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1  
Introduction 

CORDIC (Coordinate Rotation Digital Computer) is a method for computing elementary 
functions using minimal hardware such as shifts, adds/subs and compares.  

 

CORDIC works by rotating the coordinate system through constant angles until the angle 
is reduces to zero. The angle offsets are selected such that the operations on X and Y are 
only shifts and adds. 

 

1.1 The numbers 

This section describes the mathematics behind the CORDIC algorithm. Those not 
interested in the numbers can skip this section.  
 

The CORDIC algorithm performs a planar rotation. Graphically, planar rotation means 
transforming a vector (Xi, Yi) into a new vector (Xj, Yj). 
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Using a matrix form, a planar rotation for a vector of (Xi, Yi) is defined as 
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The θ angle rotation can be executed in several steps, using an iterative process. Each 
step completes a small part of the rotation. Many steps will compose one planar rotation. 
A single step is defined by the following equation: 
















 −
=









+

+

n

n

nn

nn

n

n

Y
X

Y
X

θθ
θθ

cossin
sincos

1

1       (2) 

 

Equation 2 can be modified by eliminating the nθcos factor. 
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Equation 3 requires three multiplies, compared to the four needed in equation 2.  

Additional  multipliers can be eliminated by selecting the angle steps such that the 
tangent of a step is a power of 2. Multiplying or dividing by a power of 2 can be 
implemented using a simple shift operation. 

 

The angle for each step is given by 








= nn 2
1arctanθ         (4) 

All iteration-angles summed must equal the rotation angle θ. 

∑
∞

=

=
0n

nnS θθ          (5) 

where 

{ }1;1 +−=nS          (6) 

 

This results in the following equation for nθtan  
n

nn S −= 2tanθ          (7) 
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Combining equation 3 and 7 results in 
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Besides for the nθcos coefficient, the algorithm has been reduced to a few simple shifts 
and additions. The coefficient can be eliminated by pre-computing the final result. The 
first step is to rewrite the coefficient. 
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1arctancoscosθ        (9) 

 

The second step is to compute equation 9 for all values of ‘n’ and multiplying the results, 
which we will refer to as K. 

607253.0
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K is constant for all initial vectors and for all values of the rotation angle, it is normally 
referred to as the congregate constant. The derivative P (approx. 1.64676) is defined here 
because it is also commonly used. 

 

We can now formulate the exact calculation the CORDIC performs. 
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Because the coefficient K is pre-computed and taken into account at a later stage, 
equation 8 may be written as 
















 −
=








−

−

+

+

n

n
n

n

n
n

n

n

Y
X

S
S

Y
X

12
21

1

1       (12) 

or as 
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At this point a new variable called ‘Z’ is introduced. Z represents the part of the angle θ 
which has not been rotated yet. 
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For every step of the rotation Sn is computed as a sign of Zn. 
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Combining equations 5 and 15 results in a system which reduces the not rotated part of 
angle θ to zero. 
Or in a program-like style: 

 For n=0 to [inf] 

  If (Z(n) >= 0) then 

   Z(n + 1) := Z(n) – atan(1/2^n); 

  Else 

   Z(n + 1) := Z(n) + atan(1/2^n); 

  End if; 

 End for; 

 

The atan(1/2^i) is pre-calculated and stored in a table. [inf] is replaced with the required 
number of iterations, which is about 1 iteration per bit (16 iterations yield a 16bit result). 

If we add the computation for X and Y we get the program-like style for the CORDIC 
core. 

 For n=0 to [inf] 

  If (Z(n) >= 0) then 

   X(n + 1) := X(n) – (Yn/2^n); 

   Y(n + 1) := Y(n) + (Xn/2^n); 

   Z(n + 1) := Z(n) – atan(1/2^n); 

  Else 

   X(n + 1) := X(n) + (Yn/2^n); 

   Y(n + 1) := Y(n) – (Xn/2^n); 

   Z(n + 1) := Z(n) + atan(1/2^n); 

  End if; 

 End for; 
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This algorithm is commonly referred to as driving Z to zero. The CORDIC core 
computes: 

[ ] ( ) ( )( ) ( ) ( )( )[ ]0,sincos,sincos,, iiiiiiiijjj ZXZYPZYZXPZYX +−=  

 

There’s a special case for driving Z to zero: 

60725.01 ≈== K
P

X i  

0=iY  

θ=iZ  

[ ] [ ]0,sin,cos,, θθ=jjj ZYX  

 

Another scheme which is possible is driving Y to zero. The CORDIC core then 
computes: 

[ ] 















++=

i

i
iiijjj X

Y
ZYXPZYX arctan,0,,, 22  

 

For this scheme there are two special cases: 

1) XX i =  
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2  
Architecture 

All CORDIC Processor cores are built around three fundamental blocks. The pre-
processor, the post-processor and the actual CORDIC core. The CORDIC core is built 
using a pipeline of CordicPipe blocks. Each CordicPipe block represents a single step in 
the iteration processes. 

2.1 Pre- and Post-Processors 

Because of the arctan table used in the CORDIC algorithm, it only converges in the range 
of –1(rad) to +1(rad). To use the CORDIC algorithm over the entire 2π range the inputs 
need to be manipulated to fit in the –1 to +1 rad. range. This is handled by the pre-
processor. The post-processor corrects this and places the CORDIC core’s results in the 
correct quadrant. It also contains logic to correct the P-factor. 

2.2 CORDIC 

The CORDIC core is the heart of the CORDIC Processor Core. It performs the actual 
CORDIC algorithm. All iterations are performed in parallel, using a pipelined structure. 
Because of the pipelined structure the core can perform a CORDIC transformation each 
clock cycle. Thus ensuring the highest throughput possible. 

 

CORDIC Processor (CorProc) 

CORDIC 

CordicPipe

pre-processor post-processor 
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2.3 CORDIC Pipeline 

Each pipe or iteration step is performed by the CordicPipe core. It contains the atan table 
for each iteration and the logic needed to manipulate the X, Y and Z values. 
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3  
Polar to Rectangular 

Conversion 

Only CORDIC and CordicPipe are coded so far. 

 

 

Coming soon. 
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4  
Sine and Cosine 

calculations 

Sine and Cosine can be calculated using the first CORDIC scheme which calculates: 

[ ] ( ) ( )( ) ( ) ( )( )[ ]0,sincos,sincos,, iiiiiiiijjj ZXZYPZYZXPZYX +−=  

 

By using the following values as inputs 

60725.0
6467.1
11 ≈==

P
X i  

0=iY  

θ=iZ  

the core calculates: 

[ ] [ ]0,sin,cos,, θθ=jjj ZYX  

 

The input Z takes values from –180degrees to +180 degrees where: 

0x8000 = –180degrees 

0xEFFF = +80degrees 

But the core only converges in the range –90degrees to +90degrees. 

 

The other inputs and the outputs are all in the range of –1 to +1. The congregate constant 
P represented in this format results in: 

)(4)(19898215 hexDBAdecPXi ==•=  
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Example: 
Calculate sine and cosine of 30degrees. 

First the angle has to be calculated: 

)(1555)(546130
360
2deg30

360
2deg1

2deg360

16

16

16

hexdec =≈•≡

≡

≡

 

 

The core calculates the following sine and cosine values for Zi=5461: 

Sin : 16380(dec) = 3FFC(hex) 

Cos : 28381(dec) = 6EDD(hex) 

The outputs represent values in the –1 to +1 range. The results can be derived as follows: 

4999.016380
2

0.116380

0.12

15

15

=•≡

≡
 

8661.028381
2

0.128381

0.12

15

15

=•≡

≡
 

Whereas the result should have been 0.5 and 0.8660. 

 

 0 deg 30 deg 45 deg 60 deg 90 deg 
Sin  0x01CC 0x3FFC 0x5A82 0x6EDC 0x8000 
Cos 0x8000 0x6EDD 0x5A83 0x4000 0x01CC 
Sin 0.01403 0.49998 0.70709 0.86609 1.00000 
Cos 1.00000 0.86612 0.70712 0.50000 0.01403 

Table 1: Sin/Cos outputs for some common angles 

Although the core is very accurate small errors can be introduced by the algorithm (see 
example and results table). This should be only a problem when using the core over the 
entire output range, because the difference between +1 (0x7FFF) and –1 (0x8000) is only 
1bit. 
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4.1 Core structure 

 

4.2 IO Ports 

Port Width Direction Description 
CLK 1 Input System Clock 
ENA 1 Input Clock enable signal 
Ain 16 Input Angel input 
Sin 16 Output Sine output 
Cos 16 Output Cosine output 

Table 2: List of IO Ports for Sine/Cosine CORDIC Core 

 

5.3 Synthesis Results 

Vendor Family Device Resource usage Max. Clock speed 
Xilinx Spartan-II XC2S100-6 387slices 116MHz 

Table 3: Synthesis results for Rectangular to Polar CORDIC Core 

 

 

p2r_cordicpipe.vhd

p2r_cordic.vhd 

sc_corproc.vhd 



OpenCores CORDIC Core Specifications 12/18/2001 

www.opencores.org Rev 0.4 Preliminary 12 of 13 
 

5  
Rectangular to Polar  

Conversion 

The rectangular to polar coordinate processor is built around the second CORDIC scheme 
which calculates: 

[ ] ( )[ ]aaPZYX jjj arctan,0,1,, 2+=  

 

It takes two 16bit signed words as inputs (Xin, Yin), which are the rectangular 
coordinates of a point in a 2-dimensional space. The core returns the equivalent Polar 
coordinates where Rout is the radius and  Aout the angle or θ . 

5.1 Core structure 

 

r2p_cordicpipe.vhd

r2p_cordic.vhd 

r2p_corproc.vhd 

r2p_pre.vhd r2p_post.vhd 
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5.2 IO Ports 

Port Width Direction Description 
CLK 1 Input System Clock 
ENA 1 Input Clock enable signal 
Xin 16 Input X-coordinate input. Signed value 
Yin 16 Input Y-coordinate input. Signed value 
Rout 20 Output Radius output. Unsigned value. 
Aout 20 Output Angle (θ) output. Singed/Unsigned value. 

Table 4: List of IO Ports for Rectangular to Polar CORDIC Core 

 

The outputs are in a fractional format. The upper 16bits represent the decimal value and 
the lower 4bits represent the fractional value. 

The angle output can be used signed and unsigned, because it represents a circle; a -180 
degree angle equals a +180 degrees angle, and a –45 degrees angle equals a +315 degrees 
angle. 

 

5.3 Synthesis Results 

The table below shows some synthesis results using a pipeline of 15 stages. 

Vendor Family Device Resource usage Max. Clock speed 
Altera ACEX EP1K50-1 2190lcells 68MHz 
Xilinx Spartan-II XC2S100-6 704slices 93MHz 

Table 5: Synthesis results for Rectangular to Polar CORDIC Core 

 

 

 


