
 73

CHAPTER 6

HDL DESIGN STRATEGY

6-1. HDL Design

6.1-1. HDL STRATEGY

In order to develop Verilog or HDL description of a device, it is necessary to

imagine all the external inputs and outputs of the device. For example, the digital

Tristate buffer has one input, one output and an enable line. In this case, if there is a

16-bit input and output and a one-bit enable. The Verilog realization for this is as

follows:

module Tristate (in, out, enable)

input[15:0] in;

output[15:0] out;

input enable;

Verilog syntax is similar to C. Each input and output must be referenced in the

functioned prototype and then declared as inputs or outputs in the first few lines of the

module. Once the basic I/O is established the compiler needs to know which I/O

needs to hold its value during operation. In addition, there are often some internal

connections that are needed to be made. This is accomplished in Verilog with the use

of the wire and reg commands. The wire command is generally used for inputs and

the reg command used for outputs. This is because it is often desirable in digital

 74

circuits for outputs to hold their value after being driven. The next few lines of code

for the Tristate module will use these commands to configure their respective inputs

and outputs.

wire [15:0] in;

wire enable;

reg [15:0] out;

Therefore, if data arrived at the input and the enable line was toggled the input

data would appear at the output.

The initialization of the variables for the Tris tate Buffers are completed. The

internal operation of the Tristate buffer and many other hardware modules are

achieved using the case statement. Unlike the Case statement in C, the first <Value>

that matches the value of the <expression> is selected and the associated statement is

executed.

case (<expression>)

<value1>: <statement>

<value2>: <statement>

default: <statement>

endcase

Using this syntax, the internal operation of the Tristate buffer is achieved from

the following code:

always @ (enable)

begin

case (enable)

1: out = in;

0: out = 16'bz; // high impedance

endcase

end

 75

The always command is used to create a hardware description that

continuously monitors the enable line of the Tri-State buffer for an active high level.

The Tri-State Buffer is a simple digital device but it clearly demonstrates the method

used in most of the Modules throughout this design.

6.1-2. INSTANTIATION

Verilog uses a technique called instantiation to group entities into one

encompassing module called the top- level design block. The top- level design block

for this design is called the Micro Module i.e. proc module in our designed core. The

Micro Module instantiates each hardware component including the Tristate Buffer,

several Latches, ALU, RAM, Register, Decoders, Program Counter, Machine Cycle

Counter and the Display Unit to create the final realization of a microprocessor. When

the micro module instantiates each hardware module, it can be viewed as each

hardware device is being placed internally into the processor block.

The Micro Module initializes all the I/O similar to the Tristate buffer. The

Micro Module also contains many internal connections implemented using the wire

command. For example, to connect the output of the register to the ALU internally,

there is a wire between them. Once all the modules are instantiated and all wires

connected, the Micro Module functions like a stand alone processor.

6.1-3. TIMING

In order to avoid the Timing problems the Verilog constructs should be

according to the IEEE standards as shown in the appendix and we must take full

advantage of the extra circuitry provided by the target FPGA. The Control Unit has

many inputs and outputs that enable the unit to perform various operations

synchronously by coordinating its activities with rest of the processor circuitry.

 Upon power up of the processor, different components of the processor are

reset to their default values. Thus PC start counting from zero and the RAM module

fetch 16-Bits of instruction from memory and incrementing the PC by one. Then the

fetched instruction is decoded by the Control Unit and an appropriate action is taken

according to the operator. The instruction result is then assigned to the Display

 76

module, which is displayed on the seven segment display. For the whole process

above, the maximum number of clock cycle consumed for a single instruction is four

machine cycle.

6-2. HDL Design of Microprocessor Components

6.2-1. CONTROL LINES

In Verilog HDL the control lines are implemented by defining them as the input

ports of the top code module as shown below.

module proc(Resetp, Holdp, Clockp, led1h, led2h);
//Port Decleration

 input Clockp;

 input Resetp;

input Holdp;

In the above code Clockp, Resetp and Holdp are the externally generated signal to

control the operation of the processor.

6.2-2. CONTROL UNIT

The Verilog HDL module for the Control Unit mainly consists of two main

blocks. The first block is used to decode the instruction fetched from RAM and the

second block performs the required action according to the operator. The Verilog

HDL code for the instruction decoding block for the Control Unit is given below.

//Control Unit

 always @(catch or pcoutput)
 begin
 F = pcoutput[15:12];
 Rx = pcoutput[11:10];
 Ry = pcoutput[9:8];
 Data = pcoutput[7:0];

 end

 77

 assign Func = {F, Rx, Ry};
 wire FRin = catch & ~Count[1] & ~Count[0];
 regn functionreg (Func, FRin, Clock, FuncReg);

 assign I = FuncReg[1:4];
 dec2to4 decX (FuncReg[5:6], 1'b1, Xreg);
 dec2to4 decY (FuncReg[7:8], 1'b1, Y);

In the above code the event Control Unit is used to decode the 16-Bit

pcoutput, which is the instruction fetched from RAM. The first 4-Bits are used for the

operand I, the second 2-Bits represent the four Rx registers, the third 2-Bits represent

the four Ry registers and the last 8-Bits represent the data (operand) on which the

operation is to be performed. The main signals utilized in the above design code are;

• catch is the enable output from the RAM module.

• pcoutput is the 16-Bit instruction fetched from the RAM.

• I is the decoded operator of the instruction, which shows what

operation should be performed by the instruction.

• Rx, Ry is the 2-Bit signal that is used to identify 8 registers.

• Data is the decoded data of the instruction on which the operation will

be performed.

The Verilog HDL code for executing an instruction block for the Control Unit

is given below.

 always @(Count or I or Xreg or Y or Data or BusWires or G or JZ)

 begin
 Extern = 1'b0;
 Done = 1'b0;
 Ain = 1'b0;
 Gin = 1'b0;
 Gout = 1'b0;
 AddSub = 3'b000;
 Rin = 4'b0;
 Rout = 4'b0;
 begin
 case (Count)
 2'b00: ; //No operation in T0
 2'b01: //define signals in time step T1
 begin
 if (JZ == 1)// Check Jmp
 begin
 Jset = 1'b0;
 Jmp = 8'b00000000;
 end

 case (I)

 78

 `Jump: //Jump
 begin

 Jset = 1'b1;
 Jmp = Data;
 Done = 1'b1;
 Exe = Data;
 end
 `Load: //Load
 begin
 Extern = 1;
 Rin = Xreg;
 Done = 1'b1;
 Exe = Data;
 end
 `Move: //Move
 begin
 Rout = Y;
 Rin = Xreg;
 Done = 1'b1;
 Exe = BusWires;
 end
`Add, `Sub, `Multiply, `And, `Or, `Not, `Nor, `Nand, `Ror, `Rol, `Shl, `Shr:
//Add, Sub, Logical, Shift
 begin
 Rout = Xreg;
 Ain = 1'b1;
 end
 default: ;
 endcase
 end
 2'b10: //define signals in time step T2

 case (I)
 `Not: //Not
 begin
 AddSub = `AluNot;
 Gin = 1'b1;
 end
 `Ror: //Rotate Right
 begin
 AddSub = `AluRor;
 Gin = 1'b1;
 end
 `Rol: //Rotate Left
 begin
 AddSub = `AluRol;
 Gin = 1'b1;
 end

 `Shl: //Shift Left
 begin
 AddSub = `AluShl;
 Gin = 1'b1;
 end

 `Shr: //Shift Right
 begin
 AddSub = `AluShl;
 Gin = 1'b1;
 end

 `Add: //Add
 begin
 Rout = Y;
 AddSub = `AluAdd;

 79

 Gin = 1'b1;
 end

 `Sub: //Sub
 begin
 Rout = Y;
 AddSub = `AluSub;
 Gin = 1'b1;
 end

 `Multiply: //Multiplication
 begin
 Rout = Y;
 AddSub = `AluMultiply;
 Gin = 1'b1;
 end

 `And: //and
 begin
 Rout = Y;
 AddSub = `AluAnd;
 Gin = 1'b1;
 end

 `Nand: //nand
 begin
 Rout=Y;
 AddSub = `AluNand;
 Gin=1'b1;
 end

 `Or: //or
 begin
 Rout=Y;
 AddSub = `AluOr;
 Gin=1'b1;
 end

 `Nor: //nor
 begin
 Rout=Y;
 AddSub = `AluNor;
 Gin=1'b1;
 end
 default: ;
 endcase
 2'b11: //define signals in time step T2
 begin

 case (I)
 `Add, `Sub, `Multiply: // Add,Sub
 begin
 Gout = 1'b1;
 Rin = Xreg;
 Done = 1'b1;
 Exe = G;
 end
`And, `Or, `Nand, `Nor, `Not: //And, Or, Nand, Nor, Not
 begin
 Gout = 1'b1;
 Rin = Xreg;
 Done = 1'b1;
 Exe = G;
 end
`Ror, `Rol, `Shl, `Shr: //Rotate right, Rotate left, Shift left, Shift right
 begin
 Gout = 1'b1;

 80

 Rin = Xreg;
 Done = 1'b1;
 Exe = G;
 end

 default: ;
 endcase
 end
 endcase
 end
 end

In the above code there are two nested Conditional Case-Select statements,

where the outer conditional case is based on the Count parameter to controls and

tracks the number of machine cycles consumed by a given instruction and the inner

conditional case is based on I parameter for performing the required steps according

to the decoded operator. The most important signals utilized in the above Control Unit

design code are defined as;

• Count is the output from the Machine Cycle Counter.

• AddSub is the 4-Bit signal used by the ALU module to identify the operation

to perform.

• Extern is a signal used to put the contents of data on the buswires.

• Rin is the 2-Bit signal used to put the contents of buswires into the register.

• Rout is the 2-Bit signal used to put the contents of register on the buswires.

• Done signal show the execution of an instruction.

• Exe signal value is displayed on an output device.

• Gin and Gout signals are used to put the value into and out of the temporary

register G.

6.2-3. ALU

ALU is used to perform arithmetic logic operations. The below Verilog HDL

design code demonstrates the working structure of an ALU. In the given code an

event control unit (always block) is used to continuously monitor the value of Inst (an

ALU instruction), A register, Result and the buswires. If any change in the value of

the above mentioned signals occurs then the conditional case-select structure becomes

active. The next step is to perform an action according to the changed value of Inst on

 81

the values of A and buswires and the resultant value is assigned to Result bus which

then stored in G register. The most important signals utilized in the below ALU

module are defined as;

• Inst is the output from the control unit module that identifies which ALU

operation to perform.

• A is the data in the temporary register A.

• buswires contain 8-Bit data for ALU operation.

• Result contains the output of the ALU operation.

//Arthematic Logic Unit

module alu (Inst, A, BusWires, Result);

 input [3:0] Inst;
 input [7:0] A, BusWires;

 wire [3:0] Inst;
 wire [7:0] A, BusWires;

 output [7:0] Result;
 //output Cout, Zout, Sout;

 reg [7:0] Result;
 reg Zout, Sout, Cout;

 always @(Inst or A or BusWires or Result)

 begin
 Zout = 1'b0;
 Sout = 1'b0;
 Cout = 1'b0;
 Result = 8'b0;

 case (Inst) // synopsis parallel_case

 `AluMultiply:
 begin
 {Cout,Result} = (A * BusWires);
 //Cout = Result[8];
 if (Result == 8'h00)
 Zout = 1'b1;
 if (Result[7] == 1)
 Sout = 1'b1;
 end

 `AluShl: Result = {A[6:0], 1'b0};
 `AluShr: Result = {1'b0, A[7:1]};
 `AluRol: Result = {A[6:0], A[7]};
 `AluRor: Result = {A[0], A[7:1]};
 `AluAdd: begin
 {Cout,Result} = (A + BusWires);
 //Cout = Result[8];
 if (Result == 8'h00)
 Zout = 1'b1;
 if (Result[7] == 1)
 Sout = 1'b1;

 82

 end

 `AluSub: begin
 {Cout,Result} = (A - BusWires) ;
 //Cout = Result[8];
 if (Result == 8'h00)
 Zout = 1'b1;
 if (Result[7] == 1)
 Sout = 1'b1;
 end

 `AluAnd: Result = A & BusWires;
 `AluNand: Result = ~(A & BusWires);
 `AluOr: Result = A | BusWires;
 `AluNor: Result = ~(A | BusWires);
 `AluNot: Result = ~(A);

 default: begin
 Zout = 1'b0;
 Sout = 1'b0;
 Cout = 1'b0;
 Result = 8'b0;
 end
 endcase
 end
endmodule

6.2-4. DECODER

The Decoder is used for decoding the 4-Bits of the instruction field by which

we can select any of the eight registers. The Verilog HDL design code for the

Decoder Unit is given below. In the code an event control block (always block) is

active whenever the 2-Bits input W or enable input En value changes, as a result the

case-select block use the 2-Bits input W to assign the selected register value to the

decoder output Y. The most important signals utilized in the below Decoder moduel

are described as;

• W is the externa l input to the decoder module from the control unit.

• En is the enable signal for the decoder working.

• Y is the output of the decoder.

//2-4 Decoder

module dec2to4(W, En, Y);
 input [1:0] W;
 input En;

 wire [1:0] W;
 wire En;

 83

 output [0:3] Y;
 reg [0:3] Y;

 always @(W or En)
 begin
 if (En == 1)
 case (W)
 0: Y = 4'b1000;
 1: Y = 4'b0100;
 2: Y = 4'b0010;
 3: Y = 4'b0001;
 endcase
 else
 Y = 4'bz;
 end
endmodule

6.2-5. PROGRAM COUNTER

The PC (Program Counter) provides the required execution sequence for the

processor functionality. After every instruction execution the PC is incremented by

one value. Actually the PC shows the memory location of the next instruction to be

executed. When Reset is active high, the PC is assigned the default value of zero. The

main signals utilized in the below Program Counter module are described as;

• ClearCr is the signal for resetting the Program Counter.

• HButton is the unit step execution signal i.e. Holdp, which is provided

externally and allow the execution of one instruction of microprocessor for a

single transition of the HButton signal.

• Jmp is the Jump signal, which is used to increment the program counter to the

jumped location.

• Jset, cmd & Jz are the signals that assist the jump operation.

• Q1 is the output produced by the Program Counter.

//Program Counter

module pcounter(HButton, ClearCr, Clock, Jmp, Jset, Q1, cmd, Jz);

 input ClearCr, Clock;
 input HButton;
 input Jset;
 input [7:0] Jmp;

 wire ClearCr, Clock;
 wire HButton;

 84

 wire Jset;
 wire [7:0] Jmp;

 output [7:0] Q1;
 output cmd;
 output Jz;

 reg [7:0] Q1;

 reg work, cmd, Jz;

 always @(posedge Clock)
 begin

 if (ClearCr == 1)
 begin
 Q1 <= 0;
 work = 1'b0;
 end

 else if (HButton == 0)
 begin
 if (work != 1'b1)
 begin
 cmd = 1'b1;
 work = 1'b1;
 begin
 if (Jset == 1)
 begin
 Q1 <= Jmp;
 Jz = 1'b1;
 end
 else
 Q1 <= Q1 + 1 ;
 end
 end
 end
 else
 begin
 cmd = 1'b0;
 work = 1'b0;
 Jz = 1'b0;
 end
 end

endmodule

6.2-6. MACHINE CYCLE COUNTER

MMC (Machine Cycle Counter) is used for providing the required timing and

flow control for the instruction execution in the Control Unit. Most of the instruction

requires four machine cycles for its execution, while few require one machine cycle.

The signals utilized in the below MMC module are briefly explained as follows;

• Clear signal is used for resetting the counter.

• Clock signal is used for clocking purpose.

 85

• Q is the output of the counter.

• Cmd is the enable signal from Program Counter.

• Catch is the enable signal from RAM.

//Machine Cycle (T) Counter

module upcount(Clear, Clock, Q, cmd, catch);

 input Clear, Clock, cmd, catch;
 output [1:0] Q;

 wire Clear, Clock, cmd, catch;
 reg [1:0] Q;
 reg [3:0] RT1;

 always @(posedge Clock)
 begin
 if (Clear == 1)
 begin
 Q <= 2'b00;
 RT1 <= 4'b0000;
 end

 else if (cmd == 0)
 begin
 Q <= 2'b00;
 RT1 <= 4'b0000;
 end

 else
 begin
 if (catch == 1'b1)
 begin
 if (RT1 < 8'b0100)
 begin
 RT1 <= RT1 + 1;
 Q <= Q + 1 ;
 end

 else if (RT1 == 8'b1111)
 begin
 RT1 <= 4'b0100;
 end

 else
 RT1 <= RT1 + 1;
 end
 else
 begin
 Q <= 2'b0;
 RT1 <= 4'b0000;
 end
 end
 end
endmodule

 86

6.2-7. REGISTER

The Register module provides the creation of 8-Bit registers. The important

signals utilized in the below Register module are as following.

• R is the external data input to the Register.

• Rin is the enable input for the data storage in the Register.

• Clock signal provide the required clocking to the Register functionality.

• Q is the 8 bit output from the Register.

//8-Bit Register

module regn(R, Rin, Clock, Q);
 parameter n = 8;

 input [n-1:0] R;
 input Rin, Clock;

 wire [n-1:0] R;
 wire Rin, Clock;

 output [n-1:0] Q;
 reg [n-1:0] Q;

 always @(posedge Clock)
 if (Rin)
 Q <= R;
endmodule

6.2-8. DELAY LOCKED LOOP

The DLL (Delay Locked Loop) is the special feature of the Spartan 2E FPGA.

DLL provide a synchronize signal to all circuitry in the processor. DLL can be used to

increase or decrease the frequency of input clock or it can also be used change the

duty cycle of the input clock. There are four DLL circuit available in the Spartan 2E

FPGA. DLL can be instantiated by calling them and assigning valid values to it as

shown in the below code. The most important signals utilized in the below DLL

module are;

• CLKIN is the external clock input to the DLL block.

 87

• IBUFG, BUFG & OBUF are the buffer circuitry in Spartan 2E FPGA for

various functions.

• CLKDLL is the DLL module which can be instantiated by calling it and

assigning values to it.

DLL logical structure is shown in Figure 6.1.

Figure 6.1: Delay Lock Loop Block Diagram.

// Delay Lock Loops and Global clock buffers instantiation

module dll(CLKIN, CLK1X, LOCKED2X);

input CLKIN;
output CLK1X, LOCKED2X;

wire CLK1X;
wire CLKIN_w, CLK1X_dll, LOCKED2X;

 IBUFG clkpad (.I(CLKIN), .O(CLKIN_w));

 CLKDLL dll2x (.CLKIN(CLKIN_w), .CLKFB(CLK1X), .RST(1'b0),
 .CLK0(CLK1X_dll), .CLK90(), .CLK180(), .CLK270(),
 .CLK2X(), .CLKDV(), .LOCKED(LOCKED2X));

 BUFG clk2xg (.I(CLK1X_dll), .O(CLK1X));

 //OBUF lckpad (.I(LOCKED2X), .O(LOCKED));

endmodule

 88

6.2-9. BLOCK-RAM

Block RAM are also the special feature of the Spartan 2E FPGA and a

maximum of ten 40K Block RAM memories are available for usage. Block RAM can

be activated by instantiating it with parameter RAMB#_S## (where # = Values) and

assigning it values. Block RAM aspect ratio is shown in Table 6.1.

Table 6.1: Block RAM Values.

We can do both write or read operation on the Block RAM and it may be

single or dual ported. The core signals utilized in the Block RAM module are;

• Clock is the external clock input.

• Cmd is the enable signal from the Program Counter module.

• PcAddr is the output from the program counter.

• Reset is the external reset signal.

• Inst is the instruction fetched from RAM.

• En is output enable signal generated by the Block Ram.

• RAMB4_S16 parameter is used for instantiating the Block RAM module.

//Block Ram
module Ram(Clock, cmd, PcAddr, Reset, Inst, En);

 input Clock, cmd;
 input [7:0] PcAddr;
 input Reset;
 output [15:0] Inst;
 output En;

 89

 wire Clock, cmd;
 wire [7:0] PcAddr;
 wire Reset;

 wire [15:0] Inst;
 reg En, We, stop;

 reg [7:0] WAddr, S;
 reg [15:0] WData;
 reg [15:0] Memory [0:10];
 reg enable, DoJob;

 wire [7:0] Store;
 integer count;

 always @(Reset)
 begin
 if (Reset == 1)
 begin
 Memory[0] = 16'h80FA;
 Memory[1] = 16'h84F5;
 Memory[2] = 16'h8822;
 Memory[3] = 16'h2400;
 Memory[4] = 16'h1D00;
 Memory[5] = 16'h3B00;
 Memory[6] = 16'h4400;
 Memory[7] = 16'h5400;
 Memory[8] = 16'h6400;
 Memory[9] = 16'h7400;
 Memory[10] = 16'hF409;
 enable = 1;
 end
 else
 begin
 enable = 0;
 end
 end

 always @(posedge Clock)
 begin
 if (Reset == 1)
 begin
 if (enable == 1)
 begin
 if (count <= 10)
 begin
 WData = Memory[count];
 WAddr <= WAddr + 1;
 count <= count + 1;
 DoJob = 1'b1;
 end
 end
 end

 else
 begin
 DoJob = 1'b0;
 count <= 0;
 WAddr <= 8'b0;
 WData = 16'b0;
 En = cmd;
 end

 end

 always @(negedge Clock)
 begin

 90

 if (DoJob == 1)
 begin
 stop = 1'b1;
 We = 1'b1;
 S = WAddr;
 end
 else if (cmd == 1)
 begin
 stop = 1'b1;
 We = 1'b0;
 S = PcAddr;

 end
 else
 begin
 stop = 1'b0;
 We = 1'b0;
 end
 end

 RAMB4_S16 ram(.DO(Inst), .ADDR(S), .CLK(Clock), .DI(WData),
 .EN(stop), .RST(1'b0),
.WE(We));

endmodule

6-3. Instruction Set

6.3-1. INTRODUCTION

The instruction set was chosen to possess simplicity and a regular format for

encoding. There are a total of 15 instructions for the RISC microprocessor with room

for more to be designed and implemented. Each instruction is 16-Bits wide.

Therefore, each instruction fetch requires the RISC to fetch one word from memory.

After the instructions are fetched from memory, the Control Unit will decode the

instruction and generate the appropriate control signals for execution.

These instructions are very low level and may require a combination of two or

three instructions to execute equivalent assembly operations in another

microprocessor such as the Intel 8088. For example, to move immediate data into a

register such as AX in the Intel 8088, the programmer would specify MOV AX,

0x1234. To accomplish this in the RISC microprocessor, the programmer would have

to use two instructions since we cannot move immediate data into one of the registers

directly using one instruction

 91

First we must look at the various parts of the RISC microprocessor which the

instruction set will utilize in its operations. The most important attributes and parts of

the design for implementing the instruction set are the Flags Register, the Addressing

Modes, the Jump Conditions, the Registers and the ALU.

This RISC design reserves four temporary registers and are denoted R0 - R1 –

R2 – R3, four 1-Bit register for Flags and two registers are reserved for ALU

operation and are denoted as A & G.

6.3-2. INSTRUCTIONS

The following instructions have been implemented in our RISC design.

Table 6.2: Instruction Set.

Instruction Name Machine Code

Multiply 4'b0000

Move 4'b0001

Add 4'b0010

Sub 4'b0011

AND 4'b0100

NAND 4'b0101

OR 4'b0110

NOR 4'b0111

Load 4'b1000

Ror 4'b1010

Rol 4'b1011

Not 4'b1100

Jump 4'b1111

Shl 4'b1101

Shr 4'b1110

 92

6-4. Testing and Verification

6.4-1. STAGES

There were three stages in verifying the RISC design. Each time a module or

piece of the design was written in Verilog HDL, it was first simulated using the

ModelSim simulator. The simulation file can be either Verilog HDL text based or

graphical wave file. After the design was realized in a netlist using XST, the

regenerated Verilog description was re-simulated using the ModelSim behavioral

simulator and later simulated using the ModelSim Post-Place & Route simulator as

shown in figures below. The same Verilog stimulus file was used in both simulations

to verify that both simulations produce identical results. Finally, the FPGA was

configured, a sample assembler program was burned into the EPROM and the RISC

operation was tested using single step debugging.

The Figure 6.2 illustrates the execution of Reset instruction, due to which the

instruction set is reloaded into the RAM.

Figure 6.2: Simulation of Reset Instruction.

The Figure 6.3 illustrates the execution of Load instruction from RAM i.e.

80FA instruction, due to which FA is loaded into R0.

 93

Figure 6.3: Simulation of 80FA Hex Instruction.

Figure 6.4 displays the full execution of all instruction from RAM.

 94

Figure 6.4: Execution Simulation of All the Instructions.

 95

6.4-2. VERILOG SOURCE

The Verilog HDL module(s) were tested using various stimulus modules as

the design progressed. Once all hardware modules were verified, each module was

instantiated into a top- level design block to be tested.

Before the Control Unit was to be incorporated all input lines were defined at

the highest level. In the stimulus file, all inputs to the microprocessor were declared as

registers in order to set the inputs to various values at different points in time during

the simulation. During the two months of verification, there were several stimulus

files developed. Initially, a file was developed to verify the functionality of the 8-Bit

design without the Control Unit. This was accomplished by applying stimulus to all

the control lines at different points in time, moving data throughout the design. Once

the control unit was implemented, it was no longer possible to apply stimulus to

several control lines because they were now governed by the Control Unit.

In order to test any instructions at the Verilog level an 'EEPROM' and 'SRAM'

behavioral modules were developed (see Appendix F). They functioned very similar

to the actual EPROM and SRAM on the board like the signals WE, RD, Address and

Data. The assembled/linked HEX code for an instruction(s) was then coded in the

'EEPROM' behavioral module as if the code was burned into the external EEPROM

on the board. Eventually, a program that tested each instruction was developed and

coded into the behavioral EEPROM and verified.

6.4-3. XILINX SYNTHESIS TECHNOLOGY

The XST verification stage was almost exactly the same as the pre-Synopsys,

Verilog stage. In this stage the RISC design syntax is first checked and then its

application in targeted device hardware is verified. Each program that was verified at

the Verilog level was also verified at this level.

6.4-4. HARDWARE LEVEL

The final stage of testing consisted of downloading the design into the Xilinx

FPGA, single stepping the clock of the RISC and verifying that it functionally

behaved as in the previous two simulations. The difficultly at this stage is the ability

 96

to monitor the internal functionality of the processor. Therefore, a Display module

was created as explained in the design sections. The Display Units on the board are

driven by the FPGA and display the contents of the Address Bus, Data Bus and the

ALU results. This ability was vital to the success of this project.

The Display Unit requires one clock cycle to completely display the contents

of the busses. Therefore, in order to execute one instruction, it was necessary to single

step the processor clock while the display clock operated at full frequency. Once

proper functionality was verified the processor clock could run at full frequency. It is

important to note that the Display Unit was developed for testing purposes only.

During final operation of the RISC machine, the Display Unit will be discarded.

When the instructions were tested using the RISC Control Unit, each state or

clock was stepped through using a manual Hold signal on the Xilinx board. Each state

of the Control Unit state machine was verified using the two Display Units. The data

incoming/outgoing from the Data Bus, Address Bus and the output from the ALU

were viewed using the Display Units.

6-5. Conclusions

6.5-1. CONCLUDING REMARKS

The purpose of this thesis project was to study and implement a RISC

(Reduced Instruction Set Computer) in an FPGA. A final 8-Bit design was achieved

with 15 instructions, 6 registers in the Register Unit, Display Unit logic for debugging

using the Xilinx XC2S100 FPGA. This design has partially fit the RISC criteria

because it has a simplified architecture and instruction set.

The bottom up design methodology proved to be successful for this project. It

was important to test and verify the behavioral modeling of each of the internal RISC

microprocessor components such as the Decoder, Register Unit, ALU and so on.

Once all lower level modules were verified one could then easily integrate all into a

higher level module. The Control Unit proved to be the hardware device that was

most prolonged to design, test and verify. As each instruction encoding was included

 97

in the Control Unit design more testing and verification had to be done at the

synthesis and board level. The board level testing of the instructions was lengthy due

to the single stepping/clocking of the FPGA. Pieces of this design can be easily

exported and used in another digital FPGA design such as the behavioral model of the

Tristate Buffer.

Problems were encountered in this project but modifications were made to

overcome these minor setbacks. As the design approached completion the target

FPGA became nearly fully utilized. Problems such as Place & Routing of the design

in the FPGA and running out of CLBs on the FPGA had to be overcome. The solution

to the Place and Routing problem was to select a high effort level and multi-pass

cycle in the Xilinx Design Manager tool.

The design of the RISC microprocessor in an FPGA has shown how a

microprocessor can be simplified, which can be useful in specific applications. The

RISC design is fairly simplified for a microprocessor so it could be a useful teaching

aid in a university undergraduate course.

6.5-2. FUTURE WORK

A number of additional modifications could be made to the current RISC

microprocessor to improve efficiency and flow. Looking back, one could take a

variety of different approaches in accomplishing the design once attaining valuable

experience in using the HDL languages and various tools. Familiarization with the

specific tools and the target technology devices can help in attaining a fitting design.

Since the design was aimed more toward functionality rather than speed on the

Xilinx FPGA chip, improvements can be made. However, implementing memory

devices in an FPGA can be very inefficient. The current RISC design can be

interfaced with an SDRAM device for memory storage. Various speed grades of

FPGAs can be purchased from vendors which can affect the performance of the

design. Often, the ability of the chosen synthesis tool can govern the amount of the

FPGA utilized. Therefore, a more efficient synthesis tool could be chosen to create a

smaller netlist.

There are a few design decision that were made throughout this project that

could be altered to produce a more efficient and structured processor. For example,

 98

the method used for monitoring the status of the flags in the control unit could be

improved. Instead of having an extra muxer for the ALU flags, one could implement a

Latch for the flags to drive onto the Transfer bus. Moreover, interrupts can also be

easily integrated into the design. Initially, the goal of this project was to accomplish

full operation of each instruction. Therefore, the number of clock cycles to execute

each instruction in this RISC is slightly greater than the expected number of clock

cycles. When the state machine was developed there were extra clock cycles

implemented to ensure ample set up and hold times for correct operation. Now that

full operation is achieved, one could reduce the number of clock cycles to produce a

more efficient state machine.

