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Felix from Interlaken

1. The front-page image depicts the city of Interlaken located in Switzerland. The name
Interlaken originates from inter = ”in between” and laken = ”lakes” which originates from
the fact that the city is located in between two lakes, namely lake Brienz and lake Thun.

(image source: [1])
The title also has a double meaning, ”Felix from Interlaken” could refer to a Swiss person
named Felix born in Interlaken, But in the context of this project it refers to the project

assignment, where a new implementation was developed which implemented the
Interlaken protocol on the FELIX system (explained in more detail in this document.)
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Summary

Within this project, research has been done on how the Interlaken protocol can be imple-
mented on the FELIX system. The FELIX system is the data acquisition system from the
ATLAS detector, one of the experiments held at Cern [3]. A new version of the FELIX
system is currently in development. In the next iteration of the project, a suitable replace-
ment for the currently used GBT protocol [5] is needed. A possible candidate to replace
this protocol is the Interlaken protocol [1]. From previous research, a proof of concept
implementation was realized. This implementation still needed to be verified however, to
make sure it was according to the protocol definition. This verification was done, and a new
version of the Interlaken implementation was made. This new implementation was then
implemented on the FELIX systems hardware. After this implementation was tested, it was
concluded that the implementation was successful. This means that the Interlaken is proven
to be a good candidate for the next iteration of the FELIX project. As a next step, a design
was made that extended the number of transmission channels from one to four channels.
In a future version of this project, it is recommended that this design is implemented. This
will further optimize the implementation and raise the possible transmission speed. Another
optimization method that was researched is flow control, this is also a suitable addition to
be made in future versions of the design.

Samenvatting

In dit project is er onderzoek gedaan naar hoe het Interlaken protocol gëımplementeerd kan
worden op het FELIX systeem, Het FELIX project gaat over het data acquisitie systeem
van de detector van het ATLAS experiment in CERN [3]. Een nieuwe versie van het FELIX
systeem is momenteel in ontwikkeling. In de nieuwe versie van het FELIX systeem is er een
vervanging van het (momenteel gebruikte) GBT protocol [5] nodig. In eerder uitgevoerd
onderzoek, is naar voren gekomen dat het Interlaken protocol [1] een goede kandidaat
zou kunnen zijn om als vervanging voor GBT te gebruiken. Hieruit is ook een concept
implementatie voortgekomen [6]. Deze implementatie moest echter nog wel geverifieerd
worden, om zeker te weten dat het zich gedroeg volgens de opgestelde protocol definitie
van Interlaken. Deze verificatie is uitgevoerd, en hieruit is een nieuwe versie van de Interlaken
implementatie ontstaan. Deze implementatie is vervolgens gëımplementeerd op de FELIX
hardware. Nadat deze implementatie uitvoerig was getest, was er geconcludeerd dat de
Interlaken implementatie succesvol gerealiseerd was op het FELIX systeem. Dit bevestigd
dat het Interlaken protocol een goede kandidaat is om te gebruiken tijdens de ontwikkeling
van het nieuwe FELIX systeem. Als een volgende stap, is er een ontwerp gemaakt dat
het aantal transmissiekanalen van een naar vier uitbreidde. In een volgende versie van dit
project, kan dit ontwerp worden gëımplementeerd om de Interlaken implementatie verder te
optimaliseren. Een andere mogelijke uitbreiding van het Interlaken protocol dat onderzocht
is, is de toevoeging van Flow control wat de mogelijkheid toevoegt om de transmissielijnen
te reguleren. Dit is ook een goed uitbreiding die gedaan kan worden in volgende versies van
dit project.
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1 Introduction

This document describes the research done for a graduating assignment at Nikhef in Am-
sterdam. Nikhef is the national institute for subatomic physics, where research is done on
the subatomic particles in our universe, their underlying power and the structures of space
and time. A big part of the research done at Nikhef is linked to the larger experiments
held at Cern [2] and the department Electronics Technology (ET) at Nikhef develops elec-
tronics and firmware for these experiments. One of the experiments at Cern is the ATLAS
experiment [3] where a large detector is used to research subatomic particles (see figure 1).

Figure 1: Arial view of Cern, and the location of the ATLAS detector. [2]

This experiment generates a huge amount of data, and this data needs to be collected
and processed. From this data acquisition problem, the Atlas Front-End LInk eXchange
(FELIX) project [4] originated. In the FELIX project a generic solution is being developed
for data acquisition within the Atlas detector. FELIX is a server PC where the focus is on
high speed data transfer. A FELIX (FLX) card (abbreviated to FLX to distinguish it from
the host PC name) with a PCI-express interface (a parallel communication bus) and several
uniquely developed communication protocols, communicates with the host PC. Applications
on the PC handle and forward the data over the network.

The first version of FELIX is currently being expanded and in the process of being taken
into use. FELIX (the server PC) has a PCI-express card and a number of optic links. These
optic links communicate at high speeds (4.8Gbps) with the electronic components in the
Atlas detector. The data that follows from this communication is sent to the PCI-express
card and sent to the memory in the PC using DMA with a speed of 100Gbps. From the
PC the data will be sent further, over a generic high performance computer network.

In the next iteration of FELIX, a more advanced, more efficient and faster protocol
than the currently implemented protocol (GBT [5], 4.8Gb/s) is needed. From previous
research [6] it was concluded that the Interlaken protocol might be a good candidate
for this next iteration of FELIX. Before this protocol can be implemented on FELIX, the
current proof of concept implementation (Core1990, made during previous research) needs
to be verified to make sure it functions according to the Interlaken protocol definition.
This verification will result in a new version of the implementation (Core1990 V2.0) that is
verified as the Interlaken protocol and can be implemented on the FELIX hardware. In order
to ensure a successful implementation, research must be done on how to make the Interlaken
implementation compatible with the firmware on the FLX-card. This research can be
summarized as the answer to the following research question: How can an implementation
of the Interlaken protocol be realized on FELIX? In order to answer this research question,

Rev 1.0 Leonie Verwoert 11
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the current state of the FELIX hardware and firmware must be analyzed, to find out what is
needed to implement the new (Core1990 V2.0) Interlaken implementation on the FLX-card.

1.1 Thesis outline

This thesis consists of theoretical and practical research. The theory behind the project
will be explained first, and afterwards the theoretical knowledge is used to develop the
needed implementation(s). The ATLAS and FELIX projects will be briefly explained in
Chapter 2 and 3 where it will be explained that the PPP (point-to-point) protocol used
in the current implementation of FELIX, can not keep up with the rising transfer speed
requirements. Because of this, the possibility of implementing a different protocol on a
FLX-card will be researched. The Interlaken protocol [1] has proved to be able to handle
the (in future) necessary transfer rates this research is described in Chapter 5. Because
this protocol requires a lot of preliminary knowledge, it’s functionality is described in detail
in Chapter 4. Once a clear understanding of the Interlaken protocol has been established,
the current state of the FELIX firmware will be researched and the Wupper PCI-express
wrapper will be explained in detail in Chapter 6. Wupper will be needed to transfer the data
collected by Interlaken into memory of the FELIX host-PC. Once Wupper and Interlaken
are both researched, a (firmware) application can be developed to establish a connection
between Wupper and Interlaken. Once this implementation is completed, further research
can be done on possible optimization methods for the implementation. This is described
in Chapter 7.

The implementation of Interlaken developed in [6], might not meet the requirements
set in the Interlaken protocol definition as shown in [1]. This results in an implementation
of an ”unknown” protocol, very similar to Interlaken, but not usable as such. In order
to implement Interlaken on FELIX, the implementation has to be verified and tested in
combination with a commercial implementation of Interlaken, to make sure it functions
according to the definition. This results in an updated implementation which is described in
Chapter 10.1. Once this implementation is completed and verified, the application firmware
which connects Wupper to Interlaken can be developed. This is described in Chapter 10.2.
Once this application is finished, the possible optimization methods researched in Chapter
7 can added to the Interlaken implementation (Core1990 V3.0.) this process is described
in Chapter 10.3.

After the testing is completed the results will be discussed in Chapter 11, and Chapter 12
will present the conclusions made from this research project. Finally, some recomendations
for future work will be made in Chapter 13.

12 Leonie Verwoert Rev 1.0
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2 ATLAS

ATLAS (A Toroidal LHC ApparatuS) is one of the two general purpose detectors at the
Large Hadron Collider (LHC see [7]) at Cern. It’s experiments include the search for the
Higgs boson and the research on the particles that make up dark matter. Beams of particles
from the LHC collide at the centre of the ATLAS detector creating collision debris in the
form of new particles which fly out in every direction. Around the collision point, six differ-
ent detection subsystems arranged in layers record the paths, momentum and energy of the
particles, allowing immediate identification of the particles. A giant magnet system bends
the paths of the charged particles so their properties can be analyzed. These interactions
in the ATLAS detectors create an enormous flow of data. Complex data acquisition and
computing systems are then used to analyze the recorded collision events. [8]

Figure 2: The ATLAS detector [9]
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3 FELIX

One of the projects on data acquisition systems is the FELIX (FrontEnd LInk eXchange)
project. It provides a detector-independent readout architecture which provides access
between the detector data acquisition systems, the trigger electronics, and a connected
network where the data is sent to the designated endpoints (see Figure 3.)

On one side of the Felix system, the Gigabit Transceiver (GBT) architecture along with
the GBT protocol developed by Cern [5] provides a high speed (4.8Gbps) radiation-hard
optic link for data transmissions from the detector electronics. The GBT protocol sets up
several data links (so called e-links) which are time multiplexed over the same wire.

Via a Field Programmable Gate Array (FPGA) on the PCIe card (FLX-card) the data
is transferred to the host PC memory. From there the data can be transferred further over
the network.

The connectivity of the FELIX system is illustrated in Figure 3 The so called ”Com-
mercial off the shelf” (COTS) network switches are used to send (detector and fromd-end)
control data and event readout data to and from the system. The Timing, Trigger and
Control system (TTC) sends it’s information to FELIX and this will be forwarded to the
front-end electronics via the optical links.

Figure 3: Overview of the connectivity of the FELIX system. [10]
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The FELIX system itself (see Figure 4) is implemented with server PCs where each
host PC has at least one FLX-card (a type of PCI-express card.) The FLX-card contains
an FPGA, on which an interface is created, for the links connected to detector and trigger
electronics. In the current technology these links use the GBT protocol [5] with a throughput
of 4.8Gbps, and about 16-20 of these links are used per FPGA/card.

A PCIe engine (called Wupper) is implemented on the FPGA which provides the us-
age of Direct Memory Access (DMA) to access the memory of the Host PC. The FELIX
(software) application running on the host PC, manages the data-transfers and the net-
work connections. The data received from the FPGA is routed to one or more network
endpoints. Data routing and the connection to the network switch is implemented with a
software pipeline running on the FELIX host PC. [11]

Figure 4: Block diagram of the FELIX system.

The FLX-card hardware (FLX-709) is shown in Figure 5. It consists of a Xilinx VC-709
board with a Virtex-7 X690T FPGA, a PCIe Gen3 card and 4 SFP+ (optic link) connectors
[12]. This FLX-card is the same hardware that will be used during for implementation and
tests within this project.

Figure 5: FELIX FLX-709 hardware. [12]
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4 Interlaken

The main goal of this project, is to implement the Interlaken protocol on FELIX hardware.
This is because previous research [6] has shown that Interlaken can be a suitable candidate
to use on the FELIX system, replacing the GBT protocol.

Interlaken is a point-to-point protocol, that enables the design of a narrow, high-speed
packet interface capable of parallel data transfers. It uses a control word structure to
schedule packets and transmit diagnostics. The fundamental structures that define the
Interlaken protocol are the data transmission format and the meta frame. The data is
transmitted in so called bursts where the payload data can be divided along several bursts.
Preceding and following a data burst, a control word is placed. These control words
have multiple uses, such as the signaling of the start and end of the packet and error
checking. Each burst is also associated with a transmission channel, which can be a physical
networking port or a logically connected stream of data. When multiple data channels are
in use, the data and control words are sent across all channels sequentially in groups of 8
Bytes, beginning at lane 0, ending at lane n, and repeating this process for the next data
block (see Figure 6) When only one lane is used, the data is sent in a serial matter. [1]

Figure 6: Interlaken data/control word transport over multiple data channels.

The data is transmitted in one or more bursts of configurable burst size. The meta frame
format (which encapsulates the bursts) is defined to allow support on a parallel (SerDes)
infrastructure, It includes four (unique to the meta frames) control words which can provide
lane alignment, scrambler initialization, clock compensation and diagnostic functions.

The Interlaken protocol functions on the bottom two layers of the OSI model, the
Physical and Data Link layer (see [13] for more information about the OSI model.) On
these layers a complete Interlaken frame will be created. A functional block diagram of the
Interlaken protocol is shown in Figure 7. The incoming data (top left) will be packed into
bursts, and a CRC-24 check will be done. The output value of this check will be present
in the control word following the burst. The framed bursts will be sent to the framing
meta block, where the meta frames are created and a CRC-32 check is performed. This
block adds 4 meta frame control words (which will be described in more detail later) and
one of these control words will contain a CRC-32 output value. The meta frames will then
be scrambled, except for two meta frame control word types that will never be scrambled
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Figure 7: Interlaken block diagram.

(the synchronization meta control word and the meta control word describing the current
scrambler state.) After the scrambling, the data is encoded and sent to the transceiver.
The transceiver transforms the data to an optical data signal, which can be sent across the
network. When this data is directly looped back to the transceiver RX-side the process is
reversed, until only the original data remains at data out.

Each part of the Interlaken protocol will be explained further in the next sections.

4.1 Word formats

The Interlaken protocol functions by alternating between data and control words. In the
first framing process (Burst Framing in Figure 7) this can either be a Burst/Idle control
word, or a data word. The main difference in formatting of the data word and Burst/Idle
word are bits [65-64], as shown in Figure 8. The header of the data word is ”01” and the
header of control words is ”10”. Both have a preliminary inversion bit (bit 66.) Within the
control words category, the formatting of these words differs. This also depends on which
layer the word is found. In the burst layer, the Interlaken words can only be data words,
Burst control words or Idle words. In the second layer, the meta-framing layer (see Figure 7)
a new type of control words is introduced; the so called meta frame control words. These
control words are shown side by side in Figure 9 for clarity.

Figure 8: Burst/Idle control word format and Framing layer meta-frame control word format.

The header of these meta frame control words is the same as the Burst/Idle control
words (bit [65-64] are ”10” respectively) but bit [63] is set to ’0’ , signaling a meta framing
layer control word, and to ’1’ for a Burst/Idle control word.
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Figure 9: Burst/Idle control word format and Data Word format. [1]
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4.1.1 Burst/Idle control word format

The different fields of the Burst control word (first layer) are explained in more detail in
Table 1.

Table 1: Idle/Burst control word format [1]

Bits Description Function

66 Inversion This bit can be inverted to limit the running
disparity. ’1’ = Inverted, ’0’ = not inverted.

65:64 Framing 64/67b mechanism to distinguish between control
and data words. ”01’ = data, ”10” = control.

63 Control Distinguish between Idle/Burst control words
and Meta-frame control words. ’1’= Idle/Burst
and ’0’ = meta framing control word.

62 Type If set to ’1’, the channel number and SOP fields are
valid, and a data burst follows this control word.
If set to ’0’, an Idle control word follows.

61 SOP Start of packet. If set to ’1’, the data burst following
this control word represents the start of a data packet.
If set to ’0’, it is either a middle or end packet.

60:57 EOP Format This field to the data burst preceding this control word.
as follows: ‘1xxx’ - End-of-Packet, with bits[59:57]
defining the number of valid bytes in the last 8-byte
word in the burst. Bits[59:57] are encoded such that
‘000’ means 8 bytes valid, ‘001’ means 1 byte valid,
etc., with ‘111’ meaning 7 bytes valid; the valid bytes
start with bit position [63:56] ‘0000’ - no End-of-Packet,
no ERR ‘0001’ - Error and End-of-Packet

56 Reset Calendar 1 If set to ’1’, the in band flow control status represents
the beginning of the channel calendar.

55:40 In-Band Flow control 1 The 1-bit flow control status for the 16 callendar entries.
If set to ’1’. the channel or channels represented by
the calendar entry is XON, if set to ’0’, XOFF.

39:32 Channel Number 1 The channel associated with the data burst following this
control word; set to all zeroes for Idle Control Words

31:24 Multi-use 1 This field may serve multiple purposes, de-
pending on the application.

23:0 CRC24 A CRC error check that covers the previous data
burst (if any) and this control word.

1: currently not implemented in the Core1990 implementation.
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4.2 Burst structure

The transmitted data is sent over the interface in the form of one or more bursts. The
bursts consist of data words enclosed in two or more control words. These control words
are used to signal a start of packet, end of packet and several other functionalities. The
Burst control word will then indicate a start of packet (SOP, bit 61) and data will follow.
When the last data word has been sent, another control word will be sent containing the
end of packet (EOP, bit 60-57) signal. When there is no new data available, Idle control
words will be send (Type = ’0’, bit 62.) This is because the control information must still
be sent to the receiver, even with no data. The size of the data bursts can be defined with
the following parameters:

• BurstMax: The maximum data burst size (multiples of 64 bytes.)
• BurstShort: The minimum data burst size (min of 32 bytes, with 8-byte increments.)

In typical operation, the interface will send a burst of data (of Burstmax length), followed
by a control word. Bursts are transmitted on each specified channel, until the data packet is
completely transferred, at which point a new transfer can begin. Because of the channelized
interface, the data end of packet control word, may occur several times on several channels
in a short amount of time. This puts a significant timing challenge on the transmitter and
receiver (to handle all of the data processing between the control words.) Because of this,
a minimum data burst size BurstShort is defined. When the burst-size is smaller than the
defined minimum value, additional Idle words will be added (see Figure 10.) [1]

Figure 10: Filling of the bursts to guaranteed BurstShort size. [1]
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4.3 Cyclic Redundancy Check (CRC24)

When data is sent across a network, there is always a possibility for errors to arise. The
CRC check is used to detect these errors in a data packet. CRC is commonly used, as it
is a powerful but easily implementable solution. The input of a CRC consists of a binary
stream of data. This stream is divided by another binary number called the polynomial.
The ’rest’ (remaining value) of this division is called the checksum which is appended to the
transmitted message. On the RX side, the CRC is also performed, and the same polynomial
is used as on the transmitter side. The CRC checksum (from the receiver side) is already
included in the received data. If the result of the division of these two checksums is zero,
the transmission was successful and the data was not corrupted.

Within the framing burst block of Interlaken, a CRC-24 check is performed. The
polynomial of the CRC-24 check is shown in Equation 1 [1].

X24 +X21 +X20 +X17 +X15 +X11 +X9 +X8 +X6 +X5 +X + 1 (1)

Each coefficient represents a ’1’ in the 24-bits long polynomial. The value of the poly-
nomial is calculated using Equation 1, resulting in a binary value that is transformed to a
hexadecimal value for convenience (see Equation 2.) The resulting CRC-24 polynomial is
1328B63.

224 223222221220 219218217216 215214213212 2112102928 27262524 23222120

1 0011 0010 1000 1011 0110 0011
1 3 2 8 B 6 3

(2)

The EOP Format field of the Burst Control Word (see Figure 8) identifies how many
bytes of the last data word of the burst are valid. Bytes that are invalid are discarded by
the receiver. Data and control word integrity is ensured by the CRC24. The CRC24 is
calculated against all data in the burst, and all the fields in the control word. The data
is sent into the CRC24 function most significant bit(MSB), in order of transmission. The
CRC-checksum is generated by resetting the polynomial to all ones, then the data stream
is sent to through the polynomial function and finally inverted and transmitted within the
control word. [1]
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4.4 Meta framing

The meta framing block introduces four new meta frame control word types. These control
words each have a different format and functionality. Each lane has a set of 4 of these control
words, which travel along with the payload data (burst data and control information.) The
structure of the meta frame is shown in Figure 11. As mentioned before, the control words
can be distinguisehd from data words by checking ths framing bits [65-64] (see Figure 8
and 8) A meta-frame control word can be distinguished from the burst/Idle control words
with the control bit [63]. If this bit is set to ’0’ the current control word is a meta-frame
control word, (if it is set to ’1’ it is a Burst/Idle control word.)

Figure 11: meta frame structure.

The four types of meta-frame control words are shown in Figure 11. The four meta-
frame control words can be distinguished with the Block type bits [62-58] (see Figure 8)
which are unique to the meta-frame control words. These bits determine which control
word is sent, and this determined the format (bits [57-0]) of the control word. An overview
of the different meta-frame control words and their matching block-type bits are shown in
Table 2. These will now be explained in more detail.

Meta Frame Control Word Block Type (positive disparity)

Synchronization 011110

Scrambler State 001010

Skip 000111

Diagnostic 011001

Table 2: Meta frame block types
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4.4.1 Synchronization and Scrambler-state words

To avoid error multiplication, Interlaken uses an independent synchronous scrambler on each
transmission channel of the interface. With every new meta frame, the scrambler state is
sent to the receiver, to allow the receiver to de-scramble the data that follows. In order
to allow for the correct decoding of the received data, the receiver must be synchronized
with the state of the scrambler polynomial on the moment when the currently received data
was scrambled. This synchronization takes place via a unique 64-bit Synchronization word,
and the Scrambler-state word that are transmitted consecutively as part of the meta-frame.
The format of the Synchronization word is shown in Figure 12 and the Scrambler State
word format is shown in Figure 13.

Figure 12: Synchronization word format.

Figure 13: Scrambler State word format.

The state diagram of the scrambler Synchronization is shown in Appendix C. When in
the reset state, each lane searches for the unique pattern of the Synchronization word. If
the Synchronization word is found, the receiver counts until a meta-frame length amount
of data has passed, and looks if another Synchronization word is found. When four con-
secutive Synchronization words are found, the scrambler will achieve lock, and advance it’s
state with each newly received data or control word (with the exception of the scrambler
state and synchronization words.) Once synchronization is achieved,the interface uses the
recovered (current) value of the scrambler polynomial from the scrambler-state meta-frame
control word, to seed the de-scrambler and de-scramble the data. As mentioned before, the
scrambler-state word and the synchronization (meta-frame control) word types are never
scrambled. All of the other (data and control) words are scrambled from bits [63:0], the
framing bits[66:64] are never scrambled, in order to still be able to differentiate the data
words and control words.
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4.4.2 Skip word(s)

The purpose of a skip word is to provide clock compensation in case a repeater is added
between the TX and RX side. The format of a Skip Word is shown in Figure 14.

Figure 14: Skip word format.

If there is a slight clock difference on either side of the receiver, synchronization may
not be achieved. To account for this several skip words can be added to the receiver or
transmitter, depending on which sides clock is slower. A single skip word is a required
part of the meta-frame format, but more Skip Words can be added at any point in the
meta-frame, except between Diagnostic,Synchronization and Scrambler State words. It is
required by the receiving end, to correctly identify the Skip Words and remove them from
the data. An example situation is shown in figure 15.

Figure 15: Example implementation of skip words for clock compensation. [1]
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If there is a repeater between the original transmitter and final receiver, the repeater
may compensate for a slower transit clock by silently discarding the skip word but it must
keep the (predefined) meta-frame-length. This is achieved by adding payload data A and B
together, and adding an extra payload data word from the next meta-frame to the current
frame (see Figure 15.) An important thing to note is that by using this method, eventually
the data payload of the next meta-frame will be zero, and the Synchronization, Scrambler
State and Diagnostic words will have to be shifted into the prior meta-frame which will
override their previous value. If there’s no new meta-frame payload data available, the
action in Figure 15 cannot be performed and the meta-frame length cannot be guaranteed.
There is no mention of this use case in the protocol definition, instead its implementation
details are left to the user. If the situation in Figure 15 is reversed, and CL B is faster than
CLK A, the reverse approach is required, and an additional skip word is added, and the last
payload data word is transferred into the next meta-frame. eventually, this process requires
that a Diagnostic word is added, when this is the case, the status message should remain
the same as the previous frame. [1]

4.4.3 Diagnostic word

The diagnostic word is another meta-frame control word type. It is identified by the Block
Type value 011001 (see Figure 9 and the meta-frame layer control word format in Figure
8.)

Figure 16: Diagnostic word format.

The diagnostic words have two important functions, a lane Status Message and a per-
lane error detection (CRC32.) The Diagnostic word format is shown in Figure 16. The
[33:32] bit status message provides a per-lane status message, where bit [33] represents
the health of the current lane, and bit [32] represents the health of the entire interface. A
’1’ written to these bits represents a healthy condition, and a ’0’ indicates a problem. The
CRC32 is provided as a diagnostic tool on a per-lane basis, each lane provides it’s own error
CRC32 check. The crc32 value is stored in bits [31:0] of the diagnostic word.

4.4.4 CRC32-calculation

The CRC32 is calculated over all of the words transmitted within the meta-frame (including
the diagnostic word itself,) before scrambling and inversion. It is only calculated over bits
[63:0], excluding the framing bits [66:64]. The fields over which the CRC32 is calculated
are shown in Figure 17.

While the Synchronization and Scrambler State words are not included in the scrambling
process, they are included in the CRC32 calculation. However, the 58-bit scrambler state of
the Scrambler-State meta-frame control word, is treated as all zeros during the calculation
of the CRC32 value. The CRC32 polynomial is defined as in Equation 3.

X32 +X28 +X27 +X26 +X25 +X23 +X22 +X20 +X19+

X18 +X14 +X13 +X11 +X10 +X9 +X8 +X6 + 1
(3)
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Figure 17: CRC32 calculation fields.

It’s calculation is shown in Equation 4 and results in the hexadecimal value 11EDC6F41.

1 0001 1110 1101 1100 0110 1111 0100 0001
1 1 E D C 6 F 4 1

(4)

The CRC32 value calculated at the transmitter, is sent to the receiver in the Diagnostic
(meta-frame) control word and this compared and checked with the CRC32 calculation
done at the receiver side. When the sent data and received data does not match, an error
will be raised.

4.5 Scrambler

The scrambler scrambles the incoming data bit by bit. Every bit is XOR-ed with the current
scrambler state, which is calculated via the scrambler polynomial which is shown in Equation
5. The initial scrambler state (based on the polynomial) is activated after a reset, and the
transmitter never resets it again. Instead, the current scrambler state advances after each
incoming word, and the current scrambler state is added to the (meta-frame) control word
and sent to the receiver.

X58 +X39 + 1 (5)

The scrambler advances (resulting in a scrambler state change) while the interface is in
operation, except for when Synchronization or Scrambler state words are received at its
input. These words are never scrambled because in order to de-scramble the data on the
receiver side, the receiver must be synchronized with the state of the scrambler polynomial
of when the received data was scrambled. This is done with the synchronization and
Scrambler state words, hence why they are not scrambled.

4.6 64/67 Encoding

An encoding and scrambling method is needed in serial interfaces, to assign word boundaries,
allow for clock recovery, and to maintain DC balance. Interlaken uses 64/67 encoding, which
is based off of the 64B/66B used for the IEEE 802.3ae 10 Gigabit Ethernet specification.
The 64/66B encoding solves the word boundary problem by combining a scrambled 64-bit
payload with two extra bits [65:66] to differentiate between data words (”01”) and control
words (”10”.) One of the weaknesses of this implementation however, is that the DC
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baseline can start to ”wander” after a large number of only data words (for example) are
sent. Since this would mean a continuous ”01” on bits [66:65] which could offset the
DC baseline on the lane. To solve this problem, Interlaken introduces an extra bit [67]
which acts as a disparity bit, which is either positive (’0’) or negative (’1’) depending on
the number of ones and zeroes in the preceding words. Each lane maintains a count of
the disparity (where a 0 decrements the count and a 1 increments the count.) Before
transmission the disparity is calculated and if it is to high, the entire word [65:0] is inverted
and a ’1’ is added to bit [67]. If the word remains un-inverted, bit [66] will become’1’.
At the receiver side, if the inversion bit [66] is 0, the receiver process the word without
modification. if it is 1 the receiver must un-invert the word before it is processed. [1]

4.7 Commercially available implementations

Since there is already an implementation of Interlaken (core1990) available that is vendor-
independent and fully customisable, it would not make sense to switch to a commercially
developed implementation. However, these commercially available ip-cores might be be-
come useful if the implementation needs to be tested further, or to gain inspiration for
possible future extensions. Several Interlaken ip-cores were found, two of which will now
be briefly explained.

4.7.1 Xilinx Integrated Interlaken

The Xilinx Intergrated Interlaken LogiCore IP is a chip-to -chip interconnect protocol which
allows for 1-12 consecutive lanes to be used to build an Interlaken Interface. It is designed to
be compliant with the Interlaken protocol definition as described in [1]. The core instantiates
an Interlaken integrated IP core, which is a single core in which all the individual Interlaken
blocks (as mentioned in the previous paragraphs and shown in Figure 7) are embedded. The
core can connect to serial transceivers at a rate of up to 25.78125 Gb/s on UltraScale+
devices. The integrated IP core handles all of the protocol related functions regarding
communication with other connected devices. All of the handshaking, synchronizing and
error checking is handled by the core itself. Packet data can be provided through the Local
Bus (LBUS) TX interface and received via the LBUS RX interface. The LBUS is not
mentioned in the Interlaken definition. It is used by the Xilinx core to allow parallel bus
transfers between devices, by implementing multiple data channels. Flow control is also
implemented on all of the data channels. The RX flow control information (send on bit
40-55 of the idle/burst control words) will be processed by a scheduler algorithm which will
manage the data flow on the TX-side of the system. If advanced scheduling algorithms
are needed, out-band flow control should be used, this is not implemented in the Xilinx
core. [14]

4.7.2 Intel Interlaken IP Core

The Intel Interlaken ip-core is an Interlaken implementation developed by Intel, intended
to be used with Intel Stratix 10 devices [15] . It is compliant with the Interlaken protocol
definition (see [1]) and supports 4,6 and 12 serial lanes to be used together to allow for up
to 300 Gbps bandwidth. It supports per-lane data rates of 6.25, 10.3125, 12,5 and 25,3
Gbps to be used with their high speed transceivers. It also supports optional in-band or
out-of-band flow-control.
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5 Core1990

Previous research has been done, on point-to-point protocols, to see if a protocol could be
found which met the predicted specifications needed in future projects. From this research
the Interlaken protocol was concluded to be a suitable candidate to be used in future
projects [6].

In order to proof that Interlaken could be implemented for the intended use case, an
implementation was developed called Core1990. The proof of concept implementation was
realized on a Xilinx VC707 [16] evaluation board. The implementation was successfully
tested on a single board by connecting the TX and RX connections and creating a loop-
back, and with two VC707 boards communication with each other. The implementation
was then published as an open source project [17]. A complete overview of the architecture
is shown in Figure 18 and shows all of the different components needed for Interlaken. The
complete Core1990 design is described in [6].

Figure 18: Complete core1990 architecture [6]
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6 Wupper

Wupper is one of the framework components of the FELIX card (shown as PCIe Engine in
the FELIX card block in Figure 19.) It provides a Direct Memory Access (DMA) interface
for the Xilinx Virtex-7 PCIe Gen3 hardware present on FELIX. The data is streamed from
the FPGA (present on the FELIX card) to the host PC memory, where the packet processing
and routing is done. In order to sustain the high data rates, a high-bandwidth interface is
required between the FELIX card and the host PC. As a solution to this problem, Wupper
(a custom PCIe engine) was developed. In figure 19 a functional block diagram of Wupper
is shown. [18]

Figure 19: Functional block diagram of Wupper (PCIe engine.) [18]

The main functionality of Wupper is to handle data transfers from a user interface
(such as a FIFO) to and from the host PC memory. The user application side of the FPGA
design can read or write to the FIFO, and Wupper will handle the transfers to and from the
memory on the host PC according to the address specified in the DMA descriptors. The
Wupper core can also control and monitor the registers inside the FPGA and surrounding
electronics via a register map. (The current Wupper register map is included in Appendix
H.) The Wupper core communicates to the host PC via the Wupper driver and is controlled
by a set of tools (so called Wupper tools.) [18]
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The Wupper core is present on the FPGA in the FELIX board, and is developed in the
language VHDL. It uses Direct Memory Access (DMA) and the PCI express (PCIe) lanes
to move data bidirectionally to and from the host PC memory (see Figure 19). The Xilinx
PCIe core [19] is used to transfer the data from DMA over the PCIe hardware. It uses
the AXI4-Stream Interface [20] to communicate, which does not require address lines. The
address (and other information) are inserted in the headers of the PCIe packages instead.

The use of DMA omits CPU intervention. The PC allocates a part of the available
memory, and DMA is free to take control over it. The DMA control core, functions
via descriptors. It will collect information such as the start and end address from these
descriptors and write the status of the operation in a status register (via another descriptor.)
Within the Wupper core, the DMA is divided into two parts: DMA Control, and DMA
Read Write (see Figure 19).DMA Control contains a register map with addresses to the
descriptors, status registers and external registers that can be read back through PCIe.
DMA Read Write contains the processes which parse the DMA descriptors and transfer the
data to and from the FIFO to the AXI stream bus. [18]

The main functionalities of the Wupper core will be explained further in the next para-
graphs.

6.1 DMA control

The DMA control module provides a register map, which is divided into three areas: BAR0
(BAR stands for Base Address Region), BAR1, and BAR2. BAR0 contains the DMA related
registers such as the DMA descriptors. These descriptors specify the addresses, direction
of the transfer, data size and other settings. BAR1 is reserved for the interrupt related
registers. The BAR2 region is dedicated to user applications. The DMA control module
can manage all these regions, as well as respond to certain request types from the PC
(only to IO and memory read/write request types.) The maximum payload data size is set
128 bits (which is the maximum payload that will fit in one 250MHZ clock cycle of the
AXI4-Stream interface. ) The registers can however be written in parts of 32, 64 or 128
bits at the time. [18]

6.2 DMA Read Write

The DMA Read Write module handles the data transfers to and from the FIFOs (according
to the direction specified by the descriptors.) When data is moved into the ToHost FIFO
(Read FIFO), a flag will be asserted which will start the DMA write process. This process
will process the descriptors and create a header with the information obtained. The header
is added to the data when it moves out of the ToHost FIFO. When the direction of data
transfer is reversed, (FromHost) the data (with a header) is read from the Host PC memory.
The header information in the header is parsed by the DMA control and the data is moved
to the FormHost FIFO.

In summary, the DMA read write module contains two important processes, the adding
and removing of the header to the PCIe packages. During the add header process, the
header will be added to the PCIe packages, according to the information read from the
DMA descriptor. If the descriptor is of the type write the payload data is added after the
header. During the remove header process, the header of the received data is checked and
the payload is moved into the FIFO. When the processing of the descriptor is completed, a
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interrupt (of type MSI-X) is fired through the interrupt controller. [18]

6.3 XilinX PCIe

The FPGA that is used on the Xilinx VC-709 board (used by FELIX,) has an integrated
block for PCI Express Gen3 [19]. This block, handles the traffic over the PCIe bus. Within
Wupper, the DMA read/write process can send and receive AXI4 commands over the AXI4-
Stream bus, the PCIe block translates this into differential electric signals, which can travel
over the PCIe bus.

6.4 AXI4-stream Interface

The communication between the Wupper core and Xilinx PCIe core consists of two seperate
bidirectional AXI4 Stream interfaces. The two interfaces are the requester interface, which
is used by the FPGA to issue the requests, and the PC replies, and the completer interface
where the PC takes initiative [18]. A complete overview of the XI4 Streams and their
functions is shown in Table 3.

Bus Name Usage Direction
axis rq Reuester reQuest Interface used for DMA.

FPGA writes to this AXI4
Stream interface and the PC
has to answer.

FPGA to PC

axis rc Requester Completer Interface used for DMA reads,
from the PC memory to the
FPGA. A reply message from
the PC is sent after a DMA
write.

PC to FPGA

axis cq Completer reQuest Interface used to write to the
DMA descriptors (and other
registers.)

PC to FPGA

axis cc Completer Completer Interface used as reply inter-
face for register read and as a
reply header for register write.

FPGA to PC

Table 3: AXI4-Stream streams [18]

6.5 Data transfer modes

The standard data transfer mode is the so called single shot transfer mode. In a single shot
transfer, the DMA ToHost process continuously sends data packets until the end address is
reached, The PC can check the status of the DMA transaction by looking at the desc done
flag and current address. Another possible operation mode is the so called endless DMA.
In this transfer mode, the DMA continuously reads (or writes depending on the specified
action in de descriptor) and when it has arrived at the end address (end address), it wraps
around and starts again from the start address (start address). The endless DMA mode can
be enabled by asserting the wrap around bit. In this mode, another address is needed called
PC read pointer. With this pointer, the PC indicates where it last read out the memory.
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After DMA has ”wrapped around” (started again from the start address) it continues up
until the PC read pointer is reached. The PC read pointer should be updated frequenly, to
avoid the DMA pointer surpassing the PC read pointer (or the other way around when the
direction is set to FromHost), as this would cause the DMA to stop or reduce the transfer
rate.

In order to keep track of whether Wupper is processing an address in front or behind
the PC, the number of wrap-around occurrences are tracked. In the DMA status registers
the even cycle bits display the status of the wrap around cycle. The even pc bit flags
the PC read pointer wraparound and the even dma flags a Wupper wrap-around. The
bits start out as 0, and every wrap-around will toggle the bits. By keeping track of the
wrap-arounds [18]
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7 Optimization methods

When the implementation of Interlaken on the FELIX system is completed, there is still
room for improvements. Within the protocol definition, there are some additional (optional)
features that cam be implemented. If time allows, these optimizations will be added to the
Interlaken protocol implementation.

7.1 Channel Bonding

Channel bonding is used when multiple transceiver channels are used in parallel to achieve
higher transmission rates. The data words that are to be transmitted, are split into several
parts (of a predefined bit length) and these are sent over separate channels. This process
combines the separate communication channels together into one aggregate channel with
larger bandwidth.

Figure 20: Channel bonding visualization.

The channel bonding process is visualized in Figure 20 where the (hexadecimal) data-
word BBBB is split into 4-bit long parts, and transmitted simultaneously across 4 data
channels (20.a). However, if the path between the TX and RX data channels creates various
delays, a situation can occur where the data is misaligned and corruption of the data occurs
because the receiver still expects the data to be aligned and collects the data in the same
way as before. This process is visualized by the circle in Figure 20.b. The misalignment
corrupts the data from BBBB to BCBD. To allow for the correction of these misaligned
channels at the receiver, a lane-synchronization method needs to be implemented. This
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synchronization can then introduce delays (visualized by the Grey gradient blocks in Figure
20.c) between channels without delay, to re-sync them to the delayed channels.

7.1.1 Channel bonding in Interlaken

Within the Interlaken protocol, (see Chapter 4) the transmitted packets are all associated
with a transmission channel (also referred to as a lane.) These channels all provide a serial
stream of data, but for the moment, only one transmission channel is used. All of the data
is transmitted serially over one channel. One of the reasons for only using one channel
was because there was only one SFP (optical) link available on the previous hardware [16].
On the FELIX hardware however, there are 4 optical links available [21]. Optimization can
be very rewarding, because it can improve the consistency of the link speed significantly.
When data traffic increases, the single transmission channel can become congested. This
will result in a slower link speed. If more than one transmission channel is used, the data can
be divided between these channels, and the amount of traffic that the channels (together)
can handle becomes higher.

According to the Interlaken protocol definition, an implementation of channel bonding
is possible within Interlaken. The meta-frame format was especially introduced to allow
for parallel data transmissions. Within the meta-framing process, the synchronization word
can be used to provide lane alignment. In order to do this, all channels must send their
synchronization words simultaneously, and the receiver must measure the skew between
them. When the lanes are misaligned, additional skip-word meta-frame control words (see
chapter 4.4) can be added for compensation.

The channel bonding functionality is currently not implemented in Interlaken, because
only one transmission channel is currently used. It could however prove to be a useful
addition.

7.2 Flow control

Once the channel bonding is implemented on Interlaken, and the four lanes are all trans-
mitting data there is still room for further optimization. One of these optimizations could
be to implement flow control to the Interlaken interface. Flow control measures the health
status of each of the channels in the RX interface, and signals this back to the transmitter.
An extra functionality can also be added to, for example, regulate the throughput on each
of the channels.

The possible ability to communicate per-channel back pressure is a key feature of Inter-
laken. There are two implementation options within this feature; the In-band Flow control
and an out-of-band flow control interface.

The on/off flow control status is communicated with a single status bit for each sup-
ported channel. Typically, a ’1’ in this status field signals an ’XON’ status, which indicates
to the transmitter that data can be sent over this channel. A ’0’ indicates an ’XOFF’
status which signals to the transmitter that transmission should be ceased. Within the flow
control protocol, there is no concept of tokens and/or traffic shaping other than turning the
channels on or off. The transmitter can send as much data as it wants, until transmission
is turned off again. The threshold for the raising of the XOFF signal is a programmable
option. To provide a form of traffic control, the channels can be mapped to a so called
calendar entry (which signals the behavior of the XON and XOFF signals.) By mapping
the channels to several calendar entries, the flow control regulation can be extended. [1]
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7.2.1 Out of band flow control

There is an out-of-band flow control solution defined within the Interlaken protocol to
provide a solution for simplex interfaces. It is specified with three signals: FC CLK : the
clock to which the control data is synchronized, FC DATA: The (1-bit) flow control status
information, FC Sync : a sync signal to signal the beginning of the flow control calendar.
The out-of-band flow control signals are protected by a 4-bit CRC calculation which covers
up to 64-bits of flow control data. The polynomial of this CRC is shown in Equation 6. [1]

X4 +X + 1 (6)

7.2.2 In-band flow control

When the in-band flow control function is implemented, the receiver will make use of the
flow control status bits in the flow control words (see Figure 9.) This flow control bit-field
in the control word is 16-bits long on bit[55:40]. These status bits, represent the ON/OFF
flow control status for each of the Interlaken calendar channels with bit[55] representing
the current calendar entry and bit[55+ n] representing the n’th entry. If needed, the flow
control field can also be extended to bits[31:24]. To signalize the start of the calendar,
the Reset-calendar bit of the Idle/Burst control words is used. When this bit is ’1’, the
calendar entry status ’0’ appears in bit[55]. When the Reset-calendar bit is set to ’0’
and the flow control field continues to bit[55+n] until all the channels’ status has been
communicated. Because the flow control fields are included in the CRC24 check which is
done in the Framing burst block (see Figure 7) a seperate CRC check for the flow control
fields are not needed. [1]
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8 Assignment details

During a previous internship, several point-to-point protocols have been researched and a
proof of concept implementation with the Interlaken protocol was realized using an emulator
board. This implementation of the Interlaken protocol needs to be verified,to make sure it
functions according to the protocol definition. If it does not, it can not be implemented on
FELIX because the behavior becomes unpredictable. To successfully implement the Inter-
laken protocol on FELIX, much research and testing is needed. If this new implementation
proves to be successful, the Interlaken protocol can be implemented as part of the next
iteration of the FELIX implementation. The different specifications will be divided into
several different priorities using the MoSCoW method [22].

8.1 Must have’s

During the project, research will be done on the Interlaken protocol and what is needed to
implement this protocol on the FELIX system (more specifically on the FLX-card.) The
current Interlaken implementation on the emulator board, needs to be verified to make
sure it is according to the protocol definition. If the Interlaken implementation is verified,
research will be done to see what is needed to implement the protocol on a FELIX board.
The protocol will then be implemented on the FELIX hardware. Once the protocol is set
up on FELIX, possible optimization methods can be researched and possibly implemented
to improve the link efficiency.

In order to do this, a number of steps need to be taken first:

• The previous concept implementation needs to be verified: it needs to function ac-
cording to Interlaken protocol definition (as described in [1].)

• Once the implementation is verified it needs to be implemented on the current FELIX
hardware (FLX-712 or FLX-709) which consists of:

– XCKu115 FPGA
– Max 16.3Gbps per optic link
– PCIe Gen3 x 16 (up to 128 Gbps)

• In order to realize this, research must be done on what is needed to implement
Interlaken on FELIX.

• This is because, the (improved) Interlaken implementation needs to function alongside
other FELIX firmware (already present.)

• To ensure compatibility between the different parts of FELIX, the output to PCIe
should be in the current FELIX data format.

• To keep the current data output format, a between the Interlaken and the FELIX
firmware needs to be developed.

• This link will function as the road between Interlaken and the other firmware, so the
Interlaken protocol can be implemented on the FELIX hardware.

• Once this implementation is done, research can be done on possible optimization
options.
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8.2 Should have’s

From the research on optimization methods, a recommendation will be made whether or
not to implement it into the new FELIX implementation. If these optimization methods
seem to be a valuable addition, they should be included in the new design.

• Add the optimization methods to the new implementation.

8.3 Could have’s

The implementation tests will be done on low(/bit) level. Because this requires some
preliminary knowledge on the subject, it might be useful to add a higher level user interface
where test results can be visualized.

• Create a user interface where current data transmitted and/or the link speed is visu-
alized, to make the implementation more user-friendly.

8.4 Deliverables

At the end of the project, the developed software and firmware will be published as an open
source project on OpenCores [23]. This document will function as the documentation on
the research that is done during the project. If needed, a user guide will be established on
how to use the implementation. Finally, the solution will be presented in a presentation.
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9 Functional design

In the previous chapters, a lot of theoretical research was done on the related projects
developed at Nikhef and Cern, and on the Interlaken protocol and it’s possible optimiza-
tions. From this theoretical research, the specifications of the design heve been set. These
specifications, along with the theoretical research, will now serve as a foundation on which
a design can be build. The practical design of this project is divided into three parts:
First, the previous Interlaken implementation (Core1990 [6]) has be verified and (where
needed) modified to make sure it functions according to the protocol definition. Secondly,
a firmware solution must be designed which connects the new Interlaken implementation
(Core1990 V2.0) to the firmware already present on the FLX-card (Wupper.) Third, if this
implementation is successful, the design can be extended further, to include the previously
researched (see Chapter 7.1) optimization method(s). This chapter will show the functional
designs of al three parts of the final design.

9.1 Verificcation of Core1990

After the research of the Interlaken protocol (see Chapter 4) was completed, the Core1990
implementation could be analyzed. In order to test the implementation, the entire design
will be simulated using Vivado 2018.1 and all the separate ”blocks” will be analyzed, by
using several signals present in the design (or added to the design later) with which the data
and control words can be followed through every step of the design. The architecture of
Core1990 is shown in Figure 21. The TX and RX port of the Transceiver, will be connected,
so that the design is placed in loop-back mode. This will make the design easier to debug,
since only one instantiation of the design will need to be simulated. This will shorten the
total simulation time.

Figure 21: Complete core1990 architecture with the transceiver placed in ”loop-back” mode
(marked by the dotted line.)

Once the design is fully verified, every part should work according to the protocol defi-
nition. A suitable way to test the new implementation (core1990 V2.0) further, would be
to find a commercially implemented version of the protocol and use it in parallel with the
implementation to be verified. A test like this will also test the core1990’s compatibility
with other implementations. If the two Interlaken implementations can communicate, the
conclusion can be made that the core1990 implementation is sufficiently according to the
definition to allow for intercommunication. Previous research show that there are at least
two commercial Interlaken versions available (see Chapter 4.7.) One of these solutions will
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be connected to the Core1990 implementation, to see if there is a possibility for commu-
nication between the two systems. Commercial implementations, are compliant with the
Interlaken protocol definition, so if there’s communication between the two (commercial
and project) implementations the conclusion can be made that the data transfers of the
implementation functions (enough) like the Interlaken definition, because both devices can
communicate in the correct data format.

Figure 22: Functional design of the Core1990 verification setup.

The functional design of the system is shown in Figure 22. Data will be generated at the
Transmitter (TX) input of Core1990. There, it will be framed into packets according to the
Interlaken data format. The transceiver will convert the electrical signals to optical ones,
and send the packets over to the Commercial implementation where they are converted
back and received at the Receiver (RX) side of the commercial implementation. The
packets are de-framed and the data is received and can be read by the user. However, to
test both sides of the Core1990 implementation, the commercial implementation is looped-
back which means that the RX output and TX input are connected (see the grey arrow in
Figure 22.) This sends the data (that is received at the RX out signal of the commercial
implementation) back to the TX input of the Commercial Interlaken implementation. It
will be framed once more, and send over the optic links to the RX side of the Core1990
implementation. The RX of Core1990 will de-frame the packets and the (original) data will
be outputted at the Data out signal. If the Core1990 implementation functions exactly like
in the protocol definition, the data generated by the Data Generator will be exactly the
same as the data received at the Data out output.
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9.2 Connecting Wupper and Interlaken

Once the previous design is fully verified, the next step is to implement the new version
of the design (Core1990 V2.0) on FELIX. The implementation however, must be able to
function alongside the firmware and software that is already present on the FELIX system.
Furthermore, one of the must-have specifications set for the project (see Chapter 8) is that
the data output to PCIe must be in the current FELIX data format. In order to meet this
requirement, the design must become compatible with the current PCIe wrapper: Wupper.
This requires analyses of the implementation of the Wupper design, and a connection needs
to be made between Interlaken and Wupper. This connection must be set up in a way that
ensures the integrity of both data formats. In order to achieve this, a piece of firmware
is needed that serves as the connection between the two. This connection is visualized in
Figure 23.

Figure 23: Visual representation of the connection between the Interlaken and Wupper
Firmware.

9.3 Optimization methods

Once Interlaken is fully implemented on the Felix hardware, the next step will be to look
for possible improvements within the system. The two most notable additions that can
be made to the system are Flow Control and Channel Bonding (as researched in Chapter
7.) Both of these additions can be added to the Interlaken protocol, but in order to utilize
the full potential of the Flow Control implementation, multiple channels should be used.
When multiple channels are used, data traffic can be redirected to channels that have more
bandwidth available. In the current implementation, only one data channel is used. By
implementing channel bonding on Interlaken, the number of data channels can be extended
(see Figure 24.)

Figure 24: Visualization of multiple channels within Interlaken.
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10 Implementation

From the functional design (described in the previous chapter) a general idea was formed
on which solutions need to be developed and how they can be realized. In this chapter, the
design will be extended further and the different aspects of the design will be implemented.
Most of the design is implemented in the form of firmware developed in Vivado studio
using the VHDL language. However, software applications are also needed, to control and
initialize the FELIX PC.

10.1 Core1990 version 2.0

The previous research done on point-to-point protocols, concluded that the Interlaken pro-
tocol is a suitable solution to implement in the next version of FELIX. [6] In order to test
the viability of using this protocol on an FPGA board with optical links, a proof of con-
cept implementation of the Interlaken protocol was developed [17] and tested on two Xilinx
VC707 [16] evaluation boards. These tests were done, to verify that the implemented proto-
col was working according to the specifications set, and to verify that the two boards could
communicate with each other. However, it was never verified that the implemented pro-
tocol was actually the Interlaken protocol. In order to implement the protocol on FELIX,
the protocol first needs to be verified, to make sure it functions according to the Inter-
laken protocol definition [1]. Once the protocol is verified, the next step is implementing
Core1990 Version2.0 on the Felix hardware.

The verification test will be done in several steps:

• First, the implemented protocol will be studied and a visual overview of all of the
different subsystems or ”blocks” of the protocol will be created.

• If all of the different parts of the protocol are checked, a new test run will be created
where the full system will be simulated. The transceiver will be (internally) connected
in a so called loop-back, where the transmitter side of the system will be connected
to the receiver side.

• Once the loop-back design simulation is successful, the design will be connected to
a commercial implementation. If these two systems are able to communicate, the
implementation is verified as an implementation of the Interlaken protocol.

Once the new implementation is verified, the research to implement the protocol on the
FELIX system can continue. The verification is a very important step. If the protocol does
not function according to the Interlaken definition, it cannot be implemented on FELIX. If
it were, it would lead to unpredictable behavior in the system. The errors that would then
arise would be impossible to retrace, resulting in a dysfunctional overall system.

10.1.1 Summary of the protocol implementation

The communication between the different systems takes place by using so called control
words and data words. The functional structure of the Interlaken system is drawn in Figure
25 The data coming in to the Interlaken transmitter, is framed into so called ’bursts’
consisting of the raw data and control words. The control words include information about
the burst size (size of a data burst and the interval between control words), start and end
of packet, and a CRC-32 check.
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After the framing burst block, the bursts are encapsulated into so called meta-frames.
The meta frames are defined to support data transmission over Parallel transmission lines.
They include four (unique meta-frame) control words, which can provide line alignment,
scrambler information, clock compensation and diagnostic functions. A CRC-24 check
is included on the data, the status of this check is included in the diagnostic words. The
incoming words (with the exception of the synchronization and scrambler-state meta control
words) are then scrambled. After the scrambling, the 66/67-encoding takes place, and
afterwards the data is sent to the transceiver core, which transmits the data on a differential
line (TX PN).

Figure 25: Structural view of the Interlaken Implementation.

The TX PN and RX PN of the transceiver are connected in such a way that the data
going out of the transceiver is also coming back in at the receiver side. This means, that
Data Out which is the output of the system, should be exactly the same as Data IN (which
is generated by the data generator.) In order for this to be true, the two sides of the
Interlaken protocol are mirrored to one and other.

The data coming out of the transceiver enters the decoding block where the 66/67
decoding is removed. Then, the data is de-scrambled and sent to the de-framing meta
block where the data is de-framed, and the CRC-32 value inside of the diagnostic word
(which was created at the transmission side) will be compared with the calculated expected
value. If these values match, the data is sent to the next block; the de-framing burst. There,
the data is de-framed and the CRC-24 check is done. When everything works accordingly,
the output data (Data OUT) will be equal to the input data that was generated (Data IN.)
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10.1.2 Building the project and recreating tests

A new project (Core1990 Verification) was developed in Vivado which recreated the Core1990
project. This project was simulated, and during simulation the input data created by the
data generator was sent from the TX input (see Figure 25) through the Interlaken system,
where it was received again at the RX output (Data Out.) This means that data can be
transmitted and received through the system, suggesting that the system works as intended.
After simulation, a bit-file was created and programmed onto the hardware (Xilinx VC707
evaluation board [16], see Figure 26) while the optical link was connected in loop-back.

Figure 26: Xilinx VC707 emulator board used for testing Core1990

The implementation worked as expected, the data generated at the TX input was also
present at the RX output, just like in the simulation. In the next test the communication
was tested between two boards. In these test results the same data that was generated at
one board was also received at the other board (see Appendix B.) This verifies the previous
tests done in [6], but this does not yet mean that the protocol actually functions according
to the Interlaken definition. In order to verify this, more tests are needed.
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10.1.3 Communications tests with the Xilinx Interlaken core

As mentioned in Chapter 4.7, Xilinx and Intel have developed ip-cores that use the In-
terlaken protocol. The Core1990 implementation was developed for Xilinx hardware, in
Vivado. The Xilinx Interlaken ip-core is also designed and tested for Vivado, so the two
implementations can be added together in one project. This will make simulating and
designing the verification project easier. The functional design from Figure 22 was im-
plemented in the Core1990 Verification project, resulting in the design in Figure 27. The
Xilinx core has many status and functional signals that are described in the documentation
of the core [14]. These signals make it easy to follow the data flow within the design, and
see which functionalities are not working correctly. This makes this core very suitable for
the debugging of core 1990, since all the error signals that might arise will point to the
parts of the implementation that are not working according to the definition. For example,
a burst err signal that arises in the Xilinx IL core, suggests that there is still something
unexpected happening with the de-framing burst block. This type of error could be caused
during the framing-burst block on the Core1990 side. If all the error signals are monitored,
and the corresponding blocks of the Core1990 implementation are checked for errors, the
core can be debugged.

Figure 27: The core1990 implementation connected to the Xilinx Intergrated Interlaken
core.
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Since the Xilinx core already includes a working implementation of Interlaken, the data is
looped-back on the Xilinx side. This way, the Xilinx core will raise error flags when an error
occurs. These errors can then be examined at the core1990 block. The data is generated
by the data generator and sent to the Interlaken TX input. The data is framed and the
Interlaken frames are inputted to the transceiver where the bit-stream is sent serially to the
Xilinx RX side of the transceiver. From there it arrives on the RX in side of the Xilinx core,
where it is decoded, de-scrambled, de-framed and the original data arrives on the Xilinx RX
output. From there it is sent over the LBUS to the TX input of the Xilinx core, where an
Interlaken frame is created once again and it is sent through the transceiver back to the
RX side of the Core1990 core. There it is de-framed again and the original data is retrieved
on the Data out side of the Core1990 implementation.

At the Xilinx core, packet data is provided to the Local Bus (LBUS) TX Interface, and
received from the RX LBUS interface. The LBUS is used by the Xilinx core to facilitate
the implementation of multiple input/output data channels. The LBUS is not implemented
in the Core1990 implementation, because currently only one data transmission channel is
implemented in the Core1990 Interlaken implementation, which means that for the current
communication, only one serial channel will be used. Another functionality that is already
implemented in the Xilinx Interlaken core (but not in Core1990) is flow control. The RX
path can extract the flow control information present in the control words, with which the
TX data flow can be regulated. Because these functionalities are not yet implemented, the
channel number will be put permanently on ’001’ and the flow control functionality will not
yet be used.
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10.1.4 Debugging of the core

Once all of the parts of the design were set up and the connections between them were
made, the project was simulated. The firmware of the implementation was studied, and the
behavior of each block was compared to the Interlaken protocol definition. The two imple-
mentations (Xilinx Interlaken and Core1990) could not communicate once the simulation
was run, and several error signals were raised among which were:

• stat rx bad type err : Unexpected or Illegal Meta Frame Control Word Block Type.
These signals indicate an unexpected or illegal Meta Frame Control Word Block Type
was detected.

• stat rx burst err : Burst Error. This signal indicates that a burst length error was
detected.

• stat rx crc24 err : Control Word CRC24 Error. This signal indicates whether or not
a mismatch occurred between the received and the expected CRC24 value. A value
of 1 indicates a mismatch occurred.

• stat rx crc32 err : Control Word CRC32 Error.

A structural approach of trying to solve these errors is needed. After all, solving one error
might cause several others to arise if it is not the original source of the problem. As a debug
approach, it was decided to check the core1990 implementation ”per block” which means
that the Framing burst and De-framing burst blocks will be checked first, and then the
Framing/de-framing meta block will be checked etc. The reason for this, is that the TX
and RX components of an Interlaken implementation are mirrored to one and other. If for
example, the Framing burst block works too fundamentally different from the de-framing
burst block, the de-framing of bursts will not be possible. The debug process will now be
described in more detail.

Framing Burst/De-framing burst

The creation of an Interlaken frame, begins in the framing burst block. The data (payload)
is enclosed in control words and a burst is created. The payload data can be divided between
several bursts, or sent in just one burst. One of the things that was questionable in the
core1990 implementation is the fact that the header bits of every data word are not added
to the data stream. Instead, they are generated separately from the data and channeled
directly into the next block (framing meta.) This is questionable, because if the header bits
of the data words are treated as different signals, it is very difficult to see which headers
belong to which data (and/or control words.) To solve this, the headers were added to each
data stream in the system, effectively changing the Data out signal from a 64-bits signal to
a 67-bits signal. Because of this change, the data and header are always together. In the
protocol definition, the headers are also part of the data stream, so this change also brings
the implementation closer to the definition. The functionality will remain the same (one
66-bits word, instead of a 64-bits word and a separate 3-bits word) but the readability of
the program and simulation will improve greatly. Furthermore, it is easily re-traceable (from
the header bits [66-63]) what kind of word (data, burst control or meta control) the data
consist of. The user could decide to split up the headers again within a block, as long as
the data stream between blocks is one 67-bits signal that includes the header. Besides the
readability and trying to follow the protocol definition as closely as possible, the addition
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of the header to the data stream was also done to hopefully solve the burst error signals
that arose. This was however not the case, so the problem was situated elsewhere.

CRC-24

In the Xilinx Interlaken core, a lot of CRC24 errors were raised. Not just every few seconds,
but every time a CRC-check was performed. After further examination of the design,
possible timing issues (the possibility of the two correct values not lining up on the exact
CRC-calc clock cycle) were ruled out. This suggests that there is something fundamentally
different in the way the CRC check values are calculated on the Core1990 side and the Xilinx
side of the system. The CRC-24 part of the framing/deframing burst block was analyzed,
and it was discovered that the polynomial used was not the same as the one specified in the
protocol definition (see Equation 1 in Chapter 4.3.) The polynomial used was a polynomial
that was 32-bits, and which was normally used for Ethernet. It did not correspond to either
CRC polynomial defined in the definition. The use of the incorrect polynomial results in a
different calculation on the RX side and the TX side , which means that the two calculated
check values will never be the same. This results in a lot of CRC errors and the discarding
of data on the Xilinx-Interlaken core side.

As a solution to this problem, the CRC-32 (from the original implementation) was
changed to a CRC-24, and the correct polynomial was calculated (see Equation 2 from
chapter 4.3) and implemented. This did not, however solve the errors, since the (by core199)
calculated checksum value still did not match the value expected by the Xilinx system.
Despite further checking of the data path, it was still unclear if the incorrect checksum
values resulted purely because of a wrong CRC-24 calculation method, or if there was
something within the Core1990 system that caused it. Fortunately, the Interlaken protocol
definition includes some details on how the CRC-24 values are calculated (see Appendix B
in [1].) These details also include some test data and the corresponding control word that
should follow at the output, after the test data is entered into the CRC-24 calculation (see
Figure 28.)

Figure 28: Example test data from the crc-24 calculation details in the Interlaken protocol
definition.

To test if the CRC-24 calculation was performed correctly, it was tested in a standalone
project. In this test environment, it can be tested if the faulty calculation is caused by
the CRC-24 or by something else in the Core1990 project. If the calculation is working
as expected, the conclusion can be made that there is something else going wrong in th
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Core1990 system, and the CRC-24 is correct. In this project, the test data from Figure 28
was used as the input data and the original crc-24 check was performed. Once again, the
calculated CRC-checksum did not match the control value in 28. This confirms that the
calculation of the CRC-24 is indeed not according to the Interlaken definition.

According to the Interlaken definition, the data is sent through the CRC-24 calculation
function in the order of byte transmission, where the most significant bit is sent first. The
checksum value is generated by resetting the polynomial to all ones, sending the data
stream through the polynomial function and finally, inverting the value before transmitting
it within the control word.

In the original CRC-24 calculation (which is the same one used in the FELIX project)
the CRC-24 values are calculated over the data and afterwards the CRC-24 is calculated
again over the previous result. This is a completely different method from the Interlaken
definition. because (even if the CRC-24 is only done once,) the poly value is not reset to all
ones before calculation, and the final calculated value is not inverted before transmission.

An implementation of a new CRC-24 can be made by dividing each bit of the data by the
polynomial one bit at the time. This would however take an excessive amount of time (and
clock cycles) to calculate. Because of this, CRCs in FPGAs are usually implemented with
multiple XOR functions operating on multiple data bits per clock cycle, whose sequence
is computer generated. This optimizes the CRC calculation until it only takes one clock
cycle to compute. Within the documentation from Intel [24] an example has been given on
how to calculate the CRC-24 with the Interlaken Polynomial. Based on this, a new CRC-24
implementation was made, and tested with the test data from Figure 28 in the test project.

The wave window resulting from the simulation of the test data is shown in Appendix
D. There, it is shown that the test data from Figure 28 is used as input for the CRC
calculation (the crc calc in signal.) The polynomial value (signal crc 24 test in) is reset to
all ones, and from then on the polynomial value advances with each new data word, until it
is reset again. The output of the CRC calculation is also shown (signal CRC24 Test out)
but this is not the final CRC value, as this value also needs to be inverted in the final step
of the calculation. The final CRC-checksum value is shown by the signal CRC24 Test Final
and after all of the example data has passed, including the control word that will include
the crc checksum value, the final checksum value is 59e69d (see the final value of the
CRC24 Test Final signal in Appendix D). This corresponds to the value shown in Figure
28. An important thing to note, is that bits [23:0] of the control word which will include
the CRC checksum, should be reset to all zeroes for the calculation of the checksum. The
control word from Figure 28 will become f100000000000000 in calculation.

Since this final test resulted in the correct checksum value, it can be concluded that
the CRC-24 implemented is now working correctly. The implementation was added to the
Core1990 project, which was simulated again. From the simulation it could be seen that
the previous CRC-24 errors had disappeared.

Framing Meta/De-framing Meta

In the Framing-meta block, all of the checks to see what kind of control word the incoming
data is, (synchronization, skip-word,scrambler-state,data or diagnostic) were done by check-
ing a string of individual bits. This is not very readable, since in order to figure out which
word is checked, the format of each control word has to be known. To solve this, each con-
trol word was added as a constant value. This made the debugging of the implementation
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easier, since instead of a binary value, text was used (for example SYNCHRONIZATION,
DIAGNOSTIC etc.)

In the Diagnostic Meta control word type, there are some optional functionalities such
as flow-control. But there are also compulsory functionalities that need to be included
in this control word, such as the CRC-value and the so called health bits. These health
bits are bit 33 and 32 of the Diagnostic meta control word, They signal the health of the
lane the word is transported on, and the health of the entire interface, where ’1’ signals a
healthy condition, and ’0’ signals a problem. While these health bits were implemented in
the previous design, they were implemented in such a way, that ’0’ represented a healthy
condition and ’1’ signaled an error. This is the exact opposite to the protocol definition,
which states that ’1’ signals a healthy condition. This might have caused some conflicts
with the Xilinx implementation, so it was fixed.

CRC-32

In the CRC-32 check, which is part of the framing meta block, the polynomial did not
correspond to the one used in the protocol definition. This resulted in a false calculation
of the CRC-checksum value. When the system is functioning in loop-back operation, this
does not have notable consequences, after all the same polynomial used on the transmitter
side to calculate the checksum is also used on the receiving side to calculate the CRC value
there. It starts being a problem, when the device that the implementation functions on, has
to communicate with other devices running a (legitimate) Interlaken implementation. The
CRC value calculated there, will never result in a correct check with the checksum value
transmitted in the control word, because a different polynomial is used on either side.

The correct Polynomial value was calculated, and implemented. The calculation of the
CRC-32 was changed in a similar manner to the CRC-24 calculation in section 10.1.4. It
was verified (with the correct polynomial) and implemented back in the Core1990 design.

Scrambling/De-scrambling

The data scrambling process is fully shown in appendix B of the Interlaken protocol definition
(see [1].) From this basis, the (existing) core1990 scrambler implementation was made,
and its functionality was presumed correct. During the simulation tests however, the TX
data which was sent was not coming through to the RX side. After each previous block was
checked, it was discovered that the data was not going past the de-scrambling function
block correctly. Upon further comparison to the scrambler method in the definition, it
was discovered that some functionalities of the scrambler, while they were implemented
correctly, were not done in the correct order (the updating of the scrambler state is done
with several XOR functions, one of these was in the wrong order.)

The scrambler works, by updating it’s scrambler state with each new incoming word.
Every data bit is XOR-ed with this current scrambler state, resulting in scrambled data.
The synchronization and scrambler state meta-frame types, as well as the header bits of
the data, are never scrambled. The scrambler state, does not update when these words
are presented. In the previous implementation, the scrambler state advanced anyway when
a scrambler state or synchronization word was passed through (without scrambling them)
this resulted in an incorrect scrambler state used to de-scramble the data. This resulted in
a different scrambling and de-scrambling process than the one described in the definition,
the data was never de-scrambled correctly, and only gibberish was received on the RX side.
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The errors in the scrambling method were found, and corrected, to make sure that
the scrambling process as described in the definition was used. Afterwards the data was
received unscrambled, and corresponded to the TX data which was sent.

Encoding/Decoding

An encoding method is required, to provide enough state changes to allow clock recovery
and alignment of the data stream in serial interfaces. In the Interlaken protocol, a 64/67b
encoding is used, which is a variant of the 64/66b encoding that is used in Ethernet (and
defined in the IEEE 802.3ae 10 Gigabit Ethernet specification.) The encoding is used in
combination with the scrambler, which results in a balance between the ’1’ an ’0’ values
transmitted. If this encoding was not performed, a situation could occur where a string of
only ’1’ or only ’0’ bits were transmitted, resulting in a DC baseline offset. The encoding
and decoding methods were checked, and it is working as expected from the protocol defi-
nition stated in [1].

10.1.5 Core1990 V2.0

One of the most important changes to the implementation, is the fact that the data stream
throughout the system was changed back to a 64-bit word system. This is the way it is
described in the system, but it was previously not implemented that way. Only the actual
payload data was transferred directly, but all of the information signals within the control
words were treated as separate signals. These signals were transferred along with the data
and pasted in the final data output, but every field of the control words (see Figure 9) was
divided up in signals and transferred that way between the blocks of the implementation (see
Figure 7.) This technically has the same result at the output, but it makes it very difficult
to see which signal values belong to which data. This issue was solved, by fundamentally
changing the data transfers between blocks, so that the data stream was made up of 64-
bits data and/or control words. This way, it became very clear to see which signals belong
to which data and the readability was improved greatly as well as the implementations
efficiency. The implementation of the addition with the headers to the data also solved the
stat rx burst err because it was signalled more clearly where the burst ended, and the SOP
and EOP signals were included in the control word transmission, so they could more easily
debugged. This showed that some EOP signals did not arrive properly, and the necessary
fixes could be made in the firmware.

Another change that improved readability was to add several constants to the firmware,
which functioned as checks for certain bit-values corresponding to certain control words or
meta-frame block types (for example for the Meta Frame Block Type bits [62:58] ”011001”
refers to the Diagnostic Meta Frame Type, this sequence was connected to the constant
variable Diagnostic Meta Type.) This improves readability within the firmware greatly,
since not all bit sequences need to be looked-up to be able to read the code. This helped in
solving the stat rx bad type err error, because it was discovered that there was a creation
of an ”unknown” block type being created in certain instances.

Another important change was the attempt to improve the efficiency of the code. Some
parts of the firmware were duplicate or not needed, and because the implementation needed
to function along with other firmware on the FLX-card, it is important that everything is
done as efficiently as possible, to prevent timing issues during hardware implementation.
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Another important error in the design was the way the CRC-checks were implemented.
Both of the Polynomials used did not correspond to the ones that were mentioned in the
definition, and the CRC-24 was implemented as a CRC-32. Research was done on how the
calculations should occur, and the correct polynomials were calculated using the presented
equations in the protocol definition (see Chapter 4.3) and implemented.

Something else that was not implemented according to the definition, was the Scrambler
implementation. The protocol definition (Appendix B in [1]) provides the exact way to
implement the scrambler, but this was not exactly followed, resulting in a faulty scrambling
process. The process was fixed and tested, resulting in a correctly functioning scrambler.

After the changes to the Core1990 implementation were made, the full implementation
needed to be tested again to see if it was still functioning according to the definition.
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10.1.6 Results

After all of the changes in the design were made, it was time to test the design again in
loop-back mode. This tests solely the Core1990 V2.0 design, by shorting the TX and RX
differential lines (shown by ”1” in Figure 29.) This test was successful, each block of the
design was (once more) checked to see if it was functioning according to the definition,
which it was, and the data which was generated by the data Generator, was received at the
Data out output.

Figure 29: Block diagram of the communication test setup between the Core1990 imple-
mentation and the Xilinx Interlaken Implementation. Both systems have their own data
generator that can be used, for the Xilinx core an LBUS simulator was made (see 2) which
provides parallel test data. This data can be sent back to the Core1990 side, but the
systems can also be placed in loop-back mode. This is done by shorting their RX and TX
communication lines, at 1.

Since the improved Core1990 implementation was functioning as expected, the next
step would be to test it again while not in loop-back mode (with the line ”1” in Figure
29 not drawn). It seemed to function according to expectations, but there was no data
received at the Data out output of the Core1990 side. Since there were no longer errors
raised, there must be something else going wrong. The data was received at the Xilinx
RX input, but it was no longer present on the LBUS (See ”2” in Figure 29) and also no
longer present on the RX-side of the Core1990 side. This suggests that either there was
something going wrong within the Xilinx core (which was not visible in the error signals)
or there was a problem projecting the data onto the LBUS. This seems like a reasonable
explanation, since the Xilinx core expects data from multiple data channels to arrive. If
there is only one channel that is providing data, the data from the other channels should be
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zeroes. To check if the error was indeed spawned because of problems with the LBUS, an
LBUS simulator was made, which generates parallel test data which is easily recognizable
on multiple channels. This data will be put on the LBUS, where it will be sent over multiple
channels, and after a set time the start of packet and end of packet control words will also
be generated. This data is then received at the Xilinx TX input, and it will be sent over
to the Core1990 RX side. There it will be received, and if no errors occur, the data will
arrive at the Data out output. After another simulation test, the LBUS simulator data did
indeed arrive at the Data out output of Core1990 (see Appendix E,) and no error signals
were raised on either side. This confirms that the new Core1990 implementation is working
according to the definition, because it can de-frame the Xilinx Interlaken frames. It also
confirms that the problem with the interconnection lies somewhere with the compatibility
with the LBUS definition.
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10.2 Wupper-Interlaken implementation

In order to successfully implement the Interlaken protocol on the Felix hardware, the im-
plementation also has to be compatible with the FELIX firmware. More specifically, it has
to be compatible with the Wupper firmware (see Chapter 6.) The core functionality of
Wupper, is to provide a PCIe wrapper to transfer data to (and from) the host PC using
DMA. In order to implement the Interlaken implementation on FELIX, a connection has to
be made between the existing Wupper firmware and the Interlaken firmware. This link will
be realized by creating an application (consisting of both firmware and software) between
the Interlaken implementation and Wupper that can transfer data between the two, without
disrupting one or the other.

There are also some additional changes required for the Core1990 v2.0 implementation,
because the hardware that the implementation was created for (the Xilinx VC707 evaluation
board, see [16]) is different from the FELIX hardware (Xilinx VC709 [21]). One of the most
notable hardware differences are the Gigabit Transceivers used in the FELIX card. There
are 4 SFP Transceivers on the FELIX card, as opposed to 1 on the Interlaken development
board and the schematics are different. The pin-out of the FPGA and the positions of the
clock signals have also changed.

As mentioned previously, the developed application consists mostly of firmware and
some software. The firmware will be developed first, and afterwards the solution will be
simulated with Vivado ( [25]) and if the simulation behaves as expected, a bit-file will be
generated which will be implemented on the FELIX hardware (FPGA.) A debug IP core will
be added to the implementation, to facilitate the debugging process (this makes it possible
to generate a simulation-like wave window in Vivado.) On the FELIX PC, the Wupper
drivers will be generated, and the Wupper interface can be started using the wupper-
tools (see Chapter 6.) The application-specific software will be added to the wupper-tools
directory for elegancy (since it uses the Wupper wrapper) and it can be started in a similar
manner to the wupper-tools. The implementation can be debugged by adding registers to
the Wupper register map (see Appendix H,) which represent certain debug signals. These
registers can then be read from the Felix pc, using the Wupper tools software. Several
signals such as loss-of-lock (for the PLL) or loss-of-signal (For the optical links) were added
so they can be read from the registers (see Table 7 in Appendix H.) For other signals
that are for example, time sensitive, it can be useful to add another debug method. As
a a second debug method, a debug probe component was added in Vivado [25] which
generates a simulation-like environment within Vivado, which is linked to the device that is
programmed. This provides a simple debugging method for the signals within the firmware,
without having to write them all to registers.
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To implement Interlaken on the Felix hardware, it has to be able to function alongside
the components that are currently implemented on the Felix-card. The incoming data from
the optical links (once it has travelled through Interlaken) has to eventually be transferred
to the host PCs memory, and the other way around. This is done with Wupper, (the PCIe
wrapper see Chapter 6). In order to connect Wupper and Interlaken, the Wupper output
data has to be collected and re-shaped to the Interlaken input format. On the other side,
the header data that travels with the Interlaken output data has to be preserved. As a
solution to this, the Application produces two extra ”blocks” of firmware that lead the data
into the correct format: IL to Wupper and Wupper to IL (see Figure 30.)

Figure 30: Block diagram of Interlaken, Wupper and the Application in between..

10.2.1 Interlaken to Wupper

The data outputted by Interlaken, is received by the application. There, several other
signals are also collected from Interlaken, which are all stored in a (64-bit) so called
Sync INFO Word which format is shown in Figure 31.

Figure 31: Sync Info word format.

These signals include a CRC-24 occurred signal on bit [39] and CRC-32 occurred signal
on bit [38], which are set to ’1’ if a CRC error has occurred in the previous data burst. The
EOP-Valid bits from the last EOP control word are also stored. The Sync INFO Word is
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recognizable because of the hexadecimal value ABCD included at bit [15:0] and also includes
a To Wupper Counter value, which can be used to check if the right amount of data words
have passed. Between these predefined fields, the word is padded with zeroes to assure the
64-bit length of every control word. The Sync INFO Word is sent to the ToHostFIFO after
a RX EOP signal has been received. The control words can later be filtered by the program
which reads the data form the PC memory, but they provide useful information about the
previous data burst. Once other functionalities are added, other useful information (such
as the transmission channel) can be added to the Sync INFO Word where needed.

10.2.2 Wupper to Interlaken

The data that is collected from the host-PC memory, is transferred through the Wupper
system and eventually ends up in the FromHostFIFO (see Figure 30.) From there it enters
the Application, and is collected. It cannot be directly transported to Interlaken however.
The data from the FromHostFifo is 256-bits long, but the Interlaken TX FIFO data input
should be 64-bits long. The Interlaken TX-input also expects the SOP (Start Of Packet)
and EOP (End Of Packet) signals, to know when a data packet begins and ends. These
signals are needed to create the SOP and EOP control words which delineate the data
bursts. The signals are added to the data, in the form of a header on top of the 64-bits
data stream that is created. This header contains several bits that signal the SOP (Start Of
Packets), EOP (End Of Packets) and the EOP-valid bits which are required by Interlaken.
The SOP is created at the beginning of the transmission, from where the EOP is generated
after a amount of data equal to the pre-defined packet length value has passed. The
packet length value is collected from one of the (application-specific) resisters.

Once the header is added and the TX-FIFO is ready to receive data, the data is written
in the (Interlaken) TX-FIFO. There, the header signals are stripped again and sent to the
Framing burst layer along with the data.

10.2.3 Application Tests

To test the firmware implementation, the complete design was simulated in Vivado, and
data was generated with a data generator implemented in the project. For the final imple-
mentation however, the data needs to be read from the the Host PCs memory, before it
is sent to the Interlaken system. For the implementations hardware tests, the data must
already be present in the Host PCs memory, before it is sent to the Wupper implementa-
tion and then to through the firmware Application to Interlaken. To create this ”initial/test
data” and to read the data from the host PC memory, a software application was made.
This software application uses the functionality of the Wupper-tools, to initialize the Wup-
per card, flush the FIFOs and reset the DMA controller. The data is generated from the
software, of can be generated externally. The data is stored in the memory of the Host PC.
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10.2.4 Clocks

Clocks are a very important part of the design. To ensure that the clocks that are generated
are stable and to minimize their jitter, they are buffered and run through ICs that are present
on the hardware. These ICs can be programmed to generate a clock signal on a large number
of frequencies. Configuring these clocks is done by writing their registers, that are specified
in their documentation.

On the Felix hardware, a clock can be created with the SI570 programmable voltage
controlled crystal oscillator (VCCO) [26] present on the board. The SI570 can generate
clock signals on virtually any frequency between the range of 10MHz up to 1.4 GHz. It
consists of a digitally controlled oscillator (DCO) based on DSPLL technology (Digital
Signal processing PLL, see [27].) which is driven by an internal fixed frequency crystal
reference. The default output frequency is set, but can be reprogrammed through the I2C
serial port. By default, the output frequency is 156.25 MHz.

The SFP Transceivers on the FELIX hardware also need a stable clock signal, to ensure
data integrity. With the crystal present in the SI570, a 156.25 MHz differential clock
signal was created. In order to stabilize this clock signal and to route it through the
FPGA a number of buffers are used. (See Figure 32.) These buffers stabilize the clock
signal generated from the Crystal and help connect it to the hardware parts that require it.
The 156.25 MHz generated from the SI570 is connected to the User clk in signal which is
routed through an IBUFDS buffer (IO bank buffer,) then an BUFG buffer (global buffer)
and finally via an OBUFDS buffer (Output buffer) to the input of the SI5324 [28] present
on the board.

Figure 32: Clock buffers path from the crystal to the SI5324 to the Gigabit Transceiver
clock input.

The buffers are needed to filter out most of the irregularities, before the signal enters
the SI5324. These irregularities need to be solved, before going into the SI5324 and it’s
internal PLL, because otherwise the PLL will not achieve lock. Of course the PLL can be
forced into lock by broadening the bandwidth, but this is undesirable (because then more
jitter (noise) will be introduced.) The SI5324 is a jitter attenuating clock multiplexer. It
filters the input clock signal, to ensure a reliable stable output clock. These kinds of filters
are needed to minimize irregularities that arise within clock signals, for example propagation
delay (the time needed for an output pulse to arrive after an input is applied,) phase errors
or variations in period times.
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The functional block diagram of the SI5324 is shown in Figure 33. Two input clocks
can be provided, which are sent to the DSPLL that uses either a crystal or reference clock
to provide the jitter attenuation. The input clock(s) can also be divided to create an
output clock with a different output frequency. The control of the SI5324 is accessed
through an I2C interface, where the input clock frequency and clock multiplication ratio
are programmable by writing the registers. The device is based on DSPLL technology, and
the PLL bandwidth is digitally programmable. A fast lock feature is available to reduce the
lock times of the PLL.

Figure 33: Functional block diagram of the SI5324. [28]

Within the current implementation, the input for the SI5324 is the Ref clk in signal
(as shown in Figure 32.) There is no frequency division needed, since the needed output
frequency is the same as the input frequency (the SI5324 is only required for Jitter attenu-
ation) other control settings such as the selected reference signal, whether or not fast lock
is turned on etc. can be found by studying the register map in Appendix A. These control
settings determine the layout of the register map, and this register map is required to set
up the SI5324 correctly. The register map is added to the wupper-init software, which
will then set up the SI5324 (along with other devices and or functionalities specified) and
initialize the wupper card.

Once the wupper card is set up, the wupper-tools software can also be used (see Chapter
6.) Based on these wupper-tools a software application was made which tests the DMA
transfers, to and from the Interlaken (firmware) application.
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10.2.5 Hardware test: DMA transfer

With the Wupper-tools, a DMA transfer can be started, to and from the Wupper inter-
face. The software collects information from the registers, and starts the DMA drivers.
The Wupper tools, can start a DMA sequence, and the (software part of the) application
combines this functionality with the applications’ firmware to send data from (the PCIe
card wrapper) Wupper, through the application and through Interlaken to the Transceivers
optic links. Because these optic fibers are looped-back the same data travels back through
Interlaken and the application to Wupper (see Figure 30.) The software application reads
the data in the Wupper system at the start of the transaction and at the end of the trans-
action. If the application is functioning correctly, the data from both instances is the same,
minus the fact that there are synchronization words created for the Interlaken to Wupper
transmission. These synchronization words are generated to preserve the EOP, SOP signals
generated from Interlaken, as well as add some additional information (signals that are
useful for the debugging of the system.) The data which is written into the Host-PCs’
memory is originally generated by the software application.

A screenshot of the output of the software application is shown in Appendix G. The
leftmost column shows the packet-number, where a Synchronization word is not counted
as a packet, and right column shows the original data which is read out from the Host-PC’s
memory via Wupper and DMA. The text synchronization word is added on the places where
the synchronization word is expected, but this is just a print to the console done within the
software, the word is not inserted into the memory. The middle column is the data resulting
from the entire round-trip (from PC to Wupper to Application, Interlaken and loop-backed
to Interlaken, Application, Wupper and back to the PC memory). Since this output (while
providing a general idea of the data residing in the PC memory) does not show how the
data travels through Interlaken, the hardware test was extended. A component was added
to the firmware application, which was used to provide insight into how the different signals
react within the firmware, and to readout the FIFOs.

A screenshot of the firmware test wave window output is shown in Appendix F. The
packet length register is set to X”0010”, which means that after 16 data words, a data
transfer will be completed and the Sync INFO Word will be added. This is signaled by
the send sync word signal. The other signals (such as the start of packet, end of packet,
and the FIFO signals) also behaved according to expectations. The data generated from
the application software, is saved in the Host PC memory, and from there it is collected
by Wupper and sent via the (firmware) application to Interlaken (shown by the signal
Wu to TX.) This same data goes through the Interlaken system (see Figure 30) where it
is sent back to Wupper again. It ends up in the RX to WU signal, which transports it to
the ToHostFIFO from Wupper.

From the test outputs it can be concluded that the Wupper-Interlaken implementation
works as expected.
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10.3 Channel bonding on Interlaken

Since the Interlaken implementation (Core1990) is debugged and a version was made which
is according to the protocol definition (Core 1990 Version2) it can be further optimized
to include other functionalities. One possible optimization that can be added is channel
bonding (see Chapter 7.1.) In order to implement this functionality, the Interlaken imple-
mentation needs to be extended. The dotted rectangle in Figure 34 shows the part of the
total design that will be extended.

Figure 34: Block diagram with part of the design that will be extended (dotted line.)

It will be replaced by the design shown in Figure 35, which multiplies the Interlaken TX
and Interlaken Rx by 4. This is done, because the FELIX hardware has 4 SFP receivers [21],
and if the channel bonding implementation succeeds, this will mean that all 4 SFP links
can be used.

10.3.1 Extended design

The TX FIFO is extended to 4 times it’s width, and the data is distributed across the
four lanes of each 69 bits. These bits consist of 64-bits of data, and 5-bits of control
signals (SOP, EOP, EOP valid.) The data is distributed per 64-bit words (data or control),
where they are divided among the lanes, beginning with channel 0, ending at channel 3,
and repeating for the next chunk of data (see Figure 6 on page 16.) Each Channel has
the same layout (so TX Channel 0 is the same as TX Channel n and RX Channel 0 is the
same as RX Channel n) At the Transceiver side, each line will be connected to it’s own
SFP receiver (This is not shown in Figure 34 to improve it’s readability.) The SFP fibers
are connected in loop-back mode, so the data sent from TX Channel 0 will be received at
RX Channel 0.
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Figure 35: New design for Interlaken where Channel Bonding is implemented.

This effectively multiplies the Interlaken implementation by 4, which means that the
maximum transfer speed is also multiplied by four. The Transceiver distribures the data
over the four channels, and the data is collected at the FIFO. The Data out signal reads
from the FIFO serially, but other ways of reading to multiple channels in parallel can also
be implemented so the data can be connected to any other system.

Unfortunately the implementation was not completely finished and tested, but it is
recommended that in future iterations of this project the design is implemented as a new
version of the Wupper-Interlaken firmware Application.
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11 Discussion

Within the assignment, the goal was to implement the Interlaken protocol on the FELIX
hardware. In order to do this, a previously made implementation (Core1990) had to be ver-
ified. This verification resulted in a several points of discussion, where the implementation
did not meet the requirements of the Interlaken protocol definition. These problems were
discovered, by connecting another implementation of Interlaken (developed by Xilinx) to
the Core1990 implementation, and connecting them so they could communicate with each
other. This attempted communication did not work, and several error flags were raised.
These errors were debugged, and corrected where possible. Some unexpected results still
remained, but these did not undermine the protocol implementation itself. They were
thought to be compatibility issues between the Core1990 implementation and the Xilinx
implementation, because the Xilinx core uses a parallel data bus (LBUS) format between
the transmitter and receiver, which also requires it’s own signals and flags. The updated
version of the Interlaken implementation (Core1990 V2.0) was functioning according to the
definition. This new implementation of Interlaken could then be implemented on the FELIX
hardware. To achieve this, an application had to be developed that encompassed the Inter-
laken implementation, and added a way for the Interlaken data output to be transferred to
the Wupper input and vice versa. This application was developed and tested, with success.
It did however, leave room for improvement. Some functionalities that were possible within
the Interlaken protocol (Channel-bonding and Flow-control) were not yet implemented. Af-
ter research was done on these optimization possibilities, a design was made to allow for
their implementation. The optimization design needs further tests in order to be imple-
mented, it will prove a suitable addition in a future version of the implementation. The
addition of multiple data transmission channels, also leaves room for a data bus format to
be implemented. This might solve the previously mentioned compatibility issues with the
Xilinx Interlaken core.

With the results of this project, an Interlaken implementation was made on the FELIX
hardware, which can serve as an alternative to the previous GBT protocol. The optic links
can be used to obtain the timing and trigger control information of the ATLAS system (as
well as other systems where FELIX is implemented) and the link speed will be raised from
4.8 Gbps to 12.5 Gbps which is a great improvement. Furthermore, a design proposition
for an implementation of Channel bonding has been made, which will raise the transfer
speed even further. With this research, further developments can be done within the FELIX
system, where the Interlaken protocol can possibly be implemented in the next upgrade of
the FELIX system on the ATLAS detector.
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12 Conclusion

In the next iteration of the Atlas FELIX project ( [10],) a more advanced, efficient and
faster protocol (than the currently implemented GBT protocol [5]) needs to be implemented.
Within this project, research has been done into the Interlaken protocol, and what is needed
to implement it on FELIX hardware. Interlaken is a suitable replacement for the GBT
protocol currently implemented in FELIX. From previous projects, an Implementation of the
Interlaken protocol was made but this implementation was not yet verified. In order to verify
that the implementation functions correctly according to the Interlaken protocol definition,
a test environment was set up where an Interlaken ip-core developed by Xilinx was connected
to the (unverified) implementation. The communication between the two systems did not
work, and several errors were raised. The setup was debugged, and the implementation was
rewritten where needed.This resulted in a correctly working implementation of Interlaken.
This new version of the Interlaken implementation was then ready to be implemented on the
FELIX hardware. In order to implement it, the Interlaken implementation needed to be able
to function alongside the FELIX firmware that was already present on the FELIX hardware.
To solve this problem, a firmware application was developed, which connected the Interlaken
system with the Wupper system (FELIX firmware PCIe wrapper, see [18]) so the original
data format of the FELIX system was kept. The implementation was tested by creating
some additions to the Wupper-tools software, which control the driver software of Wupper
and FELIX. With the Wupper tools, the data transfers from Interlaken to Wupper to the
memory of the FELIX Host PC (and the other way around) could be tested. These tests were
done alongside other firmware tests, and were deemed successful. The Interlaken protocol
was successfully implemented on the FELIX hardware, and now research could be done on
possible optimization methods. From this research, it was concluded that channelbonding
and flow control could prove to be a valuable addition to the Implementation. A functional
design was developed, which expanded the data transmission channels of Interlaken from one
channel to 4 channels. The implementation of this design will further raise the available
transmission speed to up to 50Gbps (4 times the link speed of 12.5Gbps.) With the
successful implementation of on FELIX and the further optimization options available, the
Interlaken protocol is a very usable in the next iteration of the FELIX system.
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13 Recommendations on futre work

Since the proposed channelbonding design is still incomplete, the main recommendation
would be to finish and implement this design alongside the current Interlaken application on
FELIX. The addition of channelbonding will extend the current design to four transmission
channels, which will greatly benefit the amount of data that can be processed. The FLX-
card will then be able to function with all of it’s SFP connectors, which will make it more
efficient. With the extention to four data channels, it might also be a worthwile to do
some research on parralel transmission formats, and to implement a data bus, similar to
the one in the Xilinx Interlaken core (mentioned in Chapter 10.1.3.) This addition of a
data bus format, might solve the unknown issues still left with the communication between
Core1990 V2.0 and the Xilinx Interlaken core mentioned in Chapter 10.1.3. It is also useful
to recreate some of the tests done with the Xilinx Interlaken core, to find out what exactly
caused the issues. With the addition of multiple data transmission channels, it would also
be useful to add the Flow control functionality. This will allow the Receiver to manage
the transmissions on the Transmitter side, by providing feedback and warning for possible
congestion from within the control words. Another useful addition would be to include some
sort of User Interface to manage the data transfers (and possibly the number of channels
once channel bonding is implemented,) and to provide an easier way to change the register
values such as packet length.
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Appendices

A SI5324 register map file.

Below the register map file is shown for the SI5324 Clock jitter attenuator. The meaning
of each register setting is explained in [28].

#HEADER
# Date: woensdag 1 mei 2019 10:58
# File Version: 3
# Software Name: Precision Clock EVB Software
# Software Version: 5.1
# Software Date: July 23, 2014
# Part number: Si5324
#END_HEADER
#PROFILE
# Name: Si5324
#INPUT
# Name: CKIN
# Channel: 1
# Frequency (MHz): 156,250000
# N3: 79
# Maximum (MHz): 157,500000
# Minimum (MHz): 134,722222
#END_INPUT
#PLL
# Name: PLL
# Frequency (MHz): 5625,000000
# f3 (MHz): 1,977848
# N1_HS: 6
# N2_HS: 9
# N2_LS: 316
# Phase Offset Resolution (ns): 1,06667
# BWSEL_REG Option: Frequency (Hz)
# 10: 7
# 9: 15
# 8: 30
# 7: 60
# 6: 120
# 5: 244
# 4: 502
#END_PLL
#OUTPUT
# Name: CKOUT
# Channel: 1
# Frequency (MHz): 156,250000
# NC1_LS: 6
# CKOUT1 to CKIN1 Ratio: 1 / 1
# Maximum (MHz): 157,500000
# Minimum (MHz): 134,722222
#END_OUTPUT
#CONTROL_FIELD
# Register-based Controls
# FREE_RUN_EN: 0x0
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# CKOUT_ALWAYS_ON: 0x0
# BYPASS_REG: 0x0
# CK_PRIOR2: 0x1
# CK_PRIOR1: 0x0
# CKSEL_REG: 0x0
# DHOLD: 0x0
# SQ_ICAL: 0x1
# BWSEL_REG: 0xA
# AUTOSEL_REG: 0x2
# HIST_DEL: 0x12
# ICMOS: 0x3
# SLEEP: 0x0
# SFOUT2_REG: 0x5
# SFOUT1_REG: 0x5
# FOSREFSEL: 0x2
# HLOG_2: 0x0
# HLOG_1: 0x0
# HIST_AVG: 0x18
# DSBL2_REG: 0x1
# DSBL1_REG: 0x0
# PD_CK2: 0x1
# PD_CK1: 0x0
# FLAT_VALID: 0x1
# FOS_EN: 0x0
# FOS_THR: 0x1
# VALTIME: 0x1
# LOCKT: 0x1
# CK2_BAD_PIN: 0x1
# CK1_BAD_PIN: 0x1
# LOL_PIN: 0x1
# INT_PIN: 0x0
# INCDEC_PIN: 0x1
# CK1_ACTV_PIN: 0x1
# CKSEL_PIN: 0x1
# CK_ACTV_POL: 0x1
# CK_BAD_POL: 0x1
# LOLPOL: 0x1
# INT_POL: 0x1
# LOS2_MSK: 0x1
# LOS1_MSK: 0x1
# LOSX_MSK: 0x1
# FOS2_MSK: 0x1
# FOS1_MSK: 0x1
# LOL_MSK: 0x1
# N1_HS: 0x2
# NC1_LS: 0x5
# NC2_LS: 0x5
# N2_LS: 0x13B
# N2_HS: 0x5
# N31: 0x4E
# N32: 0x4E
# CLKIN2RATE: 0x0
# CLKIN1RATE: 0x0
# FASTLOCK: 0x1
# LOS1_EN: 0x3
# LOS2_EN: 0x3
# FOS1_EN: 0x1
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# FOS2_EN: 0x1
# INDEPENDENTSKEW1: 0x0
# INDEPENDENTSKEW2: 0x0
#END_CONTROL_FIELD
#REGISTER_MAP:
{
{ 0, 0x14},
{ 1, 0xE4},
{ 2, 0x82},
{ 3, 0x15},
{ 4, 0x92},
{ 5, 0xED},
{ 6, 0x3F},
{ 7, 0x29},
{ 8, 0x00},
{ 9, 0xC0},
{ 10, 0x00},
{ 11, 0x40},
{ 19, 0x29},
{ 20, 0x3E},
{ 21, 0xFE},
{ 22, 0xDF},
{ 23, 0x1F},
{ 24, 0x3F},
{ 25, 0x40},
{ 31, 0x00},
{ 32, 0x00},
{ 33, 0x05},
{ 34, 0x00},
{ 35, 0x00},
{ 36, 0x05},
{ 40, 0xA0},
{ 41, 0x01},
{ 42, 0x3B},
{ 43, 0x00},
{ 44, 0x00},
{ 45, 0x4E},
{ 46, 0x00},
{ 47, 0x00},
{ 48, 0x4E},
{ 55, 0x1B},
{131, 0x1F},
{132, 0x02},
{137, 0x01},
{138, 0x0F},
{139, 0xFF},
{142, 0x00},
{143, 0x00},
{136, 0x40},
};
#END_REGISTER_MAP
#END_PROFILE
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B Core1990 Hardware test output
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C Scrambler Synchronization State diagram
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D CRC-24 Check test

In the image below, the wave window is shown for the CRC-24 Test, done with the example
data from the Interlaken protocol definition (see Chapter 4.3)
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E Output of Core1990 with LBUS simulator
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F Hardware test of Interlaken Application on FELIX
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G Wupper-Interlaken Application DMA transfer out-
put.

Figure 36: Application output.
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H WUPPER register map

Starting from the offset address of BAR0, BAR1 and BAR2, the register map for BAR0
expands from 0x0000 to 0x0430 for the PCIe control registers. BAR0 only contains registers
associated with DMA. The offset for BAR0 is usually 0xFBB00000.

Address PCIe Name/Field Bits Type Description

Bar0

DMA DESC

0x0000 0,1 DMA DESC 0

END ADDRESS 127:64 W End Address

START ADDRESS 63:0 W Start Address

0x0010 0,1 DMA DESC 0a

RD POINTER 127:64 W PC Read Pointer

WRAP AROUND 12 W Wrap around

READ WRITE 11 W 1: fromHost/ 0:
toHost

NUM WORDS 10:0 W Number of 32 bit
words

. . .

0x00E0 0,1 DMA DESC 7

END ADDRESS 127:64 W End Address

START ADDRESS 63:0 W Start Address

0x00F0 0,1 DMA DESC 7a

RD POINTER 127:64 W PC Read Pointer

WRAP AROUND 12 W Wrap around

READ WRITE 11 W 1: fromHost/ 0:
toHost

NUM WORDS 10:0 W Number of 32 bit
words

DMA DESC STATUS

0x0200 0,1 DMA DESC STATUS 0

EVEN PC 66 R Even address cycle
PC

EVEN DMA 65 R Even address cycle
DMA

DESC DONE 64 R Descriptor Done

CURRENT ADDRESS 63:0 R Current Address
. . .

0x0270 0,1 DMA DESC STATUS 7

EVEN PC 66 R Even address cycle
PC

EVEN DMA 65 R Even address cycle
DMA

DESC DONE 64 R Descriptor Done

CURRENT ADDRESS 63:0 R Current Address

76 Leonie Verwoert Rev 1.0



Felix from Interlaken

Address PCIe Name/Field Bits Type Description

0x0300 0,1 BAR0 VALUE 31:0 R Copy of BAR0 offset
reg.

0x0310 0,1 BAR1 VALUE 31:0 R Copy of BAR1 offset
reg.

0x0320 0,1 BAR2 VALUE 31:0 R Copy of BAR2 offset
reg.

0x0400 0,1 DMA DESC ENABLE 7:0 W Enable descriptors
7:0. One bit per
descriptor. Cleared
when Descriptor is
handled.

0x0410 0,1 DMA FIFO FLUSH any T Flush (reset). Any
write clears the DMA
Main output FIFO

0x0420 0,1 DMA RESET any T Reset Wupper Core
(DMA Controller
FSMs)

0x0430 0,1 SOFT RESET any T Global Software
Reset. Any write
resets applications,
e.g. the Central
Router.

0x0440 0,1 REGISTER RESET any T Resets the register
map to default values.
Any write triggers this
reset.

0x0450 0,1 FROMHOST FULL THRESH

THRESHOLD ASSERT 22:16 W Assert value of the
FromHost
programmable full
flag

THRESHOLD NEGATE 6:0 W Negate value of the
FromHost
programmalbe full
flag

0x0460 0,1 TOHOST FULL THRESH

THRESHOLD ASSERT 27:16 W Assert value of the
ToHost programmable
full flag

THRESHOLD NEGATE 11:0 W Negate value of the
ToHost
programmalbe full
flag

Table 4: FELIX register map BAR0
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BAR1 stores registers associated with the Interrupt vector. The offset for BAR1 is
usually 0xFBA00000.

Address PCIe Name/Field Bits Type Description

Bar1

INT VEC

0x0000 0,1 INT VEC 0

INT CTRL 127:96 W Interrupt Control

INT DATA 95:64 W Interrupt Data

INT ADDRESS 64:0 W Interrupt Address
. . .

0x0070 0,1 INT VEC 7

INT CTRL 127:96 W Interrupt Control

INT DATA 95:64 W Interrupt Data

INT ADDRESS 64:0 W Interrupt Address

0x0100 0,1 INT TAB ENABLE 7:0 W Interrupt Table enable
Selectively enable
Interrupts

Table 5: FELIX register map BAR1

BAR2 stores registers for the control and monitor of HDL modules inside the FPGA
other than Wupper. A portion of this register map’s section is dedicated for control and
monitor of devices outside the FPGA; as for example simple SPI and I2C devices. The
offset for BAR2 is usually 0xFB900000.

Address PCIe Name/Field Bits Type Description

Bar2

Generic Board Information

0x0000 0 REG MAP VERSION 15:0 R Register Map Version,
1.0 formatted as
0x0100

0x0010 0 BOARD ID TIMESTAMP 39:0 R Board ID Date /
Time in BCD format
YYMMDDhhmm

0x0020 0 BOARD ID SVN 15:0 R Board ID SVN
Revision

0x0030 0 STATUS LEDS 7:0 W Board GPIO Leds

0x0040 0 GENERIC CONSTANTS

INTERRUPTS 15:8 R Number of Interrupts

DESCRIPTORS 7:0 R Number of
Descriptors
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Address PCIe Name/Field Bits Type Description

0x0050 0 CARD TYPE 63:0 R Card Type:
* 709 (0x2c5) VC709
* 710 (0x2c6)
HTG710
* 711 (0x2c7)
BNL711

Application Specific

0x1000 0,1 LFSR SEED 0 63:0 W Least significant 64
bits of the LFSR seed

0x1010 0,1 LFSR SEED 1 63:0 W Bits 127 downto 64
of the LFSR seed

0x1020 0,1 LFSR SEED 2 63:0 W Bits 191 downto 128
of the LFSR seed

0x1030 0,1 LFSR SEED 3 63:0 W Bits 255 downto 192
of the LFSR seed

0x1040 0,1 APP MUX 0:0 W Switch between
multiplier or LFSR.
* 0 LFSR
* 1 Loopback

0x1050 0,1 LFSR LOAD SEED any T Writing any value to
this register triggers
the LFSR module to
reset to the
LFSR SEED value

0x1060 0,1 APP ENABLE 0:0 W 1 Enables LFSR
module or Loopback
(depending on
APP MUX)
0 disable application

House Keeping Controls And Monitors

0x2300 0 MMCM MAIN PLL LOCK 0 R Main MMCM PLL
Lock Status

0x2310 0 I2C WR

I2C WREN any T Any write to this
register triggers an
I2C read or write
sequence

I2C FULL 25 R I2C FIFO full

WRITE 2BYTES 24 W Write two bytes

DATA BYTE2 23:16 W Data byte 2

DATA BYTE1 15:8 W Data byte 1

SLAVE ADDRESS 7:1 W Slave address
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Address PCIe Name/Field Bits Type Description

READ NOT WRITE 0 W READ/¡o¿WRITE¡/o¿

0x2320 0 I2C RD

I2C RDEN any T Any write to this
register pops the last
I2C data from the
FIFO

I2C EMPTY 8 R I2C FIFO Empty

I2C DOUT 7:0 R I2C READ Data

0x2330 0 FPGA CORE TEMP 11:0 R XADC temperature
monitor for the FPGA
CORE
for Virtex7
temp (C)=
((FPGA CORE TEMP*
503.975)/4096)-
273.15
for Kintex Ultrascale
temp (C)=
((FPGA CORE TEMP*
502.9098)/4096)-
273.8195

0x2340 0 FPGA CORE VCCINT 11:0 R XADC voltage
measurement
VCCINT =
(FPGA CORE VCCINT
*3.0)/4096

0x2350 0 FPGA CORE VCCAUX 11:0 R XADC voltage
measurement
VCCAUX =
(FPGA CORE VCCAUX
*3.0)/4096

0x2360 0 FPGA CORE VCCBRAM 11:0 R XADC voltage
measurement
VCCBRAM =
(FPGA CORE VCCBRAM
*3.0)/4096

0x2370 0,1 FPGA DNA 63:0 R Unique identifier of
the FPGA

0x2800 0 INT TEST 4 any T Fire a test MSIx
interrupt #4

0x2810 0 INT TEST 5 any T Fire a test MSIx
interrupt #5

Wishbone

0x4000 0 WISHBONE CONTROL
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Address PCIe Name/Field Bits Type Description

WRITE NOT READ 32 W wishbone write
command wishbone
read command

ADDRESS 31:0 W Slave address for
Wishbone bus

0x4010 0 WISHBONE WRITE

WRITE ENABLE any T Any write to this
register triggers a
write to the Wupper
to Wishbone fifo

FULL 32 R Wishbone

DATA 31:0 W Wishbone

0x4020 0 WISHBONE READ

READ ENABLE any T Any write to this
register triggers a
read from the
Wishbone to Wupper
fifo

EMPTY 32 R Indicates that the
Wishbone to Wupper
fifo is empty

DATA 31:0 R Wishbone read data

0x4030 0 WISHBONE STATUS

INT 4 R interrupt

RETRY 3 R Interface is not ready
to accept data cycle
should be retried

STALL 2 R When pipelined mode
slave can’t accept
additional
transactions in its
queue

ACKNOWLEDGE 1 R Indicates the
termination of a
normal bus cycle

ERROR 0 R Address not mapped
by the crossbar

Table 6: FELIX register map BAR2
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The following Registers are added with the addition of the Interlaken protocol to Wup-
per. An Application was made, encompassing Interlaken and a connection block, which
transfers the data into the FromHostFIFO and reads data from the FromHostFIFO.

Interlaken

Address PCIe Name/Field Bits Type Description

0x5000 0 INTERLAKEN PACKET LENGTH 15:0 W Packet length for
fromhost packet (to
Interlaken)

0x5010 0 INTERLAKEN CONTROL STATUS

TRANSCEIVER RESET any T Any write to this
register triggers a
transceiver reset

DECODER LOCK 1 R Decoder lock
indication

DESCRAMBLER LOCK 0 R Descrambler lock
indication

0x5020 0 TRANSCEIVER

LOOPBACK 8 W Interlaken

TX FAULT 7:4 R SFP transceiver TX
fault indication

RX LOS 3:0 R Loss of signal
indication

Table 7: FELIX register map Interlaken (Application.)
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