

R

Point-to-point protocol exploration

F. Schreuder

A. Borga

P. Jansweijer

Nayib Boukadida n.boukadida@nikhef.nl

Hogeschool van Amsterdam

W.E. Dolman

R

- About Nikhef
- Internship assignment
- Structure of communication protocols
- Requirements
- The Interlaken protocol
- Implementation
- Status
- Conclusion

July 2018 2nd

Content

Survey of existing protocols (vendor dependent and independent)

- National Institute for Subatomic Physics (Nationaal Instituut voor Subatomaire fysica)
- Among others, Nikhef is closely involved in the development of the LHC ATLAS experiment at CERN
- Internship at the Electronic Technology department

Nikhef

Internship assignment

- Large particle detector facilities often require a point-to-point link at a certain stage of the DataAcQuisition (DAQ) chain to connect custom tailored electronics
- As the demand of data processing increases and larger data-sets are to be transported through these links their performance in terms of speed and bandwidth must scale accordingly
- Because of this:

Nikhef

B

I was assigned the task to research and implement a novel high-speed point-to-point link targeting FPGA communication

Internship assignment

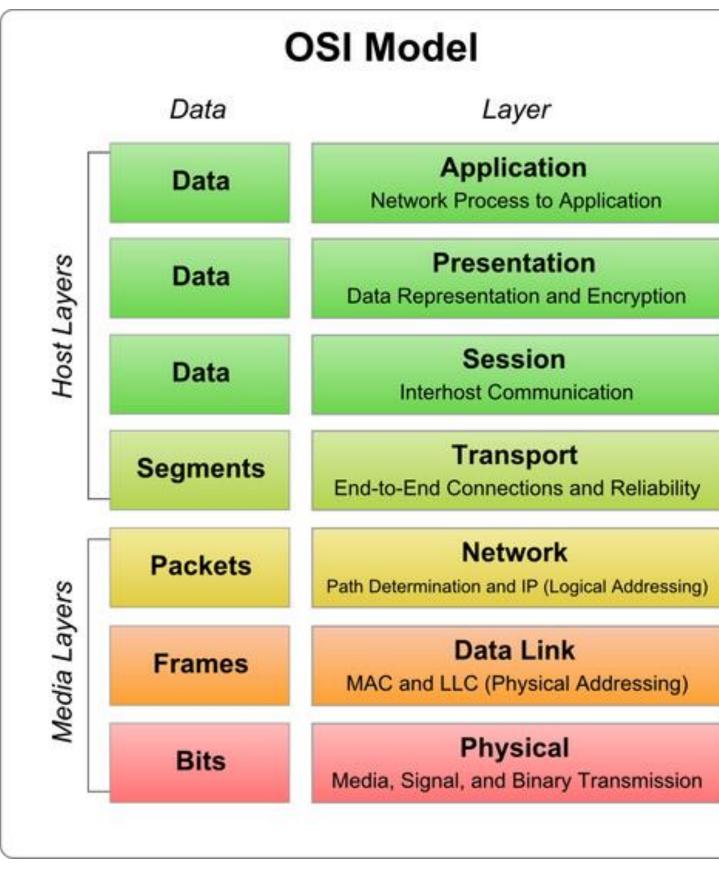
- Explore how point-to-point communication protocols are built up
- Survey the currently existing point-to-point protocols
- Find out if there is an existing protocol that matches a set of clear requirements
- Describe the protocol and implement a proof of concept that can run on an FPGA [possibly vendor independent]
- Publish specifications and implementation as Free and Open Source on specialized code hosting platforms like OpenCores

Nik[hef

R

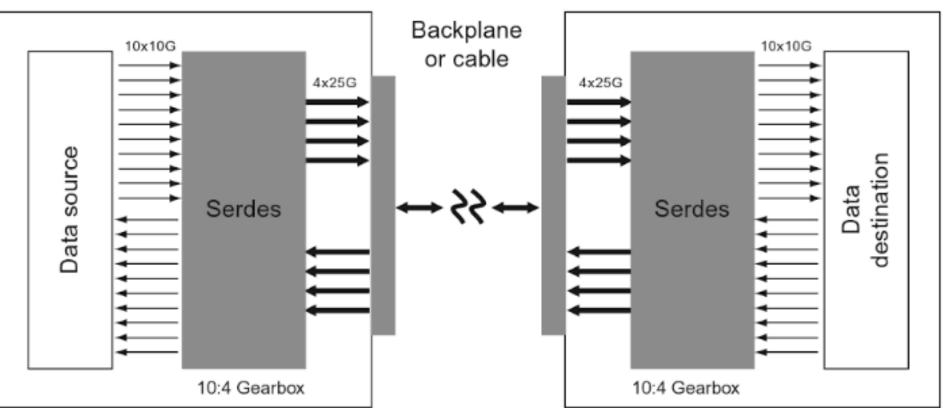
sharing is done with the aim of promoting the dissemination and broad adoption of the design

Point-to-point protocols


- Open Systems Interconnection (OSI) model
- Describes how data communication between two peers should take place
- Focused on FPGA
- The media layer will be of most interest to us Layer 1 : Physical (PHY) Layer 2 : Data link (MAC)

Nik hef

R



Point-to-point protocols

Nik hef

- Data structure and framing (OSI Layer 2) □ Adds overhead for the peers to properly handle payload data
- Error detection and correction (OSI Layer 2/1) □ Checks on erroneous/flipped bits
- Encoding of data (OSI Layer 1) □ Ensures the data will arrive "electrically" correct
- Serialization and deserialization of data (OSI Layer 1) Long distance communication happens over serial link [stating the obvious]

R

Line encoding and decoding

- Encoding adds sync headers and randomizes the binary data Prevents baseline wander, constant EMI Prevents errors in delineation of words **D** Essential for clock recovery
- **Scrambler**

 - Randomizes the data according to an algorithm • Can be reversed by the receiver [this is not encryption] Prevents long rows of continuous binary values Can be self-synchronous (on payload) or independent synchronous (per lane)

Commonly used:

- □ 128b/132b USB 3.1 - DVI / HDMI / Gbit Eth SGMI / SATA / USB 3.0 **3**8b/10b
- 64b/66b Ethernet / InfiniBand / Thunderbolt
- □ 128b/130b PCIe 3.0/4.0

July 2018 2^{nd}


- □ 256b/257b Fibrechannel
 - 64b/67b - Interlaken

Flow control and bonding

- Flow control
 - Start/stop transmitting at command of the receiver
 - Prevents overwhelming the receiver
- Channel Bonding Combining multiple serial links in parallel

Nik hef

R

✤ Mandatory:

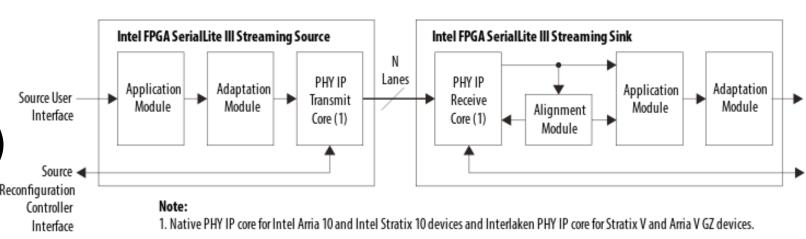
- □ Line rate must be at least 10 Gbit/s (1,25 GB/s) □ Flow control must be present
- □ Range distance coverage has to be 10 200 meters (normal distance)

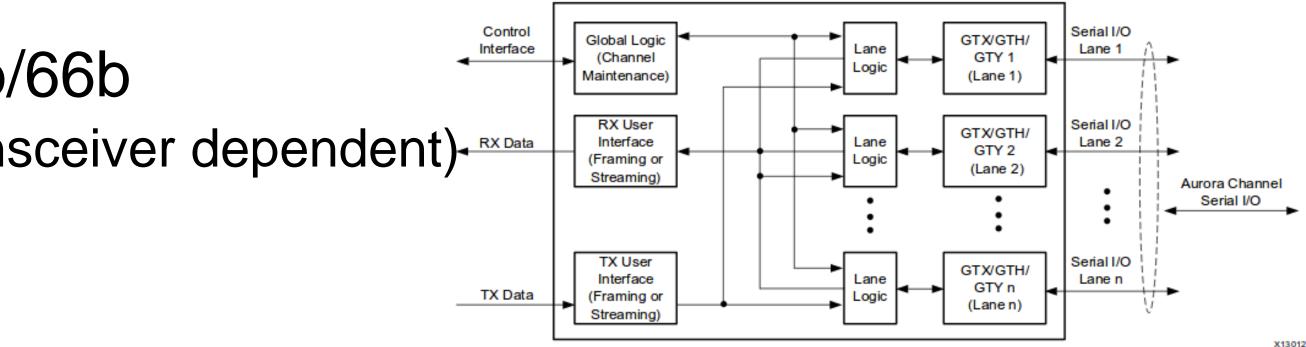
✤ Optional:

- Cyclic Redundancy Check
- Forward Error Correction
- **Channel bonding**

Vendor dependent protocols

Altera SerialLite II & III


- □ Speeds up to 28 Gbit/s (Transceiver dependent)
- □ SLII supports flow control / SLIII not very clear
- □ CRC-32 Error Correction
- **Given FEC** not mentioned
- □ 64b/67b encoding
- Xilinx Aurora 8b/10b & 64b/66b
 - □ Speeds up to 26 Gbit/s (Transceiver dependent)
 - Flow control
 - **CRC-32** Error correction
 - □ FEC not mentioned
 - □ 64b/66b encoding


Microsemi litefast – Somewhat older

2nd July 2018

Point-to-point protocol exploration

Survey

Sink User

► Sink

Reconfigurati Controlle

hef

This slide is explicitly full of stuff! ③

Vendor **independent** protocols

✤Interlaken

- **Clear documentation**
- meets all requirements by a fair margin

✤SATA

- Lane rate is not sufficient
- Older 8b/10b encoding
- Includes flow control / CRC-32
- Not open source
- No bonding

*CPRI

- Unclear documentation
- Sufficient lane rate and encoding
- Channel bonding not supported

HyperTransport

- □ High speeds
- Parallel bus
- Fibre Channel
 - No documentation found
 - Only old presentations to be found
 - Not open

Lane rate

Encoding

Flow contro

Range dista

CRC

FEC

Channel bor

Point-to-point protocol exploration

July 2018 2nd

XAUI

- Combines multiple slower line to 10 Gbps link
- **Used** in combination with Ethernet

	Interlaken	SATA	CPRI	Fibre channel
	25,3 Gbps	6 Gbps	24,33 Gbps	12,8 Gbps
	64b/67b	8b/10b	64b/66b	256b/257b
bl	Yes	Yes	-	-
nce	Cable dependent	Short	Cable dependent	Cable dependent
	CRC-24/32	CRC-32	-	Yes
	RS(544,514)-Ext	-	RS(528,514)	RS(544,514)
nding	Upto 400 Gbps	-	-	-

hef

This slide is explicitly full of stuff! ③

Vendor **independent** protocols

✤Interlaken

- Clear documentation
- meets all requirements by a fair margin

✤SATA

- Lane rate is not sufficient
- Older 8b/10b encoding
- Includes flow control / CRC-32
- Not open source
- No bonding

♦ CPRI

- Unclear documentation
- Sufficient lane rate and encoding
- Channel bonding not supported

HyperTransport

- □ High speeds
- Parallel bus

Fibre Channel

Not open

Lane rate

Encoding

Flow contro

Range dista

CRC

FEC

Channel bor

Point-to-point protocol exploration

2^{nd} July 2018

XAUI

- □ Combines multiple slower line to 10 Gbps link
- **Used** in combination with Ethernet

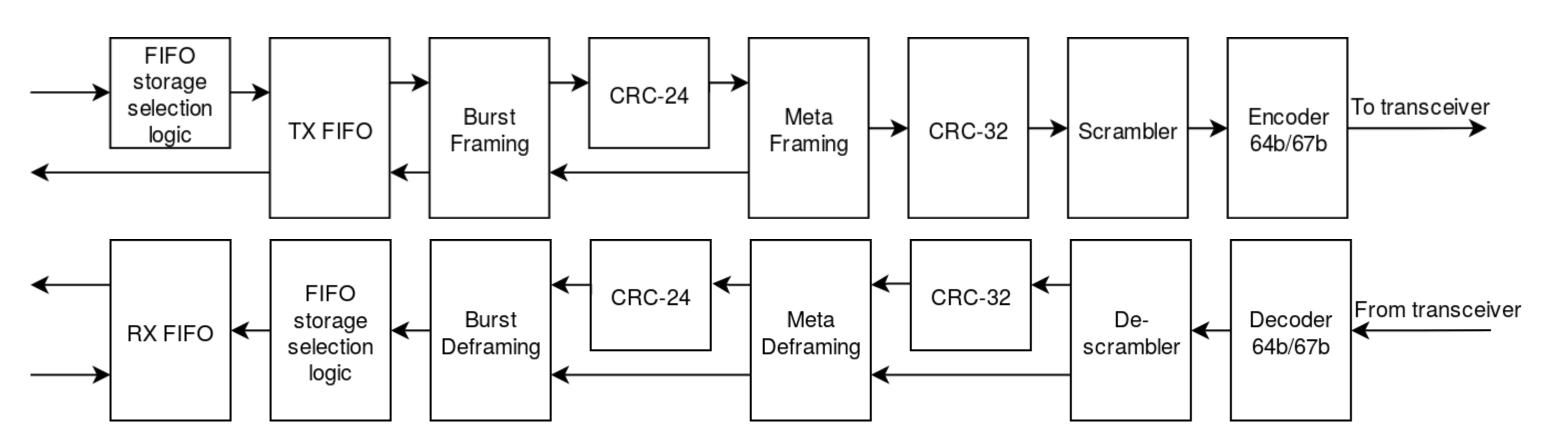
- No documentation found
- Only old presentations to be found

	Interlaken	SATA	CPRI	Fibre channel	
	25,3 Gbps	6 Gbps	24,33 Gbps	12,8 Gbps	
	64b/67b		64b/66b	256b/257b	
bl	I Yes		-	-	
ance	Cable dependent	Short	Cable dependent	Cable dependent	
	CRC-24/32	CRC-32	-	Yes	
RS(544,514)-Ext		-	RS(528,514)	RS(544,514)	
nding	Upto 400 Gbps	-	_	_	

The Interlaken Protocol

- Revision 1.2 October 7, 2008
- Property of Cortina Systems and Cisco Systems
- **Royalty-free**
- Interlaken Alliance
- Many members, among others: □ Broadcom, Intel, Lattice, Microsemi, Xilinx
- It was made because...

Nik hef



ef Ni

- Overhead (Single lane)

 - Encoding : 64b/67b -> 64/67 = 4,48%
 - Total overhead of about 10,3%
- We called it Core1990

Point-to-point protocol exploration

Implementation

Worked on a implementation in VHDL – target Xilinx VC707 board Only the transceiver and FIFOs make use of a proprietary IP Core

□ Bursts : BurstMax 32 (256 B), BurstMin 4 (32 B) -> 2/34 = 5,88% (Best case) Metaframing : Metaframelength 2048 (16.384 B) -> 4/2048 = 0,20%

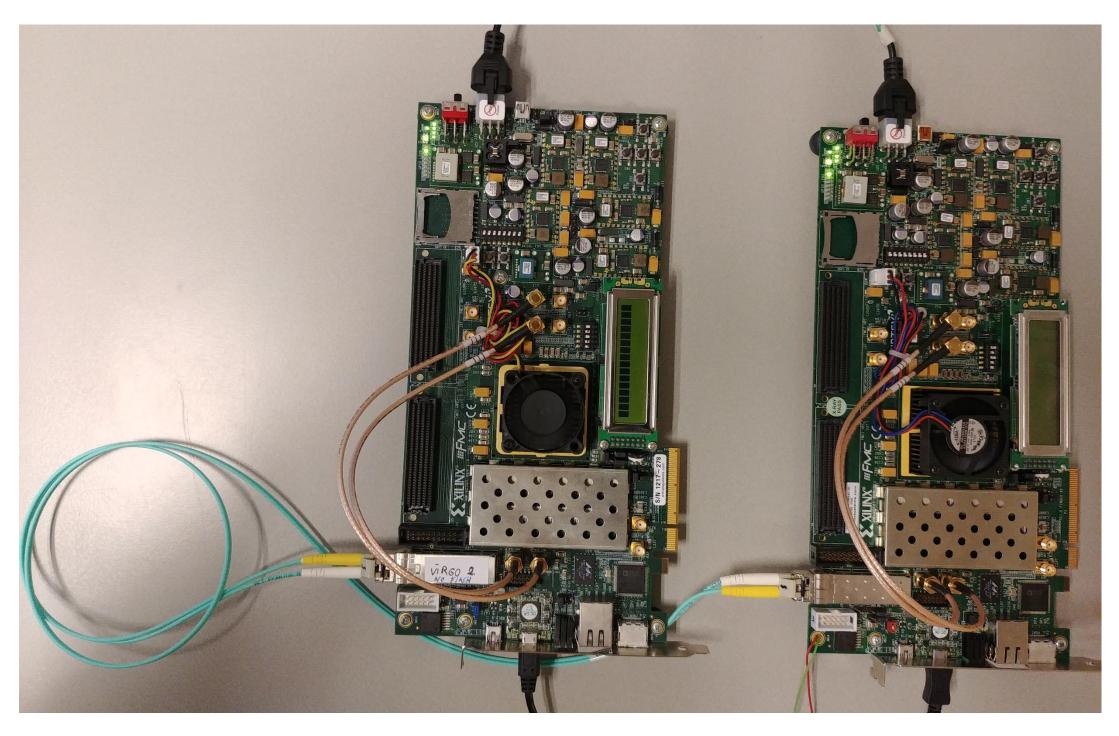
CYKE

hef Nik

- Found a protocol that meets all requirements
- Described the protocol extensively in a structured document
- Vivado project is properly setup and design is synthesizable
- ✓ Design functions verified in behavioral simulation Complete transmitter and receiver chains □ CRC-24 and receiving FIFO need some adjustments
- Not yet tested in hardware

Status

B


✓ **Tested** in hardware (VC707)

- Started with single board loop-back and expanded to two boards using fiber
- □ Link is **stable** between boards
- Data constantly generated by counter and being verified
- When the fiber is unplugged **lock** is lost and when reconnecting the link locks again
- □ Transceiver operates at **10 Gbit/s**

Status

ILA Status: Idle						2,461				
	Name	Value		2,459	2,460	2,461	2,462	2,463	2,464	2,465
	•\delta_Decoder[63:0]	76fca4410f4d99e9		ea20fc1594	74a2190ae7	76fca4410f	e2832a04	2eda81b4	7b23957cf2	a83d9:
	•	00000225da1513b5	· .	00000225da	00000225da	(00000225da	00000225da)	00000225da	00000225da	00000
	懾 Decoder_lock	1								
	Uescrambler_lock	1								
	• 📲 TX_Data_Pipelined[63:0]	00000225da1513a3		00000225da	00000225da	(00000225da)	00000225da	(00000225da	00000225da	00000
	• 📲 TX_Info_Pipelined[4:0]	00						00		
	•	00000225da1513a3		00000225da	00000225da	(00000225da)	00000225da	00000225da	00000225da	00000
	•	00						00		
	¼ valid_probe	1								
	•	d54a6e1881ae92fd		(7b23957d7b)	7b23957cf2	d54a6e1881	a02c7a71b9	e027772f83	0a90348cfl	3e5b2
	•	bb9cd3cf14b37a1d	· .	fa67bd2cdc	ec08ef3c40	bb9cd3cf14	57f0cbba21	(f657f7949a	e845548e9e	6elad
	¼ TX_FIFO_progfull	0	_							

Gained knowledge

- □ Much more experience in writing correct VHDL Better idea of how to analyze IP Core documentation More confident in designing according to specs □ Navigate through a lot of signals in simulation □ How to properly gather and research information □ How to properly structure a specification document □ Hands-on experience with "real (macho) hardware" Design verification and validation in hardware
- My accomplishment is the first step • Others can learn from it and continue its development
- Information and documentation is uploaded to: https://opencores.org/project/core1990_interlaken

2nd July 2018

Point-to-point protocol exploration

Conclusion

Gained knowledge

- □ Much more experience in writing correct VHDL Better idea of how to analyze IP Core documentation □ More confident in designing according to specs Navigate through a lot of signals in simulation □ How to properly gather and research information
- How to properly structure a specification document
- My accomplishment is the first step • Others can learn from it and continue its development
- Information and documentation will be uploaded to:

https://opencores.org/project/core1990_interlaken

Thank you for your attention! ③

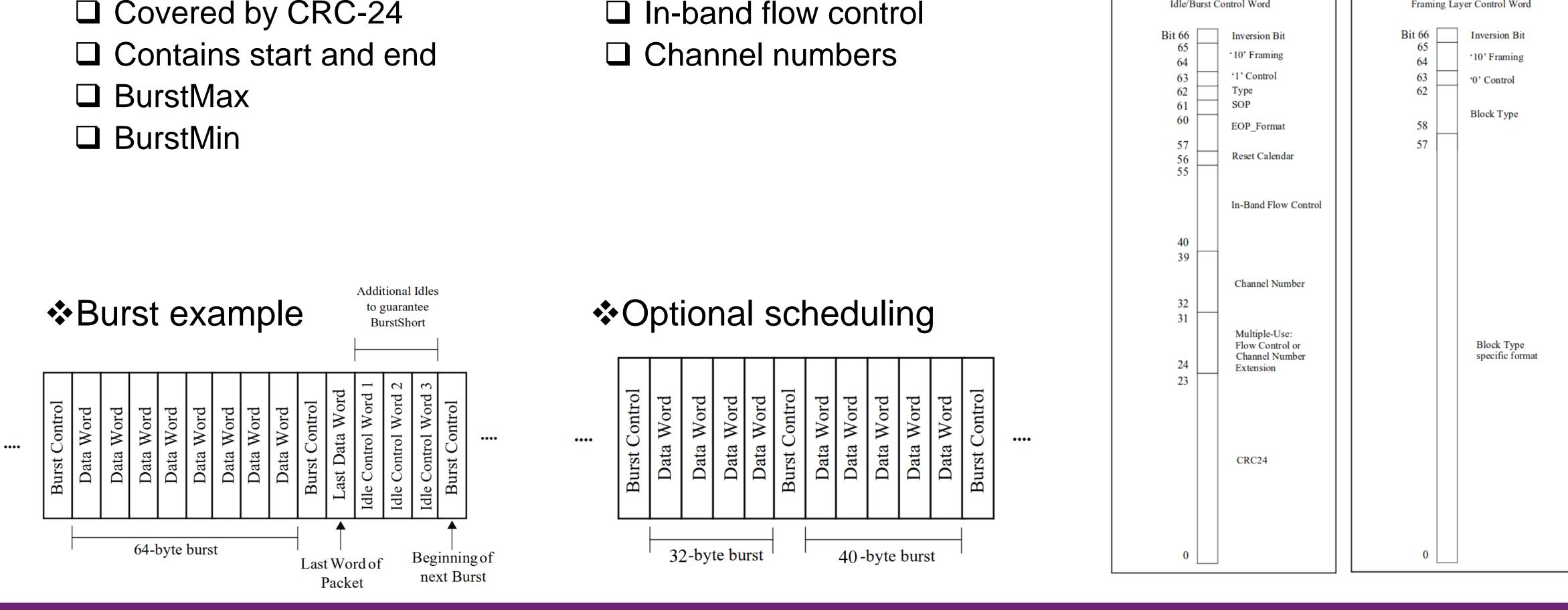
Point-to-point protocol exploration

July 2018 2nd

Conclusion

July 2018 2nd

Point-to-point protocol exploration


Backup slides

This slide is a cheat sheet! ③

Burst framing

- Covered by CRC-24

2nd July 2018

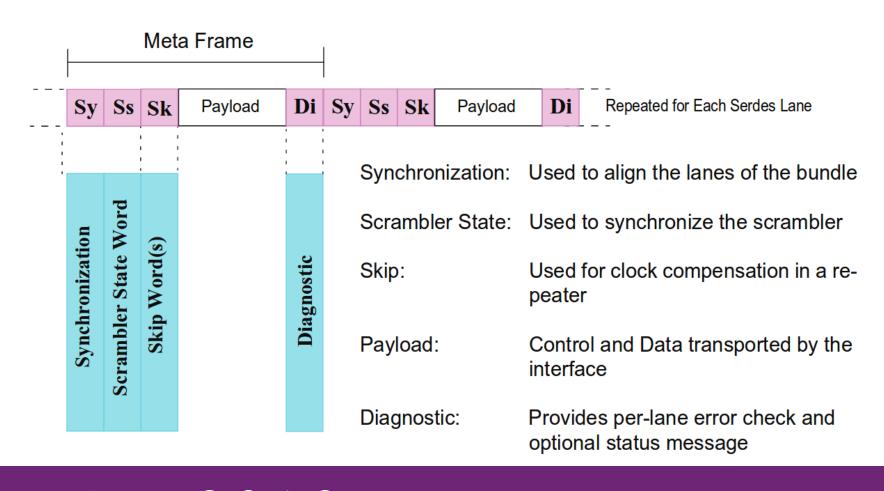
Point-to-point protocol exploration

The Interlaken Protocol

Idle/burst and framing control words

Framing Layer Control Word

Idle/Burst Control Word



The Interlaken Protocol

This slide is also a cheat sheet! ③

Meta framing

- Covered by CRC-32
- Synchronizes the connection
- Communicates scrambler states
- Skip words for clock synchronization
- Diagnostic information

 2^{nd}

Meta Frame Control Word	Block Type (positive disparity)	Block Type (negative disparit
Synchronization	011110	100001
Scrambler State	001010	110101
Skip	000111	111000
Diagnostic	011001	100110

Synchronization / Scrambler state

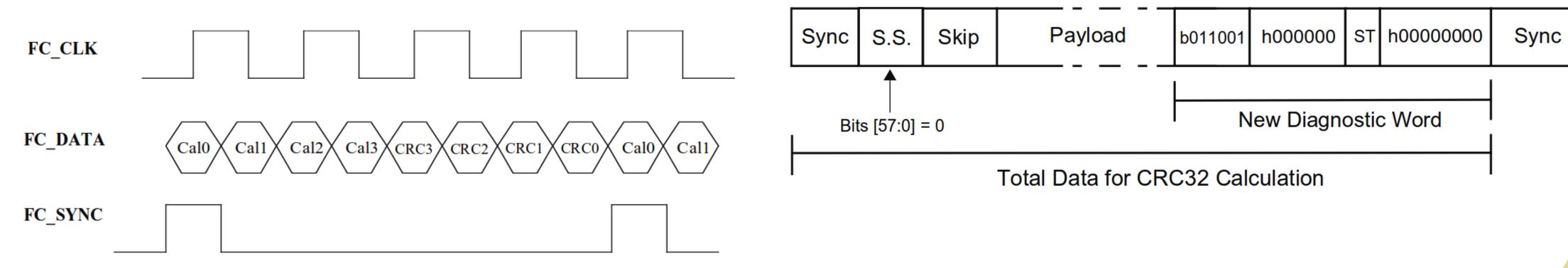
b	x10	ь011	110	h0F678F678F6	
b	x10	b001	010	Scrambler State	
66		63	58	57 0	

Skip word

	bx10	b000111	h21E	h1E	h1E	h1E	h1E	h1E	h1E
e	66	63 5	3 57 48	347 40					0

Diagnostic word

bx10	b011	001	h000000		Statu	s	CRC32
66	63	58	57	34	33	32	31 0



The Interlaken Protocol

◆Flow Control ◆Flow Control ★CRC-32 - Me

- XON/XOFF
- In-band flow control
 - Included in burst control words
 - Intended for duplex operation
- Out-of-band flow control
 - Covered by CRC-4
 - Intended for simplex operation

Point-to-point protocol exploration

CRC-32 - Meta framing

 $X^{32}+X^{28}+X^{27}+X^{26}+X^{25}+X^{23}+X^{22}+X^{20}+X^{19}+X^{18}+$

 $X^{14}+X^{13}+X^{11}+X^{10}+X^{9}+X^{8}+X^{6}+1$

CRC-24 - Burst framing

 $X^{24}+X^{21}+X^{20}+X^{17}+X^{15}+X^{11}+X^{9}+X^{8}+X^{6}+X^{5}+X+1$

CRC-4 - Out-of-band flow control

X⁴+X+1

The Interlaken Protocol

This slide is also a cheat sheet! ③

Scrambler

- Independent synchronous scrambler
- 58 bit polynomial : X⁵⁸+X³⁸+1
- No error multiplication through multiple frames
- In case of error, synchronizes itself

Bits [66:64]	
001	Data Word, no inversion
010	Control Word, no inversion
101	Data Word, bits [63:0] are invert
110	Control Word, bits [63:0] are inv
All others	Illegal states

- Encoder
 - Adds a 3-bit preamble
 - 50% of combinations possible
 - Running disparity within 96-bit boundary
 - Doesn't rely on the scrambler
 - Lower Bit-Error-Rate

Interpretation	
ed	
erted	

