoft Visual Studio 2013 or newer – needed to recompile the z80_pla_checker tool

If you are only going to use A-Z80 in your project, all Verilog files that you need are already checked in

and ready to be included and you don’t need any of the extra tools listed. Use Python script

“export.py” to copy/export necessary files for you (don’t copy files manually since only some files

are needed and the script ‘knows’ which ones).

This project was developed and tested on a 64-bit Windows 7 OS. Your mileage may vary on other

platforms.

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 6

Test Boards

Altera: Designs are tested on a Terasic DE1 board:

http://www.altera.com/education/univ/materials/boards/de1/unv-de1-board.html

This board has a Cyclone II EP2C20F484C7 FPGA alongside several useful peripherals including a 512 KB

SRAM bank, PS/2 keyboard, UART and a VGA connector.

Xilinx: Designs are tested on a Digilent Nexys3 board:

http://store.digilentinc.com/nexys-3-spartan-6-fpga-trainer-board-limited-time-see-nexys4-ddr/

This board features a Spartan-6 XC6LX16-CS324 FPGA and several useful peripherals such are UART,

PS/2 keyboard and VGA.

http://www.altera.com/education/univ/materials/boards/de1/unv-de1-board.html
http://store.digilentinc.com/nexys-3-spartan-6-fpga-trainer-board-limited-time-see-nexys4-ddr/

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 7

Simulation

Module simulations

If you make any change to the CPU core files, you should run one or more simulations to verify the

correctness of your modifications.

Each module in the “cpu” directory contains a ModelSim simulation project that verifies the

functionality of one or more of its blocks. Before opening a project in ModelSim, run

“modelsim_setup.py” script located in the project root directory. That script will set up relative file

mappings to enable project to reside anywhere on your drive.

If you have installed and configured ModelSim correctly, double-clicking on any *.mpf file will open a

project in the ModelSim GUI.

This example will illustrate setting up and starting a simulation of a specific logic block in the alu module.

Before you can compile a simulation test bench, create a library by typing “vlib work” as shown:

Next, select “Compile->Compile All” to compile all files that are part of a module simulation.

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 8

Each project has one or more simulation configurations; each configuration tests a specific block of logic.

In addition, each configuration has its own wave file which you can load before you run a simulation.

Wave files are customized for a specific test and provide a handy way to quickly see all relevant signals.

In this example, we will run “Test prep daa” configuration. DAA is a Z80 instruction that adjusts

accumulator for a decimal operation. It requires calculating the adjustment addend based on the result

of a previous operation. Hence, this test is written to verify the correctness of that calculation.

Each test configuration is run by a main test bench file that is always written in a System Verilog

language with the extension *.sv. A file that runs the “Test prep daa” configuration is

“test_prep_daa.sv”.

Double-click on the “Test prep daa” configuration and your simulation should be loaded.

Open the wave window if it is not already visible and select File->Open to load a wave file as shown:

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 9

A shortcut is provided to run simulation: each ModelSim directory contains a small text file with the

name “r” that contains command “restart -f ; run -all”. Run, or rerun, a test simply by typing “do r” as

shown above.

After running this example, you should see a waveform of the DAA preparation block:

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 10

Although a very simple, this example hopefully illustrated a method of running a simulation. The same

process can be repeated with other configurations and modules. The pattern of configurations, files and

waveform names is the same.

Each main test bench file (just like the “test_prep_daa.sv”) contains a set of assert() statements to

verify the signal correctness. These asserts will fail and your simulation will stop if the signals take

unexpected values.

Most simulations run for a predetermined number of clocks. The exceptions are top-level simulations (in

the directory “cpu\toplevel\simulation\modelsim”) and a basic host simulation (in the directory

“host\basic_de1\simulation\modelsim”). These simulations need to be stopped manually since they

simply continue to execute given Z80 executable code.

Top-level simulations

The two top-level simulations are designed to load an arbitrary Z80 assembly code and execute it. A

simple unidirectional UART model is provided for the Z80 software to write to the ModelSim console.

The UART model will simulate behavior of a synthesized serial port. When the same design is

synthesized for the FPGA, the same Z80 code will write messages through a physical serial port.

UART is using 115200 baud data transfer rate, 8 data, 1 stop bit, no parity.

Module Simulation project

Toplevel cpu\toplevel\simulation\modelsim\test_top.mpf

Basic host host\basic_de1\simulation\modelsim\test_host.mpf

Those two simulation configurations can run any Z80 code; several sample test sources can be found in

the directory “tools\zmac” along with ZMAC assembler and a few batch scripts that simplify compilation

and the test setup. Z80 test files are somewhat based on CP/M and have a BDOS style text print

interface.

Two MS DOS batch files are used to compile and run tests:

Batch file Description

tools\zmac\make_modelsim.bat Compiles and generates executable code for a ModelSim test at
“cpu\toplevel\simulation\modelsim\test_top.mpf”, for “test_top”
configuration.

tools\zmac\make_fpga.bat 1. Compiles and generates executable code in Intel HEX file
format to be included into the target FPGA data file for
basic host “host\basic_de1\ host_board.qpf”

2. Also generates executable code for the basic host
ModelSim test at “host\basic_de1\simulation\modelsim\
test_host.mpf”

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 11

You can create your own Z80 assembly tests to run: simply drag and drop an assembly source file onto

one of those two batch files and they will compile a file and copy the results into proper target

directories.

For this example, we will compile and run a “Hello, world” test (“tools\zmac\hello_world.asm”).

Drag and drop “hello_world.asm” onto the “make_modelsim.bat” and start a top-level simulation

(“test_top” configuration) in the ModelSim.

Shortly, you should see the output in the ModelSim console window.

After you see the text being written to the virtual UART device, you can stop the simulation.

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 12

Verification

Fuse tests

Fuse is a set of tests to verify Z80 at the individual instruction level. Written for software emulator

designers, it contains a fairly complete set of input and output states for each instruction.

Files that are used in this verification are subset of the Fuse emulator source package:

http://fuse-emulator.sourceforge.net . You can find them in the “cpu\toplevel\fuse” directory.

The files describe individual instruction’s tests and need to be processed into a format that we can run –

which is Verilog. A Python script “cpu\toplevel\genfuse.py” generates Verilog test code for a selected

number of Fuse tests.

See that script file for more details on how to configure it before running.

When run, it creates “cpu\toplevel\test_fuse.vh” include file.

// Automatically generated by genfuse.py
force dut.reg_file_.reg_gp_we=0;
force dut.reg_control_.ctl_reg_sys_we=0;
force dut.z80_top_ifc_n.fpga_reset=1;
#2 //--
 force dut.instruction_reg_.ctl_ir_we=1;
 force dut.instruction_reg_.db=0;
#2 release dut.instruction_reg_.ctl_ir_we;
 release dut.instruction_reg_.db;
$fdisplay(f,"Testing opcode 00 NOP");
...

Once generated, this include file needs to be compiled with a ModelSim project file

“cpu\toplevel\simulation\modelsim\test_top.mpf” to run a set of tests. The test output will show in

the ModelSim window and the test will also create and write a file “fuse.result.txt”.

Hint: You can speed up Fuse simulation if you disable output to the wave window by typing:

VSIM 10> nolog –all

The following command re-enables the output:

VSIM 10> nolog –reset

http://fuse-emulator.sourceforge.net/

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 13

Image 1 : Fuse tests in ModelSim

Results of Fuse tests are written in the file “fuse.result.txt”, one instruction per line:

Testing opcode 00 NOP
Testing opcode ed67 RRD
Testing opcode ed6f RLD
Testing opcode 81 ADD A,C
Testing opcode cb41 BIT 0,C
Testing opcode cb93 RES 2,E
...

Selected functional tests
There are 3 tests that verify specific ALU operations by cross-checking the results run on a real Z80 with

the algorithm written in Python:

Test directory Z80 test file Description

tools\dongle\daa tools\zmac\test.daa.asm Execute DAA instruction for all values 0-255

tools\dongle\neg tools\zmac\test.neg.asm Execute NEG instruction for all values 0-255

tools\dongle\sbc n/a Simulate SUB and SBC instructions

Python scripts run the Arduino Z80 dongle (described in the Tools section) and generate output files.

Those files are then compared with the output produced by another set of Python scripts (they

implement corresponding algorithms). Lastly, the same text files are compared with ModelSim

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 14

simulation of those instructions and by running the same executable on the Simple Host FPGA

implementation and capturing the UART output.

The “golden” files include values of flags and accumulator going into the instruction and the result after

the instruction has completed:

F:00 A:00 -> 00 F:44
F:00 A:01 -> 01 F:00
F:00 A:02 -> 02 F:00
F:00 A:03 -> 03 F:04
F:00 A:04 -> 04 F:00
F:00 A:05 -> 05 F:04
F:00 A:06 -> 06 F:04
F:00 A:07 -> 07 F:00
...

Z80 Assembly level tests

Folder “tools/zmac” contains several Z80 assembly level tests.

Test source file Description

tools\zmac\hello_world.asm A mandatory “Hello, World”

tools\zmac\zexdoc.asm Tests documented Z80 instructions and flags

tools\zmac\zexall.asm Tests ALL Z80 instructions and flags (documented and undocumented)

While all of them can run in ModelSim, the last two are comprehensive and very long tests which should

normally be run only on an FPGA hardware in full speed mode.

“hello_world.asm” is written to allow test bench “cpu\toplevel\test_top.sv” to exercise various

interrupt modes. It contains interrupt handlers and logging for the test bench to run the following cases:

• Inject a single or periodic NMI

• Inject a single or periodic INT

• Test response to the nWAIT signal

• Test response to the nBUSRQ signal

• Test resets

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 15

Tools

PLA Checker Tool

PLA checker tool in “tools\z80_pla_checker” directory is a test utility to verify and create PLA code used
to statically decode Z80 instruction groups.

Since you normally don’t have to compile that code, the executable file is checked in. This is a .NET

application which should equally well run on Windows and Linux with mono support.

The PLA checker tool loads several files from the “resources” directory. That includes a raw PLA table

definition which was reverse-engineered from an image of a Z80 die.

The tool was invaluable in the development of A-Z80 and maintain its value as a cross-checker for the

PLA code. Available commands are:

Cmd Description

h or ? Help, list all commands.

p PLA table contains a set of modifiers and a gate-level logic array that ‘filters’ various instruction

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 16

opcode groups. This command shows you those groups.

p # Given a PLA entry number (decimal), show opcodes that are activated by it

10>>> p 3
PLA Entry: 3 Modifier: XX, NHALT
DD => [3] IX/IY prefix
FD => [3] IX/IY prefix

m # This is a reverse-lookup that shows all PLA table entries that would activate a specific opcode
given as a hex number:
12>>> m 76
Opcode: 76
[58] ld r,(hl)
[59] ld (hl),r
[61] ld r,r'
[95] halt

t Dumps the opcode table in several ways. One or two optional arguments are given which
restrict the table or show extra information including the number of PLA entries that trigger for
each opcode etc.

q # Useful only while simulating the CPU design, this command decodes the actual PLA table string

which is a long sequence of binary digits (105 bits in total)

g Generates Verilog code that implements the PLA decode. The output of this command is used to

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 17

create “cpu\control\pla_decode.sv” source file which is at the core of the design.

The image shows the start of the PLA decode module implemented in Verilog.

Z80 has several opcode tables and addressing modes selected either by a combination of instruction

prefix bytes (0xCB, 0xED and IX/IY) or by the internal state (HALT, ALU…)

PLA checker tool lets you set or unset any of these modifiers:

The modifier buttons directly correspond to modifiers in the PLA table and let you simulate the exact

PLA logic behavior as you are executing various tool dumps.

The tool keeps a history of commands that are typed in; a number displayed at the front of a prompt

“>>>” is a location in the history buffer. Pressing PgUp and PgDown selects a command from the history

buffer; ESC clears the command line.

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 18

Arduino Tools

Directory “tools\Arduino\Z80_dongle” contains firmware for the Arduino Mega connected to a Zilog

Z80 through a custom dongle. This setup can be used to pace Z80 in a controlled way and to execute

individual instructions and monitor bus activity. You can read more about that dongle at

www.baltazarstudios.com.

It was heavily used to generate tables for the correct bus behavior. These tables and Python scripts to

create them are checked in the directory “tools\dongle”.

http://www.baltazarstudios.com/

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 19

Integration

This section describes how to integrate A-Z80 CPU into your own project.

The method is tested with Altera and Xilinx design tools on several test boards. Other users contributed

by using a variety of boards, including Lattice-based FPGA boards.

The process of integration involves adding all relevant source files and setting up interfaces. For

convenience, all files needed to synthesize a CPU are listed in the file “cpu/top-level-files.txt” but

a Python script “cpu/export.py” should be run to copy all design files to your project folder.

Usage: export.py <destination-folder>

Copies all core A-Z80 Verilog files to a destination folder of your choice.

This example shows how to run it to copy files to your project folder:

python.exe export.py c:\projects\board\cpu

Copying control/clk_delay.v
Copying control/decode_state.v
. . .
Copying toplevel/coremodules.vh
Copying toplevel/globals.vh

Done copying 49 files.

All necessary A-Z80 CPU files are copied to c:\projects\board\cpu
Add all Verilog files (*.v) to your project and ensure that Verilog include
files (*.vh) are on the include path.

Use z80_top_direct_n.v as your top-level interface file.

Note for the users of Lattice FPGA toolset: instead of data_pins.v, manually
copy and use data_pins_lattice.v file instead.

Several fully working sample implementations (basic host and zxspectrum) should provide good starting

point.

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 20

Interface

The top-level file “z80_top_direct_n.v” exports the following interface:

module z80_top_direct_n(
 output wire nM1,
 output wire nMREQ,
 output wire nIORQ,
 output wire nRD,
 output wire nWR,
 output wire nRFSH,
 output wire nHALT,
 output wire nBUSACK,

 input wire nWAIT,
 input wire nINT,
 input wire nNMI,
 input wire nRESET,
 input wire nBUSRQ,

 input wire CLK,
 output wire [15:0] A,
 inout wire [7:0] D
);

This interface pinout is 100% identical to the Zilog Z80 package pins. It implements Z80 bus timings and

features tri state signals and buses. (While admittedly not optimal for an FPGA implementation, it

perfectly mimics the actual Z80 silicon which was one of the goals of this project).

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 21

Example Implementations

Several working implementations are included. They are all located in the “host” directory and use

Altera DE1 and Xilinx Nexys3 development boards.

Warning: The synthesis and fMax numbers as shown might vary depending on your tool version, applied

timing constraints and the exact configuration.

Simple host

“basic host” project has two targets: “basic_de1” can be used on a Terasic DE1 board and

“basic_nexys3” can be used on a Digilent Nexys 3 board. Each contains the A-Z80 CPU, 16 KB RAM

configured as single port RAM and a unidirectional implementation of the UART for the text output.

Each target project also includes a corresponding verification ModelSim configuration (for Altera) or an

ISim test bench (for Xilinx).

File Description

host\basic_de1\basic_de1.qpf Quartus project file

host\...\simulation\modelsim\test_host.mpf ModelSim project file for simulation

host\basic_de1\basic_de1_fpga.sv Top-level board source file for FPGA implementation

host\basic_de1\basic_de1_ModelSim.sv Top-level board source file for ModelSim board model

host\basic_de1\test_host.sv ModelSim test bench for the simulation

File Description

host\basic_nexys3\basic_nexys3.xise Xilinx ISE project file

host\basic_nexys3\basic_nexys3_fpga. v Top-level board source file for FPGA implementation

host\basic_nexys3\test_host.v Test bench for the iSim simulation tool

This host board can load and run any Z80 executable (for example, one of those in “tools\zmac”

directory). Programs can print to UART and, on a physical DE1 or Nexys3 boards, the text is seen through

the attached serial terminal.

When run within a simulation environment, the text is written to a ModelSim or ISim output windows.

The following image shows the output of “tools\zmac\hello_world.asm” being captured through a

serial port:

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 22

Image 2: "Hello, World"

Synthesis result of this simple design on an Altera DE1 board shows only 11% of the total LE resources

used:

The CPU CLK is derived from the pll_clk and the effective Slow Model fMax for this compilation is 18.89

MHz.

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 23

Xilinx ISE tools synthesize the design using about 19% of Nexys3 device slice resources:

Selected Device: 6slx16csg324-2

Slice Logic Utilization:

 Number of Slice Registers: 396 out of 18224 2%

 Number of Slice LUTs: 1819 out of 9112 19%

 Number used as Logic: 1819 out of 9112 19%

Slice Logic Distribution:

 Number of LUT Flip Flop pairs used: 2113

 Number with an unused Flip Flop: 1717 out of 2113 81%

 Number with an unused LUT: 294 out of 2113 13%

 Number of fully used LUT-FF pairs: 102 out of 2113 4%

 Number of unique control sets: 70

IO Utilization:

 Number of IOs: 37

 Number of bonded IOBs: 36 out of 232 15%

Specific Feature Utilization:

 Number of Block RAM/FIFO: 8 out of 32 25%

 Number using Block RAM only: 8

 Number of BUFG/BUFGCTRLs: 3 out of 16 18%

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 24

Sinclair ZX Spectrum

This project implements a Sinclair ZX Spectrum 48K computer on an Altera DE1 board. See directory

“host\zxspectrum_de1” containing a Quartus project file.

Directory “host\zxspectrum\ula” contains drivers for a PS/2 keyboard, video (using a VGA port), sound,

RAM memory and clocks. Those were kinds of functions handled by Spectrum’s custom Ferranti ULA

chip.

There are 2 system ROM images included in the “host\zxspectrum\rom” directory – the original ZX

Spectrum ROM and an improved, so-called “Gosh Wonderful” ROM – merged into a single image which

is to be flashed into the DE1’s flash memory starting at the address 0. Use a flash tool that came with

your DE1 board software to flash this data.

The following table shows the function of buttons and switches. When a switch is activated, a red LED

above it glows.

Button and Switch Description

KEY0 Reset

KEY1 Issues NMI

SW0 Selects “Gosh Wonderful ROM” image versus the original ROM image

SW1 Disables interrupts

SW2 Turbo mode (3.5 MHz x 2 = 7.0 MHz)

Function of green LEDs is to show:

GREEN LED Description

LEDG0-LEDG4 Kempston joystick UP, DOWN, LEFT, RIGHT, FIRE is pressed

LEDG5 A key is pressed

LEDG6 When blinking, a speaker or line-in is active

If you decide to try this design on your DE1 board and then want to play actual games, connect an

Android device earphone jack out to DE1’s LINE-IN and use one of several apps to “play” a game into the

device. For example, Baltazar Studio’s PlayZX was written for that purpose only:

http://play.google.com/store/apps/details?id=com.baltazarstudios.playzxtapes

http://play.google.com/store/apps/details?id=com.baltazarstudios.playzxtapes

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 25

Image 3 : Sinclair ZX Spectrum on Altera DE1

Image 3 shows a game “Manic Miner” being loaded through the audio line-in connector into the FPGA

board visible in the middle and a Kempston compatible joystick in the foreground.

This is a synthesis result of a ZX Spectrum host design on an Altera DE1 board:

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 26

Advanced Topics

Modifying the A-Z80 CPU Core

If you want to make a change to any instruction’s timing or a sequence of micro-operations, modify

“cpu\control\Timings.xlsm” file. This is a Microsoft Excel spreadsheet that contains timing tables for

each group of instruction as decoded by opcode PLA and sequencer state. Vertical columns contain

operations on specific CPU blocks. Instruction groups are listed by the M and T-clocks providing the

exact timing for each set of operations.

Micro-operations are represented by short tokens (for example, “PC” or “mr”) which are defined in the

file “cpu\control\timing_macros.i”. Every token is translated into one or more discrete control signals

causing desired operation.

After changing the timing spreadsheet, export it into a TAB-delimited file. The spreadsheet contains a

macro that will do it for you: click on the “Developer” menu and run Macros:

Running “CopyToCSV” macro will replace the existing CSV file with changed timings.

The next step is to create a Verilog file based on those timings by running a python script

“cpu\control\genmatrix.py”. That script reads in the CSV file containing timing tables and generates

“exec_matrix.vh” that implements actual Verilog code to control the timings.

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 27

Although Altera Quartus synthesis tool can use that file to compile a working design, Xilinx synthesis tool

is not able to handle its complexity, so for Xilinx devices an additional step is needed which takes that

file and converts it to a format their tools are able to handle. Run “cpu\control\gencompile.py” to

generate “exec_matrix_compiled.vh” file that defines the same set of combinatorial operations but in a

sum-of-product terms.

All Python scripts in this project can be run in-place without the need to specify any arguments. You can

run them either through a command line or by simply double-clicking on them.

If you change any schematic file, where your change adds or removes global input or output signals, you

need to run three Python scripts to recreate various lists of global includes:

“cpu\control\gencoremodules.py” – generates instantiation file for all modules:

• “core.vh” contains all instantiated CPU modules

 “cpu\control\genref.py” – generates global include files using all exported module signals:

• “exec_module.vh” contains input/output definitions to be included in the module def.

• “exec_zero.vh” contains Verilog code to set all input wires to zero.

“cpu\toplevel\genglobals.py” – generates a list of global wire defines:

• “globals.vh” contains Verilog code that defines all global signal wires.

Quartus project files (*.qpf, *.qsf) in “cpu\alu”, “cpu\bus”, “cpu\control” and “cpu\registers”

directories are non-functional and just conveniently hold sets of files together within a conceptually

modular overall design. Quartus project in the “cpu\toplevel” directory only contains a top-level

schematic diagram which is not functional. Hence, they are only containers to hold files.

When modifying a schematic file (and most of the A-Z80 blocks are designed at the schematic level),

open a corresponding Quartus container project (for example, when modifying a schematic in the ALU

block, open “cpu\alu\test_alu.qpf”). Change the schematics, compile it (to make sure it has no errors)

and then export it to both the Verilog equivalent and a symbol file, as shown below:

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 28

Verilog versions are used as final target files that compile with the rest of the A-Z80 core files while
symbol files are (at the moment) optional but could be used in the future to create a fully working
schematic top-level (TBD).

File Generators

This section describes Python scripts and processes that generate various files. You should never edit or
change generated files since they will be overwritten the next time scripts are run. Many scripts have
additional options, but the defaults are meaningful, so the scripts can be run in very simple ways (for
example, by simply double-clicking on them).

See each individual script for more information.

Building the CPU

Process: cpu/control/Timings.xlsm

Generates file: cpu/control/Timings.csv

Uses files: -

This is a MS Excel spreadsheet that defines a matrix of timings vs. operations for each group of
instructions. The spreadsheet contains an embedded macro that exports that data in a suitable format;
go to the Developer tab, and in the Code group, click on Macros. Run a macro “Timings.CopyToCSV”.

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 29

Process: cpu/control/genmatrix.py

Generates file: cpu/control/exec_matrix.vh

Uses files: Timings.csv, timing_macros.i

This script reads the A-Z80 instruction timing data from a (generated) spreadsheet text file and creates a
Verilog include file which defines the control block execution logic matrix. Token keywords in the timing
spreadsheet are substituted using a list of keys stored in the timing macros file.

Process: cpu/control/gencompile.py

Generates file: cpu/control/exec_matrix_compiles.vh, temp_wires.vh

Uses files: cpu/control/exec_matrix.vh

This script reads the exec matrix file and compiles it into an alternate format that can be used with Xilinx
tools.

Process: cpu/control/genref.py

Generates file: cpu/control/exec_module.vh, exec_zero.vh

Uses files: top_level_files.txt + list of files in that file

This script reads a list of files from the “top_level_files.txt” and processes each file to extract selected

names of wires defined in their respective modules to be used to easily define and initialize them.

Process: cpu/toplevel/gencoremodules.py

Generates file: cpu/toplevel/coremodules.vh

Uses files: top_level_files.txt + list of files in that file

This script reads and parses all top-level modules and generates a core block file containing instantiation
of these modules in Verilog format. The generated file in included by core.vh.

Process: cpu/toplevel/genglobals.py

Generates file: cpu/toplevel/globals.vh

Uses files: top_level_files.txt + list of files in that file

This script reads a list of files from the “top_level_files.txt” and processes each file to extract selected

names of wires defined in their respective modules to be used as global wires.

Process: tools/z80_pla_checker.exe

Generates file: Verilog PLA decode module

Uses files: PLA and opcode defines from resource folder

This executable program reads a PLA table in a simple format (reverse-engineered from a picture of a
die) and generates a Verilog PLA decode module.

A-Z80 CPU User’s Guide

www.BaltazarStudios.com Page 30

Verification/Tests

Process: cpu/toplevel/genfuse.py

Generates file: cpu/toplevel/test_fuse.vh

Uses files: fuse/tests.in, tests.expected, regress.in, regress.expected

This script creates a Fuse test in Verilog from several test description files.

Process: tools/zmac/make_fpga.bat, make_modelsim.bat

Generates file: Compiled HEX files

Uses files: Z80 assembler source files

These DOS batch files compile and create HEX files from any Z80 assembler source files dropped onto it.
They speed up running and testing of Z80 programs.

