AES Core Modules

Jerzy Gbur

June 24, 2006

This page has been intentionally left blank.

Revision History

Rev.	Date	Author	Description
0.1	24/06/2006	Jerzy Gbur	First draft - Working encoder and de-
			coder

Contents

1	Introduction	1
2	Architecture	2
3	Operation	3
4	Registers	5
5	Clocks	6
6	IO Ports	7

Introduction

In this document I describe components designated to encoding and decoding using AES.

Advanced Encryption Standard has detailed description on this site: http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf I divide design in some components, you can use them in different configuration.

Best Regards for opencores users.

$\mathbf{2}$

Architecture

There is no strictly top component in this design. They can be used independently.

- aes_enc parametrizable component which can encrypt input data, using 128, 192 and 256 bit key,
- aes_dec parametrizable component which can decrypt input data, using 128, 192 and 256 bit key,
- key_expansion parametrizable component which can produce key expansion, using 128, 192 and 256 bit key,

Operation

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

Table 3.1: Order input data in State Table

First thing is to build key expansion. In this time you can not try to read from the key_expansion component. Time of building key expansion depend of key lenght "KEY_SIZE".

- key lenght 128 133 clock taps ("B" in figure 3.1),
- key lenght 192 123 clock taps ("B" in figure 3.1),
- key lenght 256 157 clock taps ("B" in figure 3.1),

Next you can, start encoding/decoding. Philisophy is the same, you put 16 bytes to aes_enc/aes_dec and wait for response block. Time of producing encoded/decoded data depend of key lenght "KEY_SIZE".

- key lenght 128 99 clock taps ("D" in figure 3.1),
- key lenght 192 119 clock taps ("D" in figure 3.1),
- key lenght 256 139 clock taps ("D" in figure 3.1),

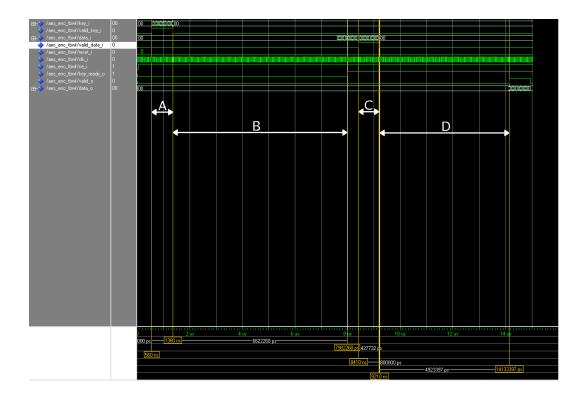


Figure 3.1: Waveform of encoding/decoding process

Rev 0.1 **Preliminary**

Registers

There is only one generic parameter "KEY_SIZE" which define key lenght we want use.

- key lenght $128 \text{KEY}_\text{SIZE} = 0$,
- key lenght $192 \text{KEY}_\text{SIZE} = 1$,
- key lenght 256 KEY.SIZE = 2,

$\mathbf{5}$

Clocks

		Rates [MHz]				
Name	Source	Max	Min	Resolution	Remarks	Description
CLK_I	external	50MHz				

Table 5.1: Clocks

IO Ports

Port	Width	Direction	Description
DATA_I	8	in	Data input (Order showed in ta-
			ble 3.1)
VALID_DATA_I	1	in	Strob input data
KEY_I	8	in	Key input (Order showed in table
			3.1)
VALID_KEY_I	1	in	Strob input key
CLK_I	1	in	Clock input
RESET_I	1	in	Reset all internal counters — ac-
			tive "1"
CE_I	1	in	Clock enable — active "1"
KEY_READY_O	1	out	After this output goes "1" you
			can read Expanded Key
VALID_O	1	out	Strobes output data
DATA_O	8	out	Data output

Table 6.1: List of IO ports

Rev 0.1 **Preliminary**