ForwardCom: An open-standard instruction set for
high-performance microprocessors

Agner Fog

August 7, 2021

Contents

d__Introduction|
(1.1 Highlights|
(1.2 Background|.
(1.3 Designgoals|

1.4 Problems addressed by ForwardCom|

[2.1 Afully orthogonal instruction sef|

[2.3 Regqisterset
[2.4 Vector support]
2.5 Vectorloops|.
[2.6 Maximum vector length|

3__Instruction formats|
[3.1 Formats and templates|
[3.2 Coding of operands|

Vectorfength|

[Mask register and fallback register]

[3.3 Codingofmasks|

[3.4 Format for jump, call and branch instructions|

[3.5 Assignment of opcodes|

4 Instruction lists|

i4.2 List of single-format instructions|

6 Description of instructions|

[Arithmetic instructions with carry, overflow check, or saturation|

[Logic and bit manipulation instructions|

[Combined arithmetic/logic and branch instructions with integer operands|.

[floating point branch instructions|

[System instructions|

[5.1 Common operations that have no dedicated instruction|

6.3 Implementation of call stack|
|6.4 Floating point errors and exceptions|
6.5 Propagation of NANs|.
[6.6 Detecting integer overflow|
[6.7 Performance monitoring and error tracking| . .
6.8 Multithreading|.
6.9 Securityfeatures|

[How to improve the security of applications and systems|.

[7 Programmable application-specific instructions|

[8 Microarchitecture and pipeline design|

[8.1 Vectordesign|
8.2 Complexinstructions|.

[8.3 Proposals for reducing branch mispredictiondelay|

[9 Memory model|

[Paddingspacel

9.1 Thread memory protection|.
9.2 Memory management|

[10 System programming|

(10.1 Memorymap|
[10.2 Call stack

[10.3 System calls and system functions|
[10.4 Inter-processcalls|
[(10.5 Error message handling|

[11 Support for multiple instruction sets|

49
49
60
63
73
76
86
91
92
94
95
101
101

103
103
103
104
106
107
108
109
109
109
110

112

[12 Standardization of ABI and software ecosystem|

[12.1 Compiler support] e e e
[12.2 Binary datarepresentation|.
[12.3 Further conventions for object-oriented languages|
[12.4 Function calling convention|
[12.5 Register usage convention| L L L
[12.6 Name mangling for function overloading|
[12.7 Binary format for object files and executablefiles|

[12.9 Predicting the stack size| L
[12.1CException handling, stack unrolling, and debug information|
[12.11Assembly language syntax]

(13 Binary tools|

[Linking an executablefile]
[Making a relinkable executablefile]
[Relinking an executable file|
[Adding a plugin to a relinkable executablefile|
[Extracting a module from a relinkable executable file|
[Relinking and library functions|,
[Relinking and communal sections|
[Making a hexadecimalfile]
[13.4 Library manager|
[13.5 Emulatorand debugger| L
(13.0 Dump utililty] o
[13.7 Compiling theforwtools|
[13.8 Code examples|.

(14 Programming manual

[14.1 Assembly language syntax|
Infroduction]

REGISIOIS] .« o o v oo e e e e

[Namesofsymbols|
[Constantexpressions| e

[Unconditional jumps, calls, and returns|.
[ndirect jumpsandcalls|
[Conditional jumps andloops|
[Boolean operations|.
[Absolute and relative pointers|
[mports and exports|
[Special address symbols|

[14.2 Metaprogramming| e e e e e 170
[Metaprogramming variables|. 171

[14.3 Code examples|. 171
Horizontal vectoradd 171
[Horizontal vector minimum| 172
[Boolean operations|. 172

Virtual functionsl e 174

[High precision arithmeticl., 176

Matrix mulfiplication| 176

[14.4 Detecting support for particular instructions| 177
[14.5 Optimizationofcode| e 178
M5 Test suite] 183
16 Softcorel 184
A7 Conclusion| 185
(18 Revision history| 188
(19 Copyright notice| 192

Chapter 1

Introduction

ForwardCom stands for Forward Compatible Computer system.

This document describes a new open instruction set architecture designed for optimal perfor-
mance, flexibility and scalability. The ForwardCom project includes both a new instruction set
architecture and the corresponding ecosystem of software standards, application binary inter-
face (ABI), memory management, development tools, library formats, and system functions. This
project illustrates the improvements that can be obtained by a complete vertical redesign of hard-
ware and software based on an open, collaborative process.

A short introduction to ForwardCom is provided at http://www.forwardcom.info.

This manual and all associated code is maintained at https://github.com/ForwardCom.

1.1 Highlights

» The ForwardCom instruction set is neither RISC nor CISC, but a new paradigm combining
the advantages of both. ForwardCom has few instructions, but many variants of each in-
struction. A consistent template system with few instruction sizes combines the fast and
streamlined decoding and pipeline design of RISC systems with the compactness and
more work done per instruction of CISC systems.

» The instruction formats are fully orthogonal. The same instruction can be coded with differ-
ent operand types, different types of register operands, memory operands, or immediate
constant operands. Instructions can be coded in a compact form where the destination reg-
ister is the same as the first source register, or in a non-destructive form with three or four
registers. Immediate constants are compressed, if possible, to save code space.

» The ForwardCom design is scalable to support small embedded systems as well as large
supercomputers and vector processors without losing binary compatibility.

* Vector registers of variable length are provided for efficient handling of large data sets.

 Array loops are implemented in a new flexible way that automatically uses the maximum
vector length supported by the microprocessor in all but the last iteration of a loop. The
last iteration automatically uses a vector length that fits the remaining number of elements.
No extra code is needed to deal with remaining data and special cases. There is no need
to compile the code separately for different microprocessor versions with different vector
lengths.

* No recompilation or update of software is needed when a new microprocessor with a dif-
ferent vector register length becomes available. The software is guaranteed to be forward
compatible and take advantage of the longer vectors of new microprocessor models with-
out recompilation.

http://www.forwardcom.info
https://github.com/ForwardCom/

* Memory management is simpler and more efficient than in traditional systems. Various
techniques are used for avoiding memory fragmentation. It is possible to avoid memory
paging and use a memory map with a limited number of sections with variable size instead
of a translation lookaside buffer (TLB) with a large number of fixed-size pages.

» There are no dynamic link libraries (DLLs) or shared objects. Instead, there is only one
type of function libraries that can be used for both static and dynamic linking. Only the part
of the library that is actually used is loaded and linked. The library code is kept contigu-
ous with the main program code to improve caching and reduce memory fragmentation.
Executable files can be re-linked to replace or update library functions and plug-ins and to
support multiple user interface frameworks.

» A mechanism for calculating the required stack size is provided. This can prevent stack
overflow in most cases without making the data stack bigger than necessary.

» A mechanism for optimal register allocation across program modules and function libraries
is provided. This makes it possible to keep most variables in registers without spilling to
memory. Vector registers can be saved in an efficient way that stores only the part of the
register that is actually used.

 Strong security features are fundamental parts of the hardware and software design.

+ Standards for software tools, ABI, file formats, system libraries, etc. are defined in order to
establish compatibility between different programming languages and different platforms. It
is possible to code different parts of a program in different programming languages.

The ForwardCom design can be useful for many purposes where performance is important,
where large vectors are desired, where security is important, or where the copyright and license
restrictions of proprietary microprocessor systems is an obstacle.

The ForwardCom design is also useful as a sandbox for university projects and experiments
aiming at improving many different aspects of computer design, as discussed at
http://www.forwardcom.info.

1.2 Background

An instruction set architecture is a standardized set of machine instructions that a computer can
run. There are many instruction set architectures in use.

Some commonly used instruction sets are poorly designed from the beginning. These systems
have been augmented many times with extensions and patches. One of the worst cases is the
widely used x86 instruction set and its many extensions. The x86 instruction set is the result of a
long history of short-sighted extensions and patches. The result of this development history is a
very complicated architecture with thousands of different instruction codes, which is very difficult
and costly to decode in a microprocessor. We need to learn from past mistakes in order to make
better choices when designing a new instruction set architecture and the software that supports
it.

The design should be based on an open process. Krste Asanovi¢ and David Patterson (2014)
have presented compelling arguments for why an open instruction set should be preferred. Open-
ness can be crucial for the success of a technical design. For example, the original IBM PC in
the early 1980’s had an advantage over competing computers because the open architecture
allowed other hardware and software producers to make compatible equipment. IBM lost their
market dominance when they switched to the proprietary Micro Channel Architecture in 1987.
The successes of open source software are well known and need no further discussion here.
The only thing that is missing for a complete computer ecosystem based on open standards is

http://www.forwardcom.info

an open microprocessor architecture. This will open the market also for smaller microprocessor
producers and niche products.

This project is based on discussions in various Internet forums. The specifications are prelimi-
nary. The development of a new standard should benefit from a long experimental phase, and it
would be unwise to make it a fixed standard at this initial stage.

1.3 Design goals

Previously published open instruction sets are suitable for small, cheap microprocessors for em-
bedded systems, system-on-a-chip designs, FPGA implementations for scientific experiments,
etc. The proposed ForwardCom architecture takes the idea further and aims at a design that can
outperform common high-end processors.

The ForwardCom instruction set architecture is based on the following priorities:
» The instruction set should have a simple and consistent modular design.

* The instruction set represents a suitable compromise between the RISC principle that en-
ables fast decoding, and the CISC principle that makes it possible to do more work per in-
struction and to use the code cache more efficiently.

» The design should be extensible so that new instructions and extensions can be added in a
consistent and predictable way.

» The design should be scalable so that it is suitable for both small computers with on-chip
RAM and large supercomputers with very long vectors.

» The design should be competitive over current commercial designs with a focus on the
high-end applications of tomorrow rather than the low-end applications of yesterday.

» Vector support and other features that have proven essential for high performance should
be a fundamental part of the design, not a clumsy appendix.

 Security should be a fundamental part of the design, not patches added ad hoc.

» The instruction set should be designed through an open process with the participation of
the international hardware and software community, similar to the standardization work in
other technical areas.

* The entire vertical design should be non-proprietary and allow anybody to make compatible
software, hardware, and equipment for test, debugging and emulation.

» Decisions about instructions and extensions should not be determined by the short term
marketing considerations of an oligopolistic microprocessor industry but by the long term
needs of the entire hardware and software community.

» The design should allow the construction of forward compatible software that will run opti-
mally without recompilation on future processors with larger vector registers.

* The design should allow application-specific extensions.

» The basic aspects of the entire ecosystem of ABI standard, assembler, compilers, function
libraries, system functions, user interface framework, etc. should also be standardized for
maximum compatibility.

A new instruction set will not easily get success on a commercial market, even if it is better than
legacy systems, because the market prefers backward compatibility with existing software and
hardware. It is unlikely that the ForwardCom instruction set will make a successful commercial

7

product within a short time frame, but the discussion about what an ideal instruction set, micro-
processor design, and software ecosystem might look like is always useful. The ForwardCom
project has already generated so many important new ideas that it is worth pursuing further,
even if we do not know where this process will end. The present work can be useful if the need
for introducing a new instruction set architecture should arise for other reasons. It will be particu-
larly useful for large vector processors, for applications where security is important, for real-time
operating systems, for FPGA soft cores, as well as for projects where the patent and license re-
strictions of other architectures would be an obstacle.

The ideas in this document will also be useful as a source of inspiration and for scientific exper-
iments. Many of the ideas are independent of the design details and may be implemented in
other systems.

1.4 Problems addressed by ForwardCom

The design of ForwardCom was prompted by many years of frustration with existing systems.
The design is trying to address and solve a lot of problems with existing CPU designs as well as
the surrounding ecosystems of development tools, ABI standard, and operating systems. This
list provides an overview of problems that the ForwardCom design is trying to solve:

* RISC vs. CISC. The consistent template design of ForwardCom instructions aims at ob-
taining the efficient instruction decoding and smooth pipeline design of RISC systems com-
bined with the more work done per instruction of CISC systems. RISC systems typically
have a fixed instruction size of 32 bits that makes it impossible to include larger addresses,
constants, and option bits in a single instruction. ForwardCom allows instructions to have
a size of one, two, or three 32-bit words. This provides space for larger addresses, con-
stants, and option bits to allow each instruction to contain more information and to have
many different variants. Common CISC systems such as x86, on the other hand, have a
variable instruction size that is so difficult to decode that decoding has become a serious
bottleneck. ForwardCom avoids this problem by indicating the instruction size with just two
bits.

» Forward compatibility. Current SIMD designs have been made with little foresight of future
extensions with larger vectors. It is impossible in most other systems to save and restore a
vector register in a way that can accommodate future extensions to the vector length. This
has caused a lot of problems and awkward patches in current systems. Software has to be
recompiled for every new extension. The ForwardCom design with variable vector lengths
makes the software automatically use the maximum vector length of the CPU it is running
on with no need for recompilation.

» Vector loops. Current SIMD designs have a problem with vector loops when the loop count
is not certain to be a multiple of the vector length. The new design with variable vector
lengths solves this problem in an elegant and very efficient way.

» Position independent code. All code addresses are relative to the instruction pointer. All
writeable data are addressed relative to a data pointer. Code and data can be relocated
independently of each other.

» Data coherency. The ForwardCom design makes it possible to store constant data in in-
struction codes instead of constants scattered in static data memory. This reduces cache
misses.

+ Suitable for out-of-order execution. ForwardCom has no global status flags or status regis-
ter that would complicate parallel and out-of-order execution. The efficiency of out-of-order

scheduling is also improved by avoiding instructions that modify a partial register and leave
the rest of the register unchanged.

» No microcode. Complex instructions in x86 and other architectures use microcode. This
makes decoding inefficient. ForwardCom avoids microcode by using only instructions that
fit into the pipeline design. A few more complex instructions can be implemented with state
machines or application-specific FPGA modules.

» Function libraries. There is only one kind of function library which serves the purposes of
both static libraries, dynamic libraries, shared objects, and program plug-in modules. The
library code is linked in a way that makes it contiguous with the program code it serves.
Executable program files can be relinked to update or replace a linked library. Problems
with missing or incompatible library versions are avoided.

+ Stack size calculation. Stack overflow can be prevented by calculation of the maximum
stack size during the link process if the program has no recursive functions.

+ Avoid memory fragmentation. The design of function libraries, stack size calculation, po-
sition independent code, and other efforts are able to reduce memory fragmentation to a
level where the TLB (translation lookaside buffer) can be replaced by a memory map with a
limited number of variable-size memory blocks in most cases.

« Error tracking and exception handling. The design has no traps for numerical exceptions
and no status register. Instead, floating point errors are indicated in propagating NAN pay-
loads. Integer overflow can be indicated in propagating extra vector elements if needed.
This makes out-of-order parallelism and SIMD parallelism simpler and more efficient.

 Avoid register spilling. Object files contain information about which registers each func-
tion is using. This makes it possible to keep most or all variables in registers without ever
spilling to memory.

» Function calling convention. Call stack and data stack are separate. The function calling
convention is safe and efficient. Function parameters are transferred in registers, not on
the stack. Tail calls are always possible.

» User friendly assembly syntax. The ForwardCom assembler gets out of the habitual think-
ing that assembly syntax must be obscure and complicated. Adding two registers is as sim-
ple as int32 r1 = add(r2, r3),orevenint r1 = r2 + r3. Thisis easily intelligible to
high-level language programmers and leaves no doubt about which operands are source
and destination. Branches and loops can be coded with C-style syntax such as
for (int r1 = 0; r1l < r2; ri++) { }

+ Security. A lot of security features are part of the basic design. See page

* Free and open. A noncommercial development process and a free license improves the
possibilities for synergy between different hardware and software developers and university
scientists. Commercial CPU vendors have often produced suboptimal designs due to the
priority of short-term marketing goals. This is avoided with an open development process.

1.5 Comparison with other open instruction sets

A few other open instruction sets have been proposed, most notably RISC-V and OpenRISC.
Both are pure RISC designs with mostly fixed 32-bit instruction word sizes. These instruction
sets are suitable for small systems where the use of silicon space is economized, but they are
not designed for high performance superscalar processors and they do not focus on details that

are critical for achieving maximum performance in bigger systems. The ForwardCom system is
thought as the next step towards making an open instruction set that is actually more efficient
than the best commercial instruction sets today.

A typical RISC design with the instruction size limited to 32 bits leaves only limited space for im-
mediate constants and addresses of memory operands. A medium-size program will need 32-bit
relative addresses of static memory operands to avoid overflow during the relocation process in
the linker. A 32-bit relative address requires several instructions in the pure RISC designs. For
example, to add a memory operand to the value of a register, you typically need five instructions
in a RISC design with only 32-bit instruction words: (1) load the lower part of the 32-bit address
offset, (2) add the upper part of the 32-bit address offset, (3) add the reference pointer or instruc-
tion pointer to this value, (4) read the memory operand from the calculated address, (5) do the
desired addition. The ForwardCom design does all this in a single instruction with double word
size. The speed advantage is obvious. The address calculation, load, and execution are done
at each their stage in the pipeline in order to achieve a smooth throughput of one instruction per
clock cycle in each pipeline.

Another important difference is that the previous RISC designs have limited support for vector
operations. The ForwardCom design introduces a new system of variable-length vector registers
that is more efficient and flexible than the best current commercial designs. Efficient vector oper-
ations are essential for obtaining maximum performance, and this has been an important priority
in the design of the ForwardCom architecture proposed here.

1.6 References and links

» Krste Asanovi¢ and David Patterson: “The Case for Open Instruction Sets. Open ISA Would
Enable Free Competition in Processor Design”. Microprocessor Report, August 18, 2014.
www.linleygroup.com/newsletters/newsletter_detail.php?num=5210

* RISC-V: The Free and Open RISC Instruction Set Architecture riscv.org
* OpenRISC: openrisc.io
* Open Cores: opencores.org

» Agner Fog: Proposal for an ideal extensible instruction set, 2015. A blog discussion thread
that initiated the ForwardCom project.
www.agner.org/optimize/blog/read.php?i=421

» Agner Fog: Stop the instruction set war, 2009. Blog post about the problems with the x86
instruction set.
www.agner.org/optimize/blog/read.php?i=25

» Darek Mihocka: Standard Need To Be Forward Looking, 2007. Blog post criticizing the x86
instruction set standard.
www.emulators.com/docs/nx02_standards.html. See also the following pages.

» Agner Fog: Floating point exception tracking and NAN propagation, 2020. www.agner.org/op-
timize/nan_propagation.pdf

10

https://www.linleygroup.com/newsletters/newsletter_detail.php?num=5210
https://riscv.org
https://openrisc.io
https://opencores.org
https://www.agner.org/optimize/blog/read.php?i=421
https://www.agner.org/optimize/blog/read.php?i=25
http://www.emulators.com/docs/nx02_standards.htm
https://www.agner.org/optimize/nan_propagation.pdf
https://www.agner.org/optimize/nan_propagation.pdf

Chapter 2

Basic architecture

This chapter gives an overview of the most important features of the ForwardCom instruction set
architecture. Details are given in the subsequent chapters.

2.1 A fully orthogonal instruction set

The ForwardCom instruction set is fully orthogonal in all respects. Where other instruction sets
have a large number of different instructions for different register types, operand types, operand
sizes, addressing modes, etc., ForwardCom has fewer instructions, but many variants of each
instruction. This modular design makes the hardware implementation much simpler. The same
instruction can use integer operands of all sizes and floating point operands of all precisions. It
can use register operands, memory operands or immediate operands. It can use many different
addressing modes. Instructions can be coded in short forms with two operands where the same
register is used for destination and source operand, or longer forms with three operands. It can
work with scalars or vectors of any size. It can have predication or masks for conditional execu-
tion, and it can have optional flag inputs for determining rounding mode, exception control and
other details, where appropriate. Data constants of all types can be included in the instructions
and compressed in various ways to reduce the instruction size.

Rationale

The orthogonality is implemented by a standardized modular design that makes the hardware
implementation simpler. It also makes compilation simpler and more flexible and makes it easier
for the compiler to convert linear code to vector code.

The support for immediate constants of all types is an improvement over current systems. Most
current systems store floating point constants in a data segment and access them through a 32-
bit address in the instruction code. This is a waste of data cache space and causes many cache
misses because the data are scattered around in different sections. Replacing a 32-bit address
with a 32-bit immediate constant makes the code more efficient without increasing the code size.
Extensions to allow 64-bit immediate constants are possible at the cost of having instructions
with triple size.

2.2 Instruction size
The ForwardCom instruction set uses a 32-bit word size for code. An instruction can consist of

one, two, or three 32-bit words. It is possible to add future extensions with instruction sizes of
four or more words, but there is currently no need for this.

11

Rationale

A CISC architecture with many different instruction sizes is inefficient in superscalar processors
where we want to execute several instructions per clock cycle. The decoding front end is often
a bottleneck, especially in the x86 architecture. The decoder has to determine the length of the
first instruction before it knows where the next instruction begins. The “instruction length decod-
ing” is a fundamentally serial process which makes it difficult to decode multiple instructions per
clock cycle. Modern x86 microprocessors have an extra “micro-operations cache” after the de-
coder in order to circumvent this bottleneck.

Here, it is desired to have as few different instruction sizes as possible and to make it easy to
determine the length of each instruction. We want a small instruction size for the most common
simple instructions, but we also need a larger instruction size in order to accommodate things
like a larger register set, instructions with multiple operands, vector operations with advanced
features, 32-bit address offsets, and large immediate constants. This proposal is a compromise
between code compactness, easy decoding, and space for advanced features. The instruction
size is indicated by only two bits. A decoder can find the instruction boundaries in n words by
means of a simple Boolean function of 2n inputs.

2.3 Register set

There are 32 general purpose registers (r0—r31) of 64 bits each, and 32 vector registers (vO—v31)
of variable length. The maximum vector length is different for different hardware implementa-
tions. The general purpose registers can be used for integers of up to 64 bits as well as for point-
ers. The vector registers can be used for scalars and vectors of integers and floating point num-
bers.

The following special registers are defined and visible at the application program level. All have
64 bits:

Instruction pointer (IP)

Data section pointer (DATAP)

Thread data pointer (THREADP)

Stack pointer (SP)
» Numeric control register (NUMCONTR)

The stack pointer is identical to r31. The other special registers cannot be accessed as ordinary
registers.

There is no dedicated flags register. Registers rO—r6 and v0—v6 can be used for masks, predi-
cates and floating point option flags to control attributes such as rounding mode and exception
control.

The unused part of a register is always set to zero. This means that integer operations with an
operand size smaller than 64 bits and vector operations with a vector length smaller than the
maximum will always set the unused bits of the destination register to zero.

Rationale

The number of registers is a compromise between code density and flexibility. The cost of spilling
registers to memory is usually important only in the critical innermost loop, which is unlikely to
need more than 32 registers.

12

We can avoid false dependencies on the previous value of a register by setting all unused regis-
ter bits to zero rather than leaving them unchanged. The hardware can save power by disabling
the unused parts of execution units and data buses.

A dedicated flags or status register is unfeasible for vector processing, parallel processing, out-
of-order processing, and instruction scheduling.

The reason for handling floating point scalars in the vector registers rather than in separate reg-
isters is to make it easy for a compiler to convert scalar code including function calls to vector
code. Floating point code often contains calls to mathematical library functions. A library function
with variable-length vectors as input and output can be used for both scalars and vectors, and
the compiler can easily vectorize code that contains such library function calls.

2.4 \Vector support

A vector register can contain signed or unsigned integers of 8, 16, 32, 64, and optionally 128
bits, or floating point numbers of single and double precision. There is limited support for float-
ing point numbers in half precision and optional support for quadruple precision. All elements of
a vector must have the same type. The elements of a vector are processed in parallel. For ex-
ample, a vector addition will produce the sum of two vectors in a single operation.

The vector registers have variable length. Each vector register has extra bits for storing the length
of the vector. The maximum vector length depends on the hardware. For example, if the hard-
ware supports a maximum vector length of 64 bytes and a particular application needs only 16
bytes, then the vector length is set to 16.

Some instructions need to specify the length of a vector explicitly, for example when reading a
vector from memory. These instructions use a general purpose register for specifying the vec-
tor length. The length is usually indicated as the number of bytes, not the number of vector ele-
ments.

The maximum length supported by the processor must be a power of 2. The actual length speci-
fied does not need to be a power of 2. If the specified length is longer than the maximum length,
then the maximum length is used.

The contents of a vector register can arbitrarily be interpreted as any of the types and element
sizes supported. For example, the hardware does not prevent the application of integer instruc-
tions on a vector that contains floating point data. It is the responsibility of the programmer that
the code makes sense.

2.5 \Vector loops

A special addressing mode is provided to make vector loops more compact and efficient. It uses
a pointer P to the end of an array, and a negative index J, and calculates the address of a mem-
ory operand as P-J, where P and J are general purpose registers. This makes it possible to make
a loop through an array as illustrated by the following pseudocode:

= address of array

= size of array (in bytes)

= maximum vector length (depends on processor)

a vector register

+= J; // point to end of array

while (J > 0) {

X = whatever_operation(X, [P-J], vector_length = J)
J -= L;

eI e

13

This loop works in the following way: P points to the end of the array. J is the remaining number
of array bytes; counting down until the loop is finished. The loop reads one vector at a time from
the array at the address (P-J). J is larger than the maximum vector length L in all but the last it-
eration of the loop. This makes the processor use the maximum vector length. If the array size
is not divisible by the maximum vector length then the last iteration of the loop will use a smaller
vector length that fits the remaining number of elements. Obviously, the loop can contain any
number of vector read, vector write, and vector arithmetic instructions, using the same principle.

This loop will work on different processors with different maximum vector lengths without know-
ing the maximum vector length at compile time. Thus, the same piece of software will work on
different microprocessors with different vector lengths without the need to compile separately for
each microprocessor.

A further advantage is that no extra code is needed after the loop to handle remaining elements
in the case that the array size is not divisible by the vector length. The loop overhead can be re-
duced to a single instruction (sub_maxlen/jump_pos) which subtracts L from J and jumps back if
the result is positive.

Rationale

Most current systems have fixed vector lengths. If different processors have different vector
lengths then you have to compile the code separately for each vector length. Every time a new
processor with longer vectors comes on the market, you have to compile a new version of the
code for the new vector length, using newly defined extensions to the instruction set. It usually
takes several years for the new software to be developed and to penetrate the mainstream mar-
ket. It is so costly for software producers to develop, test, and maintain different versions of their
code for each vector length that this is rarely done.

A further problem with current systems is that it is impossible to save a vector register in a way
that is guaranteed to be compatible with future processors with longer vectors. This is no prob-
lem with the ForwardCom design because the vector length is stored in the vector register itself.
Instructions are provided for saving and restoring vectors of variable length and for storing only
the part of a vector register that is actually used.

The ForwardCom design makes it possible to take advantage of a new processor with longer
vector registers immediately without recompiling the code. The loop method described above
makes this easy and very efficient. You do not need different versions of the code for different
processors.

It is possible to obtain the same effect without the special negative addressing mode by inverting
the sign of J and allowing a negative value in the register that specifies the vector length while
using the absolute value for the actual vector length. This solution is less elegant and more con-
fusing, but it may possibly be included in other instruction sets by allowing negative values when
specifying a vector length.

Loop unrolling is generally not necessary. The loop overhead is already reduced to a single in-
struction and a superscalar processor will execute multiple iterations in parallel if dependency
chains are not too long. Loop unrolling with multiple accumulators may be useful for hiding a
loop-carried dependency. In this case, you will either insert a loop control instruction after each
section in the unrolled code or calculate the loop iteration count before the loop.

The ForwardCom design has no practical limit to the vector length that a microprocessor can
support. A large microprocessor with very long vectors can be useful for calculations with a high
amount of data parallelism. Other solutions to obtain high performance on parallel data process-
ing have been discussed, such as rolling register stacks and software pipelining, but it was con-
cluded that long vectors is the method that can be implemented most efficiently in the micropro-
cessor as well as in the compiler.

14

2.6 Maximum vector length

The maximum length of vector registers will be different for different processors. The maximum
length must be a power of 2. It can be as large as desired and should be at least 16 bytes. Each
instruction can use a smaller length, which does not need to be a power of 2.

The maximum length may be different for different element sizes. For example, the maximum
length for 32-bit integers can be 32 bytes to contain eight integers, while the maximum length for
8-bit integers could be 16 bytes to contain 16 smaller numbers. However, the maximum length
must be the same for different types with the same element size. For example, the maximum
length for double precision floating point numbers must be the same as for 64-bit integers be-
cause loops are likely to contain both types when integer vectors are used as masks for floating
point vectors. The maximum length for a 32-bit element size cannot be less than for any other
element size or operand type. This rule guarantees that it is possible to save a complete vector
using a 32-bit operand type.

The maximum vector length should generally be the same for all instructions for the same data
type, but there may be exceptions for instructions that are particularly expensive to implement.

It is possible for an application program or the operating system to reduce the maximum vector
length. This can be useful if a smaller vector length is more appropriate for a particular purpose.

It is also possible to increase the apparent maximum vector length for purposes of emulation.
Virtual vector registers that are bigger than what the hardware supports may be emulated through
traps (synchronous interrupts) in order to verify the functionality of a program on processors with
a longer maximum vector length than is currently available.

When an instruction specifies a longer vector than the maximum, then the maximum length is
used (unless the emulation of larger vectors is activated). This is necessary for the efficient im-
plementation of vector loops as described above on page[13] If the specified vector length is
zero or negative then the result will be a vector of zero length.

2.7 Instruction masks

Most instructions can have a mask register which can be used for conditional execution and for
specifying various options. Instructions with general purpose registers use one of the registers
rO—r6 as a mask register or predicate. Bit 0 of the mask register indicates whether the operation
is executed or not.

The instruction will produce the normal result when bit O of the mask is one, and a fallback value
when this bit is zero. The fallback value can be the value of the first source operand, a separate
register, or zero.

This mechanism can be vectorized. Instructions with vector registers use one of the vector reg-
isters vO—v6 as mask register. The calculation of each vector element is conditional on the corre-
sponding element in the mask register.

An arithmetic operation with a mask of zero can never generate an error condition. A memory
read or write with an illegal address and a mask of zero may or may not generate an error trap.

Additional bits in the mask register are used for various options, overriding the values in the nu-
meric control register. See page [28]|for details.

15

2.8 Addressing modes

All memory addressing is relative to a base pointer. Memory operands are addressed in this
general form:

Address = Base pointer + Index * Scale + 0Offset

Where Base pointer is a 64-bit base pointer, Index is a 64-bit index register, Scale is a scale fac-
tor, and Offset is a constant. A base pointer is always present; the other elements are optional.

The base pointer can be a general purpose register or it can be the instruction pointer (IP), data
section pointer (DATAP), thread data pointer (THREADP), or stack pointer (SP).

The index register can be one of the registers r0—r30. A value of 31 in the index register field
means no index register.

Alimit can be applied to the index register in the form of an integer constant. A trap is generated
if the index register is bigger than the limit in an unsigned comparison.

The scale factor is equal to the operand size (in bytes) for scalar operands and broadcasts. The
scale factor is 1 for vector operands. A special addressing mode with Scale = -1 is also available,
as explained on page[13

The offset is a sign-extended integer of 8, 16, or 32 bits. 8-bit offsets are multiplied by the operand
size. Offsets of 16 and 32 bits have no multiplier.

Memory operands in vector instructions can load a vector of a specified length, a scalar, or a
broadcast scalar. The length of the loaded or broadcast vector is specified by a general purpose
register. The specified length is the number of bytes. The number of vector elements is the num-
ber of bytes divided by the operand size. Register r31, which is the stack pointer, cannot be used
for specifying vector length. Instead, a value of 31 in the length register field will give a scalar.

Jumps and calls specify a target address relative to the instruction pointer. The relative address
is specified with a signed offset of 8, 16, 24, or 32 bits, multiplied by the code word size which is
4. This will cover an address range of + 8 gigabytes with the 32-bit offset.

Rationale

A 64-bit flat address space is used. Relative addressing is used in order to avoid 64-bit addresses
in the instruction code. In the rare case that a 64-bit absolute address is needed, it must be loaded
into a register which is then used as a pointer.

Addressing with an index scaled by the operand size is useful for arrays. A limit can be applied
to the index so that array bounds can be checked without any extra instructions.

Addressing with a negative index is useful for the efficient implementation of vector loops de-
scribed on page[13

The addressing modes specified here will cover all common applications, including arrays, vec-
tors, structures, classes, and stack frames.

Support for addressing modes with both base pointer, index, and direct offset is optional because
this requires two adders in the address-calculation stage in the pipeline which might limit the
maximum clock frequency.

16

Chapter 3

Instruction formats

3.1 Formats and templates

All instructions use one of the general format templates shown below (the most significant bits
are shown to the left). The basic layout of the 32-bit code word is shown in template A. Template
B, C and D are derived from template A by replacing 8, 16, or 24 bits, respectively, with immedi-
ate data. Double-size and triple-size instructions can be constructed by adding one or two 32-bit
words to one of these templates. For example, template A with an extra 32-bit word containing
data is called A2. Template E2 is an extension to template A where the second code word con-
tains an extra register field, extra opcode bits, mode bits, option bits, and data.

Bits 2 3 6 5 1 2 5 3 5
Field | IL Mode | OP1 RD M oT RS Mask | RT
Template A. Has three operand registers and a mask register.

Bits 2 3 6 5 1 2 5 8
Field | IL Mode | OP1 RD M oT RS IM1
Template B. Has two operand registers and an 8-bit immediate constant.

Bits 2 3 6 5 8 8
Field | IL Mode | OP1 RD IM2 IM1
Template C. Has one operand register two 8-bit immediate constants.

Bits 2 3 3 24
Field | IL Mode | OP1 IM2
Template D. Has no register and a 24-bit immediate constant.

Bits 2 3 6 5 1 2 5 3 5
Field | IL Mode | OP1 RD M oT RS Mask | RT
Field IM2

Template A2. 2 words. As A, with an extra 32-bit immediate constant.

17

Bits 2 3 6 5 1 2 5 8

Field | IL Mode | OP1 RD M oT RS IM1

Field IM2

Template B2. As B, with an extra 32-bit immediate constant.

Bits 2 3 6 5 8 8
Field | IL Mode | OP1 | RD IM2 IM1
Field IM3

Template C2. As C, with an extra 32-bit immediate constant.

Bits 2 3 6 5 1 2 5 3 5
Field | IL Mode | OP1 | RD M oT RS Mask | RT
Bits 3 5 2 6 16

Field | Mode2| RU OoP2 | IM3 IM2

Template E2. Has 4 register operands, mask, a 16-bit immediate constant,
and extra bits for mode, opcode, and options.

Bits 2 3 6 5 1 2 5 3 5
Field | IL Mode | OP1 RD M oT RS Mask | RT
Field M2

Field IM3

Template A3. 3 words. As A, with two extra 32-bit immediate constants.

Bits 2 3 6 5 1 2 5 8
Field | IL Mode | OP1 | RD M oT RS IM1
Field IM2

Field IM3

Template B3. As B, with two extra 32-bit immediate constants.

Bits 2 3 6 5 1 2 5 3 5
Field | IL Mode | OP1 | RD M oT RS Mask | RT
Bits 3 5 2 6 16

Field | Mode2| RU OoP2 | IM3 IM2

Field M4

Template E3. As E2, with an extra 32-bit immediate constant.

The meaning of each field is described in the following table.

18

Table 3.1: Fields in instruction templates

Field Meaning | Values

name

IL Instruc- 0 or 1: 1 word = 32 bits
tion 2: 2 words = 64 bits
length 3: 3 words (possibly more in future extensions if

mode > 3)

Mode Format Determines the format template and the use of
each field. Extended with the M bit when needed.
See details below.

Mode2 Format Extension to Mode.

oT Operand | 0: 8 bit integer, OS = 1 byte
type 1: 16 bit integer, OS = 2 bytes
and size | 2: 32 bitinteger, OS = 4 bytes
(0S) 3: 64 bit integer, OS = 8 bytes

4: 128 bit integer, OS = 16 bytes (optional)

5: single precision float, OS = 4 bytes

6: double precision float, OS = 8 bytes

7: quadruple precision float, OS = 16 bytes (op-
tional)

The OT field is extended with the M bit when
needed.

M Operand | Extends the mode field when bit 1 and bit 2 of
type or Mode are both zero (general purpose registers).
mode Extends the OT field otherwise (vector registers).

OP1 Opcode | Decides the operation, for example add or move.

OP2 Opcode | Opcode extension for single-format instructions.

May also be used as an extension to IM3.

RD Desti- rO —r31 or vO — v31. Also used for first source
nation operand and fallback if the instruction format
register does not specify enough operands.

RS Source rO —r31 or vO — v31. Source register, pointer, or
register fallback.

RT Source r0 —r31 or vO — v31. Source register, index, or
register vector length.

RU Source rO —r31 or vO — v31. Source register or fallback.
register

Mask mask 0-6 means that a general purpose register or
register vector register is used for mask and option bits. 7

means no mask.

IM1 IM2 Imme- 8, 16, 24, or 32 bits immediate operand or ad-

IM3 IM4 | diate dress offset or option bits. Adjacent IM fields can
data be merged to make a larger constant.

Instructions have several different formats, defined by the IL and mode bits, according to table
[3.2]below. The different formats specify different sizes of immediate data or memory operands

with different addressing modes.

Instructions can have up to three source operands (input), one destination operand (output), and
a mask. The destination operand always uses the RD field, except where the destination is a
memory operand. The source operands are using the available operand fields according to the
following algorithm: The required source operands are assigned to the available operand fields
defined by table[3.2]in the following order of priority: immediate data field, memory operand, RT,

19

RS, RU, RD. The operands are assigned in reverse order so that the last operand gets the field
that comes first in this order of priority. For example, the instruction r1 = r2 - r3 using template A
will be RD = RS - RT. RD is used for both destination and the first source operand only if there
are no other vacant register fields.

The coding of instructions with two or three source operands is indicated in the table in the fol-
lowing way:

RD = f2(RS,RT) means that instructions with two input operands (f2) use the register specified in
RD as destination operand and RS and RT as source operands.

RD=f3(RD, RU, [RS+RT*OS+IM2]) means that instructions with three input operands (f3) use
the register specified in RD as both destination and the first source operand. The second source
operand is RU. The third source operand is a memory operand with RS as base pointer, RT as
index scaled by the operand size, and the constant IM2 as offset.

Instructions with only one input operand are coded as f2 with the first source operand omitted.

Table 3.2: List of instruction formats

For- IL Mode. Tem- Use

mat Mode2 plate
name
0.0 0 0 A Three general purpose register operands.
RD = f2(RS, RT). RD = f3(RD, RS, RT).
0.1 0 1 B Two general purpose registers and 8-bit imme-

diate operand.
RD =f2(RS, IM1). RD = f3(RD, RS, IM1).

0.2 0 2 A Three vector register operands.
RD = f2(RS, RT). RD = f3(RD, RS, RT).
0.3 0 3 B Two vector registers and a broadcast 8-bit

immediate operand.
RD =f2(RS, IM1). RD = f3(RD, RS, IM1).

04 0 4 A One vector register and memory operand.
Vector length specified by general purpose
register.

RD = f2(RD, [RS]). length=RT.
0.5 0 5 A One vector register and a memory operand

with base pointer and negative index. This is
used for vector loops as explained on page [13]
RD = f2(RD, [RS-RT]). length=RT.

0.6 0 6 A One vector register and a scalar memory
operand with base pointer and scaled index.
RD = f2(RD, [RS+RT*0OS]).

0.7 0 7 B One vector register and a scalar memory
operand with base pointer and 8-bit offset.

RD = f2(RD, [RS+IM1*OS]).

0.8 0 0 A One general purpose register and a memory
M=1 operand with base pointer and scaled index.
RD = f2(RD, [RS+RT*0OS]).
0.9 0 1 B One general purpose register and a memory
M=1 operand with base pointer and 8-bit offset.
RD = f2(RD, [RS+IM1*OS]).
1.0 1 0 A Single-format instructions. Three general

purpose register operands.
RD = f2(RS, RT). RD = f3(RD, RS, RT).

20

1.1

Single-format instructions. One general pur-
pose register and a 16-bit immediate operand.
RD = f2(RD, IM1-2).

1.2

Single-format instructions. Three vector regis-
ter operands.
RD =f2(RS, RT). RD = f3(RD, RS, RT).

1.3

Single-format instructions. Two vector regis-
ters and a broadcast 8-bit immediate operand.
RD = f2(RS, IM1). RD = f3(RD, RS, IM1).

1.4

Single-format instructions. One vector register
and a broadcast 16-bit immediate operand.
RD = f2(RD, IM1-2).

1.5

Vacant. May be used for application-specific
vector instructions.

1.6 A

Multiway jump instructions and system calls
with three register operands.

1.6 B

Jump instructions with two register operands
and 8 bit offset.

1.7C

Jump instructions with one register operand, 8
bit constant (IM2) and 8 bit offset (IM1).

1.7D

Jump instructions with no register and 24 bit
offset.

1.8

Single-format instructions. Two general
purpose registers and an 8-bit immediate
operand.

RD = f2(RS, IM1). RD = f3(RD, RS, IM1).

1.9

There is no format 1.9 because 1.1 has no M
bit.

2.0.0

0.0

E2

Three general purpose registers and a mem-
ory operand with base and 16 bit offset.

RD = f2(RT, [RS+IM2]).

RD = f3(RU, RT, [RS+IM2]).

2.01

0.1

E2

Two general purpose registers and a memory
operand with base, index and optional 16 bit
offset, no scale.

RD = f2(RU, [RS+RT+IM2]).

RD = f3(RD, RU, [RS+RT+IM2]).

2.0.2

0.2

E2

Two general purpose registers and a memory
operand with base, scaled index, and optional
16 bit offset.

RD = f2(RU, [RS+RT*OS+IM2]).

RD = f3(RD, RU, [RS+RT*OS+IM2]).

2.03

0.3

E2

Two general purpose registers and a memory
operand with base, scaled index, and 16-bit
limit. Optional.

RD = f2(RU, [RS+RT*OS]).

RD = f3(RD, RU, [RS+RT*OS]).

Limit RT < IM2 (unsigned).

Support for this format is optional.

21

2.0.5

0.5

E2

One general purpose register and a memory
operand with base, scaled index, 16-bit offset,
and an 8-bit immediate operand using IM3
extended with OP2. Optional.

RD = f2([RS+RT*OS+IM2], IM3).

RD = f3(RU, [RS+RT*OS+IM2], IM3).

2.0.6

0.6

E2

Four general purpose registers.
RD = f2(RS, RT).
RD = f3(RU, RS, RT).

2.0.7

0.7

E2

Three general purpose registers and a 16-bit
integer with left shift.

RD = f2(RT, IM2).

RD = f3(RS, RT, IM2).

IM2 (signed) is shifted left by the 6-bit un-
signed value of IM3, or whithout shift if IM3 is
used for other purposes.

2.1

A2

Two general purpose registers and a memory
operand with base and 32 bit offset (IM2).

RD = f2(RT, [RS+IM2]).

RD = f3(RD, RT, [RS+IM2]).

220

2.0

E2

Two vector registers and a broadcast scalar
memory operand with base and 16 bit offset.
RD = f2(RU, [RS+IM2]).

RD = f3(RD, RU, [RS+IM2]).

Broadcast to length RT.

2.21

2.1

E2

Two vector registers and a memory operand
with base and 16 bit offset.

RD = f2(RU, [RS+IM2]).

RD = f3(RD, RU, [RS+IM2)).

Length=RT.

222

2.2

E2

Two vector registers and a scalar memory
operand with base and scaled index.

RD = f2(RU, [RS+RT*OS+IM2]).

RD = f3(RD, RU, [RS+RT*OS+IM2]).

223

2.3

E2

Two vector registers and a scalar memory
operand with base, scaled index, and 16-bit
limit. Optional.

RD = f2(RU, [RS+RT*OS]).

RD = f3(RD, RU, [RS+RT*OS]).

Limit RT < IM2 (unsigned).

224

24

E2

Two vector registers and a memory operand
with base and negative index.

RD = f2(RU, [RS-RT+IM2]).

RD = f3(RD, RU, [RS-RT+IM2]).
Length=RT.

225

2.5

E2

One vector register and a memory operand
with base, 16-bit offset, and an 8-bit immedi-
ate operand using IM3 extended with OP2.
Optional.

RD = f2([RS+IM2], IM3).

RD = f3(RU, [RS+IM2], IM3).

Length=RT.

22

2.2.6

2.6

E2

Four vector registers.
RD = f2(RS, RT).
RD = f3(RU, RS, RT).

227

2.7

E2

Three vector registers and a broadcast imme-
diate half-precision float or 16-bit integer with
left shift.

RD = f2(RT, IM2).

RD = f3(RS, RT, IM2).

Floating point operands: IM2 is half precision.
Integer operands: IM2 (signed) is shifted left
by the 6-bit unsigned value of IM3, or whithout
shift if IM3 is used for other purposes.

2.3

A2

Three vector registers and a broadcast 32-bit
immediate operand.

RD = f2(RT, IM2).

RD = f3(RS, RT, IM2).

24

A2

One vector register and a memory operand
with base and 32 bit offset.
RD = f2(RD, [RS+IM2]). length=RT.

2.5

A2,
B2,
C2

Jump instructions for OP1 < 8. Single format
instructions with memory operands or mixed
register types for OP1 > 8.

2.6

A2

Single-format instructions. Three vector regis-
ters and a 32-bit immediate operand.

RD = f2(RT, IM2).

RD = f3(RS, RT, IM2).

2.7

Currently unused.

2.8

A2

Three general purpose registers and a 32-bit
immediate operand.

RD = f2(RT, IM2).

RD = f3(RS, RT, IM2).

2.9

A2

Single-format instructions. Three general
purpose registers and a 32-bit immediate
operand.

RD = f2(RT, IM2).

RD = f3(RS, RT, IM2).

3.0.0

0.0

E3

Three general purpose registers and a mem-
ory operand with base and 32 bit offset.

RD = f2(RT, [RS+IM4]).

RD = f3(RU, RT, [RS+IM4]).

3.0.2

0.2

E3

Two general purpose registers and a memory
operand w. base, scaled index, and 32 bit
offset.

RD = f2(RU, [RS+RT*OS+IM4]).

RD = f3(RD, RU, [RS+RT*OS+IM4]).

3.0.3

0.3

E3

Two general purpose registers and a memory
operand with base, scaled index, and 32-bit
limit. Optional.

RD = f2(RU, [RS+RT*OS]).

RD = f3(RD, RU, [RS+RT*0S]).

Limit RT < IM4 (unsigned).

23

3.0.5

0.5

E3

One general purpose register and a memory
operand with base, scaled index, 16-bit offset,
and a 32-bit immediate operand. Optional.
RD = f2([RS+RT*OS+IM2], IM4).

RD = f3(RU, [RS+RT*OS+IM2], IM4).

3.0.7

0.7

E3

Three general purpose registers and a 32-bit
integer with left shift.

RD = f2(RS, IM4 << IM2).

RD = f3(RS, RT, IM4 << IM2).

IM4 (signed) is shifted left by the unsigned
value of IM2.

3.1

A3,
B3

Jump instructions for OP1 < 8. Single format
instructions with memory operands or mixed
register types for OP1 > 8.

3.2.0

2.0

E3

Two vector registers and a broadcast scalar
memory operand with base and 32 bit offset.
RD = f2(RU, [RS+IM4]).

RD = f3(RD, RU, [RS+IM4]).

Broadcast to length RT.

3.21

2.1

E3

Two vector registers and a memory operand
with base and 32 bit offset.

RD = f2(RU, [RS+IM4]).

RD = f3(RD, RU, [RS+IM4]).

Length=RT.

3.2.2

2.2

E3

Two vector registers and a scalar memory
operand w. base, scaled index, and 32-bit
offset. Optional.

RD = f2(RU, [RS+RT*OS+IM4]).

RD = f3(RD, RU, [RS+RT*OS+IM4]).

3.2.3

2.3

E3

Two vector registers and a scalar memory
operand with base, scaled index, and 32-bit
limit. Optional.

RD = f2(RU, [RS+RT*OS]).

RD = f3(RD, RU, [RS+RT*OS]).

Limit RT < IM4 (unsigned).

3.2.5

2.5

E3

One vector register and a memory operand
with base, 16-bit offset, and a 32-bit immediate
operand. Optional.

RD = f2([RS+IM2], IM4).

RD = f3(RU, [RS+IM2], IM4).

Length=RT.

3.2.7

2.7

E3

Three vector registers and a broadcast single
precision float or 32-bit integer with left shift.
RD = f2(RT, IM4).

RD = f3(RS, RT, IM4).

Floating point operands: IM4 is single preci-
sion. Integer operands: IM4 (signed) is shifted
left by the unsigned value of IM2.

3.3

A3

Three vector registers and a broadcast 64-bit
immediate operand.

RD = f2(RT, IM3:IM2).

RD = f3(RS, RT, IM3:IM2).

24

3.8 3 0 A3 | Three general purpose registers and a 64-bit
M=1 immediate operand.

RD = f2(RT, IM3:IM2).

RD = f3(RS, RT, IM3:IM2).

3.9 There is no format 3.9 because 3.1 uses the M
bit.

4 X 3 4-7 Reserved for future 4-word instructions and
longer.

3.2 Coding of operands

Operand type

The type and size of operands is determined by the OT field as indicated above. The operand
type is 32 bit integer if there is no OT field unless otherwise specified. The operand size (OS)
is the size in bytes of a scalar operand or a vector element. This is equal to the number of bits
divided by 8.

Register type

The instructions can use either general purpose registers or vector registers. General purpose
registers are used for source and destination operands and for masks if the Mode field is 0 or 1
(with M = 0 or 1). Vector registers are used for source and destination operands and for masks
if Mode is 2-7. Jump instructions use vector registers if M = 1. A few single-format instructions
deviate from this rule and use mixed register types.

Pointer register

Instructions with a memory operand always use an address relative to a base pointer. The base
pointer can be a general purpose register, the data section pointer, the thread data pointer, the
instruction pointer, or the stack pointer. The pointer is determined by the RS field. This field is
interpreted as follows.

Single-size instructions with a memory operand (formats 0.4 - 0.9) can use any of the registers
r0-r31 as base pointer. r31 is the stack pointer.

Larger instructions with a memory operand and an offset field of at least 16 bits (formats 2.0.x,
21,22, 24, 2.9, 3.0.x, 3.2.x) can use the same registers, except r28 - r30, which are replaced
by the thread pointer (THREADP), data section pointer (DATAP), and instruction pointer (IP),
respectively.

The instruction pointer may be used for addressing data in a read-only data section. This works
in the following way. The address of the end of the current instruction is used as a reference
point. This is the same as the address of the next instruction. The reason for using the end of
the instruction as reference point is that it makes relocation in the linker independent of the in-
struction length in most cases. This address is multiplied by 4 when used as a data address be-
cause the instruction pointer is addressing 32 bit word units while data pointers are addressing
byte units.

Index register

Instruction formats with an index can use r0 - r30 as index in the RT field. A value of 31 in the
index field means no index. The signed index is multiplied by the operand size (OS) for formats

25

0.6,0.8,2.0.2,2.0.3, 2.0.5, 2.2.3, 3.0.3, 3.2.3; by 1 for format 2.0.1; or by -1 for format 0.5 and
2.2.2. The result is added to the address given by the base pointer.

Offsets

Offsets can be 8, 16, or 32 bits. The value is sign-extended to 64 bits. An 8-bit offset is multiplied
by the operand size OS, as given by the OT field. An offset of 16 or 32 bits is not scaled. The
result is added to the address given by the base pointer and the index.

Support for addressing modes with both index and offset is optional (format 2.0.1, 2.0.2, 2.0.5,
2.2.2,2.2.4,3.0.2,3.0.5, 3.2.2). Hardware implementations where the use of two additions in the
address calculation would cause timing problems may allow having an index with a offset of zero
or an offset with no index (RT = 31).

Limit on index

Formats 2.0.3, 2.2.3, 3.0.3, and 3.2.3 have a 16-bit or 32-bit limit on the index register. This is
useful for checking array limits. A trap is generated if the value of the index register, interpreted
as unsigned, is bigger than the unsigned limit. This feature is optional.

Vector length

The vector length of memory operands is specified by r0-r30 in the RT field for formats with a
vector memory operand. A value of 31 in the RT field indicates a scalar with the same length as
the operand size (OS).

The value of the vector length register indicates the vector length in bytes (not the number of ele-
ments). If the value is bigger than the maximum vector length then the maximum vector length is
used. If the indicated vector length is zero or negative then the resulting vector will be empty and
nothing will be read or written.

The vector length must be a multiple of the operand size OS, as indicated by the OT field. If the
vector length is not a multiple of the operand size then the partial vector element will be zero.

The vector length for source operands in vector registers is stored in the register itself.

Combining vectors with different lengths

The length of the destination register of a vector instruction will be the same as the vector length
of the first source operand.

A consequence of this is that the length of the result is determined by the order of the operands
when vectors of different lengths are combined.

If the source operands have different lengths then the lengths will be adjusted as follows. If a
vector source operand is too long then the extra elements will be ignored. If a vector source
operand is too short then the missing elements will be zero.

A scalar memory operand is not broadcast but treated as a short vector. It is padded with zeroes
to the vector length of the destination.

A broadcast memory operand will use the vector length given by the vector length register. If this
is less than the length of the destination then it is padded with zeroes.

An immediate operand will be broadcast to the vector length of the destination.

26

Immediate constants

Immediate constants can be 8, 16, 32, and 64 bits. Immediate fields are aligned to natural ad-
dresses. They are interpreted as follows.

If OT specifies an integer type then the field is interpreted as an integer. If the field is smaller
than the operand size then it is sign-extended to the appropriate size. If the field is larger than
the operand size then the superfluous upper bits are ignored. The truncation of a too large im-
mediate operand will not trigger any overflow condition.

If OT specifies a floating point type then the field is interpreted as follows. Immediate fields of

8 bits are interpreted as signed integers and converted to floating point numbers of the desired
precision. A 16-bit field is interpreted as a half precision floating point number (subnormal num-
bers are supported for float16). A 32-bit field is interpreted as a single precision floating point
number. It is converted to the desired precision if necessary. A 64-bit field is interpreted as a
double precision floating point number. A 64-bit field is not allowed with a single precision operand

type.

Some instruction formats allow immediate integer constants with a left shift. Large integer con-
stants with a limited number of significant bits can be represented with fewer bits in this way.
Format 2.0.7 and 2.2.7 allow a 16-bit immediate constant in IM2 to be shifted left by the unsigned
value of IM3 to give a 64-bit signed value, except for instructions that use IM3 for other purposes.
Format 3.0.7 and 3.2.7 allow a 32-bit immediate constant in IM4 to be shifted left by the unsigned
value of IM2. Any overflow beyond 64 bits is ignored.

Some single-format instructions also use shifted constants.

An instruction can be made compact by using the smallest size that fits the actual value of the
constant.

Mask register and fallback register

The 3-bit mask field in formats with templates of type A or E indicates a mask register. Register
r0-r6 can be used as masks if the destination is a general purpose register. Vector register v0-v6
can be used as masks if the destination is a vector register. A value of 7 in the mask field means
no mask and unconditional execution using the options specified in the numeric control register.

If the mask is a vector register then it is interpreted as a vector with the same element size as
indicated by the OT field. Each element of the mask register is applied to the corresponding ele-
ment of the result.

The mask has multiple purposes. The primary purpose is for conditional execution. An instruc-
tion is not executed if bit 0 of the mask is zero. In this case, the destination will get a fallback
value instead of the result of the calculation, and any numerical error condition will be suppressed.
Vector instructions are executed conditionally for each vector element separately, so that each
vector element is enabled if bit O of the corresponding vector element of the mask register is 1.

The fallback value is taken from an extra register if the instruction has less than three source
operands and the format has a vacant register field, or from the first source register operand oth-
erwise. The fallback cannot be different from the first source register if the instruction has three
source operands, even if there is a vacant register field. If the instruction format has more than
one vacant register field, then the field that would be used for the first source operand if the in-
struction had three source operands is used for the fallback register.

Register r31 (stack pointer) and v31 cannot be used as fallback register. Instead, the fallback
value will be zero if a register number of 31 is indicated. Register r31 and v31 should not be
used as first source register if it is also used as feedback because this would cause ambiguity
about the fallback value. (The fallback value will not be zero in this case).

27

A memory write has no fallback register. Instead, the value of the memory operand will be un-
changed if the mask has a zero in bit 0.

The remaining bits of the mask are used for specifying various options. The meanings of these
mask bits are described in the next section.

3.3 Coding of masks

A mask register can be a general purpose register rO-r6 or a vector register v0-v6. A value of 7 in
the mask field means no mask.

The bits in the mask register are coded as follows.

Table 3.3: Bits in mask register and numeric control register

Bit Meaning
number
0 Predicate or mask. The operation is executed only if

this bit is one.

Guaranteed to be ignored.

-7 Numerical exception control. See pagel@
Floating point division by zero generates NAN
Floating point overflow generates NAN

Floating point underflow generates NAN

Floating point inexact generates NAN

Bits 2-7 may also be used for controlling integer
division by zero and integer overflow

10-12 Floating point rounding mode:

000 = nearest or even

001 = down

010 =up

011 = towards zero

This feature is optional.

13 Support subnormal numbers in single and higher
precision. (Subnormal numbers are always sup-
ported for half precision). This feature is optional.
18-23 Instruction-specific option bits.

26 - 30 Possible use for enabling numerical traps. Not used
in the standard version.

31 Constant execution time. This bit makes instructions
take the same number of clock cycles regardless

of the values of mask and operands. The guaran-
tee provided by this bit is useful for cryptographic
applications. This feature is optional.

a b~ WNDN-=-

Bits 8, 16, 24, etc. in a vector mask register can be used like bit 0 for 8-bit and 16-bit operand
sizes. All other bits are reserved for future use.

Vector instructions treat the mask register as a vector with the same element size (OS) as the
operands. Each element of the mask vector has the bit codes as listed above. The different vec-
tor elements can have different mask bits.

The numeric control register (NUMCONTR) is used as mask when the mask field is 7 or absent.
The NUMCONTR register is broadcast to all elements of a vector, using as many bits of NUM-
CONTR as indicated by the operand size, when an instruction has no mask register. The number
of bits in NUMCONTR is implementation dependent (usually 16 or more). Any missing bits will

28

be zero. The same NUMCONTR value is applied to all vector elements. Bit 0 of NUMCONTR is
always 1.

The instruction-specific option bits (bit 18-23) may be used for various options in specific instruc-
tions. The option bits in the mask are considered zero in vector operands with an 8-bit or 16-bit
operand type because each mask element has too few bits in this case.

3.4 Format for jump, call and branch instructions

Most branches in software are based on the result of an arithmetic or logic instruction (ALU). The
ForwardCom design combines the ALU instruction and the conditional jump into a single instruc-
tion. For example, a loop control can be implemented with a single instruction that counts down
and jumps until it reaches zero or counts up until it reaches a certain limit.

The jumps, calls, branches, and multiway branches will use the following formats.

Table 3.4: List of formats for control transfer instructions

For- | IL Mode| OP1 | Tem-| Description
mat plate
16A |1 6 OPJ | B Multiway jump and calls with three regis-
ter operands.

16B |1 6 OPJ | B Short jump with two register operands
(RD, RS) and 8 bit offset (IM1).

1.7C |1 7 OPJ | C Short jump with one register operand
(RD), an 8-bit immediate constant (IM2)
and 8 bit offset (IM1).

1.7D 0-15 | D Jump or call with 24-bit offset.

250 |2 5 3 A2 Double size jump with three register
operands (RD, RS, RT), and a 24-bit
address offset (IM2). OPJ in upper 8 bits
of IM2.

251 |2 5 1 B2 Double size jump with a register destina-
tion operand, a register source operand,
a 16-bit immediate operand (IM2 lower
half), and a 16-bit jump offset (IM2 upper
half). OPJ in IM1.

252 |2 5 2 B2 Double size jump with one register
operand (RD), a memory operand with
base RS and 16-bit address offset (IM2
lower half), and a 16-bit jump offset (IM2
upper half). OPJ in IM1. Optional.

254 |2 5 4 Cc2 Double size jump with one register
operand (RD), one 8-bit immediate con-
stant (IM2) and 32 bit offset (IM3). OPJ
in IM1.

255 |2 5 5 Cc2 Double size jump with one register
operand (RD), an 8-bit offset (IM2) and a
32-bit immediate constant (IM3). OPJ in
IM1.

257 |2 5 7 Cc2 Double size system call, 16 bit constant
(IM1,IM2) and 32-bit constant (IM3). No
OPJ.

—
~

29

310 |3 1 0 A3 Triple size jump with two register
operands (RD, RT), a 24-bit jump off-
set (IM2), and a memory operand with
base RS and 32-bit address offset (IM3).
OPJ in last byte of IM2. Optional.

311 | 3 1 1 B3 Triple size jump with a register destina-
tion operand, a register source operand
(RS), a 32-bit jump offset (IM2), and a
32-bit immediate operand (IM3). OPJ in
IM1. Optional.

The jump, call, and branch instructions have signed offsets of 8, 16, 24, or 32 bits relative to the
instruction pointer. Or, more precisely, relative to the end of the instruction. This offset is multi-
plied by the instruction word size (= 4 bytes) to cover an address range of + 512 bytes for short
conditional jumps with 8 bits offset, + 128 kilobytes for jumps and calls with 16 bits offset, + 32
megabytes for 24 bits offset, and + 8 gigabytes for 32 bits offsets.

The OPJ field defines the operation and jump condition. This field has 6 bits in the single size
version and 8 bits in the longer format versions. The two extra bits in the longer versions are re-
served for future use.

The versions with template C and C2 have no OT field. The operand type is 32-bit integer when
there is no OT field, unless otherwise noted. It is not possible to use formats with template C or
C2 with other operand types.

The instructions will use vector registers when there is an OT field and M = 1. In other words,
the combined ALU-and-branch instructions will use vector registers only when a floating point
type is specified (or 128-bit integer type, if supported). General purpose registers are used in all
other cases. Only the first element of a vector register is used. Logical instructions will interpret
the value in a vector register as an integer, when a floating point type is specified. Only the com-
pare instructions interpret the operands as floating point when a floating point type is indicated.
Branch instructions with addition and subtraction cannot use floating point operands. The codes
that these instructions would use are used for floating point compare instructions instead.

The combined ALU and conditional jump instructions can be coded in the formats listed above.
Subtraction with a constant cannot be coded in format 1.7 C. The assembler will replace sub-
traction with a small immediate constant by addition with the negative constant. The code space
that would have been used by subtraction in format 1.7 C is instead used for coding direct jump
and call instructions with a 24-bit offset using format 1.7 D, where the lower three bits of OP1 are
used as part of the 24-bit offset.

Unconditional and indirect jumps and calls use the formats indicated above, where unused fields
must be zero. Bit 0 of the OPJ field is zero for unconditional jump instructions and one for call
instructions.

See page [46|for a list of OPJ condition codes.

3.5 Assignment of opcodes

The opcodes and formats for new instructions can be assigned according to the following rules.

» Multi-format instructions. Often-used instructions that need to support many different operand

types, addressing modes, and formats use all or most of the following formats: 0.0 - 0.9,
2.0.x,2.1,2.2.x,2.3,24, 2.8, 3.0.x, 3.2.x, 3.3, and 3.8. The same value of OP1 is used in
all these formats. OP2 must be 0, except in formats 2.0.5 and 2.2.5 that use OP2 for other
purposes. Instructions with few source operands should have the lowest values of OP1.

30

Available OP1 values is a limited resource that should be economized. Instructions for inte-
gers only and instructions for floating point only may share the same OP1 value.

Control transfer instructions, i. e. jumps, branches, calls and returns, can be coded as
short instructions with IL =1, mode =6 - 7, and OP1 =0 - 63 or as double-size instruc-
tions with IL = 2, mode =5, OP1 =0 - 7, and optionally as triple-size instructions with IL =
3, mode = 1, OP1 = 0-7. See page[29]

Short single-format instructions with general purpose registers. Use mode 1.0, 1.1, and
1.8, with any value of OP1. Mode 1.0 is currently unused and may be reserved for future
purposes.

Short single-format instructions with vector registers. Use mode 1.2, 1.3, and 1.4 with any
value of OP1.

Double-size single-format instructions with general purpose registers can use mode 2.9
with any value of OP1, and mode 2.0.x (except 2.0.5) with any value of OP1 and OP2 #£ 0
(give similar instructions the same value of OP2). If more combinations are needed then
use IM3 for further subdivision of the code space.

Double-size single-format instructions with vector registers can use mode 2.6 with with any
value of OP1, and mode 2.2.x (except 2.2.5) with any value of OP1 and OP2 # 0 (give sim-
ilar instructions the same value of OP2). If more combinations are needed then use IM3 for
further subdivision of the code space.

Double-size single-format instructions with mixed vector and general purpose registers or
with memory operands can use mode 2.5 with OP1 in the range 8-63.

Triple-size single-format instructions with general purpose registers can use mode 3.0.x
with with any value of OP1 and OP2 #£ 0.

Triple-size single-format instructions with vector registers can use mode 3.2.x with with any
value of OP1 and OP2 #£ 0.

Triple-size single-format instructions with mixed register types can use mode 3.1 with with
OP1 in the range 8-63.

Possible future instructions longer than three 32-bit words should be coded with IL = 3,
mode = 4-7.

New options or other modifications to existing instructions can use IM3 bits in template E or
mask register bits.

New addressing modes and formats may be implemented as single-format read and write
instructions. Template E formats use Mode2 for distinguishing between different formats.
Other single-format templates may be divided into groups of eight consecutive OP1 values
with the same format. New addressing modes or other formats that apply to all multi-format
instructions can use vacant values of Mode2 with E templates.

Format 1.0 is intended for single-format instructions with three general purpose registers.
There are currently no such instructions. Therefore, format 1.0 A or B may be used for
application-specific single-size instructions or for other purposes. Note that the M bit is not
available in format 1.0 because this bit is used for distinguishing format 1.8 from 1.0. This
means that format 1.0 cannot be used for vector instructions without violating the general
coding scheme.

Format 1.5 is vacant to use for single-format instructions with vector registers.

31

Application-specific instructions may preferably use E template formats with OP2 £ 0. There are
many vacant opcodes in these formats. General multi-purpose instructions may use some of the
more crowded formats.

Unused register fields may have the same value as the first source register operand in order to
avoid false dependences. Unused mask fields have the value 7 in instructions that can have

a mask. All other unused fields must be zero. The instructions with the fewest input operands
should preferably have the lowest OP1 codes.

The file forwardcom_sourcecode_documentation has a checklist of what to do when making or
modifying instructions.

32

Chapter 4

Instruction lists

The ForwardCom instructions are listed in a comma-separated file instruction_list.csv. This file is
intended for use by assemblers, disassemblers, debuggers and emulators. The list is preliminary
and subject to possible changes. Please remember to keep the lists in this document and the list
in the instruction_list.cvs file synchronized.

The instruction list file has the following fields:

Table 4.1: Fields in instruction list file

Field Meaning
Name Name of instruction as used by assembler.
Category | 1: single format instruction,

2: unused,

3: multi-format instruction,
4: jump instruction.

Formats See table 4.2/ below.
Template | Hexadecimal number:
OxA - OxE for template A- E,
0x0 for multiple templates.

33

Variant D0: No destination operand, no operand type.
D1: No destination operand, but operand type specified.
D2: Operand type ignored.
D3: Destination register used for other purpose.
FO: Can have mask register, but not fallback register.
F1: Can have fallback register without mask register.
I2: Immediate source operand is integer regardless of
specified operand type.
MO: Memory operand is destination.
On: n bits of IM3 in E template format used for options
(IM3 can be used for shift count only if it is not used for
options).
RO: Destination is a general purpose register.
R1: First source operand is a general purpose register.
R2: Second source operand is a general purpose register.
RL: RT is a general purpose register specifying vector
length.
UO0: Integer operands are unsigned.
U3: Integer operands are unsigned if option bit 3 is set.
(compare instruction).
HO: Half precision floating point instruction.
X0: Source register can be a special pointer (threadp,
datap, ip).
X1: Source register is special register.
X2: Source register is capabilities register.
X3: Source register is performance monitor register.
X4: Source register is system register.
Y0-4:Destination register is one of the above.
Source Number of source operands, including register, memory
operands | and immediate operands, but not including mask, option
bits, vector length, and index.
OP1 Operation code OP1.
OoP2 Additional operation code OP2. Zero if none.
Operand Hexadecimal number indicating required and optional sup-
types port for each operand type with general purpose registers.
general See table below for meaning of each bit.
purpose
registers
Operand Hexadecimal number indicating required and optional sup-
types port for each operand type for scalar operations in vector
scalar registers. See table [4.3|below for meaning of each bit.
Operand Hexadecimal number indicating required and optional
types support for each operand type for vector operations. See
vector table 4.3 below for meaning of each bit.
Immediate | Type of immediate operand for single-format instructions.
operand See table below.
type
Descrip- Description of the instruction and comments.
tion

34

Table 4.2: Meaning of formats field in instruction list file

Category | Interpretation of formats field
1. Single Number with three hexadecimal digits.
format The leftmost digit is the value of the IL field (0-3).
instruction | The middle digit is he value of mode field or the combined
M+mode field (0-9).
The rightmost digit is the sub-mode defined by OP2 in E
template modes or OP1 in mode 2.5.x. Zero otherwise.
For example 0x223 means format 2.2.3.
Hexadecimal number composed of one bit for each format supported:
0x0000001 Format 0.0: three general purpose registers.
0x0000002 Format 0.1: two general purpose registers,
8-bit immediate.
0x0000004 Format 0.2: Three vector registers.
0x0000008 Format 0.3: Two vectors, 8-bit immediate.
0x0000010 Format 0.4: One vector, memory operand.
0x0000020 Format 0.5: One vector, memory operand with
negative index.
0x0000040 Format 0.6: One vector, scalar memory
operand with index.
0x0000080 Format 0.7: One vector, scalar memory
3. Multi- operand with 8-bit offset.
format 0x0000100 Format 0.8: One g. p. register, memory
instruction operand with index.
0x0000200 Format 0.9: One g. p. register, memory
operand with 8-bit offset.
0x0001000 Format 2.8: Three g. p. registers, 32-bit imme-
diate.
0x0002000 Format 2.1: Two g. p. registers, memory with
32-bit offset.
0x0004000 Format 2.3: Three vector registers, 32-bit
immediate.
0x0008000 Format 2.4: One vector register, memory with
32-bit offset.
0x0010000 Format 2.0.0: Three g. p. reg., memory with
16-bit offset.
0x0020000 Format 2.0.1: Two g. p. reg., memory with
unscaled index.
0x0040000 Format 2.0.2: Two g. p. reg., memory with
scaled index.
0x0080000 Format 2.0.3: Two g. p. reg., memory with
index and limit.
0x0400000 Format 2.0.6: Four g. p. reg.
0x0800000 Format 2.0.7: Three g. p. registers, 16-bit
shifted immediate.
0x1000000 Format 2.2.0: Two vector reg., scalar memory
w. 16-bit offset.
0x2000000 Format 2.2.1: Two vector reg., memory with
16-bit offset.
0x4000000 Format 2.2.2: Two vector reg., memory with
negative index.
0x8000000 Format 2.2.3: Two vector reg., scalar memory

w. index and limit.

35

0x40000000 Format 2.2.6: Four vector reg.

0x80000000 Format 2.2.7: Three vector registers, 16-bit
shifted immediate.

0x100000000 Format 3.8: Three g. p. registers, 64-bit imme-

diate.
0x40000 Format 3.3: Three vector registers, 64-bit
0000 immediate.
0x100000 Format 3.0.0: Three g. p. reg., memory with
0000 32-bit offset.
0x800000 Format 3.0.3: Two g. p. reg., memory with
0000 index and 32-bit limit.
0x2000000 Format 3.0.5: One g. p. reg., memory with
0000 index and 16-bit offset, 32-bit immediate.
0x8000000 Format 3.0.7: Three g. p. registers, 32-bit
0000 shifted immediate.
0x10000000 Format 3.2.0: Two vector reg., scalar memory
0000 w. 32-bit offset.
0x20000000 Format 3.2.1: Two vector reg., memory with
0000 32-bit offset.
0x80000000 Format 3.2.3: Two vector reg., scalar memory
0000 index and 32-bit limit.
0x200000000 Format 3.2.5: One vector reg., memory with
0000 16-bit offset, and 32-bit immediate.
0x800000000 Format 3.2.7: Three vector registers, float or
0000 32-bit shifted immediate.

Hexadecimal number composed of one bit for each format supported:

0x00001 Format 1.6.0 B: Two registers, 8 bit offset.

0x00002 Format 1.7.1 C: One register, 8 bit immediate,
8 bit offset.

0x00010 Format 2.5.0 A: Three registers, 24 bit offset.

4. Jump 0x00020 Format 2.5.1 B: Two registers, 16 bit immedi-

instruction ate, 16 bit offset.

0x00040 Format 2.5.2 B: One register, memory operand
with 16 bit address, 16 bit offset.

0x00080 Format 2.5.3 B: Unused.

0x00100 Format 2.5.4 C: One register, 8 bit immediate,
32 bit offset.

0x00200 Format 2.5.5 C: One register, 32 bit immedi-
ate, 8 bit offset.

0x01000 Format 3.1.0 A: Two registers, memory
operand w 32 bit address, 24 bit offset.

0x02000 Format 3.1.1 B: Two registers, 32 bit immedi-
ate, 32 bit offset.

0x10000 Format 1.6.1 B: Memory operand with 8 bit
offset.

0x20000 Format 1.6.2 A: Reg. and memory w. scaled
index.

0x40000 Format 1.6.3 A: Three registers.

0x100000 Format 1.7.0 D: No register, 24 bit address.

0x400000 Format 1.7.3 C: One register.

0x800000 Format 1.7.4 C: 16 bit immediate.

0x1000000 Format 1.7.5 C: 16 bit fixed immediate.

36

0x2000000 Format 1.7.A C: Format 1.7 with 64 bit
operand size.

0x10000000 Format 2.5.1 X: Two registers, 2x16 bit imme-
diate.

0x20000000 Format 2.5.2 X: One register, memory operand
with 32 bit offset.

0x40000000 Format 2.5.4 X: 64 bit operand size.

0x80000000 Format 2.5.5 X: Conditional trap.

0x100000000 Format 2.5.7 C: System call, 16 bit function, 32

bit module.
0x1000000 Format 3.1.1 X: System call, 32 bit function, 32
0000 bit module.

Table 4.3: Indication of operand types supported for gen-
eral purpose registers, scalars in vector registers, or vec-
tors. The value is a hexadecimal number composed of one
bit for each operand type supported

0x0001 8-bit integer supported.

0x0002 16-bit integer supported.

0x0004 32-bit integer supported.

0x0008 64-bit integer supported.

0x0010 128-bit integer supported.

0x0020 single precision floating point supported.

0x0040 double precision floating point supported.

0x0080 quadruple precision floating point supported.
0x0100 8-bit integer optionally supported.

0x0200 16-bit integer optionally supported.

0x0400 32-bit integer optionally supported.

0x0800 64-bit integer optionally supported.

0x1000 128-bit integer optionally supported.

0x2000 single precision floating point optionally supported.
0x4000 double precision floating point optionally supported.
0x8000 quadruple precision floating point optionally supported.

Table 4.4: Immediate operand type for single-format in-
structions

none or multi-format.

8-bit signed integer.

16-bit signed integer.

32-bit signed integer.

64-bit signed integer.

8-bit signed integer shifted by specified count.
16-bit signed integer shifted by specified count.
16-bit signed integer shifted by 16.

32-bit signed integer shifted by 32.

18 8-bit unsigned integer.

19 16-bit unsigned integer.

20 32-bit unsigned integer.

21 64-bit unsigned integer.

24 two 8-bit unsigned integers.

©O©oOoO~NOOLh WNO

37

25
26
27
28
29
34
35
64
65
66

In

100

two 8-bit and one 6-bit unsigned integers.

two 16-bit unsigned integers.

one 16-bit and one 32-bit unsigned integer.

two 32-bit unsigned integers.

one 16-bit and two 8-bit unsigned integers.

8-bit signed integer converted to float.

16-bit signed integer converted to float.

half precision floating point.

single precision floating point.

double precision floating point.

determined by operand type.

a number prefixed by ’i’ indicates an implicit value. The
implicit immediate operand with this value does not need
to be written in the assembly code.

Jump instructions are listed on page [46| All other categories of instructions are listed in the fol-

lowing tables.

4.1

List of multi-format instructions

The following list covers general instructions that can be coded in most or all of the formats as-
signed to multi-format instructions.

Table 4.5: List of multi-format instructions

Instruction OP1 Source | Description
ope-
rands
nop 0 0 No operation.
store 1 1 Store value to memory.
move 2 1 Copy value.
prefetch 3 1 Prefetch from memory.
sign_extend 4 1 Sign-extend smaller integer to 64 bits.
sign_extend_ | 5 2 Sign-extend smaller integer to 64 bits and add 64-bit regis-
add ter.
compare 7 2 Compare. Uses condition codes, see p.
add 8 2 src1 + src2.
sub 9 2 src1 - src2.
sub_rev 10 2 src2 - src.
mul 11 2 src1 - src2.
mul_hi 12 2 (src1 - src2) >> OS, signed (integer only).
mul_hi_u 13 2 (src1 - src2) >> OS, unsigned (integer only).
div 14 2 src1/ src2, signed division (optional for integer vectors).
div_u 15 2 src1 / src2, unsigned integer division (optional for vectors).
div_rev 16 2 src2 / src1, signed division (optional for integer vectors).
rem 18 2 Modulo or remainder, signed (optional for integer vectors).
rem_u 19 2 Modulo or remainder, unsigned (optional for integer vec-
tors).
min 20 2 Signed minimum.
min_u 21 2 Minimum. unsigned for integers, abs for f.p.
max 22 2 Signed maximum.
max_u 23 2 Maximum. unsigned for integers, abs for f.p.
and 26 2 src1 & src2.

38

or
xor
mul_2pow

shift_left
rotate
shift_right_s
shift_right_u
clear_bit
set_bit
toggle_bit
test_bit

test bits_and
test bits_or
add

sub

mul
mul_add
mul_add
mul_add2
add_add
select_bits
funnel_shift
userdef56 -
userdef62
undef

27
28
32

32
33
34
35
36
37
38
39
40
41
44
45
46
48
49
50
51
52
53
56-62

63

NDNDN

NWWWWWWNDNDNDNNNDDNDDNDNDNNDNDNDDN

N

src1 | src2.

src1 * src2.

src1 * 2572 Multiply by integer power of 2. Floating point
only.

src1 << src2. Shift left. Integer only.

Rotate left if src2 positive, right if negative.

src1 >> src2. Integer shift right with sign extension.
src1 >> src2. Integer shift right with zero extension.
Clear bit. src1 & ~ (1 << src2).

Set bit. src1 | (1 << src2).

Toggle bit. src1 * (1 << src2).

Test single bit. (src1 >> src2) & 1.

Test if all indicated bits are 1. (src1 & src2) == src2
Test if at least one indicated bitis 1. (src1 & src2)!=0
src1 + scr2 (float16. optional).

src1 - scr2 (float16. optional).

src1 * scr2 (float16. optional).

+ src1 - src2 + src3 (float16. optional).

=+ src1 - src2 + src3 (optional).

=+ src1 - src3 + src2 (optional).

=+ src1 + src2 =+ src3 (optional).

src1 & src3 | src2 & ~src3

Concatenate src1 and src2 and shift right by src3.
Reserved for user-defined instructions.

Undefined code. Generates trap.

4.2 List of single-format instructions

These instructions are mostly available in only one or a few formats.

Table 4.6: List of single-format instructions with general

purpose registers

Instruction Format | OP1 Description

move 1.1C 0 Move 16-bit sign-extended constant to 32-bit general
purpose register.

move 1.1C 1 Move 16-bit sign-extended constant to 64-bit general
purpose register.

move 1.1C 3 Move 16-bit zero-extended constant to 64-bit general
purpose register.

move 1.1C 4 RD = IM2 « IM1. Sign-extend IM2 to 32 bits and shift
left by the unsigned value IM1.

move 1.1C 5 RD = IM2 « IM1. Sign-extend IM2 to 64 bits and shift
left by the unsigned value IM1.

add 1.1C 6 Add 16-bit sign-extended constant to 32-bit general
purpose register..

mul 1.1C 8 Multiply 32-bit general purpose register by 16-bit sign-
extended constant.

add 1.1C 10 RD +=IM2 « IM1. Sign-extend IM2 to 32 bits, shift left
by the unsigned value IM1, add to RD.

add 11C 11 RD +=IM2 « IM1. Sign-extend IM2 to 64 bits, shift left
by the unsigned value IM1, add to RD.

39

and
and
or
or
xor
xor

add

abs
bitscan

roundp2
popcount
read_spec
write_spec
read_capabi-
lities
write_capabi-
lities
read_perf
read_perfs
read_sys
write_sys
push

pop

input

output
truth_tab3
move_bits
move

insert_hi

add
sub

add

1.8B
1.8B
1.8B
1.8B
1.8B
1.8B
1.8B
1.8B
1.8B
1.8B
1.8B
1.8B
1.8B
1.8B
1.8B
1.8B
206 E
20.7E
29A

29A

29A

29A

29A

12

13

14

15

16

17

18

32
33
34

35

36
37
38
39
56
57
62

63

8.1
0.1

RD &= IM2 « IM1. Sign-extend IM2 to 32 bits, shift left
by the unsigned value IM1, AND with RD.

RD &= IM2 « IM1. Sign-extend IM2 to 64 bits, shift left
by the unsigned value IM1, AND with RD.

RD |=IM2 « IM1. Sign-extend IM2 to 32 bits, shift left
by the unsigned value IM1, OR with RD.

RD |=IM2 « IM1. Sign-extend IM2 to 64 bits, shift left
by the unsigned value IM1, OR with RD.

RD 7= IM2 « IM1. Sign-extend IM2 to 32 bits, shift left
by the unsigned value IM1, XOR with RD.

RD 7= IM2 « IM1. Sign-extend IM2 to 64 bits, shift left
by the unsigned value IM1, XOR with RD.

RD += (IM1,IM2) « 16. Shift 16-bit zero-extended
constant left by 16 and add to 32-bit general purpose
register.

Absolute value of integer. IM1 determines handling of
overflow: 0: wrap around, 1: saturate, 2: zero.

Bit scan forward or reverse. Find index to first or last
set bit.

Round up or down to nearest power of 2.

Count the number of bits that are 1.

Read special register RS into g. p. register RD.

Write g. p. register RS to special register RD.

Read capabilities register RS into g. p. register RD.

Write g. p. register RS to capabilities register RD.

Read performance counter.

Read performance counter, serializing.

Read system register RS into g. p. register RD.

Write g. p. register RS to system register RD.

Push g. p. register RS to stack with pointer RD.

Pop g. p. register RS from stack with pointer RD.
Read RD from input port with address IM1 or RS. (privi-
leged instruction)

Write RD to output port with address IM1 or RS. (privi-
leged instruction)

Boolean function of three inputs, given by a truth table.
Replace one or more contiguous bits at one position
of RS with contiguous bits from another position of RT.
Optional.

Load 32-bit constant into the high part of a general
purpose register. The low part is zero. RD = IM2 « 32.
Insert 32-bit constant into the high part of a general
purpose register, leaving the low part unchanged. RD =
(RT & OXFFFFFFFF) | (IM2 « 32).

Add zero-extended 32-bit constant to general purpose
register.

Subtract zero-extended 32-bit constant from general
purpose register.

Add 32-bit constant to high part of general purpose
register. RD = RT + (IM2 « 32).

40

and 29A 5 AND high part of general purpose register with 32-bit
constant. RD = RT & (IM2 « 32).

or 29A 6 OR high part of general purpose register with 32-bit
constant. RD = RT | (IM2 « 32).

xor 29A 7 XOR high part of general purpose register with 32-bit
constant. RD = RT * (IM2 « 32).

address 29A 32 RD = RT + IM2, RT can be THREADP (28), DATAP (29)
or IP (30).

Table 4.7: List of single-format instructions with vector
registers and mixed register types
Instruction Format | OP1. | Description
OoP2

get_len 1.2A 0 Get length of vector register RT into general purpose
register RD.

get_ num 1.2A 1 Get length of vector register RT divided by the operand
size.

set_len 1.2A 2 RD = vector register RS with length changed to value of
RT.

set_num 1.2A 3 Change the length of vector register RS to RT-OS.

insert 1.2A 4 Replace one element in vector RD, starting at offset
RT-OS, with scalar RS.

extract 1.2A 5 Extract one element from vector RS, starting at offset
RT-OS, with size OS into scalar in vector register RD.

broad 1.2A 6 Broadcast first element of vector RS into all elements of
RD with length RT bytes.

compress_ 1.2A 8 Compress sparse vector elements indicated by mask

sparse bits into contiguous vector. (optional).

ex- 1.2A 9 Expand contiguous vector into sparse vector with po-

pand_sparse sitions indicated by mask bits. RT = length of output
vector. (optional).

bits2bool 1.2A 12 The lower n bits of RT are unpacked into a boolean
vector RD with length RS, with one bit in each element,
where n = RS/ OS.

shift_expand 1.2A 16 Shift vector RS up by RT bytes and extend the vector
length by RT. The lower RT bytes of RD will be zero.

shift_reduce 1.2A 17 Shift vector RS down RT bytes and reduce the length
by RT. The lower RT bytes are lost.

shift_up 1.2A 18 Shift elements of vector RS up RT elements. The lower
RT elements of RD will be zero, the upper RT elements
are lost.

shift_down 1.2A 19 Shift elements of vector RS down RT elements. The
upper RT elements of RD will be zero, the lower RT
elements are lost.

div_ex 1.2A 24 Divide vector of double-size signed integers RS by
signed integers RT. RS has element size 2-0OS. These
are divided by the even numbered elements of RT with
size OS. The truncated results are stored in the even-
numbered elements of RD. The remainders are stored
in the odd-numbered elements of RD. (Optional for
vectors).

div_ex_u 1.2A 25 Same, with unsigned integers. (Optional for vectors).

41

mul_ex
mul_ex_u
sqrt
add_ss
add_us
sub_ss
sub_us
mul_ss
mul_us
add_oc
sub_oc
mul_oc
div_oc
add ¢

sub b
read_spev
read_call_

stack

write_call_
stack

read_mem-
ory_ map

write_mem-
ory_ map

input

output

gp2vec
vec2gp
make_sequen-
ce

insert

extract

1.2A
1.2A
1.2A
1.2A
1.2A
1.2A
1.2A
1.2A
1.2A
1.2A
1.2A
1.2A
1.2A
1.2A
1.2A

1.2A
1.2A

1.2A

1.2A

1.2A

1.2A

1.2A

1.3B

1.3B

1.3B

1.3B

1.3B

26
27
28
32
33
34
35
36
37
38
39
40
41
42
43

56
58

59

60

61

62

63

Multiply even-numbered signed integer vector elements
to double size result.

Multiply even-numbered unsigned integer vector ele-
ments to double size result.

Square root (floating point, optional).

Add integer vectors, signed with saturation (optional).
Add integer vectors, unsigned with saturation (optional).
Subtract integer vectors, signed with saturation (op-
tional).

Subtract integer vectors, unsigned with saturation (op-
tional).

Multiply integer vectors, signed with saturation (op-
tional).

Multiply integer vectors, unsigned with saturation (op-
tional).

add with overflow check (optional).

subtract with overflow check (optional).

multiply with overflow check (optional).

divide with overflow check (optional).

Add with carry. Vector has two elements. The upper
element is used as carry on input and output (optional).
Subtract with borrow. Vector has two elements. The
upper element is used as borrow on input and output
(optional).

read special vector register. Length RT.

read internal call stack. RD = vector register destina-
tion of length RS, RT-RS = internal address (privileged
instruction).

write internal call stack. RD = vector register source
of length RS, RT-RS = internal address (privileged
instruction).

read memory map. RD = vector register destination

of length RS, RT-RS = internal address (privileged
instruction).

write memory map. RD = vector register source of
length RS, RT-RS = internal address (privileged instruc-
tion).

read from input port. RD = vector register, RT = port
address, RS = vector length (privileged instruction).
write to output port. RD = vector register source
operand, RT = port address, RS = vector length (privi-
leged instruction).

Move value of general purpose register RS to scalar in
vector register RD.

Move value of first element of vector register RS to
general purpose register RD.

Make a vector with RS sequential numbers. First value
is IM1.

Replace one element in vector RD, starting at offset
IM1-0S, with first element in RS.

Extract one element from vector RS, starting at offset
IM1-OS into a scalar in vector register RD.

42

compress

expand

float2int
int2float
round

round2n

abs
fp_category
broad
broadcast
max

byte reverse

bit_reverse

bitscan
popcount

bool2bits

bool_reduce

category _
reduce

push
pop
clear
move
add
and

or

Xxor

1.3B

1.3B

1.3B

1.3B

1.3B

1.3B

1.3B

1.3B

1.3B

1.3B

1.3B
1.3B

1.3B
1.3B

1.3B

1.3B

1.3B

1.3B
1.3B
1.3B
1.4C
1.4C

1.4C

1.4C

1.4C

12

13

14

15

16

17

18

19

20
20

21
22

25

26

26

56
57
58

Compress vector to half the length and half the ele-
ment size. Double precision — single precision, 64-bit
integer — 32-bit integer, etc.

Expand vector to the double length and the double el-
ement size. Half precision — single precision, 32-bit
integer — 64-bit integer, etc.

Conversion of floating point to integer with the same
operand size. The rounding mode is specified in IM1.
Conversion of integer to floating point with same
operand size.

Round floating point to integer in floating point repre-
sentation. The rounding mode is specified in IM1.
Round to nearest multiple of 2.

RD = 2" round(27"- RS). n is a signed integer constant
in IM1 (optional).

Absolute value of integer. IM1 determines handling of
overflow: 0: wrap around, 1: saturate, 2: zero.

Check if floating point numbers belong to the categories
indicated by constant.

Broadcast 8-bit constant into all elements of RD with
length RS (31 in RS field gives scalar output).
Broadcast 8-bit constant into all elements of RD with
maximum vector length.

Reverse the order of bytes in each element of vector.
Reverse the order of bits in each element of vector
(optional).

Bit scan forward or reverse. Find index to lowest set bit.
Count the number of bits that are 1 (optional for vec-
tors).

A boolean vector with n elements is packed into the
lower n bits of RD, taking bit 0 of each element. The
length of RD is at least sufficient to contain n bits.

An integer vector is reduced by combining bit O of all
elements. The output is a scalar integer where bit 0

is the AND combination of all the bits, and bit 1 is the
OR combination of all the bits. The remaining bits are
reserved for future use.

A floating point vector is reduced to a scalar integer
where each bit indicates that the source vector con-
tains at least one element in a certain category, such as
NAN, zero, normal positive, etc.

Push vector register RS to stack with pointer RD.

Pop vector register RS from stack with pointer RD.
Clear vector register RS.

Move 16 bit integer constant to 16-bit scalar (optional).
Add broadcasted 16 bit constant to 16-bit vector ele-
ments (optional).

AND broadcasted 16 bit constant with 16-bit vector
elements (optional).

OR broadcasted 16 bit constant with 16-bit vector ele-
ments (optional).

XOR broadcasted 16 bit constant with 16-bit vector
elements (optional).

43

move

move

add
add
and
and

or

or

xor
xor
move
move
add
add
mul
mul
add_h
mul_h
concatenate

permute

interleave

truth_tab3
move_bits

mask_length

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

1.4C

226 E

226 E

226 E

226E
227E

227E

10

11

12

13

14

15

16

17

32

33

34

35

36

37

40

41

0.1

1.1

2.1

8.1
0.1

1.1

RD = IM2 « IM1. Sign-extend IM2 to 32 bits and shift
left by the unsigned value IM1 to make 32 bit scalar
(optional).

RD = IM2 « IM1. Sign-extend IM2 to 64 bits and shift
left by the unsigned value IM1 to make 64 bit scalar
(optional).

RD += IM2 « IM1. Add broadcast shifted signed con-
stant to 32-bit vector elements (optional).

RD += IM2 « IM1. Add broadcast shifted signed con-
stant to 64-bit vector elements (optional).

RD &= IM2 « IM1. AND broadcast shifted signed con-
stant with 32-bit vector elements (optional).

RD &= IM2 « IM1. AND broadcast shifted signed con-
stant with 64-bit vector elements (optional).

RD |= IM2 « IM1. OR broadcast shifted signed constant
with 32-bit vector elements (optional).

RD |= IM2 « IM1. OR broadcast shifted signed constant
with 64-bit vector elements (optional).

RD A= IM2 « IM1. XOR broadcast shifted signed con-
stant with 32-bit vector elements (optional).

RD A= IM2 « IM1. XOR broadcast shifted signed con-
stant with 64-bit vector elements (optional).

Move converted half precision floating point constant to
single precision scalar (optional).

Move converted half precision floating point constant to
double precision scalar (optional).

Add broadcast half precision floating point constant to
single precision vector (optional).

Add broadcast half precision floating point constant to
double precision vector (optional).

Multiply broadcast half precision floating point constant
with single precision vector (optional).

Multiply broadcast half precision floating point constant
with double precision vector (optional).

add constant to half precision vector (optional).
multiply half precision vector with constant (optional).
A vector RU of length RT and a vector RS of length RT
are concatenated into a vector RD of length 2-RT.

The vector elements of RU are permuted within each
block of size RT bytes, using indices in RS. Each in-
dex is relative to the beginning of a block. An index out
of range produces zero. The maximum block size is
implementation dependent.

Interleave elements of vectors RU and RS of length
RT/2 to produce vector RD of length RT. Even-
numbered elements of the destination come from RU
and odd-numbered elements from RS. (optional).
Boolean function of three inputs, given by a truth table.
Replace one or more contiguous bits at one position

of RS with contiguous bits from another position of RT.
Optional

Make mask with true in the first RT bytes. Option bits in
IM2.

44

repeat_block 227E | 8.1 Repeat a block of data to make a longer vector. RS
is input vector containing data block to repeat. IM2 is
length in bytes of the block to repeat (must be a mul-
tiple of 4). RT is the length of destination vector RD.
(optional).

repeat _within | 22.7E | 9.1 Broadcast the first element of each block of data in a

_blocks vector to the entire block. RS is input vector containing
data blocks. IM2 is length in bytes of each block (must
be a multiple of the operand size). RT is length of des-
tination vector RD. The operand size must be at least 4
bytes. (optional).

load_hi 26A 0 Make vector of two elements. dest[0] = 0, dest[1] =
IM2.

insert_hi 2.6 A 1 Make vector of two elements. dest[0] = src1[0], dest[1]
= IM2.

make_mask 26A 2 Make vector where bit 0 of each element comes from
bits in IM2, the remaining bits come from RT.

replace 26A 3 Replace elements in RT by constant IM2.

replace_even | 2.6 A 4 Replace even-numbered elements in RT by constant
IM2.

replace_odd 26A 5 Replace odd-numbered elements in RT by constant
IM2.

broad 26A 6 Broadcast 32-bit or float32 constant into all elements of
RD with length RT (31 in RT field gives scalar output).

permute 2.6 A 8 The vector elements of RS are permuted within each
block of size RT bytes. The 4-n bits of IM2 are used as
index with 4 bits for each element in blocks of size n.
The same pattern is used in each block. The number of
elements in each block, n = RT/OS < 8.

replace 3.1A 32 Replace elements in RT by constant IM2,IM3.

broad 3.1A 33 Broadcast 64-bit or float64 constant into all elements of
RD with length RT (31 in RT field gives scalar output).

Table 4.8: List of single-format instructions with memory
operands.
Instruction Format | OP1, | Description
OoP2

store 25B 8 Store 32-bit constant IM2 to memory operand [RS+IM1]
(optional).

fence 25B 16 Memory fence at address [RS+IM2]. read, write or full
indicated by IM1.

com- 25B 18 Atomic compare and exchange with address [RS+IM2].

pare_swap

read_insert 25A 32 Replace one element in vector RD, starting at offset
RT-OS, with scalar memory operand [RS+IM2] (op-
tional).

extract_store | 2.5A 40 Extract one element from vector RD, starting at offset
RT-OS, with size OS into memory operand [RS+IM2]
(optional).

45

4.3 List of control transfer instructions

Table 4.9: Condition codes for control transfer instructions
with integer operands in general purpose registers

OPJ bit 0 Instruction Comment
of OPJ
0-7 part of Unconditional jump with 24-bit Format 1.7 D. Bit 0-2 of OPJ
offset offset (jump) are part of offset
8-15 part of Unconditional call with 24-bit offset | Format 1.7 D. Bit 0-2 of OPJ
offset (call) are part of offset
0-1 invert sub/jump_zero, Not format 1.7. Not floating
sub/jump_nzero point
2-3 invert sub/jump_neg, Not format 1.7. Not floating
sub/jump_nneg point
4-5 invert sub/jump_pos, Not format 1.7. Not floating
sub/jump_npos point
6-7 invert sub/jump_overfl, Not format 1.7. Not floating
sub/jump_noverfl point
8-9 invert sub/jump_borrow, Not format 1.7. Not floating
sub/jump_nborrow point
10-11 invert and/jump_zero Not format 1.7
and/jump_nzero
12-13 | invert or/jump_zero Not format 1.7
or/jump_nzero
14-15 | invert xor/jump_zero, Not format 1.7
xor/jump_nzero
16-17 | invert add/jump_zero, Not floating point
add/jump_nzero
18-19 | invert add/jump_neg, Not floating point
add/jump_nneg
20-21 invert add/jump_pos, Not floating point
add/jump_npos
22-23 | invert add/jump_overfl, Not floating point
add/jump_noverfl
24-25 | invert add/jump_carry, Not floating point
add/jump_ncarry
26-27 | invert test_bit/jump_true,
test_bit/jump_false
28-29 | invert test_bits_and/jump_true,
test_bits_and/jump_false
30-31 invert test_bits_or/jump_true,
test_bits_or/jump_false
32-33 | invert compare/jump_equal,
compare/jump_nequal
34-35 | invert compare/jump_sbelow,
compare/jump_saboveeq
36-37 | invert compare/jump_sabove,
compare/jump_sbeloweq
38-39 | invert compare/jump_ubelow,
compare/jump