

Computer
Operating

Properly (COP)
Specification

Author: Robert Hayes
rehayes@opencores.org

Rev. 0.1

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary ii

June 16, 2009

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary iii

This page has been intentionally left blank.

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary iv

Revision History

Rev. Date Author Description

0.1 03/06/09 Robert
Hayes

First draft release

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary v

Contents
INTRODUCTION ... 1

FEATURES .. 1
ARCHITECTURE... 2

2.1 WISHBONE INTERFACE.. 3
2.2 CONTROL REGISTERS.. 3
2.3 WATCHDOG COUNTER .. 3

OPERATION ... 4

REGISTERS... 5
LIST OF REGISTERS.. 5
4.1 CNTRL REGISTER .. 6
4.1 TIMEOUT REGISTER .. 10
4.2 CNT REGISTER ... 12

CLOCKS ...14

IO PORTS...15
6.1 WISHBONE INTERFACE.. 16
6.2 COP SIGNALS .. 17
6.3 COP CORE PARAMETERS ... 19

APPENDIX A ... 21

INDEX ... 22

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 1 of 22

1
Introduction

The Computer Operating Properly Module, COP, is a watchdog timer module that
triggers a system reset if it is not regularly serviced by writing two specific words to its
control registers. The intention of the module is to bring an embedded system back to a
“good” state after the software program has lost control of the system.

FEATURES

• Programmable Watchdog period.
• Optional programmable interrupt before system reset
• Flexible inputs to control wait, stop and debug mode
• Static synchronous design
• Fully synthesizable

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 2 of 22

2
Architecture

The COP core is built around three primary blocks; the WISHBONE Interface, the
Control Registers, and the Watchdog Counter.

Fig. 2.1 Internal structure COP Core

WISHBONE
Interface

Command
Register

Timeout
Register

Count
Register

startup_osc_i

cop_int_o

cop_rst_o

por_rst_i

Watchdog
Counter

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 3 of 22

2.1 WISHBONE Interface

The WISHBONE Interface isolates the COP functionality from the WISHBONE bus.
This interface takes the bus specific signals and generates a generic set of control signals
to drive the COP control registers. Isolating the WISHBONE bus should help promote
COP module reusability by localizing the scope of changes needed to retarget the COP
module to another bus environment.

2.2 Control Registers

The Command Register, Timeout Register and Count Register are combined into a single
module that controls the programmable functions of the COP. Various bits in the
Command Register define the basic operating mode and function enables of the COP.

2.3 Watchdog Counter

The Watchdog Counter is the key element of the COP module. This counter is preloaded
with a starting value programmed into the Timeout Register and then decrements with
each positive edge of the startup_osc_clk_i clock signal. When the Watchdog counter has
counted down to zero the cop_rst_o signal is asserted to reset the embedded system and
the system software back to a “good” condition. The COP reset should also set any
system hardware to a “safe” condition to minimize the chance of any hardware damage.
To prevent the Watchdog Counter from reaching zero two specific words must be written
to the Count Register, which will cause the Watchdog Counter to be reinitialized with the
value in the Timeout Register.

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 4 of 22

3
Operation

The COP Module is a very simple counter that can be controlled by commands from the
WISHBONE bus. The output from the module is a pulse that is one startup_osc_i period
wide and should be OR’ed with the system reset signal. The COP watchdog counter is set
to a value programmed into the TOUT_VAL register each time the COP is disabled with
the COP_ENA control bit or when two specific words are written to the COP_CNT
register. If the COP watchdog counter is allowed to decrement down to the zero value
then the cop_rst_o will become active to force a system reset.
The COP module also has the capability to generate an interrupt at a programmed number
of cycles before the cop_rst_o initiates a system reset. This functionality is primarily
intended as a debug feature.
A very readable article about watchdog timers and their use:
http://www.ganssle.com/watchdogs.pdf

The recommended software procedure for using the COP Module:

1. Initialize COP
a) Check COP_EVENT status bit to find out what caused the last system reset.

b) Clear COP_ENA
c) Set TOUT_VAL to the maximun time to run without a COP service access.

d) Set COP_IRQ, DEBUG_ENA, STOP_ENA, WAIT_ENA as required
e) Set COP_ENA

f) Set CWP and CLCK as required
2. Normal Operation

a) Service COP at regural intervals by writing the two correct service words to the
COP_CNT register.

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 5 of 22

4
Registers

The COP Module can be configured through the use of the DWIDTH parameter to have a
WISHBONE bus interface with either an 8-bit bus with 8-bit granularity or to use a 16-bit
bus with 16-bit granularity. This document shows the resultant address and bit field for
both configurations although in an actual instance of the COP Module only one of the
pairs of tables will be valid. For an end user or programmer reference it may be best to
simplify this document by removing the tables that reference the unused bus
configuration.

List of Registers

Name Address Width Access Description

CNTRL 0x00 16 RW COP Control Register
TOUT 0x01 16 RW COP Timeout Register
CNT 0x02 16 R COP Counter Value, Service Word

Table 1: List of registers, 16 bit data (default DWIDTH=16)

Name Address Width Access Description

CNTRL_0 0x00 8 RW COP Control Register Low
CNTRL_1 0x01 8 RW COP Control Register High
TOUT 0x02 8 RW COP Timeout Register
Reserved 0x03 8 R
CNT_0 0x04 8 R COP Counter Value Low Byte
CNT_1 0x05 8 R COP Counter Value High Byte

Table 1a: List of registers, 8 bit data (DWIDTH=8)

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 6 of 22

4.1 CNTRL Register

Bit # Access Description

15:9 R Reserved, write zeros for future compatibility.

8 R/W COP_EVENT, Status bit to record that a COP reset has
happened.
To clear the COP_EVENT status bit write a ‘1’ to the
COP_EVENT bit or the bit will be cleared when a correct COP
service request is executed.

7:6 RW COP_IRQ
‘00’ No COP interrupt

‘01’ COP interrupt 16 osc clocks before COP Reset
‘10’ COP interrupt 32 osc clocks before COP Reset

‘11’ COP interrupt 64 osc clocks before COP Reset

5 RW DEBUG_ENA, Enable COP in DEBUG Mode

‘0’ COP Counter stops in DEBUG Mode.
‘1’ COP Counter continues to run in DEBUG Mode.
DEBUG_ENA can only be changed when the CWP bit is set to
zero.

4 RW STOP_ENA, Enable COP in STOP Mode.
‘0’ COP Counter stops in STOP Mode.
‘1’ COP Counter continues to run in STOP Mode.
STOP_ENA can only be changed when the CWP bit is set to
zero.

3 RW WAIT_ENA, Enable COP in WAIT Mode.
‘0’ COP Counter stops in WAIT Mode.
‘1’ COP Counter continues to run in WAIT Mode.
WAIT_ENA can only be changed when the CWP bit is set to
zero.

2 RW COP_ENA, Enable COP Watchdog Counter to begin
decrementing.
‘0’ COP Watchdog Counter is disabled. The COP Watchdog
Counter is set to the Timeout value.
‘1’ COP Watchdog Counter is enabled.
COP_ENA can only be changed when the CWP bit is set to
zero. Other bits in this register and the Timeout value can only

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 7 of 22

Bit # Access Description
be changed when the COP_ENA bit is ‘0’.

1 RW CWP, COP Write Protect.
When set to ‘1’ the COP_ENA cannot be changed.
When set to ‘0’ the COP_ENA bit can be changed.

0 RW CLCK, COP LOCK.
‘0’ CWP and be written.
‘1’ CWP is locked in its current state and cannot be changed
except by a system reset.

Reset Value:
 CNTRL: 0004h

Table 2: CNTRL Register Bits

The COP CNTRL register has three bits that can limit the ability to change other bits in
the CNTRL register when they are set. These bits are COP_ENA, CWP, and CLCK.
There is a hierarchy of protection, the COP_ENA inhibits changes to the WAIT_ENA,
STOP_ENA, DEBUG_ENA and TOUT_VAL registers, the CWP inhibits changes to the
COP_ENA bit, and the CLCK inhibits changes to the CWP bit. By using the different
levels of protection different levels of system security can be obtained while still allowing
some flexibility in controlling the COP functionality. The final step of initializing the
COP should be to set the CLCK bit.
The protection mechanism is arranged such that a protection bit and the bits that it
protects can be set in a single write command. To change a protected bit after its
associated protection control bit is set requires two write commands, the first to clear the
protection control bit and the second to operate on the protected bit targeted for change.

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 8 of 22

CLCK CWP COP_ENA Status

1 1 1 Most protected, least control: The COP is always enabled
and no changes can be made to the control bits.

0 1 1 Some protection, some control: The COP is enabled and
cannot be disabled without first clearing the CWP bit

which takes two writes to the CNTRL register. The first
write is to clear the CWP bit and the second write is to
clear the COP_ENA bit. Because CLCK is not set, if

CLCK does get unintentionally set then control becomes
a function of whatever the settings of the CWP bit was at

the time that CLCK was set.

1 0 X Least protected, most control: Software always has
control over the COP_ENA bit and can enable and

disable COP functionality on demand.

1 1 0 COP disabled till next system reset.

Bit # Access Description

7:1 R Reserved, write zeros for future compatibility.

0 R/W COP_EVENT, Status bit to record that a COP reset has
happened.
To clear the COP_EVENT status bit write a ‘1’ to the
COP_EVENT bit or the bit will be cleared when a correct COP
service request is executed.

Reset Value:
 CNTRL_1: 00h

Table 2a: CNTRL_1 Register Bits

Bit # Access Description

7:6 RW COP_IRQ

‘00’ No COP interrupt
‘01’ COP interrupt 16 osc clocks before COP Reset

‘10’ COP interrupt 32 osc clocks before COP Reset
‘11’ COP interrupt 64 osc clocks before COP Reset

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 9 of 22

Bit # Access Description

5 RW DEBUG_ENA, Enable COP in DEBUG Mode

‘0’ COP Counter stops in DEBUG Mode.
‘1’ COP Counter continues to run in DEBUG Mode.
DEBUG_ENA can only be changed when the CWP bit is set to
zero.

4 RW STOP_ENA, Enable COP in STOP Mode.
‘0’ COP Counter stops in STOP Mode.
‘1’ COP Counter continues to run in STOP Mode.
STOP_ENA can only be changed when the CWP bit is set to
zero.

3 RW WAIT_ENA, Enable COP in WAIT Mode.
‘0’ COP Counter stops in WAIT Mode.
‘1’ COP Counter continues to run in WAIT Mode.
WAIT_ENA can only be changed when the CWP bit is set to
zero.

2 RW COP_ENA, Enable COP Watchdog Counter to begin
decrementing.
‘0’ COP Watchdog Counter is disabled. The COP Watchdog
Counter is set to the Timeout value.
‘1’ COP Watchdog Counter is enabled.
COP_ENA can only be changed when the CWP bit is set to
zero. Other bits in this register and the Timeout value can only
be changed when the COP_ENA bit is ‘0’.

1 RW CWP, COP Write Protect.
When set to ‘1’ the COP_ENA cannot be changed.
When set to ‘0’ the COP_ENA bit can be changed.

0 RW CLCK, COP LOCK.
‘0’ CWP and be written.
‘1’ CWP is locked in its current state and cannot be changed
except by a system reset.

Reset Value:
 CNTRL_0: 04h

Table 2b: CNTRL_0 Register Bits

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 10 of 22

4.1 Timeout Register

16 Bit Data Bus

Bit # Access Description

15:0 RW TOUT_VAL, COP Counter Watchdog value

Sets the initial value of the COP Watchdog Counter after a proper
COP service request or the changing of the COP_ENA bit to zero.
The Watchdog Counter counts down from this value to zero when
the COP reset is activated. These bits can only be changed when

COP_ENA is zero.

Reset Value:
 TOUT_VAL: FFFFh

Table 4: TOUT Register Bits

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 11 of 22

8 Bit Data Bus

Bit # Access Description

7:0 RW TOUT_VAL[15:8], COP Counter Watchdog value

Sets the initial value of the COP Watchdog Counter after a proper
COP service request or the changing of the COP_ENA bit to zero.
The Watchdog Counter counts down from this value to zero when
the COP reset is activated. These bits can only be changed when
COP_ENA is zero.

Reset Value:
 TOUT_VAL_1: FFh

Table 4a: TOUT_VAL_1 Register Bits

Bit # Access Description

7:0 RW TOUT_VAL[7:0], COP Counter Watchdog value

Sets the initial value of the COP Watchdog Counter after a proper
COP service request or the changing of the COP_ENA bit to zero.
The Watchdog Counter counts down from this value to zero when
the COP reset is activated. These bits can only be changed when
COP_ENA is zero.

Reset Value:
 TOUT_VAL_0: FFh

Table 4a: TOUT_VAL_0 Register Bits

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 12 of 22

4.2 CNT Register

16 Bit Data Bus

Bit # Access Description

15:0 RW COUNT_VAL, Read returns the current state of the COP
Watchdog Counter.

Writes to the CNT register access the COP service words. To reset
the COP Watchdog Counter to the TOUT_VAL state two specific
service words must be written in the correct order to prevent a COP
reset.

Reset Value:
 CNT: FFFFh

Table 5: CNT Register Bits

8 Bit Data Bus

Bit # Access Description

7:0 RW COUNT_VAL, Read returns the current state of the COP
Watchdog Counter.

Note: To minimize the gates there is no register to capture the full
value of COUNT_VAL when only a byte is read. This means that
the value that the processor sees is only the approximate value of

COUNT_VAL because one of the bytes will have changed between
the read of the first byte of COUNT_VAL and the second byte of

COUNT_VAL.

Writes to the CNT register access the COP service words. To reset
the COP Watchdog Counter to the TOUT_VAL state two specific

service words must be written in the correct order to prevent a COP
reset.

Reset Value:
 CNT_0: FFh

Table 5a: CNT_0 Register Bits

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 13 of 22

Bit # Access Description

7:0 RW COUNT_VAL, Read returns the current state of the COP
Watchdog Counter.

Reset Value:
 CNT_1: FFh

Table 5b: CNT_1 Register Bits

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 14 of 22

5
Clocks

Rates (MHz) Name Source

Max Min Resolution

Remarks Description

wb_clk_i System 200 - - Master clock for all
COP bus registers.

Positive edge
active.

System clock.

startup_o
sc_i

System COP counter
clock

run_osc_i System COP counter
cock

Table 3: List of clocks

The wb_clk_i has no timing constraints based on the RTL implementation although there
may be constrains applied for synthesis results to be compatible with the target physical
implementation. If the COP is targeted for an ASIC implementation then [wb_clk_i]
should be used as the scan clock, any clock multiplexing required to make [wb_clk_i] the
scan clock should be done at the system level external to the COP Module.
The startup_osc_i is the clock used to decrement the Watchdog Counter. The frequency
of this clock is assumed to at least half the speed of wb_clk_i. The phase of startup_osc_i
relative to wb_clk_i is assumed to be unknown. Resynchronization of data and control
signals crossing clock domains will be required to reliably transfer signals between clock
wb_clk_i and startup_osc_i clock domains.

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 15 of 22

6
IO Ports

Port Width Direction Description

wb_clk_i 1 Input WISHBONE Bus Clock Input, Master Clock

wb_rst_i 1 Input WISHBONE Synchronous Reset

wb_adr_i 3 Input WISHBONE Lower address bits

wb_dat_i 8/16 Input WISHBONE Bus Data

wb_dat_o 8/16 Output WISHBONE Bus Data

wb_we_i 1 Input WISHBONE Write enable

wb_stb_i 1 Input WISHBONE Strobe signal/Core select

wb_cyc_i 1 Input WISHBONE Valid bus cycle

wb_sel_i 2 Input WISHBONE Data Bus Byte Select

wb_ack_o 1 Output WISHBONE Bus cycle acknowledge

cop_irq_o 1 Output COP Interrupt signal

cop_rst_o 1 Output COP output signal

startup_osc_i 1 Input Watchdog Counter Clock

stop_mode_i 1 Input System is in STOP Mode

wait_mode_i 1 Input System is in WAIT Mode

debug_mode_
i

1 Input System is in DEBUG Mode

por_reset_i 1 Input Power on Reset

arst_i 1 Input Asynchronous Reset

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 16 of 22

Port Width Direction Description

scantestmode_
i

1 Input Scan Test Mode Enable

Table 4: List of IO ports

6.1 WISHBONE Interface

The core features a WISHBONE RevB.3 compliant WISHBONE Classic interface that
operates in SLAVE mode. All output signals are registered. Each access takes 2 clock
cycles. To limit a WISHBONE access to just two clock cycles the following synthesis
rules should be used:

• Single cycle timing for wb_cyc_i and wb_stb_i
• Two cycle timing for wb_adr_i, wb_data_i, and wb_data_o. (Single cycle timing

could be used but it would be a waste of resources to meet an over constrained timing
path.)

Note: Use the “SINGLE_CYCLE” parameter to do a WISHBONE bus
access in one clock cycle.

WISHBONE DATASHEET

Description Specification

General description: 8-bit SLAVE

Supported Cycles: SLAVE, READ/WRITE

Data port, size:

Data port, granularity:

Data port, maximum operand size:

Data transfer ordering:

Data transfer sequencing:

Default: 16, option 8 bit

Default: 16, option to match 8 bit port size

Signal Name WISHBONE Equiv.

wb_clk_i CLK_I

wb_rst_i RST_I

Supported signal list and cross reference to
equivalent WISHBONE signals:

wb_adr_i ADR_I()

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 17 of 22

wb_dat_i DAT_I()

wb_dat_o DAT_O()

wb_we_i WE_I

wb_stb_i STB_I

wb_cyc_i CYC_I

wb_sel_i SEL_I

wb_ack_o ACK_O

6.1.1 wb_rst_i

The synchronous reset signal has a minimum pulse width requirement of one [wb_clk_i]
clock period. It will take two [wb_clk_i] clock cycles for all registers in the COP Module
to initialize. Also see information on pin [arst_i]. It is assumed that elsewhere in the
system cop_rst_o will be OR’ed with this signal and it will be active for some time
during and after a COP watchdog timeout.

6.1.2 wb_adr_i

Connections to the WISHBONE address pin will depend on the size of the WISHBONE
data bus that is set by the DWIDTH parameter. If DWIDTH=8 the all address pins should
be connected, if DWIDTH=16 then [wb_adr_i(2)] should be tied low.

6.1.3 wb_sel_i

The [wb_sel_i] is the WISHBONE byte lane select signal. It is currently unimplemented
in the PIT module and should be tied hi.

6.2 COP signals

6.2.1 cop_rst_o

The COP output signal. This is a one oscillator clock, [startup_osc_i], wide pulse that is
output when the Watchdog Counter reaches zero.

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 18 of 22

6.2.2 cop_irq_o

This signal is an optional output that is activated at some number of [startup_osc_i]
clocks before the Watchdog Counter reaches zero and resets the system. The [cop_irq_o]
signal is primarily intended as a debug aid and its use is discouraged in final production
code. Except as part of a temporary software debugging patch it is recommended not to
put code to service the COP into the interrupt service routine. This is because the state of
the system is unknown and the state of the stack and stack pointer may be corrupted.
Code to put the system into a “safe” state and store debug information should be included
in the interrupt service routine. This signal may be occasionally useful when an output
signal with a longer pulse width is needed to be resynchronized to a slower clock domain
than the COP master clock.

6.2.3 startup_osc_i

This signal is the input clock for the COP Watchdog Counter. This clock is assumed to be
running at all times.

6.2.4 por_reset_i

The [por_reset_i] signal is active low. This signal is used to initialize a limited number
flip-flops that need to maintain state when [arst_i] or [wb_rst_i] are active. A separate
reset signal is required for these flip_flops because it is assumed that [cop_rst_o] will
effect [arst_i] and [wb_rst_i] and may cause a shortening of the [cop_rst_o] pulse width
because of a combinational feedback path.

6.2.5 arst_i

The signal [arst_i] is an asynchronous reset signal that goes to all flops in the COP. It is
provided for FPGA implementations and test methodologies that require this function for
initialization. Using [arst_i] instead of [wb_rst_i] can result in lower cell-usage and
higher performance for a FPGAs implementation because the standard FPGA cell already
provides a dedicated asynchronous reset path. Using [wb_rst_i] for an ASIC
implementation might synthesize to a smaller module because smaller non_reset flops
can be used. Use either [arst_i] or [wb_rst_i], tie the other to a negated state. The active
level of [arst_i] is determined by the parameter ARST_LVL that defaults to active low.

6.2.6 stop_mode_i

The Watchdog Counter can be frozen in its current state if this signal is active and the
STOP_ENA bit is set to zero. If there is no stop mode signal available from the system
then this input signal should be tied low.

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 19 of 22

6.2.7 wait_mode_i

The Watchdog Counter can be frozen in its current state if this signal is active and the
WAIT_ENA bit is set to zero. If there is no stop mode signal available from the system
then this input signal should be tied low.

6.2.8 debug_mode_i

The Watchdog Counter can be frozen in its current state if this signal is active and the
DEBUG_ENA bit is set to zero. If there is no stop mode signal available from the system
then this input signal should be tied low.

6.2.9 scantestmode_i

The [scantestmode_i] input is an optional signal used to put the module into scan test
mode. When [scantestmode_i] is active the [startup_osc_clk_i] is replaced by the
[wb_clk_i] clock so all register are clocked by a common clock source.

6.3 COP Core Parameters

Parameter Type Default Description

ARST_LVL Bit 1’b0 Asynchronous reset level

INIT_ENA Bit 1’b1 COP on/off at power up

SERV_WD_0 Word 16’h5555 Compare value for first service word

SERV_WD_1 Word 16’hAAAA Compare value for second service word

SINGLE_CYCLE Bit 1’b0 WISHBONE wait state

DWIDTH Int 16 Data Bus size

6.3.1 ARST_LVL

The asynchronous reset level can be set to either active high (1’b1) or active low (1’b0).
Allowed values: 1’b0, 1’b1

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 20 of 22

6.3.2 INIT_ENA

The initial value of the COP_ENA control bit can be set with this parameter. Some
applications may prefer that the COP be initialized to the OFF state in which case this bit
can be set to 1’b0. If the COP is not initialized to the ON state then there is no protection
for a runaway code situation during the system initialization period.
Allowed values: 1’b0, 1’b1

6.3.3 SERV_WD_0

The value of the first service word to be written to the COP to reset the Watchdog timer.
The default value of 16’h5555 may be used by some memory test routines so there might
be better security if another value is chosen. If DWIDTH=8 then only the least significant
byte is used.

Allowed values: any 16-bit value (16’hxxxx)

6.3.4 SERV_WD_1

The value of the second service word to be written to the COP to reset the Watchdog
timer. The default value of 16’hAAAA may be used by some memory test routines so
there might be better security if another value is chosen. If DWIDTH=8 then only the
least significant byte is used.
Allowed values: any 16-bit value (16’hxxxx)

6.3.5 SINGLE_CYCLE

The default operation of the COP WISHBONE bus interface is to insert one wait state by
delaying the assertion of the wb_ack_o by one wb_clk_i period. Setting the
SINGLE_CYCLE parameter generates the wb_ack_o combinationaly so a WISHBONE
bus cycle can be completed in one wb_clk_i period.

Allowed values: 1’b0, 1’b1

6.3.6 DWIDTH

The width of the microcontroller data buses connected to COP Module. The COP Module
can support either an 8-bit data bus with 8-bit resolution or a 16-bit data bus with 16-bit
resolution.

Allowed values: 8, 16

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 21 of 22

Appendix A
Name

[This section may be added to outline different specifications.]

 OpenCores Computer Operating Properly (COP) Module 6/16/09

www.opencores.org Rev 0.1 Preliminary 22 of 22

Index

[This section contains an alphabetical list of helpful document entries with their
corresponding page numbers.]

