

ANN IP Core
Specification

Author: David Aledo, Félix Moreno

david.aledo@upm.es

Rev. [0.1]

June 2, 2016

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary ii

This page has been intentionally left blank.

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary iii

Revision History

Rev

.

Date Author Description

0.1 23/05/16 David Aledo First Draft

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary iv

Contents
1 INTRODUCTION.. 1

2 KERNEL ARCHITECTURE ... 3

3 WEIGHT AND BIAS MEMORIES ARCHITECTURE ... 6

4 OPERATION ... 9

5 CLOCKS ... 10

6 KERNEL IO PORTS ... 11

7 VALIDATION.. 12

APPENDIX A: ADDING USER ACTIVATION FUNCTIONS 13

APPENDIX B: WRAPPER FOR VIVADO ... 14

APPENDIX C: EXAMPLE APPLICATION ... 15

REFERENCES .. 16

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 1 of 16

1

Introduction

This IP core is a configurable feedforward Artificial Neural Network (ANN). ANNs are

Artificial Intelligence (AI) algorithms biologically inspired on the brain. An ANN can be

trained to learn a specific task. Typical tasks are pattern recognition and classification,

but not exclusively. ANN is based on a simple model of a neuron, described on Equation

1.

𝑎𝑛 = f(∑(𝑤𝑛,𝑖 ∙ 𝑝𝑖) + 𝑏𝑛

𝑀

𝑖=0

)

an : is the output of the neuron n.

f : is the activation function.

M : is the number of inputs.

wn,i : is the weight for the input i of the neuron n.

pi : is the input i.

bn : is the bias of the neuron n.

Neuron’s models are grouped by layers are connected in a network. This IP performs full

feedforward connections between consecutive layers. All neurons’ outputs of a layer

become the inputs for the next layer. This ANN architecture is also known as Multi-Layer

Perceptron (MLP) when is trained with a supervised learning algorithm. There is

extensive literature about ANN, please consult it for more information.

Different kinds of activation functions can be added easily coding them in the provided

VHDL template and following the steps described in Appendix A: Adding user activation

functions.

This IP core is provided in two parts: kernel plus wrapper. The kernel is the optimized

ANN with basic logic interfaces. The kernel should be instantiated inside a wrapper to

connect it with the user’s system buses. Currently, an example wrapper is provided for

instantiate it on Xilinx Vivado, which uses AXI4 interfaces for AMBA buses [1,2].

Developers hope to add more wrappers in the future with the help of the OpenCores

community.

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 2 of 16

The kernel of the ANN IP core is configurable through parameters. Bit widths, number of

layers, inputs, number of neurons in each layer, activation function of each layer, and

layer type of each one can be configured. There are three layer types regarding on if

inputs and outputs are parallel or serial: “SP”, “PS”, and “PP” (in the current version

“PP” layer type is not available). See Section Kernel Architecture for more information.

Computations are performed in fixed point format in order to achieve good performance

on a reasonable area. Read Section Operation to know how to adjust data into the ANN

input and output formats.

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 3 of 16

2

Kernel architecture

The architecture of the ANN can be configured through parameters. Table 1 summarizes

the parameter list and its function. Input and outputs are always serial stream data. Data

flow in a pipeline way inside the ANN. Data between layers can be serial or parallel

depending on the configuration.

Parameter Type Description

Nlayer integer Number of layers

NbitW natural
4

Weight-and-bias bit-width

NumIn natural Number of inputs to the network

NbitIn natural Input bit-width

NumN int_vector
1

Number of neurons in each layer

l_type string
2

Layer type of each layer

f_type string
3

Activation function type of each layer

LSbit int_vector
1
 LSB of the output of each layer

NbitO int_vector
1
 Output bit-width of each layer

NbitOut natural Network output bit width

1
int_vector is an array of integers defined on the provided package layers_pkg.vhd.

2
 l_type string must contain as layer types as number of layers, separated by spaces. Each layer type is a

two character string “SP”, “PS”, or “PP” (see Architecture section for more information).

3
 f_type string must contain as activation function types as number of layers, separated by spaces. Each

layer type is a six character string.

4
 At current version, NbitW must be a multiple of 8 due to memory alignment.

Table 1: List of parameters (generics)

The main structural blocks of the ANN are the layers. Three types of layer can be

selected (currently only two of them) depending if the input and output data are parallel

or serial.

 The Serial-input Parallel-output (“SP”) layer type is an array of Multiplier-and-

Accumulators (MACs). Its resource utilization depends on the number of neurons,

and its latency depends on the number of inputs. This is the most common

implementation and is perfect for first processing layers which receive inputs

serially.

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 4 of 16

 The Parallel-input Serial-output (“PS”) layer type implements one neuron that is

reused to calculate all neurons of the layer. Its resource utilization depends on the

number of inputs, and its latency depends on the number of neurons plus the

logarithm to the base 2 of the number of inputs (because the adder tree). A

drawback of this layer type is that there is not perfect mapping of the multipliers

and the adder tree into embedded DSP48Es of Xilinx. They have one multiplier

and one adder, configurable to perform different operations like MACs, but to

combine all multipliers with the adder tree adders is not possible, causing more

DSPs utilization. Nevertheless, this layer type is good for output layers which

need serial outputs.

 The Parrallel-input Parallel-output (“PP”) is not available in the current version.

This layer type is the full parallel implementation of a layer, achieving the

maximum performance at expenses of the largest resource utilization.

When serial-input and serial-output is needed, it is automatically accomplished by

inserting a serializer after a “SP” layer or a parallelizer before a “PS” layer. Serializer is a

shift register with parallel load, and parallelizer is a shift register with parallel unload.

The selected activation function is inserted wisely between layers. If a parallel output

precedes a serial input, a serializer is inserted before an only one activation function

block. If a serial output precedes a parallel input, one activation function block is inserted

before a parallelizer. Only when parallel output precedes parallel input an array of

parallel activation function blocks is inserted.

Each block has its own control based on the propagation of a ready signal.

Figure 1 shows the block diagram around a generic layer l. The ANN IP core kernel

generates as many of these blocks as Nlayers.

The kernel of the ANN IP core does not implement any control register. Registers may be

implemented on wrappers.

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 5 of 16

If 𝑙 = 0, inputs and run_in are arriving to layer (l) instead of lidata(l-1) and rinI(l-1). If 𝑙 = 𝑁𝑙𝑎𝑦𝑒𝑟 − 1,

outputs and run_out are leaving parallelizer or a single activation function instead of lidata(l) and runI(l). If

the serializer is present, its outputs are ladata(l) and runA(l). If the parallelizer is present, its inputs are

ladata(l) and runA(l).

Figure 1: Block diagram around a generic layer l.

run_in/runI(l-1) inputs/lidata(l-1)

lodata(l) runO(l)

lodata(l)/ladata(l) runO(l)/runA(l)

Activation function

(single or multiple)

Parallelizer

lidata(l)/ladata(l) runI(l)/runA(l)

lidata(l)/outputs runI(l)/run_out

Layer (l)

(SP, PS or PP)

Serializer

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 6 of 16

3

Weight and bias
memories architecture

Understanding the weight-and-bias memories architecture is key point to properly use the

ANN IP core. Due to the high configurability of the ANN IP core, the weight-and-bias

memories architecture is automatically generated based on the ANN parameters.

Although the address space of the weight-and-bias memories is seen as a unique BRAM

space address through the BRAM interface, it is actually composed by several BRAMs

and registers, with some addresses without physical implementation. The user must take

care to avoid write or read to these unimplemented addresses. Figure 2 shows the general

scheme of the address space.

The total address length is calculated by the formula on Equation 2.

𝑎𝑑𝑑𝑟_𝑙 = log2(𝑁𝑙𝑎𝑦𝑒𝑟) + 1 +max(⋃ (log2(𝑁𝑢𝑚𝐼𝑛𝑙) + log2(𝑁𝑢𝑚𝑁𝑙))

𝑁𝑙𝑎𝑦𝑒𝑟

𝑙=0

)

addr_l : is the total address length seen by the host.

Nlayer : is the ANN IP core parameter which describe the number of layers in the ANN.

NumInl : is the number of inputs of the layer l. 𝑁𝑢𝑚𝐼𝑛0 = 𝑁𝑢𝑚𝐼𝑛 (the ANN IP core

parameter which describe the number of inputs of the ANN), and 𝑁𝑢𝑚𝐼𝑛𝑙 = 𝑁𝑢𝑚𝑁𝑙−1

when 𝑙 ≠ 0.

NumNl : is the number of neurons in the layer l. Every one of them is an element of the

integer array parameter of the ANN IP core NumN.

The combination of all NumNl forms the integer array parameter of the ANN IP core

NumN.

They are each one of the elements of the integer array parameter of the ANN IP core

NumN.

The first log2(𝑁𝑙𝑎𝑦𝑒𝑟) bits address the layer to be accessed. Starting from the input layer

labeled 0, to the output layer labeled 𝑁𝑙𝑎𝑦𝑒𝑟 − 1. The layer number is coded with little-

endian binary numbers (i.e. unsigned(addr_l-1 downto addr_l-log2(Nlayer)).

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 7 of 16

The next bit of the weight-and-bias address selects between the weights (‘0’) or the biases

(‘1’) of the layer. This bit is called bias select.

The remaining bits are used to address the weights or biases of the layer with a memory

structure that depends on the layer type. The layer RAM address length used for each

layer depends on the number of inputs and neuron on the layer. The layer RAM address

length is defined as 𝑙𝑟𝑎_𝑙 = log2(𝑁𝑢𝑚𝑁𝑙) + log2(𝑁𝑢𝑚𝑁𝑙). When the bias select is

asserted, a bias is addressed with unsigned(bra_l-1 downto 0). 𝑏𝑟𝑎_𝑙 = log2(𝑁𝑢𝑚𝑁𝑙) is

the bias RAM address length. The corresponding neuron number of the bias is coded with

little-endian binary numbers. When the bias select is deasserted, a weight wn,i is

addressed using the top part of the layer RAM address unsigned(lra_l-1 downto wra_l) to

select input i, and the bottom part unsigned(wra_l-1 downto 0) to select neuron n.

𝑤𝑟𝑎_𝑙 = log2(𝑁𝑢𝑚𝐼𝑛𝑙) is the weight RAM address length. Both n and i are coded with

little-endian binary numbers.

“SP” layers: biases are stored on registers because they have to be accessed

simultaneously from the MACs. Weights are stored on BRAMs. There is one BRAM per

neuron. All the n weights (wn,i) for an input i are accessed simultaneously from the

MACs.

“PS” layers: biases are stored in a BRAM because they do not have to be accessed

simultaneously. Weights are stored on BRAMs. There is one BRAM per input. All the i

weights (wn,i) for a neuron n are accessed simultaneously from the neuron.

“PP” layers: as all the weights and biases have to be accessed simultaneously, all of them

are stored in registers.

Figure 2: General scheme of the weight and bias memories space address.

In order to correctly access to weight-and-bias memories from a host, when host code is

written in C/C++, the best way is through 2-D arrays for weights and 1-D arrays for bias,

which base addresses must be separated max(𝑙𝑟𝑎_𝑙) spaces. Size of the first dimension of

weight arrays must be defined as the NumInl next power of two. Although first dimension

of the 2-D weight arrays have to be defined as the NumInl next power of two, unless

NumInl is a power of two, indexes between NumInl and its next power of two must not be

accessed. The reason for this way of defining weight arrays is because then compiler will

automatically jump to the correct address.

𝑎𝑑𝑑𝑟_𝑙 − 1

𝑎𝑑𝑑𝑟_𝑙 − log2(𝑁𝑙𝑎𝑦𝑒𝑟)

𝑎𝑑𝑑𝑟_𝑙 − log2(𝑁𝑙𝑎𝑦𝑒𝑟) − 1

max(𝑙𝑟𝑎_𝑙) − 1

0

𝑙𝑟𝑎_𝑙 − 1

𝑤𝑟𝑎_𝑙

𝑤𝑟𝑎_𝑙 − 1

0

layer l

bias select

layer RAM

neuron n

input i

𝑏𝑟𝑎_𝑙 − 1

0
bias n

‘0’ ‘1’

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 8 of 16

The header file ann.h is provided to help C/C++ programmers to access the weight-and-

bias memories. This header file should be edited to set the parameters related to user’s

ANN.

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 9 of 16

4

Operation

Before sending input data to de ANN, weight-and-bias memories should be initialized

through the BRAM port. Weight-and-bias memories can be written and read by a host

though the BRAM interface.

Once the weights and biases are configured, data to the ANN can be sent serially with a

validation bit (run_in). The ANN kernel does not check if the weights and biases have

been initialized. If input data are sent and the run_in validation bit is asserted without

weight and bias initialization, the IP core will use the uninitialized data contained in the

weight-and-bias memory blocks.

Output data is produced with a throughput of 1 clock cycle. The output validation bit

run_out is asserted every clock cycle that a valid output data is produced.

Computations are performed in fixed point format in order to achieve good performance

on a reasonable area. Format of the fixed point signals can be configured through their

correspondent bit-width parameters and the LSbit array parameter. Internal layer registers

and signals are sized to prevent overflow. However, to assure reasonable resource

utilization, data between layers is re-sized. Independently of the layer type, results of the

multiplications have a length 𝑚𝑢𝑙_𝑙 = 𝑁𝑏𝑖𝑡𝑊 +𝑁𝑏𝑖𝑡𝐼𝑛𝑙, and final result of all the

additions a length 𝑟𝑒𝑠_𝑙 = 𝑚𝑢𝑙_𝑙 + log2(𝑁𝑢𝑚𝐼𝑛𝑙). 𝑁𝑏𝑖𝑡𝐼𝑛0 = 𝑁𝑏𝑖𝑡𝐼𝑛, and 𝑁𝑏𝑖𝑡𝐼𝑛𝑙 =
𝑁𝑏𝑖𝑡𝑂𝑙−1 when 𝑙 ≠ 0. After all layer computations, only NbitOl bits are sent to the next

layer, starting the output Less Significan Bit (LSB) on the position defined by the LSbitl

parameter. Overflow issues are avoided by saturating the result to de most positive or

negative values when needed. However, underflow or excessive saturation issues may

appear if the NbitO and LSbit parameters are not chosen carefully.

Figure 3: Fixed point format of layer outputs.

𝑟𝑒𝑠_𝑙 0 𝐿𝑆𝑏𝑖𝑡𝑙 𝐿𝑆𝑏𝑖𝑡𝑙 + 𝑁𝑏𝑖𝑡𝑂𝑙 − 1

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 10 of 16

5

Clocks

The current version of the ANN kernel has only one clock which is named clk. It is used

to synchronize every register and memory of the design. Future versions may include

alternative clocks for the weight and bias memories to separate them form the ANN

processing pipeline.

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 11 of 16

6

Kernel IO ports

Table 2 lists the kernel IO ports. In order to connect this basic logic interfaces in a

system, a wrapper should be added to interface with system buses.

Port Width Direction Description

reset 1 Input Synchronous active high reset input

clk 1 Input Clock input

run_in 1 Input Start and input data validation

m_en 1 Input Weight and bias memory enable (BRAM interface)

m_we 1 Input Weight and bias memory write enable (BRAM

interface)

inputs NbitIn Input Input data (serial stream)

wdata NbitW Input Weight and bias memory write data (BRAM

interface)

addr addr_l
1

Input Weight and bias memory address (BRAM

interface)

run_out 1 Output Output data validation

rdata NbitW Output Weight and bias memory read data (BRAM

interface)

outputs NbitOut Output Output data (serial stream)

1
 the address length is calculated with the formula on Equation 2. See Section Weight and bias memories

architecture for more information.

Table 2: List of kernel IO ports

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 12 of 16

7

Validation

The ANN IP core has been validated through simulation. The VHDL testbench performs

a supervised training of an example application. The example application is an

autoencoder used to compress an image (which is read from a file).

The VHDL testbench files are NOT provided. The simulation needs excessive RAM and

takes long time to finish. To validate small changes in the ANN IP kernel modules is

recommended to write Ad-Hoc testebenches for the modified modules. Validation also

can be done through the provided example application (see Appendix C: Example

application).

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 13 of 16

Appendix A

Adding user activation
functions

User activation functions can be easily added following these steps:

1. Write the user activation function description into the template af_template.vhd.

Change file and entity name accordingly, but do not modify the rest of the entity

template. Add user description into the module architecture. af_sigmoid.vhd file

can be taken as an example.

2. Edit Structural architecture of activation_function.vhd file to instantiate the new

user activation function inside an if-generate, like in its commented template.

Choose a six characters tag for the new user activation function. This step allows

the ANN IP core kernel to select the user activation function from the f_type

parameter if the chosen tag is present on it.

3. Re-synthetize all the ANN IP core.

4. When configuring the ANN IP core, the new activation function tag can be used

for the f_type parameter.

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 14 of 16

Appendix B

Wrapper for Vivado

The ann_v2_0.vhd, and ann_v2_0_*.vhd are the files automatically generated by the

Vivado’s Create and Package New IP wizard, and then edited to instantiate and connect

the ANN IP core kernel. They have been tested for non-burst writes and reads on the

weight and bias memories, and AXI stream interfaces connected through a DMA without

SG engine. Test has been performed on a Zybo [3] using Vivado 2015.4. Figure 4 shows

the test block design on Vivado GUI.

Figure 4: Block design connection of the ANN IP core on Vivado.

Note: ANN IP kernel needs a synchronous active high reset, but AXI4 interfaces use

active low resets. A synchronous active high reset must be connected on the input port

ann_areset.

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 15 of 16

Appendix C

Example application

The example application is a C program for a host controlling the ANN IP core. It targets

the system of the Figure 4.

The example application is based on the popular MNIST database [4]. Although in order

to make it suitable for embedded computing, the images have been reduced to half in

both directions by averaging every 4x4 block. So, the inputs to this network are

14x14=196 pixel images.

The outputs of this example are ten values which each one should stand at its maximum

to select its assigned digit, and zero in other case. This implies that the output layer of this

ANN has again a fixed size of 10 neurons.

Files, and more information will be available soon. Authors expect it before the end of

June 2016.

http://www.opencores.org/

 OpenCores Specifications Template 6/2/2016

www.opencores.org Rev 0.1 Preliminary 16 of 16

References

1. ARM AMBA AXI Protocol v2.0 Specification

2. AMBA4 AXI4-Stream Protocol v1.0

3. http://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/

4. Yann LeCun, Corinna Cortes, Christopher J.C. Burges. The MNIST database of

handwritten digits. http://yann.lecun.com/exdb/mnist/index.html

http://www.opencores.org/
http://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/
http://yann.lecun.com/exdb/mnist/index.html

