
5x4Gbps 0.35 Micron CMOS CRC Generator
Designed With Standard Cells

Jośe Marı́a Nadal Serrano
Jośe Maŕıa Nadal Serrano is an undergraduate student at

ETSI Telecomunicación, Technical University of Madrid (UPM), Spain.
E-mail: chema@scouts-es.org

Abstract

Design highlights for a 32-bit parallel and highly
pipelined Cyclic Redundancy Code (CRC) generator are
presented. The design can handle 5 different channels at
an input rate of 2Gbps each (the total output through-
put is 5x4Gbps.) The generated CRCs are compatible
with the 32-bit Ethernet standards. The circuit has been
implemented with standard cells in a0.35µm standard
CMOS process using the properties of Galois Fields and
has been conceived as a “free” IP.

Keywords Cyclic Redundancy Code (CRC), Galois
Fields (GF), 10Gbps Ethernet, Free hardware, Intellec-
tual Property (IP).

1. INTRODUCTION

Nowadays, digital IC designers are somehow enforced
to use blocks of a higher level of abstraction when fac-
ing systems with higher complexity. This is the case of
the so-called “Systems-on-chip,” which use even com-
plete subcircuits to build the final system. In this con-
text new concepts such as Intellectual Property (IP) have
arisen. The Cyclic Redundancy Code (CRC) presented
here has been conceived as one of those IP blocks, not
as a standalone circuit. Its VHDL code is released un-
der the General Public License (GPL), enlarging the
emerging group of freely available “IP-less” IC cores
and therefore allowing anyone its use and free improve-
ment. VHDL code and further documentation are avail-
able on email request.

Several suggestions to accelerate the generation of
CRCs can be found in the literature (see [1], [2]) , but
the only one that takes into account the advantages of
binary finite fields such as Galois Fields in the genera-
tion of CRCs is [1] . Galois Fields have some properties
which make them very advantageous to implement hard-
ware solutions for arithmetic problems.

Further improvements to the previous work in the ref-
erences are described in this paper. Parallelism and
pipelining plus a wider word length are introduced, mak-
ing our circuit achieve higher data throughputs as well
as a five independent channel feature. The existence of
different channels makes the circuit suitable for TDMA

designs in which the Ethernet polynomial is used for
the generation of the CRCs (ATM, 10Gbps Ethernet,...)
Outputs are updated as data arrive.

Although just briefly commented in this paper, a low-
level, “layout oriented” VHDL description style has
been used as the most suitable way to achieve very high
throughputs and avoid at the same time a full-custom
design.

2. THE ALGORITHM

The CRCs have been traditionally calculated by shifting
the incoming message into the MSB of a Linear Feed-
back Shift Register. This LFSR carries out a bit by bit
multiplication in the Galois Field modulo the polyno-
mial that generates the field. Divisions are then per-
formed through shifting and feeding back into the LSFR,
so that the result (the CRC) is the value of the register
once the whole message has been processed. This ap-
proach is not suitable for high speed applications. The
use of Galois Fields properties makes it possible to im-
plement CRC generators for high-speed applications.

The polynomial used is the standard one for ATM and
Ethernet:

G(x) = x32+x26+x23+x22+x16+x12+x11+x10+x8

+x7 + x5 + x4 + x2 + x + 1

and can be seen as a vector of theGF (232):

B′100000100110000010001110110110111

This polynomial has several advantages: it is irreducible
and has all the useful properties of the GF.

Using the main property of the Galois Fields,αi⊗αj =
αi+jmod(232−1), word shifts (16 bits at a time) and the
fact that the incoming data are also elements of the GF,
the computation of the CRC will be reduced to (see [1]
for a more detailed explanation:)

CRC(N +1) = CRC(N)⊗α16⊕Word(N +1) [2.1]

WhereCRC(N) is the output of the generator at a given
moment,α16 is a vector of the Galois FieldGF (232),

and Word is the input word (16 bits.) The ’⊗’ sign
denotes a multiplication modulo the polynomial within
the Galois Field.

3. HARDWARE IMPLEMENTATION

The main problem is the Galois Field multiplier which is
the subcircuit that implements the ’CRC(N)⊗α16’ op-
eration. The so-called “H-matrix” (depicted in figure 1)
is the mathematical representation of the core of the GF
multiplier, and is the main part of the generator itself.
The advantage of using the properties of the GFs is that
the multiplier can be implemented with combinational
logic (additions in GF are just XORs.) The H-matrix
makes it possible to implement the multiplication mod-
ulo the polynomial as an addition of a certain depth, so
a matrix of XOR gates will do the multiplication. We
have converted the problem of generating CRCs from
calculating the remainder of a division to some combi-
national logic using the properties of Galois Fields. The
elements of the matrix are 1’s and 0’s as shown in fig-
ure 1. The places where a ’1’ is placed correspond to an
XOR gate, while for the places occupied by 0’s, a wire
will be placed.

031
31

0

15

15

1...1.11..1.....1...............
.1...1.11..1.....1..............
..1...1.11..1.....1.............
...1...1.11..1.....1............
....1...1.11..1.....1...........
.....1...1.11..1.....1..........
1...1..1....11........1.........
.1...1..1....11........1........
1.1...1..1....11........1.......
.1.11.1........1.........1......
..1..11...1...............1.....
...1..11...1...............1....
1...1..11...1...............1...
11...1..11...1...............1..
.11...1..11...1...............1.
..11...1..11...1...............1
1..1..111.111...................
11..1..111.111..................
.11..1..111.111.................
1.11..1..111.111................
11.1..1....11.11................
.11...1...1.11.1................
..111.1...11.11.................
...111.1...11.11................
1....1.11.1.11.1................
.1..1..11111.11.................
..1..1..11111.11................
1..11..1.1.111.1................
11...1111...111.................
.11...1111...111................
..111.1.11....11................
...1.11..1.....1................

Input

O
u
t
p
u
t

Fig. 3.1. H-matrix for 16 bit input and the Ethernet polynomial

If the result of a multiplication is expressed as a vector
in the form ’V ector[0..31],’ the structure of the multi-
plier must be obtained from the matrix as follows:

CRC[T+1][31] = CRC[T][31] ⊕ CRC[T][27] ⊕
CRC[T][25]⊕CRC[T][24]⊕CRC[T][21]⊕CRC[T][15].

CRC[T+1][30] = CRC[T][30] ⊕ CRC[T][26] ⊕
CRC[T][24]⊕CRC[T][23]⊕CRC[T][20]⊕CRC[T][14].

CRC[T+1][29] = ...

where ’⊕’ denotes an addition within the GF and the in-
dexes (’[25], [26], ...’)can be read directly from the ma-
trix (as shown before.) Once the multiplication is done,
there is just the ’⊕Word(N +1)’ part left. This consists
of an array of XOR gates. The result is stored in an out-
put register so that the feedback can be completed. The
register is initially set toH ′46AF6449 to be compliant
with the Ethernet standard.

A sketch of the general circuit will give the reader an
overall view of the circuit (depicted in figure 2.)

���
Input

Big XOR (16 2−input XORs)

Pipeline registers

���

������

���

���

���

CRC Output

Galois Field
Multiplier

Output register

Fig. 3.2. General scheme of the CRC generator

Upon completion of the equations that lead to a straight
forward implementation of the GF multiplier, we will
see that the maximum depth of the logic is 10XOR gates
(seeCRC[T + 1][12].) The critical path is too long to
achieve the 10Gbps aimed. The solution is the use of
a highly pipelined architecture: the critical path will be
reduced to 1XOR (each pipelining stage will consist on
just one gate.) This way, race conditions are minimized,
glitches are not a serious problem and the speed can be
increased in theory up to 10Gbps (16bits ∗ 625MHz,
maximum safe clock speed with this architecture and a
0.35µm CMOS process.) The area is also increased be-
cause there will be a pipelining register for every layer
of gates.

Examining the pipelined multiplier and the input we
conclude that there will have to be some pipelininig in

the input as well. This will consist on the addition of
registers which will just delay the input, but that are nec-
essary in order to calculate the CRC correctly.

3.1. Timing: Two Phase Logic

Two-phase logic is used in order to be able to use
pipelining, and therefore the parts of the circuit that will
be active withϕ1 andϕ2 have to be carefully designed in
order to avoid problems with the arrival and the delivery
of the data (see figure 3.)

ϕ1
ϕ2

ϕ2

ϕ1

Output

Input
Active with

Active with

Big XOR

Combinational
logic

Fig. 3.3. Two phase structure of the circuit

Of particularly importance is the input and the output
of the output register, because the output of the block
of input registers and the output of the block of the GF
multiplier have to be active within the same phase of
the clock. This is important to make the CRC genera-
tor a “black box” that could be included in a larger cir-
cuit where it could be used without full understanding
of how the IP works or the aid of external circuitry. The
same timing constraint exists for the output of the ’out-
put register’ and the input of the ’input registers,’ since
the input from the feedback and the number of idle reg-
isters have to be delayed the same number of clock cy-
cles in order to maintain synchronization of the data (the
have to arrive at the “Big XOR” at the same time.) There
was no need to add more idle registers to the input block
than those shown in figure 3 and therefore the latency
was not increased.

WIP stage (n+1)

WIP stage nOriginal data

Original data (unchanged)

Combinational
Logic

P
ip

el
in

e
−

 R
eg

is
te

rs

Fig. 3.4. General scheme of a pipelining stage of the GF multiplier

It is also interesting to have a look at the design of the
pipelining registers: they are 16 bits long in the input

block, 32 bits for the output register and 64 bits long in
the GF multiplier block. This last length is needed due
to the way the result of the multiplication is generated:
both the WIP (the work in progress, this is, the result
‘in progress’) and the ‘original data’ -the factor that will
be multiplied byα16- are needed (see figure 4.) Since
the ‘original data’ have to be available in all stages of
the computation of the multiplication, 32 extra pipelin-
ing flip-flops have to be provided in each layer. The last
register of the GF multiplier block is 32 bits wide be-
cause we only need the 32 bit WIP part (there are no
more layers of XOR gates, so we no longer have to keep
the ‘original data’ for the next stage.) The output of this
last WIP register is the result of the whole multiplica-
tion.

The pipelining solution has some drawbacks, such as
latency and ‘idle’ clock cycles. Those clock cycles
come from the pipelined feedback: four clock cycles
are needed to perform a multiplication, and the result
is then XORed with the input word. This intermediate
result is fedback and after four more clock cycles, the
new result from the multiplication is ready to be XORed
with the next input. Through the addition of pipelining
we have lowered the input throughput from 10Gbps to
10/5 = 2Gbps. However, this dataflow forms an ‘in-
dependent channel,’ this is, the data in a certain stage of
the computation never get mixed with the data in the ad-
jacent stages. Hence, it is possible to convert the 2Gbps
CRC generator into a 5channelx2Gbps=10Gbps input
throughput CRC generator again.

In order to have 5 independent channels the value of the
output register must be equal for the first input word for
each of the five channels because we have to make the
CRC generator ’transparent’ to the TDMA CRC gener-
ation -each channel has to see a CRCgenerator-. This
problem can be solved easily by simply loading the reg-
isters of the multiplier with appropriate values other than
zero.

Since the pipelining registers of the input will be set to
’0’ during reset and the ’0’ is the neutral element of the
XOR operation, the output XOR can be thought of as a
dummy operation for this case. Then, for the output reg-
ister to be correct, the initial (reset) values are calculated
as follows: the 32 MSB of the first pipelining register of
the GF multiplier will be H’E3ED5B2A. This value is
the ’GF division’ of the initial value of the output reg-
ister (H’46AF6449) byα16. The 32 LSB of the first
pipelining register are calculated applying the 32 MSB
already calculated (H’E3ED5B2A) to the the first com-
binational layer. The result is H’68B932F5. The rest
of the setup values are found by applying the combina-
tional logic layer by layer to the first one (the results for
each stage are in the table labeled as figure 5.)

(HEX)Values 63..32 Values 31..0 (HEX)

E3ED5B2A

CEAD1918

90903DD8

74EBF27F

462A4987

46AFBDFF

46AF747D

46AF7449

46AF6449

Registers

GF2

GF3

GF4

GF5

GF6

GF7

GF8

GF9

GF10

68B932F5

68B932F5

68B932F5

68B932F5

68B932F5

68B932F5

68B932F5

68B932F5

68B932F5

Fig. 3.5. Table of initial values of the pipelining registers of the GF
multiplicator

4. TECHNOLOGY ISSUES

The design shows a meet-in-the-middle design flow. A
full custom aproximation was not desired because of
time constraints and the lack of flexibility that such so-
lutions have. On the other hand, the required specifica-
tions (the throughput of the overall system and the com-
patibility with the 32 bit Ethernet standards) pointed to
a low-level or full custom design. The third design con-
straint was the technology, a standard0.35µm CMOS
process made the problem even more difficult.

The solution tried to balance all these problems and get
a result that had both the benefits of a “physical design”
and the convenience of the design flow of a VHDL de-
scription (easier to simulate and debug, automatic place
and route...) A low-level, layout oriented description
of the circuit appeared as the best solution. This “lay-
out oriented” description tried to enforce the final layout
by using a description style that seemed to be almost a
netlist.

If other technologies are used, big improvements can be
achieved, but the chip will have to be redesigned. In
particular, the maximum clock speed available and the
critical paths, determined by the properties (propagation
delay and sensitivity to variations in the skew) of the
“XOR gate + Flip-flop” chain will determine the number
of XORs per pipelining stage and thus the latency and
number of simultaneous channels.

5. RESULTS AND CONCLUSIONS

• Even if the circuit could not be tested due to the
lack of equipment that could handle such high I/O rates
-the probes and the pins themselves make it impossible-
, the IP is designed to be used as part of electroptical
devices and the I/O rate is therefore to be achieved in on-
chip operation.) However, post-synthesis (post-layout
simulations were not available) simulations report good
performance even beyond the rates discussed above.

• Changes in the design for better technologies
are relatively straightforward, while big improvements
in the order of 2-3 times in area and speed could be
achieved. The use of latches instead of flip-flops, for ex-

ample, can reduce the amount of area the circuit needs.
It could also be possible to use a 32-bit input instead
of 16. However, the gain will be clearer for better pro-
cess technologies since both area and clock speed can
be reduced. With this technology, the area would have
been larger while no increase in speed would have been
achieved.

In any case, some changes will be needed and data
from the foundry (XOR and flip-flop propagation times,
skews,...) will be indispensable to match critical path,
clock speed and number of channels. The concepts and
the design flow will remain the same, nevertheless.

• The “low-level” VHDL description has proven
to be an interesting option when trying to achive the best
out off the “design time vs. high speed” trade-off; how-
ever, it may be impractical for big or non-critical de-
signs.

Die Photo

Die photo of the circuit (pad-limited). The size of the core is about
500µmx500µm

Acknowledgments

The author would like to acknowledge:

Prof. Peter Nilsson, Thomas Olssonand all the peo-
ple in the ASIC design department at Lunds Tekniska
Högskola, Lund, Sweden, for his support and patience
during all the design process.

Prof. Mats Cederwallat Lunds Tekniska Ḧogskola,
Lund, Sweden for telling me about Galois Fields and
their properties.

Mr. Reńe J. Glaiseat IBM CER labs, La Gaude, France
for his helpful hints and clarifications.

Prof. Javier Maćıas-Guarasa, at ETSI Telecomuni-
cacíon, UPM, Madrid, Spain for the opportunity he has
given to me.

References

[1] R. J. Glaise, X. Jacquart, “Fast CRC Calcula-
tion”, Proc. IEEE, c©IEEE, 1993.

[2] Peterson and Weldon,Error correcting codes,
The MIT Press, 2nd edition, 1972.

[3] R.F.Hobson, K.L.Cheung, “A High Perfor-
mance CMOS 32-bit Parallel CRC Engine”,
IEEE Journal of Solid-State circuits, vol. 40,
no. 2, Feb 1999.

[4] J.M. Rabaey, Digital Integrated Circuits - A
Design Perspective, Prentice Hall, 1996.

[5] Peter J. Ashenden,The Designer’s Guide to
VHDL Morgan Kaufmann Publishers.

