Simple Camellia Crypto Core

By:: Ahmad Rifqi H mr_rifqi@yahoo.com

www.ic.vlsi.itb.ac.id/~rifqi October 5, 2004

1.Introduction

Simple Camellia-128 IP Core. The number "128" noted that this implementation use 128 bit key length. I have implemented this design in Xilinx FPGA board with device target Xilinx XC2V2000 ff896. In-circuit verification has been done using ChipScope 6.2i

This document will describe the interface to the IP core.

2.Architecture

The Camellia-128 core both of encryption or decryption with the same core. Below figure illustrates the overall architecture of the Camellia-128 core.

Figure 1: Camellia-128 Core Architecture Overview

3. IOs

Name	Width (bit)	Direction	Description
clock	1	Ι	clock signal
reset	1	Ι	reset pin (active high, synchronous)
INV	1	Ι	mode select $0 = $ encryption. $1 = $ decryption
Key_ready	1	Ι	load key pin (<i>active high</i>)
Input_ready	1	Ι	load data pin (active high)
Out_ready	1	0	data output valid (active high)
Input	128	Ι	input text block
output	128	0	output text block

4. Operation

This cipher core can perform a complete encrypt or decrypt sequence in 10 clock cycles. 1 cycle to load the key, 2 cycle to process the key (setup key), 1 cycle to load the data and 6 cycle to process the data (encryption / decryption).

The INV pin must be set or reset to select the mode operation, 0' = emcryption, 1' = decryption.

When the core completes the encryption/decryption sequence it will assert the 'out_ready' signal for one clock cycle to indicate the completion. The user might chose to ignore the 'done' output and time the completion of the encryption sequence externally.

