
 Amber Open Source Project

Amber Project User Guide

May 2013

Amber Amber Project User Guide May 2013

Table of Contents

1 Amber Project .. 3
1.1 Project Directory Structure ... 3
1.2 Amber FPGA System .. 4

2 Verilog simulations .. 6
2.1 Installing the Amber project ... 6
2.2 Installing the Compiler .. 6
2.3 Running Simulations ... 7
2.4 Simulation output files .. 10
2.5 Hardware Tests ... 12
2.6 C Programs .. 14
2.7 Linux .. 16

3 FPGA Synthesis ... 18
4 Using Boot-Loader ... 20

4.1 Install and configure Minicom ... 20
4.2 Configure the FPGA .. 21

5 License .. 22

Released under the GNU Lesser General Public License (v2.1) terms 2 of 22

Amber Amber Project User Guide May 2013

1 Amber Project

The Amber project is a complete processor system implemented on the Xilinx

Spartan-6 SP605 FPGA development board. The project is hosted on opencores.org.

The project provides a complete hardware and software development system abount

the Amber processor core. A number of applications, with C source code, are

provided as examples of what the systme can be used for.

The recommended system for the project is the Xilinx SP605 development board, a

PC running CentOS 6.x, the Xilinx ISE 14.5 tool chain (free Webpack version), and

the Code Sorcery GNU toolchain for ARM processors. All of these elements are free

except for the actual development board which costs around $500.

1.1 Project Directory Structure

The following table describes the directories and sub-directories located under

$AMBER_BASE.

Table 1 Project directory structure

Directory Description

doc Contains all project documentation.

hw Contains all Verilog source files, simulations and synthesis scripts, and hardware test
source files.

hw/fpga Files relating to FPGA synthesis.

hw/fpga/bin Contains the FPGA synthesis makefile and supporting scripts.

hw/fpga/bitfiles This directory is created during the FPGA synthsis process. It is used to store the final
bitfile generated at the end of the FPGA syntheis process.

hw/fpga/log This directory is created during the FPGA synthsis process. It is used to store log files
for each step of the FPGA synthesis process.

hw/fpga/work This directory is created during the FPGA synthsis process. It is used to store
temporary files created during the FPGA synthsis process. These files get erased when
a new synthess run is started.

hw/isim Where tests are run from. The Xilinx iSim Verilog simulator work directory, wave dump
and any other simulation output files go in here.

hw/tests Holds a set of hardware tests written in assembly. These tests focus on verifying the
correct operation of the instruction set. If any modifications are made to the Amber core
it is important that these tests still pass.

hw/tools Holds scripts used to run Verilog simulations.

hw/vlog Verilog source files.

hw/vlog/amber23 Amber 23 core Verilog source files.

hw/vlog/amber25 Amber 25 core Verilog source files.

hw/vlog/ethmac The Ethernet MAC Verilog source files. These files come from the Opencores Ethmac
project and are reproduced here for convenience.

hw/vlog/lib Hardware libary Verilog files including memory models. The Amber project provides a
simple generic library that is normally used for simulations. It also provides some
wrappers for Xilinx library elements.

hw/vlog/system FPGA system Verilog source files.

hw/vlog/tb Testbench Verilog files.

hw/vlog/xs6_ddr3 Xilinx Spartan-6 DDR3 controller Verilog files go in here. These are not provided with
the project for copyright reasons. They are needed to implement the Amber system on
a Spartan-6 development board and must be generated in Xilinx Coregen.

hw/vlog/xv6_ddr3 Xilinx Virtex-6 DDR3 controller Verilog files go in here. These are not provided with the

Released under the GNU Lesser General Public License (v2.1) terms 3 of 22

Amber Amber Project User Guide May 2013

Directory Description

project for copyright reasons. They are needed to implement the Amber system on a
Virtex-6 development board and must be generated in Xilinx Coregen.

sw Contains C source files for applications that run on the Amber system, as well as some
utilities that aid in debugging the system.

sw/boot-loader-serial C, assembly sources and a makefile for the serial-port boot-loader application.

sw/boot-loader-ethmac C, assembly sources and a makefile for the ethernet-port boot-loader application. This
application supports telnet for control and status, and tftp for uploading elf executable
files.

sw/hello-world C, assembly source and a makefile for a simple stand-alone application example.

sw/include Common C, assembly and makefile include files.

sw/mini-libc C, assembly sources and a makefile to build the object that comprise a very small and
limited stand-alone replacement for the libc library.

sw/tools Shell scripts and C source files for compile and debug utilities.

sw/vmlinux Contains the .mem and .dis files for the vmlinux simulation.

1.2 Amber FPGA System

The FPGA system included with the Amber project is a complete embedded

processor system which included all peripherals needed to run Linux, including

UART, timers and an Ethernet (MII) port. The following diagram shows the entire

system.

Released under the GNU Lesser General Public License (v2.1) terms 4 of 22

Amber Amber Project User Guide May 2013

Figure 1 - Amber FPGA System

All the Verilog source code was specifially developed for this project with the

exception of the following modules;

• ddr3.v. The Xilinx Spartan-6 DDR3 controller was generated by the Xilinx

Coregen tool. The files are not included with the project for copyright

reasons. It is up to the user to optain the ISE software from Xilinx and

generate the correct memory controller. Note that Wishbone bridge modules

are included that support both the Xilinx Spartan-6 DDR3 controller and the

Virtex-6 controller.

• eth_top.v. This module is from the Opencores Ethernet MAC 10/100 Mbps

project. The Verilog code is included for convenience. It has not been

modified, except to provide a memory module for the Spartan-6 FPGA.

Released under the GNU Lesser General Public License (v2.1) terms 5 of 22

system.v

w
ishbone_arbiter.v

interrupt_controller.v
Primary interrupt

controller

a2x_core.v
Amber 2x

processor core

firqirq

eth_top.v
B10/100 Ethernet

MAC

boot_mem.v
8kB embedded

SRAM – contains
boot loader code

timer_module.v
Configurable timers

uart.v
UART 0

Statically configurable
simple UART

uart.v
UART 1

Statically configurable
simple UART

wb_xs6_ddr3_bridge.v
Wishbone to Xilinx
Spartan-6 DDR3
controller bridge

mcb_ddr3.v
Xilinx Spartan-6
DDR3 controller

clocks_resets.v
Instantiates PLL and

reset generation
logic

DDR3
SDRAM
I/F

UART
I/F

UART
I/F

MII
Ethernet

I/F

test_module.v
Test and debug

registers

Amber Amber Project User Guide May 2013

2 Verilog simulations

2.1 Installing the Amber project

If you have not already done so, you need to download the Amber project from

Opencores.org. The Amber project includes all the Verilog source files, tests written

in assembly, a boot loader application written in C and scripts to compile, simulate

and synthesize the code. You can either download a tar.gz file from the Opencores

website or better still, connect to the Opencores Subversion server to download the

project. This can be done on a Linux PC as follows;

$ mkdir /<your amber install path>/
$ cd /<your amber install path>/
$ svn --username <your opencores account name> --password <your opencores password> \
 co http://opencores.org/ocsvn/amber/amber/trunk

2.2 Installing the Compiler

Tests need to be compiled before you can run simulations. You need to install a GNU

cross-compiler to do this. The easiest way to install the GNU tool chain is to

download a ready made package. Code Sourcery provides a free one. To download

the Code Sourcery package, go to this page

http://www.codesourcery.com/sgpp/lite/arm

You need to register and will be sent an email to access the download area. Select the

GNU/Linux version and then the IA32 GNU/Linux Installer. Once the package is

installed, add the following to your .bashrc file, where the PATH is set to where you

install the Code Sourcery GNU package.

Change /proj/amber to where you saved the amber package on your system
export AMBER_BASE=/<your amber install path>/trunk

Change /opt/Sourcery to where the package is installed on your system
PATH=/<your code sourcery install path>/bin:${PATH}

AMBER_CROSSTOOL is the name added to the start of each GNU tool in
the Code Sourcery bin directory. This variable is used in various makefiles to set
the correct tool to compile code for the Amber core
export AMBER_CROSSTOOL=arm-none-linux-gnueabi

Xilinx ISE installation directory
This should be configured for you when you install ISE.
But check that is has the correct value
It is used in the run script to locate the Xilinx library elements.
export XILINX=/opt/Xilinx/14.5/ISE

2.2.1 GNU Tools Usage

It's important to remember to use the correct switches with the GNU tools to restrict

the ISA to the set of instructions supported by the Amber 2 core. The switches are

already set in the makefiles included with the Amber 2 core. Here are the switches to

use with gcc (arm-none-linux-gnueabi-gcc);

 -march=armv2a -mno-thumb-interwork

Released under the GNU Lesser General Public License (v2.1) terms 6 of 22

http://www.codesourcery.com/sgpp/lite/arm

Amber Amber Project User Guide May 2013

These switches specify the correct version of the ISA, and tell the compiler not to

create bx instructions. Here is the switch to use with the GNU linker, arm-none-

linux-gnueabi-ld;

--fix-v4bx

This switch converts any bx instructions (which are not supported) to 'mov pc, lr'.

Here is an example usage from the boot-loader make process;

arm-none-linux-gnueabi-gcc -c -Os -march=armv2a -mno-thumb-interwork -ffreestanding
-I../include -c -o boot-loader.o boot-loader.c

arm-none-linux-gnueabi-gcc -I../include -c -o start.o start.S
arm-none-linux-gnueabi-gcc -c -Os -march=armv2a -mno-thumb-interwork -ffreestanding

-I../include -c -o crc16.o crc16.c
arm-none-linux-gnueabi-gcc -c -Os -march=armv2a -mno-thumb-interwork -ffreestanding

-I../include -c -o xmodem.o xmodem.c
arm-none-linux-gnueabi-gcc -c -Os -march=armv2a -mno-thumb-interwork -ffreestanding

-I../include -c -o elfsplitter.o elfsplitter.c
arm-none-linux-gnueabi-ld -Bstatic -Map boot-loader.map --strip-debug --fix-v4bx -o boot-

loader.elf -T sections.lds boot-loader.o start.o crc16.o xmodem.o elfsplitter.o
../mini-libc/printf.o ../mini-libc/libc_asm.o ../mini-libc/memcpy.o

arm-none-linux-gnueabi-objcopy -R .comment -R .note boot-loader.elf
../tools/amber-elfsplitter boot-loader.elf > boot-loader.mem
../tools/amber-memparams.sh boot-loader.mem boot-loader_memparams.v
arm-none-linux-gnueabi-objdump -C -S -EL boot-loader.elf > boot-loader.dis

A full list of compile switches for gcc can be found here;

http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/ARM-Options.html#ARM-Options

And for ld here;

http://sourceware.org/binutils/docs-2.21/ld/ARM.html#ARM

2.3 Running Simulations

You should be able to use any Verilog-2001 compatible simulator to run simulations.

The project comes with run scripts and project files for the free Xilinx Webpack ISim

14.5 simulator.

Example usage:

$ cd $AMBER_BASE/hw/isim
$./run.sh hello-world

Test hello-world, type 4
make -s -C ../mini-libc MIN_SIZE=1
arm-none-linux-gnueabi-gcc -c -Os -march=armv2a -mno-thumb-interwork -ffreestanding
-I../include -c -o boot-loader-serial.o boot-loader-serial.c
arm-none-linux-gnueabi-ld -Bstatic -Map boot-loader-serial.map --strip-debug --fix-
v4bx -o boot-loader-serial.elf -T sections.lds boot-loader-serial.o start.o crc16.o
xmodem.o elfsplitter.o ../mini-libc/printf.o ../mini-libc/libc_asm.o ../mini-
libc/memcpy.o
arm-none-linux-gnueabi-objcopy -R .comment -R .note boot-loader-serial.elf
../tools/amber-elfsplitter boot-loader-serial.elf > boot-loader-serial.mem
../tools/amber-memparams32.sh boot-loader-serial.mem boot-loader-serial_memparams32.v
../tools/amber-memparams128.sh boot-loader-serial.mem boot-loader-
serial_memparams128.v
arm-none-linux-gnueabi-objdump -C -S -EL boot-loader-serial.elf > boot-loader-
serial.dis
../tools/check_mem_size.sh boot-loader-serial.mem "@000020"
make -s -C ../mini-libc MIN_SIZE=1
Running: /tools/Xilinx/14.5/ISE_DS/ISE/bin/lin/unwrapped/fuse tb -o amber-test.exe
-prj amber-isim.prj -d BOOT_MEM_FILE="../../sw/boot-loader-serial/boot-loader-
serial.mem" -d BOOT_MEM_PARAMS_FILE="../../sw/boot-loader-serial/boot-loader-
serial_memparams32.v" -d MAIN_MEM_FILE="../../sw/hello-world/hello-world.mem" -d
AMBER_LOG_FILE="tests.log" -d AMBER_TEST_NAME="hello-world" -d AMBER_SIM_CTRL=4 -d
AMBER_TIMEOUT=0 -d AMBER_LOAD_MAIN_MEM -incremental -i ../vlog/lib -i ../vlog/system

Released under the GNU Lesser General Public License (v2.1) terms 7 of 22

http://sourceware.org/binutils/docs-2.21/ld/ARM.html#ARM
http://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/ARM-Options.html#ARM-Options

Amber Amber Project User Guide May 2013

-i ../vlog/amber23 -i ../vlog/amber25 -i ../vlog/tb
ISim P.58f (signature 0xfbc00daa)
Number of CPUs detected in this system: 4
Turning on mult-threading, number of parallel sub-compilation jobs: 8
Determining compilation order of HDL files
Analyzing Verilog file "../vlog/system/boot_mem32.v" into library work
Analyzing Verilog file "../vlog/system/boot_mem128.v" into library work
Analyzing Verilog file "../vlog/system/clocks_resets.v" into library work
Analyzing Verilog file "../vlog/system/interrupt_controller.v" into library work
Analyzing Verilog file "../vlog/system/system.v" into library work
Analyzing Verilog file "../vlog/system/test_module.v" into library work
Analyzing Verilog file "../vlog/system/timer_module.v" into library work
Analyzing Verilog file "../vlog/system/uart.v" into library work
Analyzing Verilog file "../vlog/system/wb_xs6_ddr3_bridge.v" into library work
Analyzing Verilog file "../vlog/system/wishbone_arbiter.v" into library work
Analyzing Verilog file "../vlog/system/afifo.v" into library work
Analyzing Verilog file "../vlog/system/ddr3_afifo.v" into library work
Analyzing Verilog file "../vlog/system/ethmac_wb.v" into library work
Analyzing Verilog file "../vlog/system/main_mem.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_clockgen.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_crc.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_fifo.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_maccontrol.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_macstatus.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_miim.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_outputcontrol.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_random.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_receivecontrol.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_registers.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_register.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_rxaddrcheck.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_rxcounters.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_rxethmac.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_rxstatem.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_shiftreg.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_spram_256x32.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_top.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_transmitcontrol.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_txcounters.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_txethmac.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_txstatem.v" into library work
Analyzing Verilog file "../vlog/ethmac/eth_wishbone.v" into library work
Analyzing Verilog file "../vlog/ethmac/xilinx_dist_ram_16x32.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_alu.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_barrel_shift.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_cache.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_coprocessor.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_core.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_decode.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_decompile.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_execute.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_fetch.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_multiply.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_register_bank.v" into library work
Analyzing Verilog file "../vlog/amber23/a23_wishbone.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_alu.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_barrel_shift.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_shifter.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_coprocessor.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_core.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_dcache.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_decode.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_decompile.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_execute.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_fetch.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_icache.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_mem.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_multiply.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_register_bank.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_wishbone.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_wishbone_buf.v" into library work
Analyzing Verilog file "../vlog/amber25/a25_write_back.v" into library work
Analyzing Verilog file "../vlog/lib/generic_iobuf.v" into library work
Analyzing Verilog file "../vlog/lib/generic_sram_byte_en.v" into library work
Analyzing Verilog file "../vlog/lib/generic_sram_line_en.v" into library work
Analyzing Verilog file "../vlog/tb/tb_uart.v" into library work
Analyzing Verilog file "../vlog/tb/eth_test.v" into library work
Analyzing Verilog file "../vlog/tb/dumpvcd.v" into library work
Analyzing Verilog file "../vlog/tb/tb.v" into library work
Starting static elaboration
Completed static elaboration
Fuse Memory Usage: 41692 KB
Fuse CPU Usage: 1220 ms
Compiling module clocks_resets
Compiling module generic_sram_line_en(DATA_WIDTH=...

Released under the GNU Lesser General Public License (v2.1) terms 8 of 22

Amber Amber Project User Guide May 2013

Compiling module generic_sram_byte_en(DATA_WIDTH=...
Compiling module a23_cache_default
Compiling module a23_wishbone
Compiling module a23_fetch
Compiling module a23_decompile_2
Compiling module a23_decode
Compiling module a23_barrel_shift
Compiling module a23_alu
Compiling module a23_multiply
Compiling module a23_register_bank
Compiling module a23_execute
Compiling module a23_coprocessor
Compiling module a23_core
Compiling module eth_clockgen
Compiling module eth_shiftreg
Compiling module eth_outputcontrol
Compiling module eth_miim
Compiling module eth_register(RESET_VALUE=8'b0)
Compiling module eth_register(RESET_VALUE=8'b1010...
Compiling module eth_register(WIDTH=1,RESET_VALUE...
Compiling module eth_register(WIDTH=7,RESET_VALUE...
Compiling module eth_register(WIDTH=7,RESET_VALUE...
Compiling module eth_register(WIDTH=7,RESET_VALUE...
Compiling module eth_register(RESET_VALUE=8'b0110...
Compiling module eth_register(RESET_VALUE=8'b0100...
Compiling module eth_register(WIDTH=6,RESET_VALUE...
Compiling module eth_register(WIDTH=4,RESET_VALUE...
Compiling module eth_register(WIDTH=3,RESET_VALUE...
Compiling module eth_register(RESET_VALUE=8'b0110...
Compiling module eth_register(WIDTH=1)
Compiling module eth_register(WIDTH=5,RESET_VALUE...
Compiling module eth_register(WIDTH=16,RESET_VALU...
Compiling module eth_registers
Compiling module eth_receivecontrol
Compiling module eth_transmitcontrol
Compiling module eth_maccontrol
Compiling module eth_txcounters
Compiling module eth_txstatem
Compiling module eth_crc
Compiling module eth_random
Compiling module eth_txethmac
Compiling module eth_rxstatem
Compiling module eth_rxcounters
Compiling module eth_rxaddrcheck
Compiling module eth_rxethmac
Compiling module generic_sram_byte_en(DATA_WIDTH=...
Compiling module eth_spram_256x32
Compiling module eth_fifo(DEPTH=16,CNT_WIDTH=5)
Compiling module eth_wishbone
Compiling module eth_macstatus
Compiling module eth_top
Compiling module generic_iobuf
Compiling module generic_sram_byte_en(DATA_WIDTH=...
Compiling module boot_mem32
Compiling module uart(WB_DWIDTH=32,WB_SWIDTH=4)
Compiling module test_module(WB_DWIDTH=32,WB_SWID...
Compiling module timer_module(WB_DWIDTH=32,WB_SWI...
Compiling module interrupt_controller(WB_DWIDTH=3...
Compiling module main_mem(WB_DWIDTH=32,WB_SWIDTH=...
Compiling module wishbone_arbiter(WB_DWIDTH=32,WB...
Compiling module ethmac_wb(WB_DWIDTH=32,WB_SWIDTH...
Compiling module system
Compiling module eth_test
Compiling module tb_uart_default
Compiling module dumpvcd
Compiling module tb
Time Resolution for simulation

 is 1ps.
Waiting for 1 sub-compilation(s) to finish...
Compiled 68 Verilog Units
Built simulation executable amber-test.exe
Fuse Memory Usage: 89580 KB
Fuse CPU Usage: 2120 ms
GCC CPU Usage: 1200 ms
ISim P.58f (signature 0xfbc00daa)
WARNING: A WEBPACK license was found.
WARNING: Please use Xilinx License Configuration Manager to check out a full ISim
license.
WARNING: ISim will run in Lite mode. Please refer to the ISim documentation for more
information on the differences between the Lite and the Full version.
This is a Lite version of ISim.
Time resolution is 1 ps
Simulator is doing circuit initialization process.
Load boot memory from ../../sw/boot-loader-serial/boot-loader-serial.mem
Read in 2053 lines

Released under the GNU Lesser General Public License (v2.1) terms 9 of 22

Amber Amber Project User Guide May 2013

log file tests.log, timeout 0, test name hello-world
Load main memory from ../../sw/hello-world/hello-world.mem
Read in 9116 lines
Finished circuit initialization process.
Amber Boot Loader v20130428143120
j 0x00008000

Hello, World!

--
Amber Core
 > User FIRQ IRQ SVC
r0 0x00000010
r1 0x00008dfc
r2 0x00000000
r3 0x00000000
r4 0x0c008003
r5 0xdeadbeef
r6 0xdeadbeef
r7 0xdeadbeef
r8 0xdeadbeef 0xdeadbeef
r9 0xdeadbeef 0xdeadbeef
r10 0x00000011 0xdeadbeef
r11 0xf0000000 0xdeadbeef
r12 0x00001ecc 0xdeadbeef
r13 0x08000000 0xdeadbeef 0xdeadbeef 0x01ffffb0
r14 (lr) 0x00008020 0xdeadbeef 0xdeadbeef 0x600003fb
r15 (pc) 0x00008490

Status Bits: N=0, Z=1, C=1, V=0, IRQ Mask 0, FIRQ Mask 0, Mode = User
--

++++++++++++++++++++
Passed hello-world 47634 ticks
++++++++++++++++++++
Stopped at time : 1191327500 ps : File "/proj/amber_trunk_working/hw/vlog/tb/tb.v"
Line 503

2.4 Simulation output files

2.4.1 Disassembly Output File

The disassembly file, amber.dis, is generated by default during a simulation. It is

located in the $AMBER_BASE/hw/sim directory. This file is very useful for

debugging software as it shows every instruction executed by the core and the result

of all load and store operations.

This file is generated by default. To turn off generation, comment the line where

AMBER_DECOMPILE is defined in

$AMBER_BASE/hw/vlog/amber/amber_config_defines.v.

Below is an example of the dissassembly output file. The first column gives the time

that the instruction was executed. The time is specified in sys_clk ticks. The second

column gives the address of the instruction being executed and the next column gives

the instruction. If an instruction is not executed because of a conditional execution

code, this is marked with a '–' character in front of the instruction. For load and store

instructions, the actual memory access is given below the instruction. This is the

complete listing for the add test.

 264 0: mov r1, #3
 267 4: mov r2, #1
 270 8: add r3, r1, r2
 273 c: cmp r3, #4
 276 10: -movne r10, #10
 279 14: -bne b4

Released under the GNU Lesser General Public License (v2.1) terms 10 of 22

Amber Amber Project User Guide May 2013

 282 18: mov r4, #0
 285 1c: mov r5, #0
 288 20: add r6, r5, r4
 291 24: cmp r6, #0
 294 28: -movne r10, #20
 297 2c: -bne b4
 300 30: mov r7, #0
 303 34: mvn r8, #0
 306 38: add r9, r7, r8
 309 3c: cmn r9, #1
 312 40: -movne r10, #30
 315 44: -bne b4
 318 48: mvn r1, #0
 321 4c: mov r2, #0
 324 50: add r3, r1, r2
 327 54: cmn r3, #1
 330 58: -movne r10, #40
 333 5c: -bne b4
 336 60: mvn r4, #0
 339 64: mvn r5, #0
 342 68: add r6, r4, r5
 345 6c: cmn r6, #2
 348 70: -movne r10, #50
 351 74: -bne b4
 354 78: mvn r7, #0
 357 7c: mvn r8, #254
 360 80: add r9, r7, r8
 363 84: cmn r9, #256
 366 88: -movne r10, #60
 369 8c: -bne b4
 372 90: ldr r1, [pc, #60]
 377 read addr d4, data 7fffffff
 381 94: mov r2, #1
 384 98: adds r3, r1, r2
 387 9c: -bvc b4
 390 a0: ldr r0, [pc, #48]
 395 read addr d8, data 80000000
 399 a4: cmp r0, r3
 402 a8: -movne r10, #70
 405 ac: -bne b4
 408 b0: b c0
 410 jump from b0 to c0, r0 80000000, r1 7fffffff
 417 c0: ldr r11, [pc, #8]
 422 read addr d0, data f0000000
 426 c4: mov r10, #17
 429 c8: str r10, [r11]
 432 write addr f0000000, data 00000011, be f

2.4.2

Figure 2 - GTKWave waveform viewer

2.4.3 Program Trace Utility

A utility is provided that traces all function calls made during a Verilog simulation.

Here is an example usage;

$ cd $AMBER_BASE/hw/sim
$ run ethmac-test
$ ln -s ../../sw/tools/amber-jumps.sh jumps
$ jumps ethmac-test

This produces the following output. The left column gives the time of the event. The

next colum gives the name of the calling function. The next column gives the value

of the r0 register. This register holds the first parameter passed in function calls. The

next column gives the name of the function called.

 276031 u main -> (00008dec,) printf u
 276104 u printf -> (07ffff8c,) print u
 276311 u print -> (00000053,) _outbyte u

Released under the GNU Lesser General Public License (v2.1) terms 11 of 22

Amber Amber Project User Guide May 2013

 276411 print <- (00000053,)
etc.

2.5 Hardware Tests

The Amber package contains a set of tests which are used to verify the correct

operation of all the instructions, interrupts, the cache and peripherals. The tests are

written in assembly. Several of the tests were added when a specific bug was found

while debugging the core. To run one of the tests, use run <test-name>, e.g.

$ cd $AMBER_BASE/hw/sim
$ run barrel_shift

Each test generates pass or fail when it completes, e.g.

++++++++++++++++++++
Passed barrel_shift
++++++++++++++++++++

To run the complete test suite;

$ cd $AMBER_BASE/hw/sim
$ run -a

Once the run is complete look at the output file hw-tests.log in the

$AMBER_BASE/hw/sim/ directory to check the results. All tests should pass.

The following table describes each test. The source files for these tests are in the

directory $AMBER_BASE/hw/tests.

Table 2 Amber Core Hardware Verification Tests

Name Description

adc Tests the adc instruction. Adds 3 32-bit numbers using adc and checks the result.

addr_ex Tests an address exception interrupt. Sets the pc to 0x3fffffc and executes a nop. The pc then
increments to 0x4000000 triggering an address exception.

add Tests the add instruction. Runs through a set of additions of positive and negative numbers,
checking that the results are correct. Also tests that the 's' flag on the instruction correctly sets the
condition flags.

barrel_shift_rs Tests the barrel shift operation with a mov instruction, when the shift amount is a register value.
Test that shift of 0 leaves Rm unchanged. Tests that a shift of > 32 sets Rm and carry out to 0.

barrel_shift Tests the barrel shift operation with a mov instruction when the shift amount is an immediate
value.Tests lsl, lsr and ror.

bcc Tests branch on carry clear.

bic_bug Test added to catch specific bug with the bic instruction. The following instruction stored the result
in r3, instead of r2
tst r2, r0, lsl r3
bicne r2, r2, r0, lsl r3

bl Test Branch and Link instruction. Checks that the correct return address is stored in the link
register (r14).

cache1 Contains a long but simple code sequence. The entire sequence can fit in the cache. This
sequence is executes 4 times, so three times it will execute from the cache. Test passes if
sequence executes correctly.

cache2 Tests simple interactin between cached data and uncached instruction accesses.

Released under the GNU Lesser General Public License (v2.1) terms 12 of 22

Amber Amber Project User Guide May 2013

Name Description

cache3 Tests that the cache can write to and read back multiple times from 2k words in sequence in
memory - the size of the cache.

cacheable_area Tests the cacheable area co-processor function.

cache_flush Tests the cache flush function. Does a flush in the middle of a sequence of data reads. Checks that
all the data reads are correct.

cache_swap_bug Tests the interaction between a swap instruction and the cache. Runs through a main loop
multiple times with different numbers of nop instructions before the swp instruction to test a range
of timing interactions between the cache state machine and the swap instruction.

cache_swap Fills up the cache and then does a swap access to data in the cache. That data should be
invalidated. Check by reading it again.

change_mode Tests teq, tst, cmp and cmn with the p flag set. Starts in supervisor mode, changes to Interrupt
mode then Fast Interrupt mode, then supervisor mode again and finally User mode.

change_sbits Change status bits. Tests movs where the destination register is r15, the pc. Depending on the
processor mode and whether the s bit is set or not, some or none of the status bits will change.

ddr31 Word accesses to random addresses in DDR3 memory. The test creates a list of addresses in an
area of boot_mem. It then writes to all addresses with data value equal to address. Finally it reads
back all locations checking that the read value is correct.

ddr32 Tests byte read and write accesses to DDR3 memory.

ddr33 Test back to back write-read accesses to DDR3 memory.

ethmac_mem Tests wishbone access to the internal memory in the Ethernet MAC module.

ethmac_reg Tests wishbone access to registers in the Ethernet MAC module.

ethmac_tx Tests ethernet MAC frame transmit and receive functions and Ethmac DMA access to hiboot mem.
Ethmac is put in loopback mode and a packet is transmitted and received.

firq Executes 20 FIRQs at random times while executing a small loop of code. The interrupts are
triggered using a ransom timer. Test checks the full set of FIRQ registers (r8 to r14) and will only
pass if all interrupts are handled correctly.

flow_bug The core was illegally skipping an instruction after a sequence of 3 conditional not-execute
instructions and 1 conditional execute instruction.

flow1 Tests instruction and data flow. Specifically tests that a stm writing to cached memory also writes
all data through to main memory.

flow2 Tests that a stream of str instrutions writing to cached memory works correctly.

flow3 Tests ldm where the pc is loaded which causes a jump. At the same time the mode is changed.
This is repeated with the cache enabled.

hiboot_mem Tests wishbone read and write access to hi (non-cachable) boot SRAM.

inflate_bug A load store sequence was found to not execute correctly.

irq Tests running a simple algorithm to add a bunch of numbers and check that the result is correct.
This algorithm runs 80 times. During this, a whole bunch of IRQ interrupts are triggered using the
random timer.

ldm_stm_onetwo Tests ldm and stm of single registers with cache enabled. Tests ldm and stm of 2 registers with
cache enabled.

ldm1 Tests the standard form of ldm.

ldm2 Tests ldm where the user mode registers are loaded whilst in a privileged mode.

ldm3 Tests ldm where the status bits are also loaded.

ldm4 Tests the usage of ldm in User Mode where the status bits are loaded. The s bit should be ignored
in User Mode.

ldr Tests ldr and ldrb with all the different addressing modes.

ldr_atr_pc Tests lrd and str of r15.

mla Tests the mla (multiply and accumulate) instruction.

mlas_bug Bug with Multiply Accumulate. The flags were gettting set 1 cycle early.

movs_bug Tests a movs followed by a sequence of ldr and str instructions with different condition fields.

mul Tests the mul (multiply) instruction.

sbc Tests the 'subtract with carry' instruction by doing 3 64-bit subtractions.

stm_stream Generates as dense a stream of writes as possible to check that the memory subsystem can cope

Released under the GNU Lesser General Public License (v2.1) terms 13 of 22

Amber Amber Project User Guide May 2013

Name Description

with this worst case.

stm1 Tests the normal operation of the stm instruction.

stm2 Test jumps into user mode, loads some values into registers r8 - r14, then jumps to FIRQ and
saves the user mode registers to memory.

strb Tests str and strb with different indexing modes.

sub Tests sub and subs.

swi Tests the software interrupt – swi.

swp_lock_bug Bug broke an instruction read immediately after a swp instruction.

swp Tests swp and swpb.

uart_reg Tests wishbone read and write access to the Amber UART registers.

uart_rxint Tests the UART receive interrupt function. Some text is sent from the test_uart to the uart and an
interrupt generated.

uart_rx Tests the UART receive function.

uart_tx Uses the tb_uart in loopback mode to verify the transmitted data.

undefined_ins Tests Undefined Instruction Interrupt. Fires a few unsupported floating point unit (FPU) instructions
into the core. These cause undefined instruction interrupts when executed.

2.6 C Programs

In addition to the short assembly language tests, some longer programs written in C

are included with the Amber system. These can be used to further test and verify the

system, or as a basis to develop your own applications.

The source code for these programs is in $AMBER_BASE/sw.

2.6.1 Serial Boot Loader

This is located in $AMBER_BASE/sw/boot-loader-serial. It can be run in simulation

as follows;

$ cd $AMBER_BASE/hw/isim
$./run.sh boot-loader-serial

The simulation output looks like the following;

Test boot-loader, log file boot-loader.log
Load boot memory from ../../sw/boot-loader/boot-loader.mem
Read in 1928 lines
Amber Boot Loader v20110202130047
Commands
l : Load elf file
b <address> : Load binary file to <address>
d <start address> <num bytes> : Dump mem
h : Print help message
j : Execute loaded elf, jumping to 0x00080000
p <address> : Print ascii mem until first 0
r <address> : Read mem
s : Core status
w <address> <value> : Write mem
r 0 0000000c
r 1 00001b76
r 2 00000000
r 3 00000000
r 4 deadbeef
r 5 deadbeef
r 6 deadbeef
r 7 deadbeef
r 8 deadbeef

Released under the GNU Lesser General Public License (v2.1) terms 14 of 22

Amber Amber Project User Guide May 2013

r 9 deadbeef
r10 deadbeef
r11 deadbeef
r12 00000048
r13 600002f7
sp 01ffff80
pc 600002f3

--
Amber Core
User FIRQ IRQ > SVC
r0 0x00000001
r1 0x00001c35
r2 0x00000000
r3 0x00000000
r4 0xdeadbeef
r5 0xdeadbeef
r6 0xdeadbeef
r7 0xdeadbeef
r8 0xdeadbeef 0xdeadbeef
r9 0xdeadbeef 0xdeadbeef
r10 0x00000011 0xdeadbeef
r11 0xf0000000 0xdeadbeef
r12 0x00000048 0xdeadbeef
r13 0xdeadbeef 0xdeadbeef 0xdeadbeef 0x01ffffc0
r14 (lr) 0xdeadbeef 0xdeadbeef 0xdeadbeef 0x20000763
r15 (pc) 0x00001250

Status Bits: N=0, Z=1, C=1, V=0, IRQ Mask 0, FIRQ Mask 0, Mode = Supervisor
--

++++++++++++++++++++
Passed boot-loader
++++++++++++++++++++

The boot loader is used to download longer applications onto the FPGA development

board via the UART port and using Hyper Terminal on a host Windows PC.

2.6.2 Hello World

This is located in $AMBER_BASE/sw/hello-world. It can be run in simulation as

follows;

$ cd $AMBER_BASE/hw/isim
$./run.sh hello-world

This is a very simple example of a stand alone C program. The printf function it uses

is contained in $AMBER_BASE/sw/mini-libc, so that it can run on an FPGA

without access to a real libc library file.

2.6.3 Ethmac Boot Loader

This is located in $AMBER_BASE/sw/boot-loader-ethmac. This is an 'over the

network' boot loader. It supports telnet for command and status, and tftp for

uploading executable programs (as elf files) to run on the FPGA.

The IP address is hard-coded in $AMBER_BASE/sw/boot-loader-ethmac/packet.c,

line 56. To change it, edit that file and rebuild the FPGA, creating a new bitfile.

Here's an example usage of the boot-loader;

$ telnet 192.168.0.17
Trying 192.168.0.17...
Connected to 192.168.0.17.
Escape character is '^]'.
Amber Processor Boot Loader

Released under the GNU Lesser General Public License (v2.1) terms 15 of 22

Amber Amber Project User Guide May 2013

> s
Socket ID 0
Packets received 10
Packets transmitted 9
Packets resent 0
TCP checksum errors 0
Counterparty IP 192.168.0.52
Counterparty Port 55318
Malloc pointer 0x01223600
Malloc count 531
Uptime 21 seconds
>

2.7 Linux

A memory file is provided to run a simulation of Linux booting. The main reason for

providing this file is to have a long test to further validate the correct operation of the

core. This file was created from a modified version of the 2.4.27 kernel with the

patch-2.4.27-vrs1.bz2 patch file applied and then some modifications made to source

files to support the specific hardware in the Amber 2 FPGA.

The vmlinux.mem memory file contains an embedded ext2 format ramdisk image

which contains the hello-world program, but renamed as /sbin/init. The kernel

mounts the ramdisk as /dev/root and runs init. This program prints "Hello, World"

and writes the test pass value to the simulation control register. To run this

simulation;

$ cd $AMBER_BASE/hw/isim
$./run.sh vmlinux

This simulation takes about 6 million ticks to run to completion, or between 5

minutes and an hour of wall time depending on your simulator and PC. The

following is the output from this simulation;

Amber Boot Loader v20110117211518
j 0x2080000

Linux version 2.4.27-vrs1 (conor@server) (gcc version 4.5.1 (Sourcery G++ Lite 2010.09-

50)) #354 Tue Feb 1 17:56:00 GMT 2011
CPU: Amber 2 revision 0
Machine: Amber-FPGA-System
On node 0 totalpages: 1024
zone(0): 1024 pages.
zone(1): 0 pages.
zone(2): 0 pages.
Kernel command line: console=ttyAM0 mem=32M root=/dev/ram
Calibrating delay loop... 19.91 BogoMIPS
Memory: 32MB = 32MB total
Memory: 31136KB available (493K code, 195K data, 32K init)
Dentry cache hash table entries: 4096 (order: 0, 32768 bytes)
Inode cache hash table entries: 4096 (order: 0, 32768 bytes)
Mount cache hash table entries: 4096 (order: 0, 32768 bytes)
Buffer cache hash table entries: 8192 (order: 0, 32768 bytes)
Page-cache hash table entries: 8192 (order: 0, 32768 bytes)
POSIX conformance testing by UNIFIX
Linux NET4.0 for Linux 2.4
Based upon Swansea University Computer Society NET3.039
Starting kswapd
ttyAM0 at MMIO 0x16000000 (irq = 1) is a WSBN
pty: 256 Unix98 ptys configured
RAMDISK driver initialized: 16 RAM disks of 208K size 1024 blocksize
NetWinder Floating Point Emulator V0.97 (double precision)
RAMDISK: ext2 filesystem found at block 8388608
RAMDISK: Loading 200 blocks [1 disk] into ram disk... done.
Freeing initrd memory: 200K

Released under the GNU Lesser General Public License (v2.1) terms 16 of 22

Amber Amber Project User Guide May 2013

VFS: Mounted root (ext2 filesystem) readonly.
Freeing init memory: 32K
Hello, World!

--
Amber Core
> User FIRQ IRQ SVC
r0 0x00000010
r1 0x0080ee00
r2 0x00000000
r3 0x00000000
r4 0x00000000
r5 0x00000000
r6 0x00000000
r7 0x00000000
r8 0x00000000 0xdeadbeef
r9 0x00000000 0xdeadbeef
r10 0x00000011 0xdeadbeef
r11 0xf0000000 0xdeadbeef
r12 0x00000000 0xdeadbeef
r13 0x019fff40 0xdeadbeef 0x0210bca4 0x02161fe8
r14 (lr) 0x00000000 0xdeadbeef 0x220a437f 0x0080e428
r15 (pc) 0x0080e800

Status Bits: N=0, Z=1, C=1, V=0, IRQ Mask 0, FIRQ Mask 0, Mode = User
--

++++++++++++++++++++
Passed vmlinux
++++++++++++++++++++

The program trace utility can be used to trace the Linux execution, as follows;

$ cd $AMBER_BASE/hw/sim
$ ln -s ../../sw/tools/amber-jumps.sh jumps
$ jumps vmlinux

Released under the GNU Lesser General Public License (v2.1) terms 17 of 22

Amber Amber Project User Guide May 2013

3 FPGA Synthesis

A makefile is provided that performs synthesis of the system to a Xilinx Spartan-6

FPGA. To use this makefile you must have Xilinx ISE installed. I have tested it with

ISE v14.5. The makefile is quite flexible. To see all its options, type;

$ cd $AMBER_BASE/hw/fpga/bin
$ make help

To use the script to perform a complete synthesis run from start to finish and generate

a bitfile;

$ cd $AMBER_BASE/hw/fpga/bin
$ chmod +x *.sh
$ make new

The script performs the following steps

1. Compiles the boot loader program in $AMBER_BASE/sw/boot-loader, to

ensure the latest version goes into the boot_mem ram blocks.

2. Runs xst to synthesize the top-level Verilog file

$AMBER_BASE/hw/vlog/system/system.v and everything inside it.

3. Runs ngbbuild to create the initial FPGA netlist.

4. Runs map to do placement.

5. Runs par to do routing.

6. Runs bitgen to create an FPGA bitfile in the bitfile directory.

7. Runs trce to do timing analysis on the finished FPGA.

The Spartan-6 FPGA target device is the default. To compile for the Virtex-6 FPGA,

set VIRTEX6=1 on the command line, e.g.

$ cd $AMBER_BASE/hw/fpga/bin
$ make new VIRTEX6=1

The Amber 23 core is the default. To synthesize the Amber 25 core instead, set

A25=1 on the command line, e.g.

$ cd $AMBER_BASE/hw/fpga/bin
$ make new A25=1

If the par step fails (timing or area constrains not met), you can rerun map and par

with a different seed. Simply call the makefile again without the new switch. The

makefile will automatically increment the seed, e.g.

$ cd $AMBER_BASE/hw/fpga/bin

Released under the GNU Lesser General Public License (v2.1) terms 18 of 22

Amber Amber Project User Guide May 2013

$ make

The system clock speed is configured within the FPGA makefile,

$AMBER_BASE/hw/fpga/bin/Makefile. To change it, change the value of

AMBER_CLK_DIVIDER in that file. The system clock frequency is equal to the

PLL's VCO clock frequency divided by AMBER_CLK_DIVIDER. By default it is

set to 40MHz for Spartan-6 and 80MHz for Virtex-6.

Released under the GNU Lesser General Public License (v2.1) terms 19 of 22

Amber Amber Project User Guide May 2013

4 Using Boot-Loader

If you have a development board with a UART connection to a PC you can use boot-

loader to download and run applications on the board. I have tested this with the

Xilinx SP605 development board. It provides a UART connection via a USB port on

the board.

4.1 Install and configure Minicom

The following commands installs the lsusb and minocom utilities;

$ sudo yum install usbutils
$ sudo yum install minicom

Connect the SP605 serial port USB to the PC and check that the port is visible;

ls -l /dev/ttyUSB0
crw-rw---- 1 root dialout 188, 0 May 4 11:02 /dev/ttyUSB0

$ lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 008 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 001 Device 002: ID 05e3:0608 Genesys Logic, Inc. USB-2.0 4-Port HUB
Bus 005 Device 002: ID 046e:55a5 Behavior Tech. Computer Corp.
Bus 005 Device 003: ID 04f3:0212 Elan Microelectronics Corp. Laser Mouse
Bus 002 Device 013: ID 03fd:0008 Xilinx, Inc.
Bus 008 Device 006: ID 10c4:ea60 Cygnal Integrated Products, Inc. CP210x UART Bridge /

myAVR mySmartUSB light

Configure minicom

sudo minicom -s

 +---+
 | A - Serial Device : /dev/ttyUSB0 |
 | B - Lockfile Location : /var/lock |
 | C - Callin Program : |
 | D - Callout Program : |
 | E - Bps/Par/Bits : 921600 8N1 |
 | F - Hardware Flow Control : Yes |
 | G - Software Flow Control : No |
 | |
 | Change which setting? |
 +---+

Save setup as dfl. Then to run minicom,

> sudo minicom

Released under the GNU Lesser General Public License (v2.1) terms 20 of 22

Amber Amber Project User Guide May 2013

4.2 Configure the FPGA

Load the bitfile into the FPGA on the development board. This can be done using

Xilinx iMPACT. Once the FPGA is configured the boot loader will print some

messages via the UART interface onto the minicom screen, as follows;

Released under the GNU Lesser General Public License (v2.1) terms 21 of 22

Amber Amber Project User Guide May 2013

5 License

All source code provided in the Amber package is release under the following license

terms;

Copyright (C) 2010 Authors and OPENCORES.ORG

This source file may be used and distributed without
restriction provided that this copyright statement is not
removed from the file and that any derivative work contains
the original copyright notice and the associated disclaimer.

This source file is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any
later version.

This source is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more
details.

You should have received a copy of the GNU Lesser General
Public License along with this source; if not, download it
from http://www.opencores.org/lgpl.shtml

 Author(s):
 - Conor Santifort, csantifort.amber@gmail.com

Released under the GNU Lesser General Public License (v2.1) terms 22 of 22

	1 Amber Project
	1.1 Project Directory Structure
	1.2 Amber FPGA System

	2 Verilog simulations
	2.1 Installing the Amber project
	2.2 Installing the Compiler
	2.2.1 GNU Tools Usage

	2.3 Running Simulations
	2.4 Simulation output files
	2.4.1 Disassembly Output File
	2.4.3 Program Trace Utility

	2.5 Hardware Tests
	2.6 C Programs
	2.6.1 Serial Boot Loader
	2.6.2 Hello World
	2.6.3 Ethmac Boot Loader

	2.7 Linux

	3 FPGA Synthesis
	4 Using Boot-Loader
	4.1 Install and configure Minicom
	4.2 Configure the FPGA

	5 License

