
PR200
Configurable Dual-Core High

Performance AXI DMA
Reference Guide

Revision 1.6

Preface

About This Manual
This document describes the Configurable Dual-Core High Performance AXI
DMA (PR200).

Notational Conventions
This document uses the following conventions:

• Hexadecimal numbers are shown with the prefix 0x.

Related Documents
• “AMBA AXI Protocol Specification”, can be downloaded from http://infocenter.arm.com

• "AMBA 3 APB Protocol Specification”, can be downloaded from http://infocenter.arm.com

• DMA_Builder_manual.pdf - DMA Builder user guide

Release information
Date Revision Change

5/May/2010 Rev 1.0 Initial revision
26/May/2010 Rev 1.1 Added PERIPH_RX_CTRL and

PERIPH_TX_CTRL registers to allow off-line
configuration register access.

10/June/2010 Rev 1.2 Added dual output port interconnect
Added watchdog timer
Enhanced construction options (remove features)

25/June/2010 Rev 1.3 Added joint mode
Added auto-retry mode

9/Aug/2010 Rev 1.4 Added idle pin
Improved performance for aligned block transfer
Improved performance of multiple channel
Moved priority registers

5/Oct/2010 Rev 1.5 Added endianness byte swapping
14/Dec/2010 Rev 1.6 Reduced ID bits

Copyright © 2010 Provartec Limited, All rights reserved 2

http://infocenter.arm.com/
http://infocenter.arm.com/

Table of Contents
1. Introduction .. 6

 1.1 General .. 6
 1.2 The Dual-Core concept .. 6
 1.3 Construction options ... 8

 1.4 DMA Builder application .. 8
 1.5 Main Feature List ... 9

2. External connections .. 10
 2.1 Port list .. 10
 2.2 Connecting to AXI ... 13
 2.3 Connecting to APB3 .. 13
 2.4 Connecting to peripherals .. 13

3. Operation modes ... 14
 3.1 General .. 14
 3.2 Independent mode – normal channel mode .. 14
 3.3 Independent mode – outstanding channel mode .. 15
 3.3 Joint mode ... 16

4. Concepts ... 19
 4.1 DMA commands .. 19
 4.2 DMA command lists - optional feature (Command lists) ... 19
 4.3 Peripheral control - optional feature (Peripheral control) ... 20
 4.4 Peripheral to peripheral transfer - optional feature (Peripheral control) ... 21
 4.5 Arbitration – Build can remove high and top priority modes (Priority modes) 21
 4.6 Tokens (Windowed arbitration) - optional feature (Tokens) ... 21
 4.7 Block transfer - optional feature (Block support) ... 22
 4.8 Block scatter gather - optional feature (Block support) ... 22
 4.9 Peripheral block transfer - optional feature (Block support & Peripheral control) 22
 4.10 Scheduled channels - optional feature (Scheduler) .. 22
 4.11 Interrupt depth - optional feature (Command lists) .. 22
 4.12 Software control of peripheral request - optional feature (Peripheral control) 23
 4.13 Multiple processor control - optional feature (Number of interrupts) .. 23
 4.14 AXI timeouts - optional feature (AXI timeout) .. 23
 4.15 Watchdog timer - optional feature (Watchdog timer) ... 23
 4.16 Clock gating - optional feature (Clock gating) ... 24
 4.17 Multiple output port control - optional feature (Interconnect) ... 24
 4.18 Limiting pending AXI commands - optional feature (Limit AXI) ... 24
 4.19 Core 1 clock divider .. 24
 4.20 Endianness byte swapping - optional feature (Limit AXI) ... 24

5. Configuration Flows ... 25
 5.1 General configuration .. 25
 5.2 Configure and start a channel .. 25
 5.3 Stop a channel .. 25
 5.4 Pause and resume a channel ... 25
 5.5 Restart a channel .. 25
 5.6 Interrupt handling .. 26
 5.7 Power down sequence .. 26

6. Performance .. 27
 6.1 General .. 27
 6.2 Independent mode, 64 bit data bus .. 27

Copyright © 2010 Provartec Limited, All rights reserved 3

 6.3 Independent mode, 32 bit data bus ... 28
 6.4 Independent mode – outstanding channel mode ... 29
 6.5 Independent mode - multiple channels .. 30
 6.6 Independent mode - dual cores with a shared AXI bus .. 31
 6.7 Independent mode - block transfer ... 32
 6.8 Joint mode ... 33

7. Area and frequency examples .. 34
 7.1 Single core design ... 34
 7.2 Dual core design ... 35

8. Bus activity ... 36
 8.1 AXI bursts used .. 36
 8.2 AXI ID bits .. 36
 8.3 Error interrupts .. 36

9. Registers ... 37
 9.1 General .. 37
 9.2 Channel registers ... 37
 9.3 Shared registers ... 53

Copyright © 2010 Provartec Limited, All rights reserved 4

Index of Tables
Table 1: Compare DMA functionalities..6
Table 2: Pin list...13
Table 3: Burst flow example – independent mode..15
Table 4: Burst flow example – joint mode..18
Table 5: Scatter list example...20
Table 6: Cyclic buffer example...20
Table 7: Normal priority example...21
Table 8: High priority example...21
Table 9: Top priority example...21
Table 10: Performance conclusion..35
Table 11: Single core gate count...36
Table 12: Dual core gate count...37

Index of Illustrations
Illustration 1: Dual cores, single clock..7
Illustration 2: Dual cores, dual clocks...7
Illustration 3: Dual cores with interconnect..8
Illustration 4: Bus activity, single channel, 64 bit, buffer size 16 bytes..27
Illustration 5: Bus activity, single channel, 64 bit, buffer size 32 bytes..27
Illustration 6: Bus activity, single channel, 64 bit, buffer size 64 bytes..28
Illustration 7: Bus activity, single channel, 64 bit, buffer size 128 bytes..29
Illustration 8: Bus activity, single channel, 64 bit, buffer size 256 bytes..29
Illustration 9: Bus activity, single channel, 32 bit, buffer size 64 bytes..29
Illustration 10: Bus activity, single channel, 32 bit, buffer size 128 bytes..29
Illustration 11: Bus activity, single channel, 32 bit, buffer size 32 bytes, read outstanding...................................30
Illustration 12: Bus activity, single channel, 32 bit, buffer size 32 bytes, write outstanding.................................30
Illustration 13: Bus activity, single channel, 32 bit, buffer size 32 bytes, read and write outstanding...................30
Illustration 14: Bus activity, single channel, 64 bit, buffer size 64 bytes, read and write outstanding...................31
Illustration 15: Bus activity, two channels, 64 bit, buffer size 64 bytes, read and write outstanding.....................31
Illustration 16: Bus activity, dual cores, single channel per core, shared clock...33
Illustration 17: Bus activity, dual cores, single channel per core, clock ratio 4...33
Illustration 18: Illustration 19: Bus activity, block mode, single channel, single block 32x8................................34
Illustration 19: Bus activity, block mode, two channels, single block 32x8..34
Illustration 20: Bus activity, joint mode, single channel, unaligned addresses..35
Illustration 21: Bus activity, joint mode, multiple channels, minimal buffer size...35

Copyright © 2010 Provartec Limited, All rights reserved 5

Configurable Dual-Core DMA

This document describes the Configurable Dual-Core DMA (PR200).

1. Introduction

 1.1 General

The Dual-Core DMA is a high performance 64 bit AXI master.

 1.2 The Dual-Core concept

The DMA transfers data between different points in the memory space
without intervention of the CPU. The DMA is generally used to replace
 two CPU functions, memory copy and peripheral control (slow
peripheral devices such as SPI, UART, etc.). These two functionalities are
very different in nature as shown in the table below:

Memory copy Peripheral control
Latency required Short as possible Can be long

Transfer speed Fast as possible Can be slow
Buffer size Preferably large Can be small

Read & write bursts Usually same Often different
Channels required Usually few Usually many

Table 1: Compare DMA functionalities

The Dual-Core solution separates these two functionalities. One core
services memory copy requests and the other services all slow peripheral
devices. The different cores can be configured to completely different
topographies, saving area, power and improving performance.

Let us consider the Dual-Core design.

In illustration 1 two independent AXI master cores are shown, powered by
the same clock. The memory transfer core is constructed with deep buffers
while the peripheral core is constructed to the minimum.

Copyright © 2010 Provartec Limited, All rights reserved 6

Since the peripheral core is not required to work as quickly as the
memory core, a clock divider can be added on the peripheral core clock.

In illustration 2 a clock divider and an AXI bus synchronizer have been
added on the peripheral core.

Finally, in illustration 3, an AXI interconnect can be added to allow each
channel to simultaneously access two AXI ports or output a single AXI port.

Copyright © 2010 Provartec Limited, All rights reserved 7

Illustration 1: Dual cores, single
clock

Illustration 2: Dual cores, dual
clocks

Illustration 3: Dual cores with
interconnect

 1.3 Construction options

The design is constructed according to the following configurations:

General build options:
• Single or Dual core
• Number of interrupts (number of controlling processors)
• Use single output or dual output interconnect
• Use clock divider for Core 1
• Insert clock gating

Core build options:
• Channel number (1-8)
• Data width (32 or 64 bits)
• Data buffer size (16-512 bytes)
• AXI write command depth (1-64 commands)
• Address bits (16-32)
• Buffer size bits (9-16)

Core optional features:
•Block support
•Scheduled channels
•Three level priority modes
•Joint mode support
•Independent mode support
•Outstanding mode support
•Command lists support
•Usage of tokens (windowed arbitration)
•Timeouts on all five AXI sub-buses
•Watchdog timer
•Limit channel's pending AXI commands
•Peripheral control

 1.4 DMA Builder application

The design can be easily configured using the DMA Builder
application.

For more information see related document or go to:

www.provartec.com/dma-builder

Copyright © 2010 Provartec Limited, All rights reserved 8

http://www.provartec.com/dma-builder

 1.5 Main Feature List

Key features:

• Dual Core design
• Configurable build and optional features
• Clock divider for slow channels
• Block transfer in a frame context
• Three operation modes: independent, outstanding and joint
• Three level priority arbitration
• Windowed channel arbitration (tokens)
• Configurable interrupt controller with multiple processor support
• Supports any address alignment
• Supports any buffer size alignment
• Supports command lists, including block lists
• Peripheral flow control, including peripheral block transfer
• Peripheral to peripheral transfer
• Scheduled transfers
• Endianness byte swapping
• Software control peripheral request
• Watchdog timer
• Channel pause and resume
• APB3 registers
• Complete status register set for debug

AXI main capabilities:

• Compliant to AMBA AXI protocol
• Each channel can control up to two AXI ports
• Independent and simultaneous read and write control
• Support pending commands, regardless of data flow
• 32 or 64 bit bus support
• Maximum throughput transfers, regardless of alignment
• Unlimited pending read commands
• Configurable number of pending write commands
• Limit channel pending commands
• Supports AXI decode and slave error
• Support timeout on all five AXI buses

Copyright © 2010 Provartec Limited, All rights reserved 9

2. External connections

 2.1 Port list

Name Bits Direction Description
clk 1 In Main clock

reset 1 In Reset

scan_en 1 In Scan enable

INT 1-8 (configurable) Out Interrupt bus

idle 1 Out Idle indication

*The following
periph ports can be
removed in build

periph_tx_req [31:1] Out Peripheral TX request

periph_tx_clr [31:1] In Peripheral TX clear

periph_rx_req [31:1] Out Peripheral RX request

periph_rx_clr [31:1] In Peripheral RX clear

pclken 1 In APB3 clock enable (integer ratio only)

psel 1 In APB3 select

penable 1 In APB3 enable

paddr 13 In APB3 address

pwrite 1 In APB3 write qualifier

pwdata 32 In APB3 write data

prdata 32 Out APB3 read data

pslverr 1 Out APB3 slave error

pready 1 Out APB3 ready

AWID0 1 Out CORE0 AXI write command channel ID

AWADDR0 16-32 (configurable) Out CORE0 AXI write command channel address

AWLEN0 4 Out CORE0 AXI write command channel length

AWSIZE0 2 Out CORE0 AXI write command channel size

AWVALID0 1 Out CORE0 AXI write command channel valid

AWREADY0 1 In CORE0 AXI write command channel ready

WID0 1 Out CORE0 AXI write data channel ID

Copyright © 2010 Provartec Limited, All rights reserved 10

WDATA0 32 or 64 (configurable) Out CORE0 AXI write data channel data

WSTRB0 4 or 8 (dependent on
WDATA0)

Out CORE0 AXI write data channel strobe

WLAST0 1 Out CORE0 AXI write data channel last

WVALID0 1 Out CORE0 AXI write data channel valid

WREADY0 1 In CORE0 AXI write data channel ready

BID0 1 In CORE0 AXI write response channel ID

BRESP0 2 In CORE0 AXI write response channel response

BVALID0 1 Out CORE0 AXI write response channel valid

BREADY0 1 In CORE0 AXI write response channel ready

ARID0 1 Out CORE0 AXI read command channel ID

ARADDR0 16-32 (configurable) Out CORE0 AXI read command channel address

ARLEN0 4 Out CORE0 AXI read command channel length

ARSIZE0 2 Out CORE0 AXI read command channel size

ARVALID0 1 Out CORE0 AXI read command channel valid

ARREADY0 1 In CORE0 AXI read command channel ready

RID0 1 In CORE0 AXI read data channel ID

RDATA0 32 or 64 (configurable) In CORE0 AXI read data channel data

RRESP0 2 In CORE0 AXI read data channel response

RLAST0 1 In CORE0 AXI read data channel last

RVALID0 1 In CORE0 AXI read data channel valid

RREADY0 Out CORE0 AXI read data channel ready

*The following AXI
port depends on build
(see details below)

AWID1 1 Out CORE1 AXI write command channel ID

AWADDR1 16-32 (configurable) Out CORE1 AXI write command channel address

AWLEN1 4 Out CORE1 AXI write command channel length

AWSIZE1 2 Out CORE1 AXI write command channel size

Copyright © 2010 Provartec Limited, All rights reserved 11

AWVALID1 1 Out CORE1 AXI write command channel valid

AWREADY1 1 In CORE1 AXI write command channel ready

WID1 1 Out CORE1 AXI write data channel ID

WDATA1 32 or 64 (configurable) Out CORE1 AXI write data channel data

WSTRB1 4 or 8 (dependent on
WDATA1)

Out CORE1 AXI write data channel strobe

WLAST1 1 Out CORE1 AXI write data channel last

WVALID1 1 Out CORE1 AXI write data channel valid

WREADY1 1 In CORE1 AXI write data channel ready

BID1 1 In CORE1 AXI write response channel ID

BRESP1 2 In CORE1 AXI write response channel response

BVALID1 1 Out CORE1 AXI write response channel valid

BREADY1 1 In CORE1 AXI write response channel ready

ARID1 1 Out CORE1 AXI read command channel ID

ARADDR1 16-32 (configurable) Out CORE1 AXI read command channel address

ARLEN1 4 Out CORE1 AXI read command channel length

ARSIZE1 2 Out CORE1 AXI read command channel size

ARVALID1 1 Out CORE1 AXI read command channel valid

ARREADY1 1 In CORE1 AXI read command channel ready

RID1 1 In CORE1 AXI read data channel ID

RDATA1 32 or 64 (configurable) In CORE1 AXI read data channel data

RRESP1 2 In CORE1 AXI read data channel response

RLAST1 1 In CORE1 AXI read data channel last

RVALID1 1 In CORE1 AXI read data channel valid

RREADY1 1 Out CORE1 AXI read data channel ready

Table 2: Pin list
* The second AXI port will be present if the design is a dual-core design without an interconnect, or a
design using a dual output port interconnect (single or dual core).

Copyright © 2010 Provartec Limited, All rights reserved 12

 2.2 Connecting to AXI

AXI bus is part of the AMBA 3 specification. For further information see the “AMBA
AXI Protocol Specification” (related documents).

 2.3 Connecting to APB3
AXI bus is part of the AMBA3 specification. For further information see the “AMBA 3
APB Protocol Specification” (related documents).

Configuration registers use the main clock. Core 1 uses the main clock for
configuration also when it uses a clock divider. The APB bus can be slowed down by
using the pclken input, pclken ratio must be an integer value.

 2.4 Connecting to peripherals
Each peripheral can either be an RX or a TX device and is attached by 2 wires,
periph_req and periph_clr. The master on this interface is the peripheral, raising the
periph_req when it requests data to be written or read from it. Once the burst has been
transferred (on AXI) the DMA will issue a pulse on periph_clr indicating the peripheral
to update its periph_req. The peripherals periph_req and periph_clr signals must be
connected on the same bit number on the DMA's periph buses, the channel servicing this
peripheral will have the same bit number set in its PERIPH_NUM register.

Copyright © 2010 Provartec Limited, All rights reserved 13

3. Operation modes

 3.1 General

The operation mode determines how to channels use the AXI read and write buses. Each
core is configured to work in 'Independent mode' or in 'Joint mode'. If using a dual core
design, the two cores can be configured differently. When using 'Independent mode' each
channel can work in normal or in outstanding mode. When using 'Joint mode', each
channel can work in normal or in joint mode.

 3.2 Independent mode – normal channel mode

When using this mode, each core will use an independent arbiter for read operations and
for write operations. Read operations on the AXI bus will be issued without considering
the write operations.
This mode is configured in the CORE0_JOINT_MODE, CORE1_JOINT_MODE
registers.

Each channel will work in the following manner:
1.The channel calculates the next read and write bursts sizes according to AXI,

address and software restrictions.
2.The channel will issue read bursts as long as the data buffer can hold the data.
3.The channel will issue write bursts as long as the write data is present in the data

buffer.

This mode is most efficient when:
•Channels read and write bursts are of different sizes (like when transferring data

from peripheral devices to DRAM).
•AXI slaves have unpredicted response times or response times are long.
•Several channels work simultaneously and overall performance is the main goal.

Advantages:
•Maximum overall performance for the above cases.

Disadvantages:
•The channel will not start a write burst until the read data has arrived, this causes

long latency and in order to achieve maximum throughput the data buffer must
be enlarged.

•When using read or write addresses that are not aligned to the data buffer size, the
maximum burst supported will be half of the data buffer size.

Burst flow:
In order to achieve maximum throughput regardless to alignments, the controller
will start with single AXI commands until reaching a round address (according to
data width) from where full strobe bursts are possible.
The calculation of burst length considers the following:

Copyright © 2010 Provartec Limited, All rights reserved 14

• Does not cross a 4 KByte address boundary (AXI restriction)
• Does not exceed the value set in BURST_MAX_SIZE register
• Does not exceed FIFO size
• Burst width must be aligned to burst address

Example:
FIFO_SIZE = 64 bytes
RD_START_ADDR = 0x30000001
RD_BURST_MAX_SIZE = 64 bytes
WR_START_ADDR = 0x40000017
WR_BURST_MAX_SIZE = 64 bytes
BUFFER_SIZE = 256 bytes

Read Write
Burst address Burst size Buffer

remain
Burst address Burst size Buffer

remain

0x30000001 1 256 0x40000017 1 256

0x30000002 2 255 0x40000018 64 255

0x30000004 4 253 0x40000048 64 191

0x30000008 64 249 0x40000088 64 127

0x30000048 64 185 0x400000C8 56 63

0x30000088 64 121 0x40000D10 4 7

0x300000C8 56 57 0x40000D14 2 3

0x30000100 1 1 0x40000D15 1 1

Table 3: Burst flow example – independent mode

 3.3 Independent mode – outstanding channel mode

When the core is configured to 'Independent mode', each channel can be configured to
'read outstanding', 'write outstanding' or both. This mode works like the normal
independent mode, the difference is that when using 'read outstanding' the read
commands will be issued once the write commands have been issued, before the write
data has actually been written out. When using 'write outstanding' the write commands
will be issued once the read commands have been issued, before the read data has
actually been read out of the data buffer. This mode works under the assumption that the
AXI slave will respond quickly, otherwise the data buffer will overflow (or underflow).
If the channel's buffer overflows or underflows the channel will issue an error interrupt
and will automatically stop its operation.
In case of an error interrupt the following options are possible:

•If the slave is just too slow to work under these conditions, reconfigure the channel
to 'normal mode' and restart the channel.

•If the slave is too slow but rarely, the channel can be restarted (see 'Restart a
channel' configuration flow).

•The retry option can also be issued automatically by writing to the AUTO_RETRY
register. If this is set, whenever an overflow or an underflow occurs, the channel
will flush its buffers and restart at the beginning of the current command. The

Copyright © 2010 Provartec Limited, All rights reserved 15

interrupt error will still be issued.

This mode is configured in the RD_OUTSTANDING and WR_OUTSTANDING
registers in each channel.

This mode is most efficient when:
•Working with fast responding channels.

Advantages:
•Improved latency and throughput for small data buffers.

Disadvantages:
•If the slave does not respond in time the channel will overflow or underflow and

stop.

Restrictions:
Outstanding mode can not work with the following configurations:

• Joint mode
• Peripherals
• Non aligned block transfer (works with normal non aligned transfer)

 3.3 Joint mode

When using this mode, each core will use a single arbiter for both read and write
operations. This mode is used for channels that work at the same pace for their read and
write operations. The current channel locks both read and write AXI buses and transfers
the read data directly to the write data. When working in this mode the channel's
configuration is done in the read registers only and they affect both read and write
operations that are simulations.
This mode is configured in the CORE0_JOINT_MODE, CORE1_JOINT_MODE
registers and JOINT_MODE register in each channel.

Each channel will work in the following manner:
1.The channel will read single bursts until it will reach an aligned address from

which it can perform its requested bursts.
2.The channel will write single bursts until it will reach an aligned address from

which it can perform it requested bursts.
3.The channel moves into its joint stage, during this stage the channel will read and

write simultaneously on both AXI buses.
4.The channel will perform single bursts to finish its remaining last bytes.

This mode is most efficient when:
•The read and write slaves work in same size bursts (must).
•The slave does not have many wait cycles (wait cycles on the read bus stall the

write bus and vice-versa).

Copyright © 2010 Provartec Limited, All rights reserved 16

•Working with large transfer buffers.

Advantages:
•Improved latency, improved performance.
•The maximum burst size is not restricted regardless to alignments and regardless to

data buffer size. The maximum supported burst is 16 strobes (128 bytes for 64 bit
data bus or 64 bytes for 32 bit data bus).

Disadvantages:
•It is possible to use in the same core channels working in 'joint mode' and 'normal

mode' but these do not work very well together since there is a flush stage when
transferring from a 'joint' working channel to a 'normal' working channel.

•The 'normal' working channels in a 'joint' working core can still use only a single
arbiter.

Burst flow:
In joint mode each channel will issue single read and write bursts until it is
possible to issue bursts that equal in length the BURST_MAX_SIZE register
value. Then the channel will go into the joint phase, performing simultaneous
read and write bursts. At the end of the buffer the channel will flush the last bytes
by issuing smaller bursts again.

Remark: When using joint mode the data buffer can be minimal without causing
a restriction on the joint burst length. But it will restrict the bursts at the initial
and final stages of the channel (when joint bursts are not possible).

Remark: Joint mode will be disconnected when a burst, either read or write,
crosses a 4KByte boundary. This is since the AXI protocol determines that the
burst will be split. Joint mode will be resumed once the boundary has been
crossed.

Restrictions:
Joint mode can not work with the following configurations:

• Peripherals
• Non aligned block transfer (works with normal non aligned transfer)
• When using a 16 bytes data buffer the read start address and the write start

address must be aligned to the burst size and the bursts must not cross a 4KByte
address (this is easily achieved by using a burst size that is a power of 2). A 32
bytes data buffer or larger does not restrict joint mode.

Copyright © 2010 Provartec Limited, All rights reserved 17

Example:
FIFO_SIZE = 32 bytes
RD_START_ADDR = 0x30000001
RD_BURST_MAX_SIZE = 64 bytes (affects WR_BURST_MAX_SIZE as well
WR_START_ADDR = 0x40000017
BUFFER_SIZE = 256 bytes

Read Write
Burst address Burst size Buffer

remain
Burst

address
Burst size Buffer

remain
0x30000001 1 256 0x40000017 1 256

0x30000002 2 255 Ready for joint – wait for read

0x30000004 4 253 Ready for joint – wait for read

Going into joint mode Going into joint mode

0x30000008 64 249 joint 0x40000018 64 255

0x30000048 64 185 joint 0x40000058 64 191

0x30000088 64 121 joint 0x40000098 64 127

Going back to normal mode Going back to normal mode

0x300000C8 16 57 0x400000D8 16 63

0x300000D8 16 41 0x400000E8 16 47

0x300000E8 16 25 0x400000F8 16 31

0x300000F8 8 9 0x40000108 8 15

0x30000100 1 1 0x40000110 4 7

- - - 0x40000114 2 3

- - - 0x40000116 1 1

Table 4: Burst flow example – joint mode

Copyright © 2010 Provartec Limited, All rights reserved 18

4. Concepts

 4.1 DMA commands

A DMA command is constructed of four 32 bit fields. Each channel holds its current
command in its CMD0-3 registers. The channel's command can be configured directly
by the APB3 configuration bus or the channel can load the command by reading it from
on the AXI bus. The fields of the DMA command are explained in the Register chapter.

 4.2 DMA command lists - optional feature (Command lists)

DMA command lists are linked lists of DMA commands that can be placed anywhere in
the memory space. When the channel completes its current command, if the
CMD_LAST field is 0, the channel control will read the next command on the AXI
bus from the address specified in the CMD_NEXT_ADDR field. If CMD_LAST is 1,
the channel will stop.
The first command can be written directly to the channel's CMD registers, but it is
better practice to write the entire command list to memory and set in the current
command (CMD registers) an empty buffer that points to the beginning of the list.
The configuration sequence:

1.Write command list to memory
2.Set BUFFER_SIZE = 0
3.Set CMD_SET_INT = 0
4.Set CMD_LAST = 0
5.Set CMD_NEXT_ADDR = address of first command in memory.

Remark: CMD_NEXT_ADDR must be aligned to a command size (16 bytes).

Command lists can be used for two purposes:
1.Scatter – Gather. When an operation system allocates large memory blocks the
memory is continuous in the virtual address space but non-continuous in the physical
address space. The list of address-size pairs of the allocation process can be written
to memory as a list of DMA commands allowing the DMA to transfer all these
chunks of data without CPU intervention.

Example: A scatter list describing a 20KB memory block fragmented into five
4KB pages. After the last page is written the list indicated to issue a completion
interrupt to the CPU.

Copyright © 2010 Provartec Limited, All rights reserved 19

Command's
address in
memory

Command
number

RD START
ADDR

WR START
ADDR

BUFFER
SIZE

CMD
SET
INT

CMD
LAST

CMD NEXT
ADDR

0x30000000 0 (first) 0x40001000 0x50001000 0x1000 0 0 0x30000010/4

0x30000010 1 0x40002000 0x50008000 0x1000 0 0 0x30000020/4

0x30000020 2 0x40003000 0x50015000 0x1000 0 0 0x30000030/4

0x30000030 3 0x40004000 0x50017000 0x1000 0 0 0x30000040/4

0x30000040 4 (last) 0x40005000 0x50025000 0x1000 1 1 0

Table 5: Scatter list example

2.Cyclic buffers for peripheral control. When servicing peripheral devices it is good
practice to use at least double buffers to hold the peripheral RX or TX data. Cyclic
buffers can be easily configured by setting a cyclic command list.

Example: A cyclic double buffer at address 0x30000000, services an RX
peripheral client at address 0xBE000000, buffer sits at 0x50001000. Notice that
the list is cyclic and endless, this is since most peripherals such as SPI, UART,
audio devices, etc. need endless servicing.

Command's
address in
memory

Command
number

RD START
ADDR

WR START
ADDR

BUFFER
SIZE

CMD
SET
INT

CMD
LAST

CMD NEXT
ADDR

0x30000000 0 0xBE000000 0x50001000 0x1000 1 0 0x30000010/4

0x30000010 1 0xBE000000 0x50002000 0x1000 1 0 0x30000000/4

Table 6: Cyclic buffer example

 4.3 Peripheral control - optional feature (Peripheral control)

DMA is a very easy and efficient way to service peripheral devices with minimum CPU
intervention. This is specially beneficial when attending to slow devices. Usually
peripherals are either RX or TX and hold a fixed width FIFO.
Usually each peripheral will have a specific channel that will service it exclusively.

Channel configuration for peripheral control (example is for an RX peripheral, TX
peripheral is exactly the same just replace TX with RX and RD with WR):

1.Set the channel to issue bursts that match the functionality of its peripheral. Write
the number of bytes in each burst in register RD_BURST_MAX_SIZE.
2.Set the number of the peripheral in register RD_PERIPH_NUM for RX. This
corresponds to the bit number the peripheral is connected to on the periph_rx_req
and periph_rx_clr buses.
3.Set the maximum number of consecutive bursts to be issued every time the
peripheral is serviced. Write the number of bursts to the register RD_TOKENS.

Copyright © 2010 Provartec Limited, All rights reserved 20

4.Set the number of cycles to wait for the periph_rx_req to update after giving
periph_rx_clr, this is dependent on peripheral latency (only has effect is
RD_TOKENS is larger than 1). Write this number to the register
RD_PERIPH_DELAY.

 4.4 Peripheral to peripheral transfer - optional feature (Peripheral control)

Peripheral to peripheral transfer is possible and is configured as normal peripheral
transfer, setting both read and write peripheral registers. There is no restriction regarding
different burst sizes for the RX and TX peripherals.

 4.5 Arbitration – Build can remove high and top priority modes (Priority modes)

Arbitration takes place separately in each core independently for read and for write.
Generally channels work in a round robin order. They are three levels of priorities;
normal, high and top. Each channel has a separate priority level for read and for write.
This is set in the RD_PRIO and WR_PRIO registers. Normal priority channels work in
round robin order, high priority channels are granted every other slot and top priority
channels work as long as they request the bus.

Remark: It is not recommended to use top priority with joint mode since the top priority
channel can starve the other channels.

CH0 CH1 CH2 CH3 CH0 CH1 CH2 CH3 CH0 CH1 CH2 CH3

Table 7: Normal priority example

CH0 CH3 CH1 CH3 CH2 CH3 CH3 CH3 CH0 CH3 CH1 CH3

Table 8: High priority example

CH3 CH3 CH3 CH3 CH3 CH3 CH0 CH1 CH2 CH0 CH1 CH2

Table 9: Top priority example

 4.6 Tokens (Windowed arbitration) - optional feature (Tokens)

Every time a channel starts working it will transfer a maximum number of bursts
according to the value in the RD_TOKENS or WR_TOKENS registers. Using many
tokens improves the channel's overall performance but can result in lengthening other
channels latency.

Copyright © 2010 Provartec Limited, All rights reserved 21

 4.7 Block transfer - optional feature (Block support)

Some applications might require to read or write blocks in a frame context. A channel
transfers blocks if its BLOCK register is set. The block size is set in the X_SIZE and
Y_SIZE registers. The frame width is set in the FRAME_WIDTH register. In this case
the START_ADDR registers refer to the upper left corner of the block. Each DMA
command refers to one block. It is recommended that the TOKENS register will be set to
the number of lines of the block in order to allow transferring the entire block once the
channel started operating.

 4.8 Block scatter gather - optional feature (Block support)

Some applications, will find it very efficient to use block command lists (block scatter
gather). This is a normal command list, when each command refers to a single block. It
is recommended to set the TOKENS register to the maximum Y_SIZE expected, so
block transfer will not stop in the middle.

 4.9 Peripheral block transfer - optional feature (Block support & Peripheral control)

 Peripherals can transfer block in two modes, normal peripheral mode and block
peripheral mode. This is configured in the PERIPH_BLOCK register. When working in
peripheral block mode, the periph_clr signal is given at the end of the entire block, in
normal peripheral mode, it is given, normally, after each burst. In both modes the
BURST_MAX_SIZE must be equal to X_SIZE (block width), resulting in transferring a
single block line in each burst.

 4.10 Scheduled channels - optional feature (Scheduler)

It is possible for low priority channels to clog the bus activity, especially low priority
memory copy channels. To prevent this, it is possible to slow down such channels by
setting a number of cycles in which they will not request the bus after they operate. This
period can be set in the RD_WAIT_LIMIT and WR_WAIT_LIMIT registers for adding
a delay after read or after write.

 4.11 Interrupt depth - optional feature (Command lists)

It is normal for processors to take a long time before handling interrupts. In such cases a
channel can complete a number of commands before the processor had a chance to
handle the channel's end interrupt. In order to support this the number of unserviced
interrupts is kept in the INT_COUNT register. When clearing an end interrupt, if they
are pending interrupts (INT_COUNT > 1), the end interrupt will be reissued.

Copyright © 2010 Provartec Limited, All rights reserved 22

 4.12 Software control of peripheral request - optional feature (Peripheral control)

A channel can be controlled directly by software by using the peripheral control
mechanism.

Example: Using this feature to access configuration registers off-line.

Writing to configuration registers:
1.An unused peripheral TX bit is set to service the channel.
2.The CPU writes the configuration data to the memory space, preferably to a fast
memory close to it.
3.The DMA loads the data to the channel's data buffer but does not write it out.
4.When the CPU wishes the actual configuration to take place it sets the appropriate bit
in the PERIPH_TX_CTRL register.
5.The DMA writes out the data, clearing PERIPH_TX_CTRL.

Reading from status registers:
1.An unused peripheral RX bit is set to service the channel.
2.When the status registers are ready to be read the CPU sets the appropriate bit in the
PERIPH_RX_CTRL register.
3.The DMA copies to status registers to a desired address, clearing PERIPH_RX_CTRL.
4.The CPU can access the status registers when it finds the time.

 4.13 Multiple processor control - optional feature (Number of interrupts)
In case the system contains more than 1 processor it might be productive to connect all
processors to the DMA, allowing different processors to control different channels
simultaneously. Each processor's interrupt should be connected to a different bit of the
INT output bus and each channel's INT_NUM register should be configured on which
interrupt bit to output its interrupts. Up to 8 processors can be connected to the DMA.

 4.14 AXI timeouts - optional feature (AXI timeout)
Timeouts can be issued on all five AXI sub-buses. In case any of the five buses do not
respond in 1024 cycles a timeout interrupt will be issued by the corresponding channel.
In this way not only the interrupt indicates that the slave is not responding but also
indicates which channel issued the request.

 4.15 Watchdog timer - optional feature (Watchdog timer)
A watchdog timer is present in each core. The watchdog timer checks each active
channel (enabled and not ended) in a round robin order. If the checked channel does not
start working in 2048 cycles a timeout interrupt will be issued by the checked channel.

Copyright © 2010 Provartec Limited, All rights reserved 23

 4.16 Clock gating - optional feature (Clock gating)
Clock gates are inserted into the design to reduce dynamic power. The design has the
following clock gates:
•Each core's clock stops when all of its channels have ended
•The general configuration register block's clock stops when not accessing its registers.
•Each channel's configuration register block's clock stops when not accessing its
registers.

 4.17 Multiple output port control - optional feature (Interconnect)
Each channel can control up to two output ports. In each channel the read port is
configured in the RD_PORT_NUM register, the write port in configured in the
WR_PORT_NUM register. The channel's commands can be read from a different port
than the read data port, the port to read the commands from is configured in the
RD_CMD_PORT_NUM.

 4.18 Limiting pending AXI commands - optional feature (Limit AXI)
The number of simultaneous AXI commands a channel will issue can be limited using
the RD_OUTS_MAX and WR_OUTS_MAX registers. It is recommended to limit this
value for low priority channels.

4.19 Core 1 clock divider
Slow channels can be gathered in core 1 and a clock divider can be added to slow down
the core's clock. The APB clock will not be slowed down since the APB bus is joined
with core 0 and adding wait states on core 0 APB bus is not desired.
An AXI synchronizer will be added on core 1 AXI bus so that the output bus will work
at the same frequency as the input clock. In order not to insert wait states on the output
AXI bus a read data buffer and a write data buffer are present in the synchronizer. The
data buffers are at the same size as the data buffers of the core's channels. These buffers
allow core 1 to read and write burst at full speed, one burst at a time. This is why when
working with a clock divider core 1 write command depth should be set to 1.
When using a clock divider core 1 can not use 'Joint mode'.

 4.20 Endianness byte swapping - optional feature (Endianness)
Each channel can manipulate the data written out in order to support little / big endian
ports. Byte swapping is configured in the END_SWAP register. Supports byte swapping
within 16, 32 or 64 bit data.
Restrictions: The following parameters must be aligned to the byte swapping size:
RD_START_ADDR, WR_START_ADDR, BUFFER_SIZE or X_SIZE for block mode,
FRAME_WIDTH. Example: if END_SWAP is set to 1 (swap within 16 bits) the
parameters above must be aligned to 16 bits.

Copyright © 2010 Provartec Limited, All rights reserved 24

5. Configuration Flows

 5.1 General configuration
1.If the core has a clock divider, initially clock ratio should be set using the
COREX_CLKDIV_RATIO register. The divided clock controls the entire core except its
configuration registers that keep working on the main clock, this is to prevent long wait
states on the APB bus and to support APB backward compatibility.

2.Set each core to work in 'Independent mode' or 'Joint mode' using the
CORE0_JOINT_MODE and CORE1_JOINT_MODE registers.

 5.2 Configure and start a channel
All channels are completely independent and use no shared configuration registers. The
channel configuration is basically made out of two parts, the static configuration and the
command. The static configuration holds the information that does not change during the
life of an application, the command holds the current activity of the channel.

Generally, setting up a channel is made out of:
1. Configure static registers
2. Configure interrupt controller (all interrupts are enabled by default)
3. Configure command or command list
4. Enable the channel (all channels are enabled by default)
5. Start the channel

 5.3 Stop a channel
A channel will work until it completes its last command and then will stop by itself.
After stopping the CH_RD_ACTIVE and CH_WR_ACTIVE will both be 0.
A channel can be stopped by clearing the CH_ENABLE register, later on the channel
can be resumed by setting it.

 5.4 Pause and resume a channel
A channel can be paused by clearing the CH_ENABLE register, the channel can be
resumed by resetting it.

 5.5 Restart a channel
In order to restart a channel the flowing sequence should be done:

• Stop the channel by clearing the CH_ENABLE register.
• Read the CMD_OUTS_REG register until it is 0.
• Restart the channel by setting CH_START.
• Restart the channel by setting CH_ENABLE.

Copyright © 2010 Provartec Limited, All rights reserved 25

 5.6 Interrupt handling
When a processor receives an interrupt it should already know on which bit of the INT
bus it is connected.
The following actions should be performed:

1. Read the correct INTX_STATUS register to figure out which channel caused the
interrupt.

2. Read the channel's INT_STATUS_REG to figure out which interrupt to handle.
3. Do what should be done.
4. Clear the interrupt by writing to the corresponding INT_CLEAR_REG.

 5.7 Power down sequence
In order to power down the DMA:

1. Clear the CH_ENABLE register in all active channels (this will stop the channel at
the completion of the current pending transactions) or set the CMD_LAST
register in all active channels (this will stop the channel at the completion of the
current buffer).

2. Wait for the idle pin to set or wait until the IDLE register is set.
3. DMA is ready for power down.

Copyright © 2010 Provartec Limited, All rights reserved 26

6. Performance

 6.1 General

Constructing the design under different configurations will result in different
performance, basically larger buffers will result in smaller burst to burst latency. Better
performance can also be achieved by different register configurations.

• Generally, best performance is achieved using joint mode.

• Both latency and throughput is improved using outstanding mode.

• When multiple channels operate overall throughput can be higher by channel
interleaving.

 Smaller bursts have smaller burst to burst latency.

 6.2 Independent mode, 64 bit data bus

Example: A single channel transfers 1024 bytes, data bus is 64 bit. The following screen-
shots show AXI bus activity using different data buffers.

Copyright © 2010 Provartec Limited, All rights reserved 27

Illustration 4: Bus activity, single channel, 64 bit, buffer size 16 bytes

Illustration 5: Bus activity, single channel, 64 bit, buffer size 32 bytes

Illustration 6: Bus activity, single channel, 64 bit, buffer size 64 bytes

 6.3 Independent mode, 32 bit data bus
Since data transfer is twice slower when using a 32 bit bus the data buffer size needed to
achieve maximum throughput is half the size needed when using a 64 bit data bus.

Example: A single channel transfers 1024 bytes, data bus is 32 bit. The following screen-
shots show AXI bus activity using different data buffers.

Under this configuration maximum throughput is achieved with a data buffer of 128
bytes.

Copyright © 2010 Provartec Limited, All rights reserved 28

Illustration 7: Bus activity, single channel, 64 bit, buffer size 128 bytesIllustration 8: Bus activity, single channel, 64 bit, buffer size 256 bytes

Illustration 9: Bus activity, single channel, 32 bit, buffer size 64 bytes

Illustration 10: Bus activity, single channel, 32 bit, buffer size 128 bytes

 6.4 Independent mode – outstanding channel mode

Both bus latency and throughput are improved using outstanding requests, but these can
only be used if the slave is quick enough to operate in this mode, otherwise erogenous
result are expected.

Example: A single channel transfers 1024 bytes, data bus is 32 bit, buffer size is 64
bytes. The following screen-shots show AXI bus activity using different outstanding
configurations.

Notice the improvement in bus latency.

Example: A single channel transfers 1024 bytes, data bus is 64 bit, buffer size is 64
bytes.

Copyright © 2010 Provartec Limited, All rights reserved 29

Illustration 11: Bus activity, single channel, 32 bit, buffer size 32 bytes, read
outstanding

Illustration 12: Bus activity, single channel, 32 bit, buffer size 32 bytes, write
outstanding

Illustration 13: Bus activity, single channel, 32 bit, buffer size 32
bytes, read and write outstanding

Notice the improvement in bus latency.

 6.5 Independent mode - multiple channels

Example: Two channels transferring each 1024 bytes, data bus is 64 bit, buffer size is
128 bytes, read and write outstanding and set.

Copyright © 2010 Provartec Limited, All rights reserved 30

Illustration 14: Bus activity, single channel, 64 bit, buffer size 64 bytes, read
and write outstanding

Illustration 15: Bus activity, two channels, 64 bit, buffer size 64 bytes, read and write
outstanding

 6.6 Independent mode - dual cores with a shared AXI bus
When using dual cores with a shared AXI bus (interconnect) the bus operation will
round robin between the cores.

Example: Dual cores, 1 channel per core. M0 is core 0 AXI bus, M1 is core 1 AXI bus
and S0 is the output of the interconnect. The following screen-shots show AXI bus
activity using different clock ratio.

Copyright © 2010 Provartec Limited, All rights reserved 31

Illustration 16: Bus activity, dual cores, single channel per core, shared clock

Illustration 17: Bus activity, dual cores, single channel per core, clock ratio 4

 6.7 Independent mode - block transfer

Example: Single channel, block mode, single block 32x8.

Example: Two channels, block mode, each channel transfers a single block 32x8.

Copyright © 2010 Provartec Limited, All rights reserved 32

Illustration 19: Bus activity, block mode, two channels, single block 32x8

Illustration 18: Illustration 19: Bus activity, block mode, single channel, single block 32x8

 6.8 Joint mode
Joint mode is the most efficient regarding throughput, latency and the minimal data
buffer possible for achieving maximum throughput.

Example: Single channel, data buffer is 32 bytes, joint bursts are 32 bursts, read and
write addresses are not aligned.

Example: Four channels, data buffer is 32 bytes, joint bursts are 64 bytes, read and
write addresses are aligned.

See that although a 32 byte data buffer is used the burst size is not restricted to the data
buffer size.

 6.9 Conclusion
The following configurations support back-to-back continuous bus activity (100%
throughput):

Channels Operation mode Bus width FIFO size
1 Independent 32 bits 128 bytes

1 Independent 64 bits 256 bytes

1 Outstanding 32 bits 64 bytes

1 Outstanding 64 bits 128 bytes

1 to 8 Joint 32 bits 32 bytes

1 to 8 Joint 64 bits 32 bytes

6 to 8 Independent 32 bits 32 bytes

Table 10: Performance conclusion

Copyright © 2010 Provartec Limited, All rights reserved 33

Illustration 20: Bus activity, joint mode, single channel, unaligned addresses

Illustration 21: Bus activity, joint mode, multiple channels, minimal buffer size

7. Area and frequency examples
The gate count of the design differs by the build configuration, this chapter presents the
expected gate count for different typical builds.

7.1 Single core design

Design 0 Design 1 Design 2 Design 3 Design 4 Design 5
Channel number 1 1 1 2 8 8

Address
restrictions

None None None None None Burst
aligned

Mode Independent Joint Joint Joint Joint Joint

Data width 32 bits 32 bits 64 bits 32 bits 32 bits 32 bits

Data buffer size 16 bytes 32 bytes 32 bytes 32 bytes 32 bytes 32 bytes

Address bits 16 16 20 20 20 20

Buffer bits 9 9 11 11 10 10

Write
commands

4 2 4 4 4 4

Interconnect None None None Dual port None None

Block support Yes No No No No No

Watchdog timer No No Yes Yes Yes Yes

AXI timeout No No Yes Yes Yes Yes

Priority modes No No No No Yes Yes

Tokens No No No No Yes Yes

Gate count 15000 15000 23000 33000 93000 80000
Frequency
@TSMC90nm

440 MHz 440MHz 420 MHz 420 MHz 400 MHz 400 MHz

Table 11: Single core gate count

Remark: All designs were synthesized with half a cycle input and output delays.

Copyright © 2010 Provartec Limited, All rights reserved 34

7.2 Dual core design

Design 0
Core 0 Core 1

Channel number 2 4

Address restrictions None None

Mode Joint Independent

Data width 64 bits 32 bits

Data buffer size 32 bytes 16 bytes

Address bits 20 16

Buffer bits 10 9

Write commands 4 1

Interconnect Dual port

Block support No No

Watchdog timer Yes Yes

AXI timeout Yes Yes

Priority modes No No

Tokens No No

Clock divider No Yes

Gate count 92000
Frequency
@TSMC90nm

390 MHz

Table 12: Dual core gate count

Remark: All designs were synthesized with half a cycle input and output delays.

Copyright © 2010 Provartec Limited, All rights reserved 35

8. Bus activity

8.1 AXI bursts used

• AXI bursts used: SINGLE 8 bit, SINGLE 16 bit, SINGLE 32 bit, SINGLE 64
bit, INCRN (N=2-16) with SIZE equals data bus.

• Partial WSTRB bits are not used.

• Bursts are always aligned to data width.

 8.2 AXI ID bits
The AXI ID bits are described below:

[0] – Core number

 8.3 Error interrupts

All interrupts will be set in the channel that issued the erroneous burst, in this way
finding out the cause of the error is almost immediate. They are 3 error types:

• An error has been received on AXI bus, either DECERR or SLVERR. These errors
are issued by the responding AXI slave.

• Timeout errors. A timeout interrupt is issued if the slave did not respond for 1024
cycles, the timeout value is non-configurable.

• Underflow-overflow errors. These interrupts are used to indicate that the slave is
not working fast enough to support outstanding mode. In case of such an
interrupt the system configuration should be altered (for example raising the
channel's priority level or increasing its tokens), or the outstanding mode should
be turned off.

• Watchdog timeout. An interrupt is issued if an active channel did not start a burst in
1024 cycles, the timeout value is non-configurable.

All the interrupts are described in the registers chapter.

Copyright © 2010 Provartec Limited, All rights reserved 36

9. Registers

 9.1 General
Configuration registers are accessed using the standard APB3 control bus.

Systems that use older APB control bus can simply not connect PREADY and
PSLVERR. All registers could still be accessed since they are all have one cycle latency.
Core 1 will return read data after one cycle even if it uses a divided clock, this is because
its configuration registers use the main clock.

APB slave error (PSLVERR) will be given on the following events:

• Accessing non mapped addresses

• Accessing a non existing core

• Accessing a non existing channel

• Writing to read only registers

• Reading from write only registers

 9.2 Channel registers

 Constructing channel registers addresses

 All channels have the exact same register set, in order to access a specific register
the address is constructed in the following manner:

(Register address) = (Core base address) + (Channel base address) + (register offset)

Core 0 base address is 0x0

Core 1 base address is 0x800

Channel base address = Channel number << 8 (Channel number * 256)

•CMD_REG0

 Offset: 0x00

Read/Write: R/W

Description: Channel's command, first line out of 4.When using command lists this register will be
overwritten by the next command.

Fields:

Copyright © 2010 Provartec Limited, All rights reserved 37

➢RD_START_ADDR [31:0]

Start address of read buffer. This address will be read on AXI bus. Value is in bytes and has
no alignment restrictions. If the address is not aligned to the channel's FIFO size, the maximum
burst size will be restricted to half of the FIFO size, instead of being restricted to the FIFO size.

Default value is 0.

•CMD_REG1

 Offset: 0x04

Read/Write: R/W

Description: Channel's command, second line out of 4.When using command lists this register will be
overwritten by the next command.

Fields:

➢WR_START_ADDR [31:0]

Start address of write buffer. This address will be written on AXI bus. Value is in bytes and
has no alignment restrictions. If the address is not aligned to the channel's FIFO size, the
maximum burst size will be restricted to half of the FIFO size, instead of being restricted to the
FIFO size.

Default value is 0.

•CMD_REG2

 Offset: 0x08

Read/Write: R/W

Description: Channel's command, third line out of 4.When using command lists this register will be
overwritten by the next command.

Remark: Buffer size bits can be reduced in build down to 9 bits.

Fields:

If not in block mode (according to BLOCK register):

➢BUFFER_SIZE [15:0]

Size of buffer to transfer. Value is in bytes and has no size restrictions.

Default value is 0.

If in block mode (according to BLOCK register):

➢X_SIZE [7:0]

Block width. Value is in bytes and has no size restrictions.

Default value is 0.

➢Y_SIZE [15:8]

Number of block lines.

Default value is 0.

Copyright © 2010 Provartec Limited, All rights reserved 38

•CMD_REG3

 Offset: 0x0C

Read/Write: R/W

Description: Channel's command, last line out of 4. When using command lists this register will be
overwritten by the next command.

Fields:

➢CMD_SET_INT [0]

If set the channel will issue an interrupt once the entire buffer has been transfered.

Default value is 0.

➢CMD_LAST [1]

If set the channel will stop once the entire buffer has been transferred, if not the next
command will be loaded from the address specified in the CMD_NEXT_ADDR field.

Default value is 0.

➢CMD_NEXT_ADDR [31:4]

Address of next command. Value is in chunks of 16 bytes (command size). The next command
will be read on the AXI bus in case the CMD_LAST field is not set.

Default value is 0.

•STATIC_REG0

 Offset: 0x10

Read/Write: R/W

Description: Channel's static configuration. These parameters should not be changed while channel is
active. These registers are used for both are and write in joint mode.

Fields:

➢RD_BURST_MAX_SIZE [9:0]

Maximum number of bytes of an AXI read burst. Possible values: 1, 2, 4, data_width*N (N is an
integer 1 – 16). If the channel is reading from a peripheral, the number is set according to the
peripherals FIFO. If the channel is performing memory copy, it is recommended to set a value
that is a multiplication of the AXI bus width.

When working with a peripheral in block mode, the value must match X_SIZE (block width).

Default value is 0.

➢RD_ALLOW_FULL_BURST [12]

Status register, indicates if burst size can exceed data buffer size (joint mode).

Reset value is 0.

➢RD_ALLOW_FULL_FIFO [13]

Status register, indicates if burst can use entire data buffer. It is allowed when both read and write
start addresses are aligned to data buffer size, otherwise the maximum allowed burst is half of the

Copyright © 2010 Provartec Limited, All rights reserved 39

buffer size.

Reset value is 0.

➢RD_TOKENS [21:16]

Number of AXI read commands to issue before the channel releases the AXI command bus.

Default value is 1.

➢RD_OUTS_MAX [27:24]

Number of maximum outstanding AXI read commands. Limiting this value to the command
depth of the AXI slave will prevent the command bus to stall.

Default value is 4.

➢RD_OUTSTANDING [30]

Caution, might cause erroneous results!
If set it allows the controller to issue the AXI read command while the FIFO is full, expecting the
data to be outputted before the read data arrives. If this does not happen the FIFO will be
overflown, data lost, and an OVERFLOW interrupt will be issued.

Default value is 0.

➢RD_INCR [31]

If set the controller will increment the next burst address. Should be set for all memory copy
channels. Should be cleared for all peripheral clients that use a static address FIFO.

Default value is 1.

•STATIC_REG1

Offset: 0x14

Read/Write: R/W

Description: Channel's static configuration. These parameters should not be changed while
channel is active. These registers are not used in joint mode.

Fields:

➢WR_BURST_MAX_SIZE [9:0]

Maximum number of bytes of an AXI write burst. Possible values: 1, 2, 4, data_width*N (N is an
integer 1 – 16). If the channel is writing to a peripheral, the number is set according to the
peripherals FIFO. If the channel is performing memory copy, it is recommended to set a value
that is a multiplication of the AXI bus width. When working with a peripheral in block mode, the
value must match X_SIZE (block width).

Default value is 0.

➢WR_ALLOW_FULL_BURST [12]

Status register, indicates if burst size can exceed data buffer size (joint mode).

Reset value is 0.

➢WR_ALLOW_FULL_FIFO [13]

Copyright © 2010 Provartec Limited, All rights reserved 40

Status register, indicates if burst can use entire data buffer. It is allowed when both read and write
start addresses are aligned to data buffer size, otherwise the maximum allowed burst is half of the
buffer size.

Reset value is 0.

➢WR_TOKENS [21:16]

Number of AXI write commands to issue before the channel releases the AXI
command bus.

Default value is 1.

➢WR_OUTS_MAX [27:24]

Number of maximum outstanding AXI write commands. Limiting this value to the
command depth of the AXI slave will prevent the command bus to stall.

Default value is 4.

➢WR_OUTSTANDING [30]

Caution, might cause erroneous results!
If set it allows the controller to issue the AXI write command immediately after the
AXI read command has been given, before the read data actually arrived. This is
effective for high priority memory copies, especially if the write AXI slave can
benefit by an early command. If the write data is outputted before the read data arrives, an
UNDERFLOW interrupt will be issued.

Default value is 1.

➢WR_INCR [31]

If set the controller will increment the next burst address. Should be set for all
memory copy channels. Should be cleared for all peripheral clients that use a static
address FIFO.

Default value is 1.

•STATIC_REG2

Offset: 0x18

Read/Write: R/W

Description: Block mode

Fields:
➢FRAME_WIDTH [11:0]

Frame width for block mode. Value is in bytes and has no restrictions.

Default value is 0.

➢BLOCK [15]

If set the channel will work in block mode.

Default value is 0.

➢JOINT [16]

Copyright © 2010 Provartec Limited, All rights reserved 41

If set the channel will work in joint mode, has effect only if COREx_JOINT_MODE is set.

Default value is 0.

➢AUTO_RETRY [17]

If set the channel will automatically restart if an underflow or overflow error occurs.

Default value is 0.

➢RD_CMD_PORT_NUM [20]

Number of AXI output port to read commands from.

Default value is 0.

➢RD_PORT_NUM [21]

Number of AXI output port to read data from.

Default value is 0.

➢WR_PORT_NUM [22]

Number of AXI output port to write data to.

Default value is 0.

➢INT_NUM[26:24]

Number of interrupt bit to use. Can be used when different channels are used by
different processors. Each processor can be connected to a different interrupt bit.

Default value is 0.

➢END_SWAP[29:28]

Endianness byte swapping. Notice byte swapping restrictions (section 4.20).

0 – No swapping.

1 – Swap bytes within 16 bits.

2 – Swap bytes within 32 bits.

3 – Swap bytes within 64 bits.

Default value is 0.

•STATIC_REG3

Offset: 0x1C

Read/Write: R/W

Description: Channel's static configuration. These parameters should not be changed while
channel is active.

Fields:

➢RD_WAIT_LIMIT[11:0]

Minimum number of cycles to wait after a channel is released and before it starts
issuing more read commands. This helps prevent low priority channels clog the AXI
bus. Value must be a multiplication of 16. Controls also WR_WAIT_LIMIT in joint mode.

Copyright © 2010 Provartec Limited, All rights reserved 42

Default value is 0.

➢WR_WAIT_LIMIT[27:16]

Minimum number of cycles to wait after a channel is released and before it starts
issuing more write commands. This helps prevent low priority channels clog the
AXI bus. Value must be a multiplication of 16. Is not used in joint mode.

Default value is 0.

•STATIC_REG4

Offset: 0x20

Read/Write: R/W

Description: Channel's static configuration. These parameters should not be changed while
channel is active.

Fields:

➢RD_PERIPH_NUM[4:0]

Number of peripheral to read from. Set 0 if the channel reads from a memory, or
reads from a peripheral that does not use peripheral flow control.

Default value is 0.

➢RD_PERIPH_DELAY[10:8]

Number of cycles to wait for the peripheral read request signal to update after
issuing the read clear signal. This is determined by the peripheral latency.

Default value is 0.

➢RD_PERIPH_BLOCK[15]

If set the peripheral control works in block mode. In block mode, the periph_rx_clr
signal will be given only at the end of the block, otherwise it will be given normally,
after every burst (every block line).

Default value is 0.

➢WR_PERIPH_NUM[20:16]

Number of peripheral to write to. Set 0 if the channel writes to a memory, or
writes to a peripheral that does not use peripheral flow control.

Default value is 0.

➢WR_PERIPH_DELAY[26:24]

Number of cycles to wait for the peripheral write request signal to update after
issuing the write clear signal. This is determined by the peripheral latency.

Default value is 0.

➢WR_PERIPH_BLOCK[31]

If set the peripheral control works in block mode. In block mode, the periph_tx_clr
signal will be given only at the end of the block, otherwise it will be given normally,
after every burst (every block line).

Copyright © 2010 Provartec Limited, All rights reserved 43

Default value is 0.

•RESTRICT_REG

Offset: 0x2C

Read/Write: R

Description: Channel's restrictions status register

Fields:

➢RD_ALLOW_FULL_FIFO[0]

Read start address does not restrict burst size.

➢WR_ALLOW_FULL_FIFO[1]

Write start address does not restrict burst size.

➢ALLOW_FULL_FIFO[2]

Burst sizes can equal data buffer size, otherwise the maximum burst is half of the data buffer size.

➢ALLOW_FULL_BURST[3]

Maximum burst of 16 strobes can be used (joint mode only).

➢ALLOW_JOINT_BURST[4]

Joint bursts are currently active.

➢RD_OUTSTANDING_STAT[5]

Read outstanding is currently active.

➢WR_OUTSTANDING_STAT[6]

Write outstanding is currently active.

➢BLOCK_NON_ALIGN_STAT[7]

Block configuration is not aligned, either start address, x_size or frame width.

➢SIMPLE_STAT[8]

Configuration is aligned and peripherals are not used.

•READ_OFFSET_REG

Offset: 0x30

Read/Write: R

Description: Channel's read offset status register.

Fields:

If not in block mode (according to BLOCK register):

➢RD_OFFSET[15:0]

Copyright © 2010 Provartec Limited, All rights reserved 44

Offset from the beginning of the buffer. Value is in bytes.

Reset value is 0.

If in block mode (according to BLOCK register):

➢RD_X_OFFSET[7:0]

Offset from the beginning of the current block line. Value is in bytes.

Reset value is 0.

➢RD_Y_OFFSET[23:16]

Number of current block line.

Reset value is 1.

•WRITE_OFFSET_REG

Offset: 0x34

Read/Write: R

Description: Channel's write offset status register.

Fields:

If not in block mode (according to BLOCK register):

➢WR_OFFSET[15:0]

Offset from the beginning of the buffer. Value is in bytes.

Reset value is 0.

If in block mode (according to BLOCK register):

➢WR_X_OFFSET[7:0]

Offset from the beginning of the current block line. Value is in bytes.

Reset value is 0.

➢WR_Y_OFFSET[23:16]

Number of current block line.

Reset value is 1.

•FIFO_FULLNESS_REG

Offset: 0x38

Read/Write: R

Description: FIFO fullness status register.

Fields:

➢RD_GAP[9:0]

Remaining space in channel's FIFO for read data. Value is in bytes. Value is

Copyright © 2010 Provartec Limited, All rights reserved 45

decremented when read command is issued and incremented according to the value
of the RD_OUTSTANDING register. If RD_OUTSTANDING is set the value is
incremented after issuing the write command otherwise it is incremented after data is
written.

Reset value is equal to FIFO size.

➢WR_FULLNESS[25:16]

Occupied space in channel's FIFO by write data. Value is in bytes. Value is
decremented when write command is issued and incremented according to the value
of the WR_OUTSTANDING register. If WR_OUTSTANDING is set the value is
incremented after issuing the read command otherwise it is incremented after data is
read.

Reset value is 0.

•CMD_OUTS_REG

Offset: 0x3C

Read/Write: R

Description: Outstanding commands status register.

Fields:

➢RD_CMD_OUTS[5:0]

Number of channel's pending AXI read commands.

Reset value is 63

➢WR_CMD_OUTS[13:8]

Number of channel's pending AXI write commands.

Reset value is 63

•CH_ENABLE_REG

Offset: 0x40

Read/Write: R/W

Description: Channel enable.

Fields:

➢CH_ENABLE[0]

Channel enable. Part of the initialization sequence. Also used for pause and resume.

Default value is 1.

•CH_START_REG

Copyright © 2010 Provartec Limited, All rights reserved 46

Offset: 0x44

Read/Write: W

Description: Channel start.

Fields:

➢CH_START[0]

Channel start. Part of the initialization sequence.

•CH_ACTIVE_REG

Offset: 0x48

Read/Write: R

Description: Channel active status register.

Fields:

➢CH_RD_ACTIVE[0]

This value is set if channel is enabled and all read data has been received.

Reset value is 0

➢CH_WR_ACTIVE[1]

This value is set if channel is enabled and all write data has been transfered.

Reset value is 0

•COUNT_REG

Offset: 0x50

Read/Write: R

Description: Buffer counter status register.

Fields:

➢BUFF_COUNT[15:0]

Number of buffers transferred by channel since started. When using a command list
this status indicates how many DMA commands have been completed.

Reset value is 0

➢INT_COUNT[21:16]

Number of unserviced end interrupts. Value is incremented each time an end
interrupt is issued and is decremented when the INT_CLR_CH_END register is
written.

Reset value is 0

Copyright © 2010 Provartec Limited, All rights reserved 47

•INT_RAWSTAT_REG

Offset: 0xA0

Read/Write: R/W

Description: Interrupt raw status

Fields:

➢INT_RAWSTAT_CH_END[0]

Indicates an unserviced channel end interrupt. The total number of unserviced
end interrupts can be read in the INT_COUNT register.

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_RD_DECERR[1]

Indicates that a read issued by this channel caused an AXI read decode error.

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_RD_SLVERR[2]

Indicates that a read issued by this channel caused an AXI read slave error.

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_WR_DECERR[3]

Indicates that a write issued by this channel caused an AXI read decode error.

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_WR_SLVERR[4]

Indicates that a write issued by this channel caused an AXI read slave error.

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_OVERFLOW[5]

Indicates that the data FIFO has been overflown, this can only occur when
RD_OUTSTANING is set, indicating the slave was not fast enough to operate under this
mode.

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_UNDERFLOW[6]

Indicates that the data FIFO has been underflown, this can only occur when
WR_OUTSTANING is set, indicating the slave was not fast enough to operate under this
mode.

Copyright © 2010 Provartec Limited, All rights reserved 48

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_TIMEOUT_R[7]

Indicates that a read issued by this channel caused a timeout on the AXI read data
bus. Timeout value is fixed to 1024 cycles.

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_TIMEOUT_AR[8]

Indicates that a read issued by this channel caused a timeout on the AXI read
command bus. Timeout value is fixed to 1024 cycles.

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_TIMEOUT_B[9]

Indicates that a write issued by this channel caused a timeout on the AXI write
response bus. Timeout value is fixed to 1024 cycles.

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_TIMEOUT_W[10]

Indicates that a write issued by this channel caused a timeout on the AXI write data
bus. Timeout value is fixed to 1024 cycles.

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_TIMEOUT_AW[11]

Indicates that a write issued by this channel caused a timeout on the AXI write
command bus. Timeout value is fixed to 1024 cycles.

Interrupt can be issued by writing to this field.

Default value is 0.

➢INT_RAWSTAT_WDT[12]

Indicates that the channel is active but did not start a burst for 2048 cycles.

Interrupt can be issued by writing to this field.

Default value is 0.

•INT_CLEAR_REG

Offset: 0xA4

Read/Write: W

Description: Interrupt clear

Copyright © 2010 Provartec Limited, All rights reserved 49

Fields:

➢INT_CLR_CH_END[0]

Clear channel end interrupt. Decrements INT_COUNT register.

➢INT_CLR_RD_DECERR[1]

Clears INT_RAWSTAT_RD_DECERR.

➢INT_CLR_RD_SLVERR[2]

Clears INT_RAWSTAT_RD_SLVERR.

➢INT_CLR_WR_DECERR[3]

Clears INT_RAWSTAT_WR_DECERR.

➢INT_CLR_WR_SLVERR[4]

Clears INT_RAWSTAT_WR_SLVERR.

➢INT_CLR_OVERFLOW[5]

Clears INT_RAWSTAT_OVERFLOW.

➢INT_CLR_OVERFLOW[6]

Clears INT_RAWSTAT_UNDERFLOW.

➢INT_CLR_TIMEOUT_R[7]

Clears INT_RAWSTAT_TIMEOUT_R.

➢INT_CLR_TIMEOUT_AR[8]

Clears INT_RAWSTAT_TIMEOUT_AR.

➢INT_CLR_TIMEOUT_B[9]

Clears INT_RAWSTAT_TIMEOUT_B.

➢INT_CLR_TIMEOUT_W[10]

Clears INT_RAWSTAT_TIMEOUT_W.

➢INT_CLR_TIMEOUT_AW[11]

Clears INT_RAWSTAT_TIMEOUT_AW.

➢INT_CLR_WDT[12]

Clears INT_RAWSTAT_WDT.

•INT_ENABLE_REG

Offset: 0xA8

Read/Write: R/W

Description: Interrupt enable. Each bit that is set enables its corresponding INT_RAWSTAT
register to be present in the INT_STATUS register and outputted on the INT output
pin.

Fields:

➢INT_ENABLE_CH_END[0]

Copyright © 2010 Provartec Limited, All rights reserved 50

Enables INT_RAWSTAT_CH_END.

Default value is 1.

➢INT_ENABLE_RD_DECERR[1]

Enables INT_RAWSTAT_RD_DECERR.

Default value is 1.

➢INT_ENABLE_RD_SLVERR[2]

Enables INT_RAWSTAT_RD_SLVERR.

Default value is 1.

➢INT_ENABLE_WR_DECERR[3]

Enables INT_RAWSTAT_WR_DECERR.

Default value is 1.

➢INT_ENABLE_WR_SLVERR[4]

Enables INT_RAWSTAT_WR_SLVERR.

Default value is 1.

➢INT_ENABLE_OVERFLOW[5]

Enables INT_RAWSTAT_OVERFLOW.

Default value is 1.

➢INT_ENABLE_UNDERFLOW[6]

Enables INT_RAWSTAT_UNDERFLOW.

Default value is 1.

➢INT_ENABLE_TIMEOUT_R[7]

Enables INT_RAWSTAT_TIMEOUT_R.

Default value is 1.

➢INT_ENABLE_TIMEOUT_AR[8]

Enables INT_RAWSTAT_TIMEOUT_AR.

Default value is 1.

➢INT_ENABLE_TIMEOUT_B[9]

Enables INT_RAWSTAT_TIMEOUT_B.

Default value is 1.

➢INT_ENABLE_TIMEOUT_W[10]

Enables INT_RAWSTAT_TIMEOUT_W.

Default value is 1.

➢INT_ENABLE_TIMEOUT_AW[11]

Enables INT_RAWSTAT_TIMEOUT_AW.

Default value is 1.

Copyright © 2010 Provartec Limited, All rights reserved 51

➢INT_ENABLE_WDT[12]

Enables INT_RAWSTAT_WDT.

Default value is 1.

•INT_STATUS_REG

Offset: 0xAC

Read/Write: R

Description: Interrupt status. Indicates which interrupts are currently outputted on the INT output
pin.

Fields:

➢INT_STATUS_CH_END[0]

INT_RAWSTAT_CH_END is set and enabled.

➢INT_STATUS_RD_DECERR[1]

INT_RAWSTAT_RD_DECERR is set and enabled.

➢INT_STATUS_RD_SLVERR[2]

INT_RAWSTAT_RD_SLVERR is set and enabled.

➢INT_STATUS_WR_DECERR[3]

INT_RAWSTAT_WR_DECERR is set and enabled.

➢INT_STATUS_WR_SLVERR[4]

INT_RAWSTAT_WR_SLVERR is set and enabled.

➢INT_STATUS_OVERFLOW[5]

INT_RAWSTAT_OVERFLOW is set and enabled.

➢INT_STATUS_UNDERFLOW[6]

INT_RAWSTAT_UNDERFLOW is set and enabled.

➢INT_STATUS_TIMEOUT_R[7]

INT_RAWSTAT_TIMEOUT_R is set and enabled.

➢INT_STATUS_TIMEOUT_AR[8]

INT_RAWSTAT_TIMEOUT_AR is set and enabled.

➢INT_STATUS_TIMEOUT_B[9]

INT_RAWSTAT_TIMEOUT_B is set and enabled.

➢INT_STATUS_TIMEOUT_W[10]

INT_RAWSTAT_TIMEOUT_W is set and enabled.

➢INT_STATUS_TIMEOUT_AW[11]

INT_RAWSTAT_TIMEOUT_AW is set and enabled.

➢INT_STATUS_WDT[12]

Copyright © 2010 Provartec Limited, All rights reserved 52

INT_RAWSTAT_WDT is set and enabled.

 9.3 Shared registers

•INT0_STATUS

 Offset: 0x1000

Read/Write: R

Description: Status register indicating which channels caused an interrupt on INT[0]

Fields:

➢CORE0_CH0_INT0_STAT[0]

Interrupt caused by Channel 0 in Core 0.

Reset value is 0.

➢CORE0_CH1_INT0_STAT[1]

Interrupt caused by Channel 1 in Core 0.

Reset value is 0.

➢CORE0_CH2_INT0_STAT[2]

Interrupt caused by Channel 2 in Core 0.

Reset value is 0.

➢CORE0_CH3_INT0_STAT[3]

Interrupt caused by Channel 3 in Core 0.

Reset value is 0.

➢CORE0_CH4_INT0_STAT[4]

Interrupt caused by Channel 4 in Core 0.

Reset value is 0.

➢CORE0_CH5_INT0_STAT[5]

Interrupt caused by Channel 5 in Core 0.

Reset value is 0.

➢CORE0_CH6_INT0_STAT[6]

Interrupt caused by Channel 6 in Core 0.

Reset value is 0.

➢CORE0_CH7_INT0_STAT[7]

Interrupt caused by Channel 7 in Core 0.

Reset value is 0.

➢CORE1_CH0_INT0_STAT[8]

Interrupt caused by Channel 0 in Core 1.

Reset value is 0.

➢CORE1_CH1_INT0_STAT[9]

Copyright © 2010 Provartec Limited, All rights reserved 53

Interrupt caused by Channel 1 in Core 1.

Reset value is 0.

➢CORE1_CH2_INT0_STAT[10]

Interrupt caused by Channel 2 in Core 1.

Reset value is 0.

➢CORE1_CH3_INT0_STAT[11]

Interrupt caused by Channel 3 in Core 1.

Reset value is 0.

➢CORE1_CH4_INT0_STAT[12]

Interrupt caused by Channel 4 in Core 1.

Reset value is 0.

➢CORE1_CH5_INT0_STAT[13]

Interrupt caused by Channel 5 in Core 1.

Reset value is 0.

➢CORE1_CH6_INT0_STAT[14]

Interrupt caused by Channel 6 in Core 1.

Reset value is 0.

➢CORE1_CH7_INT0_STAT[15]

Interrupt caused by Channel 7 in Core 1.

Reset value is 0.

•INT1_STATUS

 Offset: 0x1004

Read/Write: R

Description: Status register indicating which channels caused an interrupt on INT[1]

Fields: Identical to INT0_STATUS.

•INT2_STATUS

 Offset: 0x1008

Read/Write: R

Description: Status register indicating which channels caused an interrupt on INT[2]

Fields: Identical to INT0_STATUS.

•INT3_STATUS

 Offset: 0x100C

Copyright © 2010 Provartec Limited, All rights reserved 54

Read/Write: R

Description: Status register indicating which channels caused an interrupt on INT[3]

Fields: Identical to INT0_STATUS.

•INT4_STATUS

 Offset: 0x1010

Read/Write: R

Description: Status register indicating which channels caused an interrupt on INT[4]

Fields: Identical to INT0_STATUS.

•INT5_STATUS

 Offset: 0x1014

Read/Write: R

Description: Status register indicating which channels caused an interrupt on INT[5]

Fields: Identical to INT0_STATUS.

•INT6_STATUS

 Offset: 0x1018

Read/Write: R

Description: Status register indicating which channels caused an interrupt on INT[6]

Fields: Identical to INT0_STATUS.

•INT7_STATUS

 Offset: 0x101C

Read/Write: R

Description: Status register indicating which channels caused an interrupt on INT[7]

Fields: Identical to INT0_STATUS.

•CORE0_JOINT_MODE

 Offset: 0x1030

Read/Write: R/W

Description: Core 0 joint mode

Fields:

➢CORE0_JOINT_MODE[0]

If set core 0 works in joint mode otherwise in independent mode.

Reset value is 0.

Copyright © 2010 Provartec Limited, All rights reserved 55

•CORE1_JOINT_MODE

 Offset: 0x1034

Read/Write: R/W

Description: Core 1 joint mode

Fields:

➢CORE0_JOINT_MODE[0]

If set core 1 works in joint mode otherwise in independent mode.

Reset value is 0.

•CORE0_PRIORITY

 Offset: 0x1038

Read/Write: R/W

Description: Core 0 priority channels

Fields:

➢CORE0_RD_PRIO_TOP_NUM[2:0]

Core 0 read top priority channel number.

Reset value is 0.

➢CORE0_RD_PRIO_TOP[3]

Core 0 read top priority enable.

Reset value is 0.

➢CORE0_RD_PRIO_HIGH_NUM[6:4]

Core 0 read high priority channel number.

Reset value is 0.

➢CORE0_RD_PRIO_HIGH[7]

Core 0 read high priority enable.

Reset value is 0.

➢CORE0_WR_PRIO_TOP_NUM[10:8]

Core 0 write top priority channel number.

Reset value is 0.

➢CORE0_WR_PRIO_TOP[11]

Core 0 write top priority enable.

Reset value is 0.

➢CORE0_WR_PRIO_HIGH_NUM[14:12]

Core 0 write high priority channel number.

Reset value is 0.

➢CORE0_WR_PRIO_HIGH[15]

Copyright © 2010 Provartec Limited, All rights reserved 56

Core 0 write high priority enable.

Reset value is 0.

•CORE1_PRIORITY

 Offset: 0x103C

Read/Write: R/W

Description: Core 1 priority channels

Fields:

➢CORE1_RD_PRIO_TOP_NUM[2:0]

Core 1 read top priority channel number.

Reset value is 0.

➢CORE1_RD_PRIO_TOP[3]

Core 1 read top priority enable.

Reset value is 0.

➢CORE1_RD_PRIO_HIGH_NUM[6:4]

Core 1 read high priority channel number.

Reset value is 0.

➢CORE1_RD_PRIO_HIGH[7]

Core 1 read high priority enable.

Reset value is 0.

➢CORE1_WR_PRIO_TOP_NUM[10:8]

Core 1 write top priority channel number.

Reset value is 0.

➢CORE1_WR_PRIO_TOP[11]

Core 1 write top priority enable.

Reset value is 0.

➢CORE1_WR_PRIO_HIGH_NUM[14:12]

Core 1 write high priority channel number.

Reset value is 0.

➢CORE1_WR_PRIO_HIGH[15]

Core 1 write high priority enable.

Reset value is 0.

•CORE0_CLKDIV

 Offset: 0x1040

Read/Write: R/W

Copyright © 2010 Provartec Limited, All rights reserved 57

Description: Core 0 clock divider

Fields:

➢CORE0_CLKDIV_RATIO[3:0]

Ratio between main clock and core 0 clock.

Reset value is 1.

•CORE1_CLKDIV

 Offset: 0x1044

Read/Write: R/W

Description: Core 1 clock divider

Fields:

➢CORE1_CLKDIV_RATIO[3:0]

Ratio between main clock and core 1 clock.

Reset value is 1.

•CORE0_CH_START

 Offset: 0x1048

Read/Write: W

Description: Core 0 channel start

Fields:

➢CORE0_CHANNEL_START[7:0]

Allow to start multiple channels simultaneously. Each bit set starts the corresponding channel.

•CORE1_CH_START

 Offset: 0x104C

Read/Write: W

Description: Core 1 channel start

Fields:

➢CORE1_CHANNEL_START[7:0]

Allow to start multiple channels simultaneously. Each bit set starts the corresponding channel.

•PERIPH_RX_CTRL

 Offset: 0x1050

Read/Write: R/W

Description: Direct control of peripheral RX request

Fields:

Copyright © 2010 Provartec Limited, All rights reserved 58

➢PERIPH_RX_REQ[31:1]

Allows direct control of the peripheral RX request bus. Particularly useful when the application
wishes to read results without waiting for them to arrive. Cleared automatically by HW
periph_rx_clr singal.

Bit 0 is reserved for uncontrolled transfers.

Reset value is 0.

•PERIPH_TX_CTRL

 Offset: 0x1054

Read/Write: R/W

Description: Direct control of peripheral TX request

Fields:

➢PERIPH_TX_REQ[31:1]

Allows direct control of the peripheral TX request bus. Particularly useful when the application
wishes to write configuration registers to a slow device. Cleared automatically by HW
periph_tx_clr singal.

Bit 0 is reserved for uncontrolled transfers.

Reset value is 0.

•IDLE

 Offset: 0x10D0

Read/Write: R

Description: Idle indication register

Fields:

➢IDLE[0]

Indicates that all channels have stopped working and all bus transactions have completed.

•USER_DEF_STATUS

 Offset: 0x10E0

Read/Write: R

Description: Status register indicating user defined configurations

Fields:

➢USER_DEF_INT_NUM[3:0]

Number of bits in interrupt bus INT.

➢USER_DEF_DUAL_CORE[5]

If set the design has two cores else a single core.

➢USER_DEF_IC[6]

 If set an AXI interconnect is used.

Copyright © 2010 Provartec Limited, All rights reserved 59

➢USER_DEF_IC_DUAL_PORT[7]

• If set the AXI interconnect has two output ports otherwise it has a single port.

➢USER_DEF_CLKGATE[8]

• If set the design contains functional clock gates.

•USER_CORE0_DEF_STATUS0

 Offset: 0x10F0

Read/Write: R

Description: Status register indicating user defined configurations

Fields:

➢USER_DEF_CORE0_CH_NUM[3:0]

Number of channels in core 0.

➢USER_DEF_CORE0_FIFO_SIZE[7:4]

Log2 of core 0 FIFO size per channel.

➢USER_DEF_CORE0_WCMD_DEPTH[11:8]

Log2 of core 0 maximum number of pending write commands.

➢USER_DEF_CORE0_RCMD_DEPTH[15:12]

Log2 of core 0 maximum number of pending read commands.

➢USER_DEF_CORE0_ADDR_BITS[21:16]

Number of bits in all core 0 address buses.

➢USER_DEF_CORE0_AXI_32[22]

If set core 0 AXI bus is 32 bit otherwise 64 bit.

➢USER_DEF_CORE0_BUFF_BITS[28:24]

Number of bits in core 0 BUFFER_SIZE

•USER_CORE0_DEF_STATUS1

 Offset: 0x10F4

Read/Write: R

Description: Status register indicating user defined configurations

Fields:

➢USER_DEF_CORE0_WDT[0]

If set core 0 has a watchdog timer.

➢USER_DEF_CORE0_TIMEOUT[1]

If set core 0 supports timeouts on all five AXI sub-buses.

➢USER_DEF_CORE0_TOKENS[2]

If set core 0 has tokens support.

Copyright © 2010 Provartec Limited, All rights reserved 60

➢USER_DEF_CORE0_PRIO[3]

If set core 0 has priority modes support.

➢USER_DEF_CORE0_OUTS[4]

If set core 0 supports outstanding mode.

➢USER_DEF_CORE0_WAIT[5]

If set core 0 supports scheduled channels .

➢USER_DEF_CORE0_BLOCK[6]

If set core 0 supports block transfer.

➢USER_DEF_CORE0_JOINT[7]

If set core 0 supports joint mode.

➢USER_DEF_CORE0_INDEPENDENT[8]

If set core 0 supports independent mode.

➢USER_DEF_CORE0_PERIPH[9]

If set core 0 supports peripherals.

➢USER_DEF_CORE0_LISTS[10]

If set core 0 supports command lists.

➢USER_DEF_CORE0_END[11]

If set core 0 supports endianness swapping.

➢USER_DEF_CORE0_CLKDIV[12]

If set core 0 has an internal clock divider and AXI synchonizer.

•USER_CORE1_DEF_STATUS0

 Offset: 0x10F8

Read/Write: R

Description: Status register indicating user defined configurations

Fields:

➢USER_DEF_CORE1_CH_NUM[3:0]

Number of channels in core 1.

➢USER_DEF_CORE1_FIFO_SIZE[7:4]

Log2 of core 1 FIFO size per channel.

➢USER_DEF_CORE1_WCMD_DEPTH[11:8]

Log2 of core 1 maximum number of pending write commands.

➢USER_DEF_CORE1_RCMD_DEPTH[11:8]

Log2 of core 1 maximum number of pending read commands.

➢USER_DEF_CORE1_ADDR_BITS[21:16]

Number of bits in all core 1 address buses.

Copyright © 2010 Provartec Limited, All rights reserved 61

➢USER_DEF_CORE1_AXI_32[22]

If set core 1 AXI bus is 32 bit otherwise 64 bit.

➢USER_DEF_CORE1_BUFF_BITS[28:24]

Number of bits in core 1 BUFFER_SIZE

•USER_CORE1_DEF_STATUS1

 Offset: 0x10FC

Read/Write: R

Description: Status register indicating user defined configurations

Fields:

➢USER_DEF_CORE1_WDT[0]

If set core 1 has a watchdog timer.

➢USER_DEF_CORE1_TIMEOUT[1]

If set core 1 supports timeouts on all five AXI sub-buses.

➢USER_DEF_CORE1_TOKENS[2]

If set core 1 has tokens support.

➢USER_DEF_CORE1_PRIO[3]

If set core 1 has priority modes support.

➢USER_DEF_CORE1_OUTS[4]

If set core 1 supports outstanding mode.

➢USER_DEF_CORE1_WAIT[5]

If set core 1 supports scheduled channels .

➢USER_DEF_CORE1_BLOCK[6]

If set core 1 supports block transfer.

➢USER_DEF_CORE1_JOINT[7]

If set core 1 supports joint mode.

➢USER_DEF_CORE1_INDEPENDENT[8]

If set core 1 supports independent mode.

➢USER_DEF_CORE1_PERIPH[9]

If set core 1 supports peripherals.

➢USER_DEF_CORE1_LISTS[10]

If set core 1 supports command lists.

➢USER_DEF_CORE1_END[11]

If set core 1 supports endianness swapping.

➢USER_DEF_CORE1_CLKDIV[12]

If set core 1 has an internal clock divider and AXI synchonizer.

Copyright © 2010 Provartec Limited, All rights reserved 62

	1. 	Introduction
	 	1.1 	General		
	 	1.2 	The Dual-Core concept		
	 	1.3	Construction options
	 	1.4	DMA Builder application

	 	1.5 	Main Feature List		

	2. 	External connections
	 	2.1 	Port list
		 2.2 	Connecting to AXI
		 2.3 	Connecting to APB3
	 	2.4 	Connecting to peripherals

	3. 	Operation modes
		 3.1 	General
		 3.2 	Independent mode – normal channel mode
		 3.3 	Independent mode – outstanding channel mode
		 3.3 	Joint mode

	4. 	Concepts
		 4.1 	DMA commands
		 4.2 	DMA command lists - optional feature (Command lists)
		 4.3 	Peripheral control - optional feature (Peripheral control)
		 4.4 	Peripheral to peripheral transfer - optional feature (Peripheral control)
		 4.5 	Arbitration – Build can remove high and top priority modes (Priority modes)
		 4.6 	Tokens (Windowed arbitration) - optional feature (Tokens)
		 4.7 	Block transfer - optional feature (Block support)
		 4.8 	Block scatter gather - optional feature (Block support)
		 4.9 	Peripheral block transfer - optional feature (Block support & Peripheral control)
		 4.10 	Scheduled channels - optional feature (Scheduler)
		 4.11 	Interrupt depth - optional feature (Command lists)
		 4.12 	Software control of peripheral request - optional feature (Peripheral control)
	 	4.13 	Multiple processor control - optional feature (Number of interrupts)
	 	4.14 	AXI timeouts - optional feature (AXI timeout)
	 	4.15 	Watchdog timer - optional feature (Watchdog timer)
	 	4.16 	Clock gating - optional feature (Clock gating)
	 	4.17 	Multiple output port control - optional feature (Interconnect)
	 	4.18 	Limiting pending AXI commands - optional feature (Limit AXI)
		4.19 	Core 1 clock divider
	 	4.20 	Endianness byte swapping - optional feature (Endianness)

	5. 	Configuration Flows
	 	5.1 	General configuration
	 	5.2 	Configure and start a channel
		 5.3 	Stop a channel
		 5.4 	Pause and resume a channel
		 5.5 	Restart a channel
		 5.6 	Interrupt handling
		 5.7 	Power down sequence

	6. 	Performance
		 6.1 	General
		 6.2	Independent mode, 64 bit data bus
	 	6.3 	Independent mode, 32 bit data bus
	 6.4 		Independent mode – outstanding channel mode
	 	6.5 	Independent mode - multiple channels
	 	6.6 	Independent mode - dual cores with a shared AXI bus
	 	6.7 	Independent mode - block transfer
	 	6.8 	Joint mode

	7.	Area and frequency examples
		7.1 	Single core design
		7.2 	Dual core design

	8. 	Bus activity
		8.1 	AXI bursts used
	 	8.2 	AXI ID bits
		 8.3 	Error interrupts

	9. 	Registers
	 	9.1 	General
	 	9.2 	Channel registers
	 9.3 	Shared registers

