
Cordic Core
Specification

Author: Richard Herveille
richard@asics.ws

Rev. 0.4
December 18, 2001

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary ii

This page left intentionally blank

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary iii

Revision History

Rev. Date Author Description
0.1 14/01/01 Richard

Herveille
First Draft

0.2 21/06/01 Richard
Herveille

Fixed some minor issues. Improved readability.

0.3 22/06/01 Richard
Herveille

Completely revised section 1.1

0.4 18/12/01 Richard
Herveille

Fixed some typos.

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary iv

Contents
INTRODUCTION .. 1

ARCHITECTURE.. 6

POLAR TO RECTANGULAR CONVERSION.. 8

SINE AND COSINE CALCULATIONS .. 9

RECTANGULAR TO POLAR CONVERSION... 12

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 1 of 13

1
Introduction

CORDIC (Coordinate Rotation Digital Computer) is a method for computing elementary
functions using minimal hardware such as shifts, adds/subs and compares.

CORDIC works by rotating the coordinate system through constant angles until the angle
is reduces to zero. The angle offsets are selected such that the operations on X and Y are
only shifts and adds.

1.1 The numbers

This section describes the mathematics behind the CORDIC algorithm. Those not
interested in the numbers can skip this section.

The CORDIC algorithm performs a planar rotation. Graphically, planar rotation means
transforming a vector (Xi, Yi) into a new vector (Xj, Yj).

Y

X

(Xj, Yj)

(Xi, Yi)
θ

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 2 of 13

Using a matrix form, a planar rotation for a vector of (Xi, Yi) is defined as

 −
=

i

i

j

j

Y
X

Y
X

θθ
θθ

cossin
sincos

 (1)

The θ angle rotation can be executed in several steps, using an iterative process. Each
step completes a small part of the rotation. Many steps will compose one planar rotation.
A single step is defined by the following equation:

 −
=

+

+

n

n

nn

nn

n

n

Y
X

Y
X

θθ
θθ

cossin
sincos

1

1 (2)

Equation 2 can be modified by eliminating the nθcos factor.

 −
=

+

+

n

n

n

n
n

n

n

Y
X

Y
X

1tan
tan1

cos
1

1

θ
θ

θ (3)

Equation 3 requires three multiplies, compared to the four needed in equation 2.

Additional multipliers can be eliminated by selecting the angle steps such that the
tangent of a step is a power of 2. Multiplying or dividing by a power of 2 can be
implemented using a simple shift operation.

The angle for each step is given by

= nn 2
1arctanθ (4)

All iteration-angles summed must equal the rotation angle θ.

∑
∞

=

=
0n

nnS θθ (5)

where

{ }1;1 +−=nS (6)

This results in the following equation for nθtan
n

nn S −= 2tanθ (7)

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 3 of 13

Combining equation 3 and 7 results in

 −
=

−

−

+

+

n

n
n

n

n
n

n
n

n

Y
X

S
S

Y
X

12
21

cos
1

1 θ (8)

Besides for the nθcos coefficient, the algorithm has been reduced to a few simple shifts
and additions. The coefficient can be eliminated by pre-computing the final result. The
first step is to rewrite the coefficient.

= nn 2
1arctancoscosθ (9)

The second step is to compute equation 9 for all values of ‘n’ and multiplying the results,
which we will refer to as K.

607253.0
2
1arctancos1

0

≈

== ∏
∞

=n
nP

K (10)

K is constant for all initial vectors and for all values of the rotation angle, it is normally
referred to as the congregate constant. The derivative P (approx. 1.64676) is defined here
because it is also commonly used.

We can now formulate the exact calculation the CORDIC performs.

()
()

+=
−=

θθ
θθ

sincos
sincos

iij

iij

XYKY
YXKX

 (11)

Because the coefficient K is pre-computed and taken into account at a later stage,
equation 8 may be written as

 −
=

−

−

+

+

n

n
n

n

n
n

n

n

Y
X

S
S

Y
X

12
21

1

1 (12)

or as

+=
−=

−
+

−
+

n
n

nnn

n
n

nnn

XSYY
YSXX

2
1

2
1

2
2

 (13)

At this point a new variable called ‘Z’ is introduced. Z represents the part of the angle θ
which has not been rotated yet.

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 4 of 13

∑
=

+ −=
n

i
inZ

0
1 θθ (14)

For every step of the rotation Sn is computed as a sign of Zn.

≥+
<−

=
01
01

n

n
n Zif

Zif
S (15)

Combining equations 5 and 15 results in a system which reduces the not rotated part of
angle θ to zero.
Or in a program-like style:

 For n=0 to [inf]

 If (Z(n) >= 0) then

 Z(n + 1) := Z(n) – atan(1/2^n);

 Else

 Z(n + 1) := Z(n) + atan(1/2^n);

 End if;

 End for;

The atan(1/2^i) is pre-calculated and stored in a table. [inf] is replaced with the required
number of iterations, which is about 1 iteration per bit (16 iterations yield a 16bit result).

If we add the computation for X and Y we get the program-like style for the CORDIC
core.

 For n=0 to [inf]

 If (Z(n) >= 0) then

 X(n + 1) := X(n) – (Yn/2^n);

 Y(n + 1) := Y(n) + (Xn/2^n);

 Z(n + 1) := Z(n) – atan(1/2^n);

 Else

 X(n + 1) := X(n) + (Yn/2^n);

 Y(n + 1) := Y(n) – (Xn/2^n);

 Z(n + 1) := Z(n) + atan(1/2^n);

 End if;

 End for;

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 5 of 13

This algorithm is commonly referred to as driving Z to zero. The CORDIC core
computes:

[] () ()() () ()()[]0,sincos,sincos,, iiiiiiiijjj ZXZYPZYZXPZYX +−=

There’s a special case for driving Z to zero:

60725.01 ≈== K
P

X i

0=iY

θ=iZ

[] []0,sin,cos,, θθ=jjj ZYX

Another scheme which is possible is driving Y to zero. The CORDIC core then
computes:

[]

++=

i

i
iiijjj X

Y
ZYXPZYX arctan,0,,, 22

For this scheme there are two special cases:

1) XX i =

YYi =

0=iZ

[]

+=

i

i
iijjj X

Y
YXPZYX arctan,0,,, 22

2) 1=iX

aYi =

0=iZ

[] ()[]aaPZYX jjj arctan,0,1,, 2+=

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 6 of 13

2
Architecture

All CORDIC Processor cores are built around three fundamental blocks. The pre-
processor, the post-processor and the actual CORDIC core. The CORDIC core is built
using a pipeline of CordicPipe blocks. Each CordicPipe block represents a single step in
the iteration processes.

2.1 Pre- and Post-Processors

Because of the arctan table used in the CORDIC algorithm, it only converges in the range
of –1(rad) to +1(rad). To use the CORDIC algorithm over the entire 2π range the inputs
need to be manipulated to fit in the –1 to +1 rad. range. This is handled by the pre-
processor. The post-processor corrects this and places the CORDIC core’s results in the
correct quadrant. It also contains logic to correct the P-factor.

2.2 CORDIC

The CORDIC core is the heart of the CORDIC Processor Core. It performs the actual
CORDIC algorithm. All iterations are performed in parallel, using a pipelined structure.
Because of the pipelined structure the core can perform a CORDIC transformation each
clock cycle. Thus ensuring the highest throughput possible.

CORDIC Processor (CorProc)

CORDIC

CordicPipe

pre-processor post-processor

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 7 of 13

2.3 CORDIC Pipeline

Each pipe or iteration step is performed by the CordicPipe core. It contains the atan table
for each iteration and the logic needed to manipulate the X, Y and Z values.

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 8 of 13

3
Polar to Rectangular

Conversion

Only CORDIC and CordicPipe are coded so far.

Coming soon.

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 9 of 13

4
Sine and Cosine

calculations

Sine and Cosine can be calculated using the first CORDIC scheme which calculates:

[] () ()() () ()()[]0,sincos,sincos,, iiiiiiiijjj ZXZYPZYZXPZYX +−=

By using the following values as inputs

60725.0
6467.1
11 ≈==

P
X i

0=iY

θ=iZ

the core calculates:

[] []0,sin,cos,, θθ=jjj ZYX

The input Z takes values from –180degrees to +180 degrees where:

0x8000 = –180degrees

0xEFFF = +80degrees

But the core only converges in the range –90degrees to +90degrees.

The other inputs and the outputs are all in the range of –1 to +1. The congregate constant
P represented in this format results in:

)(4)(19898215 hexDBAdecPXi ==•=

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 10 of 13

Example:
Calculate sine and cosine of 30degrees.

First the angle has to be calculated:

)(1555)(546130
360
2deg30

360
2deg1

2deg360

16

16

16

hexdec =≈•≡

≡

≡

The core calculates the following sine and cosine values for Zi=5461:

Sin : 16380(dec) = 3FFC(hex)

Cos : 28381(dec) = 6EDD(hex)

The outputs represent values in the –1 to +1 range. The results can be derived as follows:

4999.016380
2

0.116380

0.12

15

15

=•≡

≡

8661.028381
2

0.128381

0.12

15

15

=•≡

≡

Whereas the result should have been 0.5 and 0.8660.

 0 deg 30 deg 45 deg 60 deg 90 deg
Sin 0x01CC 0x3FFC 0x5A82 0x6EDC 0x8000
Cos 0x8000 0x6EDD 0x5A83 0x4000 0x01CC
Sin 0.01403 0.49998 0.70709 0.86609 1.00000
Cos 1.00000 0.86612 0.70712 0.50000 0.01403

Table 1: Sin/Cos outputs for some common angles

Although the core is very accurate small errors can be introduced by the algorithm (see
example and results table). This should be only a problem when using the core over the
entire output range, because the difference between +1 (0x7FFF) and –1 (0x8000) is only
1bit.

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 11 of 13

4.1 Core structure

4.2 IO Ports

Port Width Direction Description
CLK 1 Input System Clock
ENA 1 Input Clock enable signal
Ain 16 Input Angel input
Sin 16 Output Sine output
Cos 16 Output Cosine output

Table 2: List of IO Ports for Sine/Cosine CORDIC Core

5.3 Synthesis Results

Vendor Family Device Resource usage Max. Clock speed
Xilinx Spartan-II XC2S100-6 387slices 116MHz

Table 3: Synthesis results for Rectangular to Polar CORDIC Core

p2r_cordicpipe.vhd

p2r_cordic.vhd

sc_corproc.vhd

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 12 of 13

5
Rectangular to Polar

Conversion

The rectangular to polar coordinate processor is built around the second CORDIC scheme
which calculates:

[] ()[]aaPZYX jjj arctan,0,1,, 2+=

It takes two 16bit signed words as inputs (Xin, Yin), which are the rectangular
coordinates of a point in a 2-dimensional space. The core returns the equivalent Polar
coordinates where Rout is the radius and Aout the angle or θ .

5.1 Core structure

r2p_cordicpipe.vhd

r2p_cordic.vhd

r2p_corproc.vhd

r2p_pre.vhd r2p_post.vhd

OpenCores CORDIC Core Specifications 12/18/2001

www.opencores.org Rev 0.4 Preliminary 13 of 13

5.2 IO Ports

Port Width Direction Description
CLK 1 Input System Clock
ENA 1 Input Clock enable signal
Xin 16 Input X-coordinate input. Signed value
Yin 16 Input Y-coordinate input. Signed value
Rout 20 Output Radius output. Unsigned value.
Aout 20 Output Angle (θ) output. Singed/Unsigned value.

Table 4: List of IO Ports for Rectangular to Polar CORDIC Core

The outputs are in a fractional format. The upper 16bits represent the decimal value and
the lower 4bits represent the fractional value.

The angle output can be used signed and unsigned, because it represents a circle; a -180
degree angle equals a +180 degrees angle, and a –45 degrees angle equals a +315 degrees
angle.

5.3 Synthesis Results

The table below shows some synthesis results using a pipeline of 15 stages.

Vendor Family Device Resource usage Max. Clock speed
Altera ACEX EP1K50-1 2190lcells 68MHz
Xilinx Spartan-II XC2S100-6 704slices 93MHz

Table 5: Synthesis results for Rectangular to Polar CORDIC Core

