Copyright © 2010 Dave E. Roberts

Contents

1Contents

1Introduction

1Prerequisites

3Configuration

6Building

6Loading

11Operation

13Known problems with Validation

Introduction
Please find enclosed my first attempt at some documentation for my AGCNORM project – the Apollo Guidance Computer NOR gate eMulator. This project attempts to recreate the logic for the Apollo Guidance Computer (as detailed within the schematics located at http://klabs.org/history/ech/agc_schematics/index.htm) within a Field Programmable Gate Array (FPGA) device. The device chosen is a Spartan-3E type xc3s500e from Xilinx. The schematic diagrams have been converted into a netlist form and entered into an Excel spreadsheet. A Visual Basic program then checks the entered netlist for logical consistency; and then creates a VHDL file if all appears to be OK.

Further details on the conversion methodology, the problems identified, and the rectifications applied will be detailed in a subsequent document. Once AGCNORM has been debugged, the spreadsheet containing the netlist and the Visual Basic converter macro will be released.
Prerequisites

1. The ISE WebPack tools from Xilinx should be installed following the recommended instructions. I have used release 11.1 for my development.
The tools can be installed in any directory on your computer. On my Windows/XP computer, the tools have been installed in directory “C:\Xilinx\11.1”.

The supplied BATCH files do not assume any particular installation directory. This means that the path to the Xilinx executables must be placed into the environment variables. This can be accomplished by opening the “Control Panel” and activating the “System” tool. On the “Advanced” Tab, you should find a button labelled “Environment Variables”. You should now be able to add the appropriate directory under the “PATH” entry for the “System Variables”. In my case I have added “C:\Xilinx\11.1\ise\bin\nt” to the Path. You may need to log off and back on again for the change to take effect.
You can check your handiwork by starting a “COMMAND” prompt and typing “PATH”. The response should be to echo the configuration you entered.

In my case:

[image: image1.png]icrosoft Windows KP [Uersion 5.1.26001
<C> Copyright 1985-2081 Microsoft Corp.

:\Docunents and Settings\Dave\My Docunents>path
ATH=C: \GNAT\2887\bin ;C: \WINDOUS s ysten32 ; C: \WINDOUS ; C: \WINDOUS\Sys ten32\When;C:|
Rilinx\i1.1Nise\bin\nt;Ci\Program Files\Graphviz2.26.3\bin

\Docunents and Settings\DavesMy Documents>_

2. Unzip the supplied file from me into any directory. I have mine stored in:
 “C:\Documents and Settings\Dave\My Documents\Projects\AGCNORM”.
It is assumed that you have a Xilinx Spartan-3E FPGA Starter Kit Board and the relevant documentation ((UG230 V1.1) June 20, 2008 in my case).

A nice picture of the Xilinx Spartan-3E Starter board:

[image: image2.emf]
The board should be initially connected to your PC via a USB cable.

To load the Intel StrataFlash Parallel NOR Flash PROM (called “Strata FLASH” from now on) you will also need a standard female-female DB9 serial cable linking the board to your PC. This cable will plug into the mating male DB9 connector on the Spartan-3E board.
Configuration

The following key components of the Spartan-3E board are used:
· The Spartan-3E FPGA (to execute the AGC and supporting logic).

· The Intel StrataFlash Parallel NOR Flash PROM (to store the AGC core rope (fixed memory)).

· Serial Platform Flash (for permanent storage of the AGC logic on the board).

· The USB port (to load the FPGA bit image (the AGC logic) into either the FPGA or the Serial Platform Flash).

· The MALE (DTE) DB9 serial port connector (to initially load the AGC core rope (fixed memory) into the Strata FLASH).

· The four switches (SW3 to SW0) in the lower right-hand corner (used to configure the AGC clock source and which of the installed core ropes (Luminary131, Colossus249 or Validation) to use).

· The eight LEDs (LED7 to LED0) in the lower right-hand corner (to indicate discrete diagnostic events).

· The rotary push-button switch on the lower left-hand corner (to single-step the AGC clock or to act as the DSKY keyboard input depending on the switch settings selected on SW3 & SW2).
· The DB15 VGA output connector (to display internal diagnostic information and to act as the DSKY display).

· The 50 MHz on-board oscillator (divided down to produce the AGC clock at 2.048 MHz).

Once the AGC logic has been downloaded to the on-board Serial Platform Flash, and the core rope (fixed memory) has been downloaded to the Strata FLASH, the USB and serial port cables may be removed and the Spartan-3E board should function as a stand-alone Apollo Guidance Computer using the VGA screen (in a 640x480 resolution) as a diagnostic and simulated DSKY display and the rotary push-button to enter DSKY commands.
The Spartan-3E should be configured as “factory default”. This includes the configuration of the on-board XC2C64A CoolRunner-II CPLD.
Configure the on-board switches as follows:
[image: image3.emf]
Note: ‘UP’ means towards the LEDs and ‘DOWN’ means away from the LEDs.

	SW3
	SW2
	Effect

	UP
	UP
	2.048 MHz AGC clock (full speed).

	UP
	DOWN
	1 Hz AGC clock (crawl speed).

	DOWN
	UP
	Single-step AGC clock.

	DOWN
	DOWN
	Single-step AGC clock.

When the AGC clock is in ‘single-step’ mode, the rotary push-button is used as the clock source and cannot, therefore, be used as the DSKY input device. One ‘click’ of the rotary push-button (either clockwise or anticlockwise) results in the generation of a single ‘edge’ of the AGC clock. This is great fun for debugging and seeing what happens to the AGC internal registers – but can become quite monotonous if you are waiting for something specific to happen in a long program!
	SW1
	SW0
	Core Rope selection

	UP
	UP
	Validation.

	UP
	DOWN
	Spare (reserved for the games pack?!)

	DOWN
	UP
	Luminary 131.

	DOWN
	DOWN
	Colossus 249.

The LEDs indicate the following conditions:

	LED7
	OPR ERR lamp (CH 11 bit 7).

	LED6
	Computer Activity lamp (CH 11 bit 2).

	LED5
	Unused.

	LED4
	Unused.

	LED3
	Lit when an error detected from CH 77 (or the AGC “STOP” signal has been asserted).

	LED2
	Lit when the AGC signal “STRT2” asserted.

	LED1
	Lit when the AGC is being initialised.

	LED0
	A 1 Hz “I am alive” signal!

I have included a photograph of my board so you can see the blue jumper links that I have installed:
[image: image4.jpg]4

]

gﬂ M‘mﬂlﬂjtf’ kg{'

”?%llllllllllllllllll

TN

L)

Ry

Of particular interest are:

· J30 (identified by the red ring in the photograph above) with all three blue jumpers inserted for M0, M1 and M2 to enable operation in “Master Serial” mode (set to boot the FPGA from Platform Flash).

Building

Execute the batch file “build_agcnorm.bat”. This should create a ‘build’ directory and execute all the necessary commands to construct the files “agcnorm.bit” and “agcnorm.mcs” within the ‘build’ directory.
At the conclusion of the build, a log file is created in the build directory called “agcnorm.log”. This should be inspected for errors (the default is to use NOTEPAD to display the log file to you at the conclusion of the build). Unfortunately, this log file contains a significant number of messages. Most of them are associated with unconnected I/O signals which the Xilinx tool has identified and removed from the design. Further signals are associated with ‘names’ which are never used internally within the AGC logic. Another group of messages is associated with the INIT values used for the LUTs. There are a few messages, however, associated with timing etc. which I should have a look at and resolve. I will also try and get rid of the Xilinx ‘non informative’ messages at the same time.
Should you not wish to build the software yourself; create an empty ‘build’ directory and copy the files “agcnorm.bit” and “agcnorm.mcs” from the directory “prebuilt” to the directory “build” and proceed with the loading phase.
Loading

1. Loading the Strata FLASH
Start a “command” prompt and select the AGCFLASH directory of my AGCNORM release. Run the “s3e_flash_programmer.bat” batch file in this directory. This should start the Xilinx IMPACT tool and execute the impact commands contained within the file “s3e_flash_programmer.cfg”. This, in turn, should load the FPGA ‘bit’ file “s3e_flash_programmer_female.bit” down to the on-board Spartan-3E FPGA. This bit file contains a utility from Xilinx to enable erasing, reading and programming of the on-board Strata FLASH via the serial port.

I have included the documentation file from Xilinx related to this utility “PicoBlaze_NOR_FLASH_programmer_rev1.pdf”. You can download this document, plus the full VHDL sources for this utility from the Xilinx website:
http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm
Look for the entry “PicoBlaze RS-232 StrataFlash™ Programmer”.

Note, however, that the Xilinx application was designed to utilise the onboard female serial connector. This Xilinx utility has been re-compiled to use the male connector and can be found on the website:
http://www.fpgaarcade.com/library.htm
Look for the file “s3e_flash_programmer.bit” (which actually downloads as “s3e_flash_programmer_female.bit”).
I have included both of these utilities within the AGCFLASH directory for your convenience (although I have performed a bit of renaming for consistency).
Once the flash programmer utility has been successfully downloaded to the FPGA, it is time to start a terminal emulator utility to communicate with the Spartan board over the RS232 serial link. I have included a configuration file for the HyperTerminal utility supplied with Microsoft Windows/XP. The default configuration is for PC serial device COM1 at 115,200 bits/second, 8 data, no parity, 1 stop bit and Xon / Xoff flow control.
When HyperTerminal is running, enter the command key ‘H’ (for help). If everything is working correctly, a help menu (as indicated on page 8 of the NOR Flash programmer documentation) should be displayed.
STOP & THINK. We are going to erase the Strata FLASH at this point. Is this OK?
Enter the command key ‘E’ to erase all of the blocks of the Strata FLASH. The program should ask you to “Confirm Erase (Y/n)”. You need to enter an upper case ‘Y’ to actually perform the erase operation. The program will display ‘.’ characters as the erase proceeds – and “OK” will be displayed when the erase command has been completed.

The next thing is to actually load the Strata FLASH with the AGC core ropes (fixed memory). To do this, enter the command key ‘P’ (for program). The response should be “Waiting for MCS file”. You will now need to use the HyperTerminal menu option “Transfer -> Send Text File…” to send the file “AGCFLASH.mcs” to the programmer utility. This file is also located in the AGCFLASH directory of the AGCNORM release. In order for HyperTerminal to display the desired file within the dialogue box, it may be necessary to select “All files (*.*)” in the “Files of type:” drop-down box. A load of hexadecimal numbers should whiz up the screen as the file downloads to the Spartan board. At the completion of the load, the program should respond with “OK”.
The file AGCFLASH.mcs contains the fixed core ropes for Luminary 131, Colossus 249 and Validation plus an (unverified and maybe incomplete) initial pad load for LM7 (Luminary 131). Colossus 249 and Validation have a ‘blank’ initial erasable memory pad load of all zeros.

Immediately after the Spartan FPGA starts up (but before the AGC logic starts to execute) the initial pad load is copied from the Strata FLASH to the erasable memory (BRAM within the FPGA). The selected core rope (defined by SW1 and SW0) executes from the Strata FLASH. The erasable memory is not copied back to the Strata FLASH and ‘evaporates’ when the power is turned off or the FPGA reloaded. I would like to re-look at this area in the future, with the possibility of either using the Strata FLASH directly as erasable memory or, alternatively, taking a snapshot of the erasable memory contents and storing it into the Strata FLASH at regular intervals (say once per second).
The AGCFLASH.mcs file is obtained from the output from the yaYUL assembler after “post conversion” by a small utility I wrote. This utility swaps around blocks 0, 1, 2 and 3 within the core rope file, adds the correct odd parity bit into each word of the core rope and ensures that the two bytes of each word are in the correct order for storage into the Strata FLASH. All the core ropes and initial erasable memory contents are concatenated into the one file. I will issue this utility at some point in the future once I have tidied up the code, added appropriate comments and written some documentation. I would, however, be willing to e-mail it to interested parties in the meantime.

To perform some very simple checks to see if the Strata FLASH has been programmed you can use the command key ‘R’ to read back and display a block of memory from the Strata FLASH.

Enter the command key ‘R’. The program should respond by asking you for an address. You *** MUST *** enter exactly six (6) hexadecimal digits as follows: “001000”. The program should respond by displaying the following block of memory:
[image: image5.png]& Spartan3E - HyperTerminal
Ble Edt Vew Cal Transfer Hep

D@ » 3 DB &

>R
address=001000

001000
001010
001020
001030
001040
001050
001060
001070
001080
001090
0010A0
001080
0010C0
001000
0010EQ
0010F0

0K

Autodetect 115200841

This is actually the entry point to the ‘Validation’ core rope at address 40008. Validation starts at address 00000016 within the Strata FLASH.
Enter the command key ‘R’. The program should respond by asking you for an address. You *** MUST *** enter exactly six (6) hexadecimal digits as follows: “041000”. The program should respond by displaying the following block of memory:

[image: image6.png]& Spartan3E - HyperTerminal
Ble Edt Vew Cal Transfer Hep

D@ » 3 DB &

>R
address=041000

041000
041010
041020
041030
041040
041050
041060
041070
041080
041090
0410A0
0410B0
041000
041000
0410EQ
0410F0

0K

Autodetect 115200841

This is actually the entry point to the ‘Luminary 131’ core rope at address 40008. Luminary 131 starts at address 04000016 within the Strata FLASH.
Enter the command key ‘R’. The program should respond by asking you for an address. You *** MUST *** enter exactly six (6) hexadecimal digits as follows: “05FA00”. The program should respond by displaying the following block of memory:

[image: image7.png]& Spartan3E - HyperTerminal
Ble Edt Wew Cal Irsnsfer hep

D@ » 3 DB &

>R
address=05FAB0

05FA0O
05FA10
05FA20
05FA30
05FA4LO
05FASO
05FA6O
05FA70
05FABO
05FA90
05FAAG
05FABO
05FACO
05FADO
05FAEQ
05FAFO

0K

Autodetect 115200841

This is actually part way into the LM7 pad load. The LM7 pad load starts at address 05F00016 within the Strata FLASH.
2. Loading the FPGA
Execute the batch file “agcnorm2fpga.bat”. This should start the Xilinx IMPACT tool and execute the impact commands contained within the file “agcnorm2fpga.cfg”. This, in turn, should load the FPGA ‘bit’ file “build\agcnorm.bit” down to the on-board Spartan-3E FPGA.
Use this batch file to test the bit file before committing it to the onboard Serial Platform FLASH.

3. Loading the Serial Platform FLASH
Execute the batch file “agcnorm2spflash.bat”. This should start the Xilinx IMPACT tool and execute the impact commands contained within the file “agcnorm2spflash.cfg”. This, in turn, should load the FPGA ‘mcs’ file “build\agcnorm.mcs” down to the on-board Serial Platform Flash device.

Operation

Connect up a monitor to the VGA connector which is capable of displaying a 640x480 resolution image.
Set the switches as desired (I would suggest SW3=UP, SW2=UP, SW1=DOWN and SW0=UP for Luminary 131 at full clock speed).
Start the FPGA running.
Hopefully, you should see a VGA display with a load of coloured flashing blocks on the screen and something approximating to a very rudimentary DSKY display (although the seven segment digits may be blank at this point). See the photograph below.
You should also see a set of numbers and letters on the screen as follows:

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	+
	-
	V
	N
	C
	P
	K
	E
	R
	

Where the individual characters represent a separate DSKY key and the letters have the following significance:

	V
	VERB

	N
	NOUN

	C
	CLR

	P
	PRO

	K
	KEY REL

	E
	ENTR

	R
	RSET

With the ‘P’ / PRO key being highlighted in inverse video indicating that this is the key that is currently ‘selected’.
Use the rotary push-button to select the desired DSKY key, and ‘push’ the button when the desired key is highlighted in inverse video. Try entering the following commands to see if the AGC and simulated DSKY are functional:

V35E – Test DSKY.

V36E – Clear DSKY.

V16N36E – Display mission time.
The photograph below was taken of the mission time (V16N36E) with the AGC clock set to 1 Hz. You can see the simulated DSKY display and keyboard to the middle right of the screen with various coloured cells indicating the active state of internal AGC signals.
[image: image8.jpg]

The Microsoft Excel spreadsheet in the directory “VGADEBUG” indicates which debug ‘cell’ is linked to which AGC internal signal.

Known problems with Validation

There are some known problems with running Validation:
1. Start the Validation core rope.

2. The OP ERR lamp will initially flash and the PROG and NOUN displays will both indicate ‘00’.

3. Press the ‘PRO’ key to continue.

4. A 16/05 error will be generated with a flashing OP ERR lamp.

5. Press the ‘PRO’ key to continue once again.

6. The following errors are known to occur:

· 16/05 (initial error identified above)

· 25/07

· 26/04

· 30/05

· 61/52

· 61/54 (then a long gap).

· 65/05

· 77/00 (end of validation).

I am working with Ron Burkey to resolve these identified issues.

If you have any problems, suggestions or constructive criticisms please do not hesitate to send me an e-mail.
Enjoy.

Dave

SW3

SW2

SW1

SW0

Page 3 of 13

