
A
S

TR
O

N
-F

O
-0

17
 2

.0

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

1 / 37

 UniBoard Wideband-FFT Module Description

 Organisatie / Organization Datum / Date
 Auteur(s) / Author(s):

Harm Jan Pepping ASTRON 1 October 2012

Controle / Checked:

Eric Kooistra ASTRON

Goedkeuring / Approval:

Andre Gunst ASTRON

Autorisatie / Authorisation:

Handtekening / Signature
Andre Gunst

ASTRON

© ASTRON 2011
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

2 / 37

Distribution list:

Group: Others:

Andre Gunst
Eric Kooistra
Daniel van der Schuur

Gijs Schoonderbeek
Sjouke Zwier
Harro Verkouter (JIVE)
Jonathan Hargreaves (JIVE)
Salvatore Pirruccio (JIVE)

Document history:

Revision Date Author Modification / Change

0.1 2012-9-5 Harm Jan Pepping Creation

0.2 2012-10-1 Harm Jan Pepping Added content for first review

0.3 2013-4-3 Harm Jan Pepping
Processed comments of Eric Kooistra.
Added quantization section 5.4.
Added python verification section 6.3

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

3 / 37

Table of contents:

1 Introduction .. 6

1.1 Purpose .. 6
1.2 Module overview ... 6
1.3 rTwoSDF_lib and fft_lib .. 6

2 Firmware interface ... 7

2.1 Clock domains .. 7
2.2 Parameters ... 7
2.3 Interface signals ... 9

2.3.1 IN_SOSI_ARR interface ... 9
2.3.2 OUT_SOSI_ARR interface ... 10
2.3.3 RAM_ST_SST_MOSI interface .. 11
2.3.4 Clocks and resets ... 12

3 Software interface ... 13

3.1 Subband statistics span .. 13
4 Module Design .. 14

4.1 Algorithm ... 14
4.1.1 FFT ... 14
4.1.2 Separate ... 14

4.2 Architecture... 14
4.2.1 fft_r2_pipe ... 14
4.2.2 fft_r2_par .. 14
4.2.3 fft_r2_wide .. 15

5 Implementation .. 17

5.1 fft_r2_pipe ... 17
5.1.1 rTwoSDF stages ... 17
5.1.2 fft_reorder_sepa_pipe .. 17

5.2 fft_r2_par .. 19
5.2.1 fft_r2_bf_par ... 19
5.2.2 Connecting the parallel butterflies .. 20
5.2.3 Parallel reordering .. 20
5.2.4 Parallel separation .. 20

5.3 fft_r2_wide .. 22
5.3.1 Generics ... 22
5.3.2 Modifications for rTwoWeights ... 22
5.3.3 fft_sepa_wide .. 23

5.4 Quantization.. 25
5.4.1 FFT input resize .. 25
5.4.2 FFT stage quantization ... 26
5.4.3 FFT output quantization .. 26

5.5 fft_wide_unit.. 27
5.5.1 fft_wide_unit_control ... 28
5.5.2 Quantizer .. 28
5.5.3 Subband Statistics .. 28

6 Verification ... 29

6.1 tb_fft_r2_* ... 29
6.1.1 p_read_input_file .. 29
6.1.2 p_in_stimuli ... 29
6.1.3 p_read_golden_file ... 29

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

4 / 37

6.1.4 p_verify_output ... 29
6.1.5 p_write_output_file ... 30

6.2 tb_fft_wide_unit .. 30
6.2.1 mms_diag_block_gen ... 30
6.2.2 p_read_input_file .. 30
6.2.3 p_init_waveforms_memory ... 31
6.2.4 p_control_input_stream .. 31
6.2.5 p_read_golden_file ... 31
6.2.6 p_read_sst_memory ... 31
6.2.7 p_create_golden_array ... 31
6.2.8 p_verify_output ... 31

6.3 Pyhton based testbenches ... 31
6.3.1 tb_mmf_fft_r2 .. 32
6.3.2 tb_mmf_fft_wide_unit ... 32

7 BN_FB Reference design ... 33

7.1 Design ... 33
7.2 Verification .. 33

7.2.1 ctrl_unb_common ... 34
7.2.2 aduh_half .. 34
7.2.3 aphy_4g_800_mem_model .. 34

8 Synthesis and Place & Route .. 35

9 Validation ... 36

9.1 Python ... 36
9.1.1 tc_bn_fb.py ... 36

10 Appendix – list of files ... 37

10.1 Firmware VHDL .. 37
10.2 Testbench ... 37

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

5 / 37

Terminology:

DIAG Diagnostics (VHDL module)
DP Data Path (VHDL module)
DSP Digital Signal Processing
DUT Device Under Test
EOP End Of Packet
FFT Fast Fourier Transformation
FIFO First In First Out
FPGA Field Programmable Gate Array
HDL Hardware Description Language
IO Input Output
MISO Master In Slave Out
MM Memory-Mapped
MOSI Master Out Slave In
Nof Number of
RAM Random Access Memory
Signal Path Time series signal
SISO Source In Sink Out
SOP Start Of Packet
SOPC System On a Programmable Chip (Altera)
SOSI Source Out Sink In
SRC Source
ST Streaming
Subband Frequency signal

Definitions:
N FFT number of points
P Wideband factor = sample clock frequency/DSP clock frequency
M N/P = number of FFT points per wideband section

References:

1. ‘APERTIF Filter Bank Firmware Specification Part 2’, ASTRON-SP-054, Eric Kooistra
2. ‘A Radix-2 Single Delay Feedback (R2SDF) architecture based generic Fast Fourier Transform for

firmware implementation’, ASTRON-RP-755, R.T. Rajan
3. $UNB/Firmware/dsp/rTwoSDF/
4. $UNB/Firmware/dsp/fft/
5. ‘Understanding Digital Signal Processing’, R. Lyons
6. ‘BN Capture Design Description’, ASTRON-RP-498, Eric Kooistra, Daniel van der Schuur
7. ‘DP Streaming Module Description’, ASTRON-RP-382, Eric Kooistra
8. $UNB/Firmware/modules/Lofat/st/
9. $UNB/Firmware/dsp/fft/tb/vhdl/
10. $UNB/Firmware/dsp/rTwoSDF/tb/data/
11. ‘DIAG Module Description’, ASTRON-RP-1313, Eric Kooistra, Harm Jan Pepping, Daniel van der Schuur
12. $UPE/apps/bn_fb/
13. ‘ADU Handler Module Description’, ASTRON-RP-1323, Eric Kooistra

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

6 / 37

1 Introduction

1.1 Purpose
The fft_wide unit performs a N-point Wideband FFT(Fast Fourier Transformation) on data that is partly
applied in serial and partly applied in parallel. The fft_wide unit specifically suits applications where the
sample clock is higher than the DSP processing clock. For each output stream a subband statistic unit is
included which can be read via the memory mapped interface.

1.2 Module overview
An overview of the fft_wide unit is shown in Figure 1. The fft_wide unit calculates a N-point FFT and has P
number of input streams. Data of each input is offered to a M-point pipelined FFT, where M=N/P. The output
of all pipelined FFTs is then connected to a P-point parallel FFT that performs the final stage of the wideband
FFT. Each output of the parallel FFT is connected to a subband statistics unit that calculates the power in
each subband. The MM interface is used to read out the subband statistics.

MM interface

fft_wide_unit

subband
statistics

subband
statistics

subband
statistics

fft_wide

ST[1]

ST[0]

ST[1]

ST[P-1]

M-point
pipelined

FFT
ST[0]

M-point
pipelined

FFT

M-point
pipelined

FFT
ST[P-1]

P-point
parallel

FFT

Figure 1: FFT Wide unit overview

1.3 rTwoSDF_lib and fft_lib
At the start of the development of the wideband FFT a pipelined FFT was already developed as described in
[1] and [2]. All design files that relate to the development of the rTwoSDF design reside in the rTwoSDF_lib
as pointed by [3]. The rTwoSDF pipelined FFT design is used as building block for the development of the
wideband extension. All design files regarding the wideband extension are located in the fft_lib as pointed by
[4].

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

7 / 37

2 Firmware interface
This chapter covers all firmware interface related topics of the fft_wide unit. It describes the functionality of
the in- and output ports.

2.1 Clock domains
There are two clock domains used in the fft_wide unit: the mm_clk and the dp_clk domain. Figure 2 shows
an overview of the clock domains in the fft_wide unit. The only unit that is connected to both clock domains is
the memory of the subband statistics module. This memory is a dual ported ram that holds the results of the
subband statistics. Table 1 lists both clocks and their characteristics.

subband
statistics
memory

dp_clk

mm_clk

Figure 2: fft_wide_unit clock domains

Name Frequency (MHz) Description
DP_CLK 200 MHz Clock for the datapath
MM_CLK 125 MHz Clock for the memory mapped interface.

Table 1: fft_wide unit clock signals

2.2 Parameters
The parameters that define an instantiation of the fft_wide unit are grouped in three VHDL records as listed
in Table 2.
Generic Type Description
g_fft t_fft This record in defined in fft_pkg.vhd. It contains parameters that define the

behavioural of the FFT. Content of the t_fft record is detailed in Table 3.
g_pft_pipeline t_fft_pipeline This record contains pipeline settings for the parallel FFTs. The record is

defined in rTwoSDFPkg.vhd, which is located in the rTwoSDF library. More
info can be found in 2.3.3 of [1] and chapter 3 in [2]. Content of the
t_fft_pipeline record is listed in Table 4.

p_fft_pipeline t_fft_pipeline This record contains pipeline settings for the pipelined FFTs. The record is
defined in rTwoSDFPkg.vhd, which is located in the rTwoSDF library. More
info can be found in 2.3.3 of [1] and chapter 3 in [2]. Content of the
t_fft_pipeline record is listed in Table 4.

Table 2 fft_wide unit parameters

The items of the t_fft record are listed in Table 3. The column named “value” specifies the default value that
is used.

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

8 / 37

Generic Type Value Description
use_reorder BOOLEAN true When set to ‘true’, the output bins of the FFT are reordered in

such a way that the first bin represents the lowest frequency
and the highest bin represents the highest frequency.

use_separate BOOLEAN true When set to ‘true’ a separate algorithm will be enabled in order
to retrieve two separate spectra from the output of the complex
FFT in case both the real and imaginary input of the complex
FFT are fed with two independent real signals.

nof_chan NATURAL 0 Defines the number of channels (=time-multiplexed input
signals). The number of channels is 2nof_chan. Multiple channels
is only supported by the pipelined FFT.

wb_factor=P NATURAL 4 The number that defines the wideband factor. It defines the
number of parallel pipelined FFTs.

twiddle_offset NATURAL 0 The twiddle offset is used for the pipelined sections in the
wideband configuration. This is explained in detail in 5.3.

nof_points=N NATURAL 1024 The number of points of the FFT.
in_dat_w NATURAL 8 Width in bits of the input data. This value specifies the width of

both the real and the imaginary part.
out_dat_w NATURAL 14 The bitwidth of the real and imaginary part of the output of the

FFT. The relation with the in_dat_w is as follows: out_dat_w =
in_dat_w + (log2(nof_N))/2+1

stage_dat_w NATURAL 18 The bitwidth of the data that is used between the stages (= DSP
multiplier-width)

guard_w NATURAL 2 Number of bits that function as guard bits. The guard bits are
required to avoid overflow in the first two stages of the FFT.

guard_enable BOOLEAN true When set to ‘true’ the input is guarded during the input resize
function, when set to ‘false’ the input is not guarded, but the
scaling is not skipped on the last stages of the FFT (based on
the value of guard_w).

stat_data_w POSITIVE 56 Width of the output of the subband statistics unit. This value
must be high enough to accommodate the highest possible
bitgrowth in the subband statistic unit. Highest integration period
is set to one second.

stat_data_sz POSITIVE 2 This number specifies how many 32-bit registers are required to
read out one accumulated value.

Table 3: t_fft record fields

The items of the t_fft_pipeline record are listed in Table 4. The column named “value” specifies the default
value.

Generic Type Value Description
stage_lat NATURAL 1 The output latency of a pipelined fft stage or a parallel fft

butterfly.
weight_lat NATURAL 1 Latency that is required to look up the addressed weight factors.
mul_lat NATURAL 3 The latency of the multipliers that are used in the butterflies.
bf_lat NATURAL 1 Output latency of a pipelined or an internal latency in the parallel

butterfly.
bf_use_zdly NATURAL 1 Enable for the usage of the feedback delay lines bf_in_a_zdly

and bf_out_d_zdly.
bf_in_a_zdly NATURAL 0 Size for extra delay to be added to the feedback delay line that

drives input a of the rTwoBF units. (Only applicable to pipelined
stages)

bf_out_d_zdly NATURAL 0 Size for extra delay to be added to the output d of othe rTwoBF
units. (Only applicable to pipelined stages)

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

9 / 37

sep_lat NATURAL 1 Latency that is introduced by the separate function.

Table 4 t_fft_pipeline record fields

2.3 Interface signals
The interface signals of the fft_wide unit are shown in Figure 3 and Table 5 lists the general specifications of
these interfaces. More detailed information about the interfaces can be found in the following paragraphs.

dp_clk

dp_rst

mm_clk

mm_rst

in_sosi_arr out_sosi_arr

ram_st_sst_mosi

ram_st_sst_miso

fft_wide_unit

Figure 3: interface signals

Interface Type Size or Span Description
in_sosi_arr t_dp_sosi_arr wb_factor Array of input streams where each stream holds

1/wb_factor portion of the time-domain input data.
Data can be single complex or dual real. Format of the
data is explained in detail in 2.3.1.

out_sosi_arr t_dp_sosi_arr wb_factor Array of output streams containing the frequency-
domain data. Format of the data is explained in detail
in 2.3.2.

ram_st_sst_mosi t_mem_mosi nof_points

A mosi interface to read out the subband statistics
data.

ram_st_sst_miso t_mem_miso nof_points A miso interface to read out the subband statistics
data.

dp_clk std_logic na Datapath clock
dp_rst std_logic na Datapath reset
mm_clk std_logic na Memory mapped interface clock
mm_rst std_logic na Memory mapped interface reset

Table 5: interface signals

2.3.1 IN_SOSI_ARR interface

The in_sosi_arr is an array of streams where each stream holds 1/P part of the time domain data of one
complex input (x) or two real inputs (a and b). The RE and IM field of the sosi record are used. For a fft_wide
unit with a wb_factor of P, the time-domain data is divided over the streams as follows:

• Input index t is p + [0, P, 2P, …, (M-1)P]

in_sosi_arr[0].re = xre(t) or a(t) for p = 0
in_sosi_arr[1].re = xre(t) or a(t) for p = 1
…
in_sosi_arr[P-1].re = xim(t) or a(t) for p = P-1

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

10 / 37

in_sosi_arr[0].im = xim(t) or b(t) for p = 0
in_sosi_arr[1].im = xim(t) or b(t) for p = 1
…
in_sosi_arr[P-1].im = xim(t) or b(t) for p = P-1

The input streams consist of blocks that are marked by the sop and the eop fields of the sosi record. The
number of samples in a packet (M) is determined by N and P (M = N/P). In case two real inputs are used, the
first real input (a) should be connected to the RE field of the sosi record and the second real input (b) should
be connected to the IM field of the sosi record. Figure 4 shows the packet format of a single stream for the
complex option (x) and the two real inputs option (a and b). Note that gaps within a packet and gaps in
between packets are allowed (valid signal goes low).

xre[0..M-1]

SOP

EOP

RE

VALID

SYNC

xre[0..M-1]

xim[0..M-1]IM xim[0..M-1]

a[0..M-1]RE a[0..M-1] a[0..M-1]

b[0..M-1]IM b[0..M-1] b[0..M-1]

COMPLEX

2xREAL

xre[0..M-1]

xim[0..M-1]

Figure 4 Input packet format fft_wide unit

Note that the fft_wide unit does not provide a corresponding in_siso_arr, because there is no need for back
pressure. The fft_wide unit can always receive data.

2.3.2 OUT_SOSI_ARR interface

The output of the fft_wide unit is also composed of P streams. Each stream carries 1/P part of the spectrum.
Provided that the reorder option is enabled, the frequency domain data is divided over the streams as
follows:

• For a complex input signal, index f is p + [0, P, 2P, …, (M-1)P]

out_sosi_arr[0].re = Xre(f) for p = 0
out_sosi_arr[1].re = Xre(f) for p = 1
…
out_sosi_arr[P-1].re = Xre(f) for p = P-1

The same counts for the imaginary part:

out_sosi_arr[0].im = Xim(f) for p = 0
out_sosi_arr[1].im = Xim(f) for p = 1
…
out_sosi_arr[P-1].im = Xim(f) for p = P-1

• For 2x real input signals, index f is [p,p] + [0, 0, P, P, 2P, 2P, …, (M-1)P/2, (M-1)P/2]

out_sosi_arr[0].re = Are(f), Bre(f) for [p,p] = [0,0]
out_sosi_arr[1].re = Are(f), Bre(f) for [p,p] = [1,1]

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

11 / 37

…
out_sosi_arr[P-1].re = Are(f), Bre(f) for [p,p] = [P-1,P-1]

The same counts for the imaginary part:

out_sosi_arr[0].im = Aim(f), Bim(f) for [p,p] = [0,0]
out_sosi_arr[1].im = Aim(f), Bim(f) for [p,p] = [1,1]
…
out_sosi_arr[P-1].im = Aim(f), Bim(f) for [p,p] = [P-1,P-1]

The content of the output of the fft_wide unit blocks differs per configuration. For both the complex and 2x
real configuration the block content of a single stream is shown in Figure 5. In both cases the reorder
function is enabled and in the 2x real configuration the separate function is enabled as well.

Xre[0..M-1]

SOP

EOP

RE

VALID

SYNC

Xre[0..M-1] Xre[0..M-1]

Xim[0..M-1]IM Xim[0..M-1] Xim[0..M-1]

Are[0]Bre[0]..Are[M/2-1]Bre[M/2-1]RE Are[0]Bre[0]..Are[M/2-1]Bre[M/2-1] Are[0]Bre[0]..Are[M/2-1]Bre[M/2-1]

Aim[0]Bim[0]..Aim[M/2-1]Bim[M/2-1]IM Aim[0]Bim[0]..Aim[M/2-1]Bim[M/2-1] Aim[0]Bim[0]..Aim[M/2-1]Bim[M/2-1]
2xREAL

COMPLEX

Figure 5 Output packet format fft_wide unit

Note that there can be gaps in between two consecutive blocks, but a block is always uninterrupted due to
the reorder buffering. The output arrays are not accompanied with a corresponding siso array, since the
fft_wide unit is not required to cope with backpressure.

2.3.3 RAM_ST_SST_MOSI interface

The subband statistics can be read via the ram_st_sst_mosi interface. The address span of this interface is
determined by stat_data_sz*N. Table 6 shows the interface signals where N = 1024 and stat_data_sz = 2.

Signal Type Description
ram_st_sst_mosi.address[10:0] MOSI Word address range for mm_bst_mosi interface,

supporting 2*1024 = 2048 registers.
ram_st_sst_mosi.wrdata[31:0] MOSI Write data word, must be valid when wr is asserted.
ram_st_sst_mosi.wr MOSI Write strobe.
ram_st_sst_mosi.rd MOSI Read strobe.
ram_st_sst.rddata[31:0] MISO Read data word which is valid one clock cycle after

assertion of rd.

Table 6 ram_st_sst_mosi interface

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

12 / 37

2.3.4 Clocks and resets

Table 7 shows an overview of the clocks and reset signals that are available on the fft_wide unit.

Signal Type Description
dp_clk Clock Clock input for the datapath interface of the fft_wide unit.
dp_rst Reset Reset input for the datapath clock domain registers.
mm_clk Clock Clock input for the memory mapped interface parts of the fft_wide unit.
mm_rst Reset Reset input for the memory mapped interface parts of the fft_wide unit.

Table 7 Clocks and resets

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

13 / 37

3 Software interface
This chapter describes the software interface for the fft_wide unit. The fft_wide unit contains one register
span that contains the registers that contain the subband statistics data. The size of the subband statistics
span depends on the value of the parameters that are used to configure the fft_wide unit.

3.1 Subband statistics span
For every stream in the OUT_SOSI_ARR the fft_wide unit contains a subband statistics unit. The memory
interfaces of all these P subband statistics units are merged into one. Therefor the subband statistics can be
considered as one single unit. The subband statistics unit estimates the power of each subband value and
integrates these values during a sync period. When a sync period has expired (in other words: a sync pulse
is applied) the registers will be updated with the new integrated power values. The number of registers is
determined by stat_data_sz*N. The order of the registers is determined by P. In the Apertif system
stat_data_sz = 2, N = 1024 and P = 4. This leads to 2048 registers which are grouped in 4x512 register
blocks which are partly listed in Table 8. Note that each subband statistic value is spread over two 32-bit
registers. The actual bit width of a subband statistic is set via parameter stat_data_w, which is set to 56 in
the Apertif system. This means that the upper 8 bits of the “up” register can be discarded.

Name Address

(words)
Size
(words)

Read/
Write

Description

str_0_sbst_0_low 0x0 1 r/w 32 lsb’s of power in stream 0 on subband 0
str_0_sbst_0_up 0x1 1 r/w 32 msb’s of power in stream 0 on subband 0
str_0_sbst_1_low 0x2 1 r/w 32 lsb’s of power in stream 0 on subband 1
str_0_sbst_1_up 0x3 1 r/w 32 msb’s of power in stream 0 on subband 1
str_0_sbst_2_low 0x4 1 r/w 32 lsb’s of power in stream 0 on subband 2
str_0_sbst_2_up 0x5 1 r/w 32 msb’s of power in stream 0 on subband 2
----------------------- ------ --- ----- --
str_0_sbst_255_low 0x1FE 1 r/w 32 lsb’s of power in stream 0 on subband 255
str_0_sbst_255_up 0x1FF 1 r/w 32 msb’s of power in stream 0 on subband 255
str_1_sbst_0_low 0x200 1 r/w 32 lsb’s of power in stream 1 on subband 0
str_1_sbst_0_up 0x201 1 r/w 32 msb’s of power in stream 1 on subband 0
str_1_sbst_1_low 0x202 1 r/w 32 lsb’s of power in stream 1 on subband 1
str_1_sbst_1_up 0x203 1 r/w 32 msb’s of power in stream 1 on subband 1
----------------------- ------ --- ----- --
str_1_sbst_255_low 0x3FE 1 r/w 32 lsb’s of power in stream 1 on subband 255
str_1_sbst_255_up 0x3FF 1 r/w 32 msb’s of power in stream 1 on subband 255
str_2_sbst_0_low 0x400 1 r/w 32 lsb’s of power in stream 2 on subband 0
str_2_sbst_0_up 0x401 1 r/w 32 msb’s of power in stream 2 on subband 0
str_2_sbst_1_low 0x402 1 r/w 32 lsb’s of power in stream 2 on subband 1
str_2_sbst_1_up 0x403 1 r/w 32 msb’s of power in stream 2 on subband 1
----------------------- ------ --- ----- --
str_2_sbst_255_low 0x5FE 1 r/w 32 lsb’s of power in stream 2 on subband 255
str_2_sbst_255_up 0x5FF 1 r/w 32 msb’s of power in stream 2 on subband 255
str_3_sbst_0_low 0x600 1 r/w 32 lsb’s of power in stream 3 on subband 0
str_3_sbst_0_up 0x601 1 r/w 32 msb’s of power in stream 3 on subband 0
str_3_sbst_1_low 0x602 1 r/w 32 lsb’s of power in stream 3 on subband 1
str_3_sbst_1_up 0x603 1 r/w 32 msb’s of power in stream 3 on subband 1
----------------------- ------ --- ----- --
str_3_sbst_255_low 0x7FE 1 r/w 32 lsb’s of power in stream 3 on subband 255
str_3_sbst_255_up 0x7FF 1 r/w 32 msb’s of power in stream 3 on subband 255

Table 8 subband statistics span

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

14 / 37

4 Module Design

4.1 Algorithm

4.1.1 FFT

There are many books about the FFT algorithm. A good introduction can be found in chapter 4 of [5].

4.1.2 Separate

The separate algorithm is well explained in chapter 13.5.1 of [5].

4.2 Architecture
Several subdesigns have been defined in order to create the eventual wideband FFT. The architectures of
the necessary units are provided in this chapter. The wideband FFT specifications have led to the following
(sub)-designs:

• Complex Pipelined FFT for two real inputs: fft_r2_pipe
• Complex Parallel FFT for two real inputs: fft_r2_par
• Complex Wideband FFT for two real inputs: fft_r2_wide

The ‘_r2’ denotes radix-2 (see [2]).

4.2.1 fft_r2_pipe

The architecture for a pipelined FFT is based on design units from the rTwoSDF_lib and is basically the
same as the rTwoSDF unit. Detailed information of the rTwoSDF unit and its pipelined aspects can be found
in [1]. The difference with respect to the rTwoSDF unit is that the fft_r2_pipe unit must be capable of
processing two real inputs as well. Therefor the architectural block diagram is extended with an optional
separate function. An architectural overview of the fft_r2_pipe is given in Figure 6.

rTwoSDF
Stage

(rTwoSDF_lib)

Stage log2(N)

clk
rst

in_re
in_im
in_val

out_re
out_im
out_val

Reorder and
Separate

clk

in_re
rst

in_im
in_val

out_re
out_im
out_val

clk

in_re
rst

in_im
in_val

out_re
out_im
out_val

clk

in_re
rst

in_im
in_val

out_re
out_im
out_val

Stage 2 Stage 1

clk
rst

in_dat
in_val

out_dat
out_val

g_fft.use_reorder
g_fft.use_separate

fft_r2_pipe

N = g_fft.nof_points

rTwoSDF
Stage

(rTwoSDF_lib)

rTwoSDF
Stage

(rTwoSDF_lib)

Figure 6 Architecture of the fft_r2_pipe unit

4.2.2 fft_r2_par

In case of a parallel FFT all time domain samples for a slice come in parallel and therefor all multiplications
and additions have to be performed in parallel as well. The architecture for a parallel FFT is shown in Figure
7. In Figure 7 the number of points is set to 16. Each square represents an optimized complex butterfly. The
numbers in the butterflies refer to the exponent k in WN

k, the twiddle factors. The inputs and outputs of the
butterfly are shown in Figure 8. The parallel FFT is also capable of reordering the output data and
processing two real inputs. Therefore a parallel reorder and parallel separate function are defined as well.

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

15 / 37

Figure 7 Architecture of the fft_r2_par unit (shown for nof_points = 16)

Figure 8 Inputs and outputs of the parallel butterfly

4.2.3 fft_r2_wide

The wideband variant of the FFT is partly pipelined and partly composed in parallel. The amount of
parallelization is specified by the P (wideband factor). For the Apertif beamformer P is set to 4. A schematic
overview of the architecture of the wideband FFT is shown in Figure 9. The reorder functionality is inherited
from both the fft_r2_par and fft_r2_pipe units, but for the separation functionality a dedicated wideband
variant must be designed. More detailed information about the architecture of the wideband FFT can be
found in chapter 2.5 of [1].

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

16 / 37

clk

in_re
rst

in_im
in_val

out_re
out_im
out_val

M-point
fft_r2_pipe

(0)

clk

in_re
rst

in_im
in_val

out_re
out_im
out_val

M-point
fft_r2_pipe

(1)

clk

in_re
rst

in_im
in_val

out_re
out_im
out_val

M-point
fft_r2_pipe

(P-1)

clk

in_re[0]
rst

in_im[0]
in_val[0]

out_re[0]
out_im[0]
out_val[0]

P-point
fft_r2_par

in_re[1]
in_im[1]
in_val[1]

in_re[P-1]
in_im[P-1]
in_val[P-1]

out_re[1]
out_im[1]
out_val[1]

out_re[P-1]
out_im[P-1]
out_val[P-1]

Wideband
Separate

in_re[0]
rst

in_im[0]
in_val[0]

out_re[0]
out_im[0]
out_val[0]

in_re[1]
in_im[1]
in_val[1]

in_re[P-1]
in_im[P-1]
in_val[P-1]

out_re[1]
out_im[1]
out_val[1]

out_re[P-1]
out_im[P-1]
out_val[P-1]

clk

[P-1]

0

1

Input time series:
[0,P,2P,…(M-1)P] +

Output frequency bins (2-real inputs):
[0,0,P,P,2P,2P…(M-1)P/2,(M-1)P/2] +

[P-1], [P-1]

0,0

1,1

Output frequency bins:
[0,P,2P,…(M-1)P] +

[P-1]

0

1

Figure 9 Architecture of the wideband FFT

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

17 / 37

5 Implementation
This chapter describes the implementation of the fft_wide unit. During the development of the fft_wide unit
design several building blocks were created as defined in [1]. The implementation of all these intermediate
blocks and the eventually fft_wide design are described in detail in the following paragraphs.

5.1 fft_r2_pipe
The fft_r2_pipe unit consists of two parts: the rTwoSDF stages and the Reorder and Separate functionality
as shown in Figure 6.

5.1.1 rTwoSDF stages

The rTwoSDF stages are instantiated from the rTwoSDF_lib using a generate statement. The number of
stages is determined by log2(nof_points). Detailed information about the usage of the design units from the
rTwoSDF_lib can be found in [1] and [2].

5.1.2 fft_reorder_sepa_pipe

To facilitate the optional reordering and separation a dedicated unit is designed that can do both. The
fft_reorder_sepa_pipe unit is based on a dual paged ram in order to support both functions. A schematic
representation of the fft_reorder_sepa_pipe unit can be found in Figure 10. The write-side consists of a
counter that drives the write address port of the ram. The in_val signal is used to drive the write enable port.
A page turn is forces when the counter has reached the value nof_points-1 and the in_val signal is active.
The read-side is driven by a read process that drives the read enable and the read address. A dedicated
separation unit (fft_sepa) is used that performs the actual separation algorithm.

dual paged ram
(common_lib)

counter
(common_lib) flip_bits

g_fft.use_reorder

1
0 wr_adr

=
&g_fft.nof_points-1 wr_rd_next_page

in_val
in_dat wr_data

wr_en

cnt_en

rd_data

rd_en

rd_adr

rd_val

Read Process

0
1

fft_sepa
(fft_lib)

in_dat

in_val

out_dat

out_val
out_val

out_dat

g_fft.use_separate

0
1

wr_rd_next_page

g_fft.use_separate

Figure 10 Block diagram of the fft_reorder_sepa_pipe unit

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

18 / 37

5.1.2.1 Reordering

The reorder functionality is accomplished by bit-flipping the write address for normal output order. The
address is not flipped when a reversed output order is required. More information about the bit reversal can
be found in chapter 4.4 of [5].

5.1.2.2 Read process

The read process is triggered by the wr_rd_next_page signal and generates the read address for the RAM.
When separation is disabled an incrementing counter is used to drive the read address. When separation is
enabled a different type of addressing is used in order to supply the fft_sepa unit with the correct data.
Based on the separation algorithm the fft_sepa unit expects the data in an interleaved order. For a 1024-
point FFT this is:

X(0), X(1024), X(1), X(1023), X(2) ….. X(511), X(512).

Since modulo(N) addressing is used the value of X(1024)=X(0). This sequence is established in the read
process by using an incrementing counter and a decrementing counter that are fed to the read address port
in an interleaved way.

5.1.2.3 fft_sepa

The fft_sepa unit performs the actual separation algorithm in order to create the interleaved output that
corresponds to two real input signals. Figure 11 shows a schematic overview of the fft_sepa unit that
consists of an adder and a subtractor that are used to create the following terms, where N = nof_points and
m = frequency bin:

2Are(m) = Xre(N-m) + Xre(m)
2Aim(m) = Xim(m) - Xim(N-m)
2Bre(m) = Xim(m) + Xim(N-m)
2Bim(m) = Xre(N-m) - Xre(m)

All multiplexers and de-multiplexers are controlled by the same switch signal (S) that toggles on every valid
data input. To retrieve the values of Are, Aim, Bre and Bim the results of the adder and subtractor (sub-res-reg
and add-res-reg) are shifted one step to the right before they are placed in the output register (output reg).

adder
(common_lib)

+

subtractor
(common_lib)

-
add
reg
A

add
reg
B

sub
reg
A

sub
reg
B

sub
res
reg

add
res
reg

out-
put
reg

out_dat

out_valval
dly
reg

val
dly
reg

val
dly
reg

n-m
real
reg

0
1

0
1

n-m
imag
reg

m
real
reg

m
imag
reg

in_dat imag

0
1

0
1

in_dat real

1
0

1
0

in_val val
dly
reg

S

S

S

S

S

S

imag

real

Figure 11 Block diagram of the fft_sepa unit

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

19 / 37

The result is a stream where the values of A and B are interleaved. The relation between the input signals,
the output signals and the toggle signal S is given in Figure 12. Note the pipelined delay of 4 cycles that is
introduced by the several registered stages.

X(0) X(1024) X(1) X(1023) X(2) X(1022) X(511) X(512)

B(0)A(0) B(1)A(1) B(2)A(2) B(511)A(511)

in_dat

out_dat

S

out_val

in_val

Figure 12 Timing diagram fft_sepa

5.2 fft_r2_par
The parallel variant of the FFT consists of the stages with parallel butterflies and the optional reorder and
separate functions as shown in Figure 7 (which shows the instantiation of the 16-point variant. But of course
it is possible to configure the FFT for every power of two). The number of butterflies is defined by N/2 *
2log(N).

5.2.1 fft_r2_bf_par

A dedicated butterfly, fft_r2_bf_par, for the parallel FFT is defined as shown in Figure 8. For the
implementation several units from the rTwoSDF library are used. A detailed overview of the fft_r2_bf_par
design is shown in Figure 13. The incoming data is first offered to two rTwoBF units (see 2.3.3 from [1] for
detailed info). These units calculate the sum (c = a + b) and the difference (d = a – b) of their inputs. The
sum-result is directly connected to the output buffer. The dif-result is send to the rTwoWMul unit where it gets
multiplied with the appropriate twiddle factor. The output of the multiplier is connected to the output register.

5.2.1.1 Twiddle factor

The value of the twiddle factor is a function of the stage number in which the butterfly is instantiated and the
butterfly’s order number in that stage. Detailed information on the selection and creation of the twiddle
factors can be found in 4.2 of [2].

5.2.1.2 Register delays

The fft_r2_bf_par design contains several registers to accommodate pipelined delays. The registers and
their depth definition are listed in Table 9. The amount of delayed clock cycles is specified by the generics in
the fft_pipeline record (see Table 4).

Register Delay Parameters

(g_fft_pipeline)
sum_reg bf_lat + mul_lat
diff_reg bf_lat
val_reg bf_lat
out_reg stage_lat

Table 9 Pipeline registers in fft_r2_bf_par

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

20 / 37

rTwoBF
(rTwoSDF_lib)

in_a

in_val

in_b

in_sel

out_c

out_d

rTwoBF
(rTwoSDF_lib)

in_a

in_val

in_b

in_sel

out_c

out_d‘1’

‘1’

x_in_re
y_in_re

x_in_im
y_in_im

sum
reg

sum_re

sum_im

dif_im

x_out_re

sum
reg

x_out_im

dif
reg

dif
reg

dif_re

rTwoWMul
(rTwoSDF_lib)

in_re

in_im

weight_re

weight_im

in_val

in_sel‘1’

out_re

out_im

out_valval
reg

in_val

Wre

Wim

y_out_re
y_out_im

out
reg

out_val

Figure 13 Block diagram of the fft_r2_bf_par unit

5.2.2 Connecting the parallel butterflies

The parallel stages are built of parallel butterfly units as described in section 5.2.1. Figure 14 shows the
connection matrix for a 32-points parallel FFT. The parallel FFT contains 5 stages and each stage contains
16 elements. Every square represents a butterfly (fft_r2_bf_par) also referred to as element. The large
number in each element represents the twiddle number. Now the output of each stage is connected to the
input of the successive stage. This is done using an array of signals. Note that every element has two in- and
outputs and therefor occupies two elements in the array. The small numbers near the output of each element
show to which array indices (of the next stage) they are connected. For example:

• The second output of element 4 in stage 5 is connected to array index 24, which feeds the first input
of element 12 in stage 4.

• The first output of element 11 in stage 3 is connected to array index 19, which feeds the second
input of element 9 in stage 2.

A function (func_butterfly_connect) is created that determines the connection matrix between the butterflies
in a generic way in order to make the parallel FFT configurable for every nof_points. The function uses the
stage number, the output array index and the FFT’s nof_points as arguments and it returns the array index to
which the input port of the next butterfly is connected. Using this function to set the connectivity for the
outputs of all elements will result in the complete connection matrix.

5.2.3 Parallel reordering

The implementation of the reordering consists of a wires only statement that uses the bit-flipped address to
address the output array. Details can be found in chapter 4.4 of [5].

5.2.4 Parallel separation

Due to the parallel characteristics, the separate function of the pipelined FFT cannot be reused. The adders
and sub tractors that are involved with the separation algorithm have to be instantiated in parallel. This
means that for every output duo (X(m) and X(N-m)) a set of two adders(real + imag) and two sub tractors
(real + imag) are required. Such a separation unit is shown in Figure 15.

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

21 / 37

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
x(9)

x(10)
x(11)
x(12)
x(13)
x(14)
x(15)

X(0)
X(16)
X(8)
X(24)
X(4)
X(20)
X(12)
X(28)
X(2)
X(18)
X(10)
X(26)
X(6)
X(22)

X(30)

Stage 2Stage 3Stage 4

0

1

2

3

4

5

6

7

0

2

4

6

8

10

12

14

0

4

8

12

0

4

8

12

0

8

0

8

0

8

0

8

0

x(16)
x(17)
x(18)
x(19)
x(20)
x(21)
x(22)
x(23)
x(24)
x(25)
x(26)
x(27)
x(28)
x(29)
x(30)
x(31)

8

9

10

11

12

13

14

15

0

2

4

6

8

12

14

10

0

4

8

12

0

4

8

12

0

8

0

8

0

8

0

8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Stage 1

X(14)

X(1)
X(17)
X(9)
X(25)
X(5)
X(21)
X(13)
X(29)
X(3)
X(19)
X(11)
X(27)
X(7)
X(23)

X(31)
X(15)

0

16

2

18

4

20

6

22

8

24

10

26

12

28

14

30

1

17

3

19

5

21

7

23

9

25

11

27

13

29

15

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

8

2

10

4

12

6

14

1

9

3

11

5

13

7

15

16

24

18

26

20

28

22

30

17

25

19

27

21

29

23

31

0

4

2

6

1

5

3

7

8

12

10

14

9

13

11

15

16

20

18

22

17

21

19

23

24

28

26

30

25

29

27

31

0

2

1

3

4

6

5

7

8

10

9

11

12

14

13

15

16

18

17

19

20

22

21

23

24

26

25

27

28

30

29

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Stage 5
Element

Figure 14 Connection matrix of a 32-points parallel FFT

-

-
+

+
Are(m)

Bre(m)

g_pipeline.sep_lat

Bim(m)

Xim(m)
Xim(N-m)

Xre(N-m)
Xre(m)

Aim(m)

in_val out_val

Figure 15 Parallel implementation of the separation algorithm

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

22 / 37

5.3 fft_r2_wide

Figure 9 shows the block diagram of a wideband FFT that is build out of multiple pipelined FFTs and one
parallel FFT.

5.3.1 Generics

The parameters that are listed in Table 2 are used to configure the fft_r2_wide unit. The g_fft generics for the
multiple fft_r2_pipe instances and the fft_r2_par are derived from the fft_r2_wide generics as shown in Table
10.

g_fft record
field

fft_r2_wide fft_r2_pipe fft_r2_par

use_reorder w_use_reorder w_use_reorder w_use_reorder
use_separate w_use_separate FALSE FALSE
wb_factor w_wb_factor w_wb_factor w_wb_factor
twiddle_offset w_twiddle_offset [0..w_wb_factor-1] w_twiddle_offset
nof_points w_nof_points w_nof_points/w_wb_factor w_wb_factor
in_dat_w w_in_dat_w w_stage_dat_w w_stage_dat_w
out_dat_w w_out_dat_w w_stage_dat_w w_stage_dat_w
stage_dat_w w_stage_dat_w w_stage_dat_w w_stage_dat_w
guard_w w_guard_w 0 w_guard_w
guard_enable w_guard_enable FALSE FALSE
stat_data_w w_stat_data_w w_stat_data_w w_stat_data_w
stat_data_sz w_stat_data_sz w_stat_data_sz w_stat_data_sz

Table 10 g_fft generics derived

5.3.2 Modifications for rTwoWeights

The topological approach in section 2.5 of [1] shows that the twiddle factors (WN
k) in the butterflies of all but

the first pipelined FFTs require an offset (WN
k+offset). In addition to this a 32-point wideband FFT with P=8 and

P=4 are derived from the parallel FFT that is shown in Figure 14. The results are shown in Figure 16 and
Figure 17 respectively. The rTwoWeights unit from the rTwoSDF library is modified to facilitate this offset
feature. Two generics for the rTwoWeights unit are introduced to make this possible. These generics are
only applicable for wideband configurations.

• g_twiddle_offset must be the pipelined FFT index in a wideband configuration
• g_stage_offset must be the log2(wb_factor)

Based on these generics and the value on the in_wAdr port the rTwoWeights unit determines the twiddle
factor for the applicable butterfly. More about the indexing of the twiddle factors can be found in 4.2 of [2].

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

23 / 37

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(15)

X(0)
X(16)
X(8)
X(24)
X(4)
X(20)
X(12)
X(28)

X(2)
X(18)
X(10)
X(26)
X(6)
X(22)

X(30)

Stage 2Stage 3Stage 4

0

8

1

9

2

10

3

11

0

4

8

12

0

4

8

12

0

8

0

8

0

8

0

8

Stage 5

x(16)

x(17)

x(18)

x(19)

x(20)

x(21)

x(22)

x(23)

x(24)

x(25)

x(26)

x(27)

x(28)

x(29)

x(30)

x(31)

4

12

5

13

6

14

7

15

0

4

8

12

0

4

8

12

0

8

0

8

0

8

0

8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Stage 1

X(14)

X(1)
X(17)
X(9)
X(25)
X(5)
X(21)
X(13)
X(29)

X(3)
X(19)
X(11)
X(27)
X(7)
X(23)

X(31)
X(15)

0

0

2

2

4

4

6

6

8

8

10

10

12

12

14

14

Figure 16 Butterfly block diagram for an N=32-point wideband FFT where P=8

0

8

12

1

5

9

13

2

6

10

14

3

7

11

15

0

8

0

0

x(0)

x(16)

x(1)

x(17)

x(2)

x(18)

x(3)

x(19)

x(4)

x(20)

x(5)

x(21)

x(6)

x(22)

x(7)

x(23)

Stage 3

0

8

0

8

2

10

2

10

Stage 4

x(8)

x(24)

x(9)

x(25)

x(10)

x(26)

x(11)

x(27)

x(12)

x(28)

x(13)

x(29)

x(14)

x(30)

x(15)

x(31)

4

12

4

12

6

14

6

14

0

0

0

0

4

4

4

4

8

8

8

8

12

12

12

12

Stage 5

0

8

0

0

0

8

0

0

0

8

0

0

0

8

0

0

0

8

0

0

0

8

0

0

0

8

0

0

Stage 2 Stage 1

4

X(0)
X(16)
X(8)
X(24)
X(4)
X(20)
X(12)
X(28)

X(2)
X(18)
X(10)
X(26)
X(6)
X(22)

X(30)
X(14)

X(1)
X(17)
X(9)
X(25)
X(5)
X(21)
X(13)
X(29)

X(3)
X(19)
X(11)
X(27)
X(7)
X(23)

X(31)
X(15)

Figure 17 Butterfly block diagram for an N=32-point widenband FFT where P=4

5.3.3 fft_sepa_wide

The separation unit for the wideband FFT uses a dual paged ram for every P output of the wideband FFT.
The streaming data is stored and once the first page is filled the unit will start reading the data from this first
page. The configuration that is shown in Figure 17 (32-point wideband FFT, P=4) will be used as an

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

24 / 37

example. The data of all 4 outputs is written to the first page of the dual paged rams. Table 11 shows the
content of the rams after they are written. (Note that the re-ordering has taken place already).

RAM 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 8 9 10 11 12 13 14 15
2 16 17 18 19 20 21 22 23
3 24 25 26 27 28 29 30 31

Table 11 32 frequency bins in 4 RAMs

In order to perform the separation algorithm data from different RAMs need to be combined and all RAMs
need to be read at every clock cycle to keep up with the stream. This leads to the table of “combinations in
time” depicted in Table 12 that shows the frequency bins in pairs. The frequency pairs are read out in
parallel, but have to be serialized so they can be offered to an fft_sepa unit from the fft_lib (see paragraph
5.1.2.3 for more information). The serialization step is executed by the common_zip unit from the
common_lib. The common_zip unit composes an output stream of multiple input streams, provided that the
duty cycle of the in_val signal is 1/(nof_input_streams). The result of the common_zip units is offered to the
fft_sepa units that will apply the actual separation algorithm. Figure 18 shows a detailed overview of the
fft_sepa_wide unit, based on a wideband fft with a wb_factor of 4. The writing of the rams is straight forward.
The in_val signal drives the write_enable and the next_page input is triggered when the address counter has
reached the value of page_size-1. The read process is responsible for addressing the rams and the (de-
)multiplexers. The required addresses for the rams are listed in the lower 4 rows of Table 12 (note that only
two address strings are to be composed). The multiplexer and de-multiplexers both require a single bit
address. Figure 19 shows the timing diagram for signals ‘S’, ‘F’ and the read addresses in relation to the
next_page pulse. The read process uses an increasing and decreasing counter in combination with the
switch signal ‘S’ to support the ram addressing.

 t0 t1 t2 t3 t4 t5 t6 t7
Stream 0 0 1 2 3

0(32) 31 30 29
Stream 1 4 5 6 7

 28 27 26 25
Stream 2 8 9 10 11

24 23 22 21
Stream 3 12 13 14 15

 20 19 18 17
adr ram 0 0x0 0x4 0x1 0x5 0x2 0x6 0x3 0x7
adr ram 1 0x0 0x4 0x1 0x5 0x2 0x6 0x3 0x7
adr ram 2 0x0 0x4 0x7 0x3 0x6 0x2 0x5 0x1
adr ram 3 0x0 0x4 0x7 0x3 0x6 0x2 0x5 0x1

Table 12 Output combinations in time

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

25 / 37

dual paged ram
(common_lib)

dual paged ram
(common_lib)

dual paged ram
(common_lib)

dual paged ram
(common_lib)

counter
(common_lib) wr_adr

=
&page_size-1 wr_rd_next_page

in_val
in_dat[0] wr_data

wr_en

cnt_en

rd_data

rd_en

rd_adr

rd_val

common_zip
(common_lib)

in_dat[0]

in_val

out_dat

out_valwr_rd_next_page

fft_sepa
(fft_lib)

in_dat[1]

in_dat

in_val

out_dat

out_val out_val
out_dat[0]

1
0

S

common_zip
(common_lib)

in_dat[0]

in_val

out_dat

out_val

in_dat[1]

common_zip
(common_lib)

in_dat[0]

in_val

out_dat

out_val

in_dat[1]

common_zip
(common_lib)

in_dat[0]

in_val

out_dat

out_val

in_dat[1]

1
0

S

fft_sepa
(fft_lib)

in_dat

in_val

out_dat

out_val

out_dat[1]

fft_sepa
(fft_lib)

in_dat

in_val

out_dat

out_val

out_dat[2]

fft_sepa
(fft_lib)

in_dat

in_val

out_dat

out_val

out_dat[3]
0

1
2

3

[0]

[3]

[1]

[2]

in_dat[1]
in_dat[2]

in_dat[3]

1
0

1
0

F

F

SF

Read Process

Figure 18 Detailed block diagram of the fft_sepa_wide unit (P=4)

F

S

next_page

Adr 1

0 4 1 5 2 6 3 7 0 4 1 5 2

0 4 152637 0 4 637

Adr 0

Figure 19 Timing diagram of fft_sepa_wide unit

5.4 Quantization
The quantization approach is for all types of FFTs (pipelined, wideband and parallel) the same and is called
unconditional floating point scaling. It is based on scaling between every FFT butterfly stage in order to avoid
clipping. In order to facilitate this quantization approach a number of generics are defined (see Table 3). The
first step is performed at the input where the input data is resized to the stage_dat_w. The stage_dat_w is
typical the width of the DSP multiplier (for a Stratix IV it is 18-bit). The second step consists of rescaling the
data in between successive butterfly stages, which is typically a division by 2. In the last step the data of the
last stage is re-quantized to meet the desired output width of the FFT. All quantization steps are performed
with the requantize block from the common_lib. The requantize block are configured in such a way that they
always use a rounding algorithm to determine the value of the MSB and LSB of the output. The following
paragraphs explain these three steps and the relation to the generic parameters belonging to it in more
detail.

5.4.1 FFT input resize

The initial resize at the input of the FFT takes into account the specified guard bits which are typical 2 bits
since the stage-gain of the first two stages can be more than a factor of 2. See section 3.4 in [5] for more
info. Figure 20 shows a graphical representation of the resize function where in_dat_w =8, stage_dat_w = 18
and guard_w = 2. The lower bits are filled with zeros. The result of this pre-scaling is that the added
quantization errors have less influence on the eventual output.

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

26 / 37

FFT
Resize

Resize

0

7

0

15

17
16

Sign Extension:

guard_w = 2 bits are
used to extend the
sign bit. These two
bits are the guard bits.
They are used to avoid
saturation in the first
stage due to the stage
gain.

7
8

in_dat_w =
8-bit

stage_dat_w =
18-bit

Figure 20 FFT resize input data

5.4.2 FFT stage quantization

Every FFT stage has a potential gain-factor of 2 and therefore the data in between every stage is divided by
two to avoid saturation in the datapath. The scaling is performed at the end of each stage in order to prepare
the data for the following stage. A stage consists of a butterfly as depicted in Figure 21. In this example the
stage_dat_w = 18 and the twiddle_w = 16. Note that the first quantizer(Q) in the d-output path compensates
for the multiplication with the twiddle-factor where the second (and last) quantizer performs the stage
quantization. Whether the stage quantization is performed or not at the end of a certain stage is determined
by a generic: g_scale_enable. The reason for having the g_scale_enable generic is that the stage
quantization should not be performed after the last stage, since there is not a next stage to protect from
overflow. And because the FFT-input-resize guards with two bits, also the second to last stage does not
require scaling as well.

5.4.3 FFT output quantization

The output of the last FFT stage is scaled to the desired outputs as specified with the out_dat_w generic as
shown in Figure 22. In this example the 18-bit width output of the last stage is quantized to the required 14-
bit width output. This is realized by taking away the lower 4 bits.

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

27 / 37

lsb: 15 bit
msb: 2 bit

input a: 18-bit
complex

FFT-BF
sub(-) FFT-BF

mul(*)
twiddle: 16-bit
complex

FFT-BF
add(+)

output c: 18-bit
complex

35-bit
complex Q

18-bit
complex

input b: 18-bit
complex

18-bit
complex

lsb: 1 bit
msb: -1 bit

Q

output d: 18-bit
complex

lsb: 1 bit
msb: -1 bit

Q
18-bit
complex

FFT Stage
Quantization

34

0

14
15

33
32

1

17 17

0

16

sign extension

0

17

0

The FFT-BF
multiplication is a
complex
multiplication.
Therefore the bit
growth is
16+18+1=35. The
+1 is related to the
addition that is part
of the complex
multiplication.

Figure 21 FFT stage quantization

FFT Output
Quantization

lsb: 4 bit
msb: 0 bit

Q
18-bit
complex

14-bit
complex

4

17

13

0

0

3

Figure 22 FFT output quantization

5.5 fft_wide_unit
The fft_wide_unit extends the fft_r2_wide design with the streaming SOSI and SISO interfaces as defined in
[7] and with a statistics module which allows monitoring of the subband statistics. This is depicted in Figure
20. The fft_r2_wide is driven by the corresponding fields from the in_sosi_arr. The output of the fft_r2_wide
is processed by the fft_wide_unit_control process that merges the fft data back into an array of SOSI
streams that forms the out_sosi_arr. For every stream in the output array (out_sosi_arr) a quantizer-statistics

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

28 / 37

pair is instantiated that calculates the subband statistics. The subband statistics can be read via the mm
interface that combines the mm interfaces of all statistics units.

5.5.1 fft_wide_unit_control

The fft_wide_unit_control entity monitors the in_val signal that is driven by the out_val signal of the
fft_r2_wide unit. Based on the assertion of the in_val signal it will compose the output SOSI streams that
carry the frequency bins. Each packet in the output streams consists of nof_points/wb_factor frequency bins.
Both the incoming SOSI fields BSN and ERR will be written to a FIFO. When the output streams are
composed the BSN and ERR fields will be read from the FIFO’s. Incoming SYNC’s will be detected and the
BSN that accompanies the sync will be stored. When the BSN that is read from the FIFO is the same as the
stored one, the SYNC on the output will be asserted.

dp_requantize[P-1]
(dp_lib)

st_sst[P-1]
(st_lib)

fft_r2_wide
(fft_lib)

dp_requantize[0]
(dp_lib)

out_re_arr

st_sst[0]
(st_lib)

out_im_arr

out_val

in_re_arr

in_im_arr

in_val

out_sosi_arr[P-1..0]in_sosi_arr[P-1..0]

ram_st_sst_mosi

ram_st_sst_miso

[0]

[P-1]

common_mem_mux
(common_lib)

ram_st_sst_mosi_arr[p-1]

ram_st_sst_miso_arr[p-1]

ram_st_sst_mosi_arr[0]

ram_st_sst_miso_arr[0]

fft_wide_unit_control
(fft_lib)

out_sosi_arr

in_re_arr

in_im_arr

in_val

ctrl_sosi

out_sosi_arr[P-1..0]

Figure 23 Detailed block diagram of fft_wide_unit

5.5.2 Quantizer

Currently the quantizer from the dp_lib is used to select 16-bit data out of the output streams, which is
suitable for the subband statistics unit. The dp_requantize is the streaming equivalent of the requantize unit
from the common_lib.

5.5.3 Subband Statistics

The subband statistics unit calculates the power of each subband and integrates this over a sync period.
After each sync period the accumulated powers are written to a set of registers that can be read via the
ram_st_sst_mosi interface. The st_sst unit comes from the st_lib, which was developed for the Lofar project.
The source can be found in [8].

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

29 / 37

6 Verification
All testbench related files can be found in [9]. A dedicated package is created that holds procedures and
definitions that are aimed to be reused in the testbenches. The package is called tb_fft_pkg.vhd.

6.1 tb_fft_r2_*
A general testbench approach is taken for the fft_r2_pipe, fft_r2_par and fft_r2_wide designs, which is
depicted in Figure 21. The base for the testbench is inherited from the rTwoSDF_lib which is explained in
detail in chapter 6 of [2]. The verification of the fft design is based in the usage of known input files and their
accompanying golden reference files. The golden reference files have been verified using Matlab.
The testbenches are selftesting and can be run using the run –all command.

fft_r2_pipe
fft_r2_par

fft_r2_wide
(fft_lib)

p_in_stimuli

p_read_input_file

in_file_data
in_file_val

in_file_sync

p_read_golden_file
gold_file_data
gold_file_val
gold_file_sync

p_write_output_file

p_verify_output

DUT

Figure 24 tb_fft_r2_* testbench

6.1.1 p_read_input_file

This process reads stimuli from a specified input file and places the data into the in_file_data, in_file_val and
in_file_sync signals. The data source files are re-used from the rTwoSDF library and are located in [10].

6.1.2 p_in_stimuli

The p_in_stimuli process writes the input data (in_re, in_im, in_val and in_sync) to the DUT. The data is read
from the signals that have been defined by the p_read_input_file process.

6.1.3 p_read_golden_file

This process reads the golden reference files that correspond to the chosen input file. The output data from
this golden reference file has been verified with Matlab. The data is written to the signals gold_file_data,
gold_file_val and gold_file_sync.

6.1.4 p_verify_output

The p_verify_output process reads the output data from the DUT and compares it with the reference data
that is written to the gold_file_data, gold_file_val and gold_file_sync signals. An error message will be
displayed in case the DUT output data and the reference data do not match.

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

30 / 37

6.1.5 p_write_output_file

During each simulation run the output of the DUT will also be written to an output file. This output file can be
verified with Matlab and when the verification succeeds, the output file could be saved as a golden reference
file.

6.2 tb_fft_wide_unit
The testbench for the fft_wide_unit is also based on the verification with the golden reference files as used in
the rTwoSDF_lib. A block generator from the diag_lib is used to generate the input datastreams. Figure 22
gives an overview of the tb_fft_wide_unit.

fft_wide_unit
(fft_lib)

p_init_waveforms_
memory

p_read_input_file

in_file_data
in_file_val

in_file_sync

p_read_golden_file p_create_golden
array p_verify_output

DUT

mms_diag_block_gen
(diag_lib)

0

P-1p_control_input_str
eam

p_read_sst_memory

gold_file_data
gold_file_val
gold_file_sync

result_sst_arr gold_re_arr
gold_im_arr
gold_file_val
gold_file_sync

Figure 25 fft_wide_unit testbench

6.2.1 mms_diag_block_gen

In order to generate stimuli for the fft_wide_unit an mms_diag_block_gen instance is used. Although this is a
RTL component, it can also be used for testbench simulation purposes. The block generator provides data
on multiple streams that all comply with the SOSI format. Detailed information about the mms_diag_block
gen component can be found in [11].

6.2.2 p_read_input_file

This process reads stimuli from a specified input file and places the data into the in_file_data, in_file_val and
in_file_sync signals. The data source files are re-used from the rTwoSDF library and are located in [10].

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

31 / 37

6.2.3 p_init_waveforms_memory

This process writes the stimuli data to the waveform ram of the block generator at the start of the simulation.

6.2.4 p_control_input_stream

This process waits until the waveform rams have been written by the p_init_waveforms_memory process.
Then it configures the block generator and starts the streams. It will also automatically stop the simulation
when the specified amount of data has been send.

6.2.5 p_read_golden_file

This process reads the golden reference files that correspond to the chosen input file. The output data from
this golden reference file has been verified with Matlab. The data is written to the signals gold_file_data,
gold_file_val and gold_file_sync.

6.2.6 p_read_sst_memory

This process reads the integrated powers of the subbands: the subband statistics. The reading is triggered
by a sync-pulse on one of the output streams of the DUT. The subband statistics are then read and written to
the results_sst_arr signal.

6.2.7 p_create_golden_array

The p_create_golden_array re-arranges the gold_file_data signals into a gold_re_arr and a gold_im_arr that
will be used by the p_verify_output process. It will also estimate the expected subband statistics and it
verifies the subband statistics as well by comparing the expected statistics with the results_sst_arr.

6.2.8 p_verify_output

The p_verify_output process reads the output data from the DUT and compares it with the reference data
that is written to the gold_re_arr and gold_im_arr signals. An error message will be displayed in case the
DUT output data and the reference data do not match.

6.3 Pyhton based testbenches
Apart from the “traditional” testbenches as described in sections 6.1 and 6.2 there are also python based
testbenches that can be used to verify the correct working of the FFT module. There is a python based
testbench for the fft_r2_* units as well as for the fft_wide unit. The testbench architecture for both testcases
is the same and is depicted in Figure 26.

DUTdiag_block_gen
(diag_lib)

diag_data_buffer
(diag_lib)

mm interface

mm
file

mm
file

mm
file

mm interface mm interface

python script
tc_mmf_*.py

Figure 26 Architecture python based testbench

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

32 / 37

The VHDL part of the testbech consists of a diag_block_gen component that can provide one or more input
streams to the DUT. The diag_block_gen is configurable via a mm interface. The output of the DUT is fed to
one or more diag_data_buffers. The stored data can be retrieved from the data buffers also via a mm
interface. All mm interfaces are connected to a mm file component that uses a file to respond to read and
write requests initiated by the python script.
The python script is similar to a script that “talks” to hardware with the difference that the read and write
requests are not send to hardware but to the mm files.

6.3.1 tb_mmf_fft_r2

The tb_mmf_fft_r2 testbench should be used in conjunction with the python script tc_mmf_fft_r2.py which
can be found in the tb/python/ directory. The script allows to start Modelsim automatically, but it is also
possible to start Modelsim, load and start the testbench manually. The script writes data to the
diag_block_gen and based on the same data it generates the reference values to compare the output of
DUT with.

6.3.2 tb_mmf_fft_wide_unit

Use tis testbench in conjunction with the tb/python/tc_mmf_fft_wide_unit.py script. The script works similar to
the the tc_mmf_fft_r2.py script.

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

33 / 37

7 BN_FB Reference design
A reference design called bn_fb is made in order to test and validate the fft_wide unit in UniBoard hardware.
This chapter describes this design and the peripherals that are used to perform the validation. Also the
software and python-scripts that are used for validation are explained here.

7.1 Design
The bn_fb design consists of a SOPC system holding a NIOS II processor that connects to the
ctrl_unb_common unit and the node_bn_fb unit via mm interfaces. The ctrl_unb_common unit contains basic
peripherals like the ethernet interface, system info, I2C sensor access and a PLL for clock generation. The
node_bn_fb unit is build out of two fft_wide_units and a complete instantiation of the node_bn_capture. The
node_bn_capture unit provides 4 datastreams (sp_sosi_arr[3:0]). Each stream corresponds to an antenna
input. The datastreams can carry data that is generated by the waveform generator or data directly from the
ADC inputs. More information about the node_bn_capture design can be found in [6]. The mm interfaces for
reading out the subband statistics of both fft_wide units are combined into one mm
interface(ram_st_sst_mosi) using the common_mem_mux unit from the common_lib.

node_bn_fb
(bn_fb_lib)

ctrl_unb_common
(unb_common_lib)

sopc_bn_fb
(bn_fb_lib)

node_bn_capture
(bn_capture_lib)

fft_wide_unit
(fft_lib)

fft_wide_unit
(fft_lib)

ram_st_sst_mosi

mem_
mux

(comm
on_lib)

sp_sosi_arr[3:0]

[3:2] [1:0]

bn_capture_mosi

out_sosi_arr[7:4]

out_sosi_arr[3:0]

dp_clk dp_rst mm_clk mm_rst

bn_fb
(bn_fb_lib)

ADC_A[7:0]
ADC_B[7:0]
ADC_C[7:0]
ADC_D[7:0]

Figure 27: Design: bn_fb

7.2 Verification
The reference design is verified using a testbench: tb_node_bn_fb. An overview of the testbench is given in
Figure 24. The testbench is used to manually check the correct working of the of the node_bn_fb design.
Although the testbench is equipped with the verification process that is reused from the tb_fft_wide_unit (see
6.2) at the time of writing there are not yet golden reference files available for the node_bn_fb design. The

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

34 / 37

tb_node_bn_fb testbench uses the waveform generator to generate input data for the FFTs. Different
settings in terms of frequency, phase and amplitude for the waveform generator result in different outputs of
the FFT. Therefore the correctness of the design is better examined in hardware, where the subband
statistics can be plotted into a graph.

7.2.1 ctrl_unb_common

The ctrl_unb_common unit is part of the testbench in order to generate the dp_clk, dp_rst, mm_clk and
mm_rst signals.

7.2.2 aduh_half

The aduh_half units from the aduh_lib simulate the conncted ADC that are on the ADU board. The testbench
does not use these units actively. They are there to have the ADC-ports connected.

7.2.3 aphy_4g_800_mem_model

The aphy_4g_800_mem_model units represent the DDR3 memory modules. The memory models are used
to have the DDR3 signals connected. The testbench does not apply stimuli that use the DDR3 functionality.

node_bn_fb
(bn_fb_lib)

p_read_golden_file p_create_golden
array p_verify_output

DUT

ctrl_unb_common
(unb_common_lib)

dp_clk

p_read_sst_memory

gold_file_data
gold_file_val
gold_file_sync

result_sst_arr gold_re_arr
gold_im_arr
gold_file_val
gold_file_sync

dp_rst

mm_clk

mm_rst

aduh_half
(aduh_lib)

aduh_half
(aduh_lib)

AB

CD

aphy_4g_800_mem_model
(ddr3_lib)

aphy_4g_800_mem_model
(ddr3_lib)

MB_I

MB_IIp_reg_input_stimuli

Figure 28 tb_node_bn_fb

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

35 / 37

8 Synthesis and Place & Route
TBD

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

36 / 37

9 Validation
Validation of the design is done using the reference design (bn_fb) in combination with a Python script that
runs on a host PC. All validation is executed on a Uniboard.

9.1 Python
In order to validate the correct working of the fft_wide_unit a python testcase is created in the file
tc_bn_fb.py. It is located in [12].

9.1.1 tc_bn_fb.py

The testcase allows enabling of the waveform generators or selection of the input data from the ADU’s. The
waveform generators can be configured to generate input signals of various frequencies. After setting up the
input data the script reads out the subband statistics. The statistics are re-arranged and plotted. The user
should then analyse of the plotted spectrum is as expected or not.

 UniBoard
Doc.nr.: ASTRON-RP-1350
Rev.: 0.3
Date: 05-09-2012
Class.: Public

37 / 37

10 Appendix – list of files

10.1 Firmware VHDL
All VHDL source files that are used for the fft units can be found in the following two directories:

$UNB/Firmware/dsp/rTwoSDF/src/vhdl
$UNB/Firmware/dsp/fft/src/vhdl

The next table gives an overview of the VHDL source files:

VHDL File Description
fft_pkg.vhd Package that contains record en function definitions that are

specific for the fft units.
fft_r2_par.vhd Contains the design for a parallel fft.
fft_r2_pipe.vhd Contains the design for a pipelined fft.
fft_r2_wide.vhd Contains the design for a wideband fft.
fft_reorder_sepa_pipe.vhd The reorder and separation function combined specific for the

pipelined version of the fft.
fft_sepa.vhd Low level unit that performs the separation algorithm, based on a

streaming input and output.
fft_sepa_wide.vhd Separation unit for the wideband fft.
fft_wide_unit.vhd Design of a wideband fft that is extended with streaming input and

output interfaces and a subband statistics module.
fft_wide_unit_control.vhd Design unit that is part of the fft_wide_unit.

10.2 Testbench
The testbench files for simulation are in the following directory:

$UNB/Firmware/dsp/fft/tb/vhdl

	1 Introduction
	1.1 Purpose
	1.2 Module overview
	1.3 rTwoSDF_lib and fft_lib

	2 Firmware interface
	2.1 Clock domains
	2.2 Parameters
	2.3 Interface signals
	2.3.1 IN_SOSI_ARR interface
	2.3.2 OUT_SOSI_ARR interface
	2.3.3 RAM_ST_SST_MOSI interface
	2.3.4 Clocks and resets

	3 Software interface
	3.1 Subband statistics span

	4 Module Design
	4.1 Algorithm
	4.1.1 FFT
	4.1.2 Separate

	4.2 Architecture
	4.2.1 fft_r2_pipe
	4.2.2 fft_r2_par
	4.2.3 fft_r2_wide

	5 Implementation
	5.1 fft_r2_pipe
	5.1.1 rTwoSDF stages
	5.1.2 fft_reorder_sepa_pipe
	5.1.2.1 Reordering
	5.1.2.2 Read process
	5.1.2.3 fft_sepa

	5.2 fft_r2_par
	5.2.1 fft_r2_bf_par
	5.2.1.1 Twiddle factor
	5.2.1.2 Register delays

	5.2.2 Connecting the parallel butterflies
	5.2.3 Parallel reordering
	5.2.4 Parallel separation

	5.3 fft_r2_wide
	5.3.1 Generics
	5.3.2 Modifications for rTwoWeights
	5.3.3 fft_sepa_wide

	5.4 Quantization
	5.4.1 FFT input resize
	5.4.2 FFT stage quantization
	5.4.3 FFT output quantization

	5.5 fft_wide_unit
	5.5.1 fft_wide_unit_control
	5.5.2 Quantizer
	5.5.3 Subband Statistics

	6 Verification
	6.1 tb_fft_r2_*
	6.1.1 p_read_input_file
	6.1.2 p_in_stimuli
	6.1.3 p_read_golden_file
	6.1.4 p_verify_output
	6.1.5 p_write_output_file

	6.2 tb_fft_wide_unit
	6.2.1 mms_diag_block_gen
	6.2.2 p_read_input_file
	6.2.3 p_init_waveforms_memory
	6.2.4 p_control_input_stream
	6.2.5 p_read_golden_file
	6.2.6 p_read_sst_memory
	6.2.7 p_create_golden_array
	6.2.8 p_verify_output

	6.3 Pyhton based testbenches
	6.3.1 tb_mmf_fft_r2
	6.3.2 tb_mmf_fft_wide_unit

	7 BN_FB Reference design
	7.1 Design
	7.2 Verification
	7.2.1 ctrl_unb_common
	7.2.2 aduh_half
	7.2.3 aphy_4g_800_mem_model

	8 Synthesis and Place & Route
	9 Validation
	9.1 Python
	9.1.1 tc_bn_fb.py

	10 Appendix – list of files
	10.1 Firmware VHDL
	10.2 Testbench

