URL
https://opencores.org/ocsvn/forwardcom/forwardcom/trunk
Subversion Repositories forwardcom
[/] [forwardcom/] [trunk/] [decoder.sv] - Rev 95
Go to most recent revision | Compare with Previous | Blame | View Log
//////////////////////////////////////////////////////////////////////////////////// Engineer: Agner Fog//// Create Date: 2020-05-30// Last modified: 2021-07-11// Module Name: decoder// Project Name: ForwardCom soft core// Target Devices: Artix 7// Tool Versions: Vivado v. 2020.1// License: CERN-OHL-W v. 2 or later// Description: Instruction decoder. Identifies instruction category and format,////////////////////////////////////////////////////////////////////////////////////`include "defines.vh"// To do:module decoder (input clock, // system clock (100 MHz)input clock_enable, // clock enable. Used when single-steppinginput reset, // system reset.input valid_in, // data from fetch module readyinput stall_in, // a later stage in pipeline is stalledinput [`CODE_ADDR_WIDTH-1:0] instruction_pointer_in, // address of current instructioninput [95:0] instruction_in, // current instruction, up to 3 words long// monitor tags written to register file:input write_en1, // a result is written to writeport1input [`TAG_WIDTH-1:0] write_tag1, // tag of result inwriteport1input write_en2, // a result is written to writeport2input [`TAG_WIDTH-1:0] write_tag2, // tag of result inwriteport2output reg valid_out, // An instruction is ready for output to next stageoutput reg [`CODE_ADDR_WIDTH-1:0] instruction_pointer_out, // address of current instructionoutput reg [95:0] instruction_out, // first word of instructionoutput reg stall_out, // Not ready to receive next instructionoutput reg [5:0] tag_a_out, // register number for instruction tagoutput reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag valueoutput reg tag_write_out, // instruction tag write enableoutput reg vector_out, // this is a vector instructionoutput reg [1:0] category_out, // 00: multiformat, 01: single format, 10: jumpoutput reg [1:0] format_out, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)output reg [2:0] rs_status_out, // what RS is used foroutput reg [2:0] rt_status_out, // what RT is used foroutput reg [1:0] ru_status_out, // what RU is used foroutput reg [1:0] rd_status_out, // what RD is used foroutput reg [1:0] mask_status_out, // what the mask register is used foroutput reg mask_options_out, // mask register may contain option bitsoutput reg mask_alternative_out, // mask register and fallback register used for alternative purposesoutput reg [2:0] fallback_use_out, // 0: no fallback, 1: same as first source operand, 2-4: RU, RS, RToutput reg [1:0] num_operands_out, // number of source operandsoutput reg [1:0] result_type_out, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothingoutput reg [1:0] offset_field_out, // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bitoutput reg [1:0] immediate_field_out, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bitoutput reg [1:0] scale_factor_out, // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1output reg index_limit_out, // The field indicated by offset_field contains a limit to the indexoutput reg [31:0] debug1_out // Temporary output for debugging purpose);logic [1:0] register_type; // 1: general purpose registers, 2: vector registerslogic [1:0] category; // 00: multiformat, 01: single format, 10: jumplogic [1:0] format; // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)logic [1:0] num_operands; // number of source operandslogic [2:0] rs_status; // use of RS registerlogic [2:0] rt_status; // use of RT registerlogic [1:0] ru_status; // use of RU registerlogic [1:0] rd_status; // use of RD register for inputlogic mask_used; // 1: mask register is usedlogic mask_options; // mask register may contain optionslogic [2:0] fallback_use; // 0: no fallback, 1: same as first source operand, 2-4: RU, RS, RTlogic [1:0] scale_factor; // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1logic [1:0] offset_field; // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bitlogic [1:0] immediate_field; // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bitlogic index_limit; // The field indicated by offset_field contains a limit to the indexlogic broadcast; // Broadcast scalar memory operand or immediate operandlogic [1:0] result_type; // type of result: 0: register, 1: system register, 2: memory, 3: other or nothinglogic format_error; // unknown or unsupported instruction formatlogic tag_write; // a tag is writtenlogic tag_error; // unpredicted tag errorlogic [1:0] il; // instruction lengthlogic [2:0] mode; // instruction modelogic [5:0] op1; // OP1 in instructionlogic M; // M bitlogic [1:0] op2; // OP2 in E formatlogic [2:0] mode2; // mode2 in E formatlogic valid; // valid output is readylogic mask_alternative; // mask register and fallback register used for alternative purposesinteger signed count_inputs; // calculate whether RD and RU are needed for input operandsreg [`TAG_WIDTH-1:0] current_tag = 1; // sequential instruction tagsreg [(2**`TAG_WIDTH)-1:0] tag_used = 0; // remember which tags are in uselogic [`TAG_WIDTH-1:0] next_tag; // next instruction tags// analyze instructionalways_comb beginil = instruction_in[`IL];mode = instruction_in[`MODE];op1 = instruction_in[`OP1];M = instruction_in[`M];op2 = instruction_in[`OP2];mode2 = instruction_in[`MODE2];num_operands = 2;ru_status = 0;rd_status = 0;mask_used = 0;mask_options = 0;mask_alternative = 0;format_error = 0;valid = valid_in & !reset;// detect instruction format: A, B, C, or E (format D never comes to the decoder)if (il == 0) begin // format 0.xif (mode == 1 || mode == 3 || mode == 7) beginformat = `FORMAT_B; // 0.1, 0.3, 0.7, 0.9end else beginformat = `FORMAT_A; // 0.0, 0.2, 0.4, 0.5, 0.6, 0.8endend else if (il == 1) begin // format 1.xif (mode == 3 || (mode == 0 && M)) beginformat = `FORMAT_B; // 1.3, 1.8end else if (mode == 6) begin // 1.6 jump instructionsif (op1 == `II_RETURN) format = `FORMAT_C; // returnelse if (op1 >= `II_JUMP_RELATIVE) beginformat = `FORMAT_A; // relative jump, sys_callend else format = `FORMAT_B;end else if (mode == 1 || mode == 4 || mode == 7) beginformat = `FORMAT_C; //1.1, 1.4, 1.7end else beginformat = `FORMAT_A; // 1.0, 1.2endend else if (il == 2) begin // format 2.xif ((mode == 0 && M == 0) || mode == 2) beginformat = `FORMAT_E; // 2.0.x, 2.2.xend else if (mode == 5) begin // format 2.5 mixedif (op1 == 0) format = `FORMAT_A; // jump format 2.5.0Aelse if (op1 <= 3) format = `FORMAT_B; // jump format 2.5.1B, 2.5.2Belse if (op1 <= 7) format = `FORMAT_C; // jump format 2.5.4C - 2.5.7Celse if (op1 >= `II_25_VECT) format = `FORMAT_A; // 2.5 32-63 vector instructionselse format = `FORMAT_B; // other miscellaneous instructionsend else beginformat = `FORMAT_A; // other formats 2.xendend else begin // format 3.xif ((mode == 0 && M == 0) || mode == 2) beginformat = `FORMAT_E; // 3.0.x, 3.2.xend else if (mode == 1) begin // 3.1 mixedif (op1 > 0 && op1 < 8) begin // jump instructions 3.1.1 - 3.1.7format = `FORMAT_B;end else beginformat = `FORMAT_A;endend else beginformat = `FORMAT_A;endend// detect category, 00: multiformat, 01: single format, 10: jump// (this differs from the category numbers in instruction_list.cvs)if (il == 0) begin // format 0.xcategory = `CAT_MULTI;end else if (il == 1) begin // format 1.xif (mode == 6 || mode == 7) begin // format 1.6 and 1.7category = `CAT_JUMP;end else begincategory = `CAT_SINGLE;endend else if (il == 2 && ((mode == 0 && !M) || mode == 2) && op2 != 0 && mode2 != 5) begin// op2 > 0 in format 2.0.x, 2.2.x, except 2.0.5, 2.2.5category = `CAT_SINGLE;end else if (il == 3 && ((mode == 0 && !M) || mode == 2) && op2 != 0) begin// op2 > 0 in format 3.0.x, 3.2.xcategory = `CAT_SINGLE;end else if (il == 2) begin // format 2.xif (mode == 1 && M) begin // format 2.9category = `CAT_SINGLE;end else if (mode == 6 || mode == 7) begin // format 2.6 - 2.7category = `CAT_SINGLE;end else if (mode == 5) begin // format 2.5if (op1 < 8) begincategory = `CAT_JUMP;end else begincategory = `CAT_SINGLE;endend else begincategory = `CAT_MULTI;endend else begin // format 3.xif (mode == 1) begin // format 3.1if (op1 < 8) begincategory = `CAT_JUMP;end else begincategory = `CAT_SINGLE;endend else begincategory = `CAT_MULTI;endend// is this a vector instruction?register_type = `REG_OPERAND;if (category == `CAT_JUMP) beginif (M && format != `FORMAT_C) register_type = `REG_VECTOR;end else if (il == 2 && mode == 5) begin // 2.5 mixedif (op1 >= `II_25_VECT) register_type = `REG_VECTOR;end else if (il == 3 && mode == 1) begin // 3.1 mixedif (op1 >= `II_31_VECT) register_type = `REG_VECTOR;end else if (mode >= 2) beginregister_type = `REG_VECTOR;end// count number of operands and mask useif (category == `CAT_MULTI) beginif (op1 == `II_NOP) num_operands = 0;else if (op1 <= `II_ONE_OP) num_operands = 1;else if (op1 >= `II_3OP_FIRST && op1 <= `II_3OP_LAST) beginnum_operands = 3;// There are currently no g.p. instructions that have option bits in a mask register.// To do: Set mask_options for relevant floating point instructions// if (format != `FORMAT_A && format != `FORMAT_E) mask_options = 1;endif ((format == `FORMAT_E || format == `FORMAT_A) && (op1 == `II_COMPARE || op1 == `II_TEST_BIT || op1 == `II_TEST_BITS_AND || op1 == `II_TEST_BITS_OR)) beginmask_alternative = 1; // these instructions allow alternative use of mask register and fallback registerend/* This is done in address generator:if (format == `FORMAT_E && op1 >= `II_MUL_ADD_FLOAT16 && op1 <= `II_ADD_ADD) beginoptions_im3 = 1; // IM3 contains option bits, not shift countend*/end else if (il == 1 && mode == 1) begin // format 1.1 C (don't check M because there is no M bit in format C)if (op1 <= `II_MOVE11_LAST) num_operands = 1; // moveend else if (il == 1 && mode == 2) begin // format 1.2 Aif (op1 <= `II_GETNUM_12) num_operands = 1;if (op1 == `II_OUTPUT_18) num_operands = 3; // output instructionend else if (il == 1 && mode == 0 && M) begin // format 1.8if (op1 == `II_VECTORS_USED) num_operands = 0; // vectors_used instructionif (op1 == `II_OUTPUT_18) num_operands = 3; // output instructionend else if (il == 2 && mode == 6) begin // format 2.6 Aif (op1 == `II_LOAD_HI_26) num_operands = 1; // load_hi instructionend else if (il == 2 && mode == 1 && M) begin // format 2.9 Aif (op1 == `II_MOVE_HI_29 || op1 == `II_ADDRESS_29) num_operands = 1; // mov or address instructionend else if (il == 2 && (mode == 0 && !M || mode == 2)) begin // format 2.0.x, 2.2.xif (mode2 == 6 && op1 == `II_TRUTH_TAB3 && op2 == `II2_TRUTH_TAB3) beginnum_operands = 3; // truth_tab3. 3 operandsendif (mode2 == 7 && op1 == `II_MOVE_BITS && op2 == `II2_MOVE_BITS) beginnum_operands = 3; // move_bits. 3 operands (Actually 5 operands: IM2 contains two 6-bit constants, IM3 contains the last operand)endend else if (category == `CAT_JUMP) beginif (il == 1 && mode == 6) beginif (op1 >> 1 == `IJ_JUMP_INDIRECT_MEM >> 1) num_operands = 1;else if (op1 >> 1 == `IJ_RETURN >> 1) num_operands = 0;end else if (il == 1 && mode == 7) beginif (op1 >> 1 == `IJ_JUMP_INDIRECT_REG >> 1) num_operands = 1;else if (op1 == `IJ_SYSRETURN || op1 == `IJ_TRAP) num_operands = 0;end else if (il == 2 && mode == 5 && instruction_in[5:1] == 58 >> 1) beginnum_operands = 1;end// else if ?endif (format == `FORMAT_A || format == `FORMAT_E) beginif (instruction_in[`MASK] != 7) mask_used = 1; // a mask register is usedend// detect use of registers and pointer, index, scale factor, offset, limit, fallbackindex_limit = 0;offset_field = `OFFSET_NONE;immediate_field = `IMMED_NONE;rs_status = `REG_UNUSED;rt_status = `REG_UNUSED;rd_status = `REG_UNUSED;scale_factor = `SCALE_UNDEF;broadcast = 0;fallback_use = mask_used ? `FALLBACK_SOURCE : `FALLBACK_NONE;// detect formatif (il == 0) begin // format 0.xif ((mode == 0 && !M) || mode == 2) begin// format 0.0A, 0.2A: RD = f3(RD, RS, RT)if (num_operands > 0) rt_status = register_type;if (num_operands > 1 || mask_used) rs_status = register_type;if (num_operands > 2) rd_status = register_type;if (mask_used && num_operands == 1) fallback_use = `FALLBACK_RS;end else if ((mode == 1 && !M) || mode == 3) begin// format 0.1B, 0.3B: RD = f3(RD, RS, IM1).if (num_operands > 1) rs_status = register_type;if (num_operands > 2) rd_status = register_type;immediate_field = `IMMED_1;end else if (mode == 4) begin// format 0.4A: RD = f2(RD, [RS]).if (num_operands > 1 || mask_used) rd_status = `REG_VECTOR;if (num_operands > 2) format_error = 1;rs_status = `REG_POINTER;rt_status = `REG_LENGTH;end else if (mode == 5) begin// format 0.5A: f2(RD, [RS-RT]).rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;scale_factor = `SCALE_MINUS;if (num_operands > 1 || mask_used) rd_status = `REG_VECTOR;if (num_operands > 2) format_error = 1;end else if (mode == 6) begin// format 0.6A: f2(RD, [RS+RT*OS]). scalarrs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;scale_factor = `SCALE_OS;if (num_operands > 1 || mask_used) rd_status = `REG_VECTOR;if (num_operands > 2) format_error = 1;end else if (mode == 7) begin// format 0.7B: f2(RD, [RS+IM1*OS]). scalarrs_status = `REG_POINTER;scale_factor = `SCALE_OS;offset_field = `OFFSET_1;if (num_operands > 1) rd_status = `REG_VECTOR;if (num_operands > 2) format_error = 1;end else if (mode == 0 && M) begin// format 0.8A: f2(RD, [RS+RT*OS]).rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;scale_factor = `SCALE_OS;if (num_operands > 1 || mask_used) rd_status = `REG_OPERAND;if (num_operands > 2) format_error = 1;end else if (mode == 1 && M) begin// format 0.9B: f2(RD, [RS+IM1*OS]).rs_status = `REG_POINTER;scale_factor = `SCALE_OS;offset_field = `OFFSET_1;if (num_operands > 1) rd_status = `REG_OPERAND;if (num_operands > 2) format_error = 1;endend else if (il == 1) begin// format 1.x. no memory operandsif ((mode == 0 && !M) || mode == 2) begin// format 1.0A, 1.2A: RD = f3(RD, RS, RT).if (num_operands > 0) rt_status = register_type;if (num_operands > 1 || mask_used) rs_status = register_type;if (num_operands > 2) rd_status = register_type;if (mask_used && num_operands == 1) fallback_use = `FALLBACK_RS;end else if (mode == 1 || mode == 4) begin// format 1.1C, 1.4C: RD = f2(RD, IM1-2).if (num_operands > 1) rd_status = register_type;if (num_operands > 2) format_error = 1;immediate_field = `IMMED_2;end else if (mode == 3 || (mode == 0 & M)) begin// format 1.3B, 1.8B: RD = f3(RD, RS, IM1).if (num_operands > 1) rs_status = register_type;if (num_operands > 2) rd_status = register_type;if (op1 == `II_READ_SPEC18 && mode[0] == 0) rs_status = `REG_SYSTEM;immediate_field = `IMMED_1;end else if (mode == 4) begin// format 1.4C: RD = f2(RD, IM1-2)immediate_field = `IMMED_2;if (num_operands > 1) rd_status = register_type;end else if (mode == 5) begin// format 1.5:format_error = 1; // format 1.5 unusedend else if (mode == 6) begin// format 1.6: jump instructionsif (op1 <= `IJ_LAST_CONDITIONAL) begin// ordinary conditional jumpsrs_status = register_type;rd_status = register_type;end else if (op1[5:1] == (`IJ_JUMP_INDIRECT_MEM >> 1)) begin// indirect jump to memory addressrs_status = `REG_POINTER;offset_field = `OFFSET_1;scale_factor = `SCALE_OS;end else if (op1[5:1] == (`IJ_JUMP_RELATIVE >> 1)) begin// jump to table of relative pointers in memory. format 1.6Ars_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;rd_status = `REG_OPERAND;scale_factor = `SCALE_OS;offset_field = `OFFSET_NONE;if (instruction_in[`MASK] != 7) format_error = 1; // mask not allowedend else if (op1 == `IJ_SYSCALL) beginrs_status = `REG_OPERAND;rt_status = `REG_OPERAND;rd_status = `REG_OPERAND;endend else if (mode == 7) begin// format 1.7: jump instructionsif (op1 != `IJ_SYSRETURN && op1 != `IJ_TRAP) beginrd_status = register_type;endif (op1 <= `IJ_LAST_CONDITIONAL) beginimmediate_field = `IMMED_1; // IM2 = immediate operandendend else if (mode == 0 && M) begin// format 1.8B: RD = f3(RD, RS, IM1).if (num_operands > 0) rs_status = `REG_OPERAND;if (num_operands > 1) rd_status = `REG_OPERAND;if (num_operands > 2) format_error = 1;immediate_field = `IMMED_1;endend else if (il == 2 && mode == 0 && !M) begin// format 2.0.x Eif (mode2 == 0) begin// format 2.0.0: RD = f3(RU, RT, [RS+IM2]).rs_status = `REG_POINTER;offset_field = `OFFSET_2;if (num_operands > 1) rt_status = `REG_OPERAND;if (num_operands > 2 | mask_used | mask_alternative) ru_status = `REG_OPERAND;if ((mask_used | mask_alternative) && num_operands < 3) fallback_use = `FALLBACK_RU;end else if (mode2 == 1) begin// format 2.0.1: RD = f3(RD, RU, [RS+RT+IM2]).rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;offset_field = `OFFSET_2;scale_factor = `SCALE_NONE;if (num_operands > 1 || mask_used) ru_status = `REG_OPERAND;if (num_operands > 2) rd_status = `REG_OPERAND;if (mask_used && num_operands == 1) beginfallback_use = `FALLBACK_RU; ru_status = `REG_OPERAND;endend else if (mode2 == 2) begin// format 2.0.2: RD = f3(RD, RU, [RS+RT*OS+IM2]).rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;offset_field = `OFFSET_2;scale_factor = `SCALE_OS;if (num_operands > 1 || mask_used) ru_status = `REG_OPERAND;if (num_operands > 2) rd_status = `REG_OPERAND;if (mask_used && num_operands == 1) fallback_use = `FALLBACK_RU;end else if (mode2 == 3) begin// format 2.0.3: RD = f3(RD, RU, [RS+RT*OS]).. limit IM2rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;scale_factor = `SCALE_OS;index_limit = 1;if (num_operands > 1 || mask_used) ru_status = `REG_OPERAND;if (num_operands > 2) rd_status = `REG_OPERAND;if (mask_used && num_operands == 1) fallback_use = `FALLBACK_RU;end else if (mode2 == 5) begin// format 2.0.5: RD = f3(RU, [RS+RT*OS+IM2], IM3).rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;scale_factor = `SCALE_OS;offset_field = `OFFSET_2;immediate_field = `IMMED_1; // immediate field IM3 extended into OP2if (num_operands > 2 | mask_used | mask_alternative) ru_status = `REG_OPERAND;if ((mask_used | mask_alternative) && num_operands < 3) fallback_use = `FALLBACK_RU;end else if (mode2 == 6) beginoffset_field = `OFFSET_NONE;// format 2.0.6: RD = f3(RU, RS, RT).rt_status = `REG_OPERAND;if (num_operands > 1) rs_status = `REG_OPERAND;if (num_operands > 2 | mask_used | mask_alternative) ru_status = `REG_OPERAND;if ((mask_used | mask_alternative) && num_operands < 3) fallback_use = `FALLBACK_RU;end else if (mode2 == 7) beginimmediate_field = `IMMED_2;// format 2.0.7: RD = f3(RS, RT, IM2 << IM3).if (num_operands > 1) rt_status = `REG_OPERAND;if (num_operands > 2) rs_status = `REG_OPERAND;if ((mask_used | mask_alternative) && num_operands < 3) beginfallback_use = `FALLBACK_RS; rs_status = `REG_OPERAND;endend else begin// format 2.0.4 unusedformat_error = 1;endend else if (il == 2 && mode == 1 && !M) begin// format 2.1A. RD = f3(RD, RT, [RS+IM2]).rs_status = `REG_POINTER;offset_field = `OFFSET_3;scale_factor = `SCALE_NONE;if (num_operands > 1 || mask_used) rt_status = `REG_OPERAND;if (num_operands > 2) rd_status = `REG_OPERAND;if (mask_used && num_operands == 1) fallback_use = `FALLBACK_RT;end else if (il == 2 && mode == 2) begin// format 2.2.x Eif (mode2 == 0) begin// format 2.2.0: RD = f3(RD, RU, [RS+IM2]). broadcastrs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_LENGTH;offset_field = `OFFSET_2;broadcast = 1;if (num_operands > 1 || mask_used) ru_status = `REG_VECTOR;if (num_operands > 2) rd_status = `REG_VECTOR;if (mask_used && num_operands == 1) fallback_use = `FALLBACK_RU;end else if (mode2 == 1) begin// format 2.2.1: RD = f3(RD, RU, [RS+IM2]). length RTrs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_LENGTH;offset_field = `OFFSET_2;if (num_operands > 1 || mask_used) ru_status = `REG_VECTOR;if (num_operands > 2) rd_status = `REG_VECTOR;if (mask_used && num_operands == 1) fallback_use = `FALLBACK_RU;end else if (mode2 == 2) begin// format 2.2.2: RD = f3(RD, RU, [RS+RT*OS+IM2]).. scalarrs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;offset_field = `OFFSET_2;scale_factor = `SCALE_OS;if (num_operands > 1 || mask_used) ru_status = `REG_VECTOR;if (num_operands > 2) rd_status = `REG_VECTOR;if (mask_used && num_operands == 1) fallback_use = `FALLBACK_RU;end else if (mode2 == 3) begin// format 2.2.3: RD = f3(RD, RU, [RS+RT*OS]).. limit IM2rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;scale_factor = `SCALE_OS;index_limit = 1;if (num_operands > 1 || mask_used) ru_status = `REG_VECTOR;if (num_operands > 2) rd_status = `REG_VECTOR;if (mask_used && num_operands == 1) fallback_use = `FALLBACK_RU;end else if (mode2 == 4) begin// format 2.2.4: RD = f3(RD, RU, [RS-RT+IM2]).rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;scale_factor = `SCALE_MINUS;offset_field = `OFFSET_2;if (num_operands > 1 || mask_used) ru_status = `REG_VECTOR;if (num_operands > 2) rd_status = `REG_VECTOR;if (mask_used && num_operands == 1) fallback_use = `FALLBACK_RU;end else if (mode2 == 5) begin// format 2.2.5: RD = f3(RU, [RS+IM2], IM3).rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_LENGTH;offset_field = `OFFSET_2;immediate_field = `IMMED_1; // immediate field IM3 extended into OP2if (num_operands > 2 || mask_used) ru_status = `REG_OPERAND;if ((mask_used | mask_alternative) && num_operands < 3) beginfallback_use = `FALLBACK_RU; ru_status = `REG_VECTOR;endend else if (mode2 == 6) begin// format 2.2.6: RD = f3(RU, RS, RT).offset_field = `OFFSET_NONE; // register operands onlyrt_status = `REG_VECTOR;if (num_operands > 1) rs_status = `REG_VECTOR;if (num_operands > 2) ru_status = `REG_VECTOR;if ((mask_used | mask_alternative) && num_operands < 3) beginfallback_use = `FALLBACK_RU; ru_status = `REG_VECTOR;endend else if (mode2 == 7) begin// format 2.2.7: RD = f3(RS, RT, IM2 << IM3).immediate_field = `IMMED_2; // immediate operandif (num_operands > 1) rt_status = `REG_VECTOR;if (num_operands > 2) rs_status = `REG_VECTOR;if ((mask_used | mask_alternative) && num_operands < 3) beginfallback_use = `FALLBACK_RS; rs_status = `REG_VECTOR;endendend else if (il == 2 && mode == 3) begin// format 2.3A: RD = f3(RS, RT, IM2).immediate_field = `IMMED_3; // immediate operandif (num_operands > 1) rt_status = `REG_VECTOR;if (num_operands > 2 || mask_used) rs_status = `REG_VECTOR;if (mask_used && num_operands < 3) fallback_use = `FALLBACK_RS;end else if (il == 2 && mode == 4) begin// format 2.4A: RD = f2(RD, [RS+IM2]). length=RT.rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_LENGTH;offset_field = `OFFSET_3;if (num_operands > 1 || mask_used) rd_status = `REG_VECTOR;if (num_operands > 2) format_error = 1;end else if (il == 2 && mode == 5) begin// format 2.5: jump or mixedif (op1 < 8) begin // jump instructions. Detect number of operandsif (op1 == 2 && instruction_in[5:1] == `IJ_JUMP_INDIRECT_MEM >> 1) num_operands = 1;endif (op1 == 0) begin// format 2.5.0A: jump with three register operands and 24 bit offsetrs_status = register_type;rt_status = register_type;end else if (op1 == 1) begin// format 2.5.1B: jump with a register source operand and a 16-bit immediate operandrs_status = register_type;immediate_field = `IMMED_2; // 16 bit in lower half of IM2end else if (op1 == 2) begin// format 2.5.2B: jump with register (RD), memory operand w 16 bit address, 16 bit jump offsetrd_status = register_type;rs_status = `REG_POINTER;offset_field = `OFFSET_2;if (instruction_in[5:1] == `IJ_JUMP_INDIRECT_MEM >> 1) offset_field = `OFFSET_3; // format 2.5.2x: 32 bit memory offsetend else if (op1 == 3) begin// format 2.5.3: unusedformat_error = 1;end else if (op1 == 4) begin// format 2.5.4: jump with register (RD), one 8-bit immediate constant and 32 bit offsetrd_status = register_type;immediate_field = `IMMED_1; // note: immediate operand in bit 8-15end else if (op1 == 5) begin// format 2.5.5: jump with one register operand (RD), an 8-bit offset and a 32-bit immediate constantrd_status = register_type;immediate_field = `IMMED_3;end else if (op1 == 6) begin// format 2.5.6: unusedformat_error = 1;end else if (op1 == 7) begin// format 2.5.7: system call, no OPJ, 16 bit constant and 32-bit constantrd_status = `REG_OPERAND;immediate_field = `IMMED_3;end else if (op1 == `II_STOREI) begin // store constant to memoryrs_status = `REG_POINTER;offset_field = `OFFSET_1;immediate_field = `IMMED_3;end else if (op1 == `II_CMPSWAP) begin // compare_swap instruction not implementedrs_status = `REG_POINTER;rt_status = `REG_OPERAND;rd_status = `REG_OPERAND;offset_field = `OFFSET_3;end else begin // other. mixed format. fallback use unknownrs_status = `REG_POINTER;offset_field = `OFFSET_3;rt_status = register_type;rd_status = register_type;endend else if (il == 2 && mode == 6) begin// format 2.6A: RD = f3(RS, RT, IM2).immediate_field = `IMMED_3;if (num_operands > 1) rt_status = `REG_VECTOR;if (num_operands > 2 || mask_used) rs_status = `REG_VECTOR;if (mask_used && num_operands < 3) fallback_use = `FALLBACK_RS;end else if (il == 2 && mode == 7) begin// format 2.7: unusedformat_error = 1;end else if (il == 2 && mode == 0 && M) begin// format 2.8A: RD = f3(RS, RT, IM2).immediate_field = `IMMED_3;if (num_operands > 1) rt_status = `REG_OPERAND;if (num_operands > 2 || mask_used) rs_status = `REG_OPERAND;if (mask_used && num_operands < 3) beginfallback_use = `FALLBACK_RS;endend else if (il == 2 && mode == 1 && M) begin// format 2.9A: RD = f3(RS, RT, IM2).if (op1 == `II_ADDRESS_29) beginoffset_field = `OFFSET_3; // address instructionrs_status = `REG_POINTER;if (mask_used) fallback_use = `FALLBACK_RT; // can address instruction have mask?if (mask_used) rt_status = `REG_OPERAND;end else beginimmediate_field = `IMMED_3;if (num_operands > 1) rt_status = `REG_OPERAND;if (num_operands > 2 || mask_used) rs_status = `REG_OPERAND;if (mask_used && num_operands < 3) fallback_use = `FALLBACK_RS;endend else if (il == 3 && mode == 0 && !M) begin// format 3.0.x Eif (mode2 == 0) begin// format 3.0.0: RD = f3(RU, RS, [RS+IM4]).rs_status = `REG_POINTER;offset_field = `OFFSET_3;if (num_operands > 1) rt_status = `REG_OPERAND;if (num_operands > 2) ru_status = `REG_OPERAND;if ((mask_used | mask_alternative) && num_operands < 3) beginfallback_use = `FALLBACK_RU; ru_status = `REG_OPERAND;endend else if (mode2 == 2) begin// format 3.0.2: RD = f3(RD, RU, [RS+RT*OS+IM4]).rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;offset_field = `OFFSET_3;scale_factor = `SCALE_OS;if (num_operands > 1 || mask_used) ru_status = `REG_OPERAND;if (num_operands > 2) rd_status = `REG_OPERAND;if (mask_used && num_operands == 1) beginfallback_use = `FALLBACK_RU;endend else if (mode2 == 3) begin// format 3.0.3: RD = f3(RD, RU, [RS+RT*OS]).. limit IM4rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;scale_factor = `SCALE_OS;index_limit = 1;if (num_operands > 1 || mask_used) ru_status = `REG_OPERAND;if (num_operands > 2) rd_status = `REG_OPERAND;if (mask_used && num_operands == 1) beginfallback_use = `FALLBACK_RU;endend else if (mode2 == 5) begin// format 3.0.5: RD = f3(RU, [RS+RT*OS+IM2], IM4).rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;scale_factor = `SCALE_OS;offset_field = `OFFSET_2;immediate_field = `IMMED_3;if (num_operands > 2) ru_status = `REG_OPERAND;if ((mask_used | mask_alternative) && num_operands < 3) beginfallback_use = `FALLBACK_RU; ru_status = `REG_OPERAND;endend else if (mode2 == 7) begin// format 3.0.7: RD = f3(RS, RT, IM4 << IM2).immediate_field = `IMMED_3;if (num_operands > 1) rt_status = `REG_OPERAND;if (num_operands > 2 || mask_used) rs_status = `REG_OPERAND;if ((mask_used | mask_alternative) && num_operands < 3) beginfallback_use = `FALLBACK_RS; rs_status = `REG_OPERAND;endend else beginformat_error = 1; // other formats unusedendend else if (il == 3 && mode == 1) begin// format 3.1: jump or mixedif (op1 < 8) begin// jump instructions. Detect number of operandsif (op1 == 1 && instruction_in[5:1] == `IJ_JUMP_DIRECT >> 1) num_operands = 0; // direct jumpendif (op1 == 0) begin// format 3.1.0A jump with two registers, memory operand with 32 bit address, 24 bit jump offsetrs_status = `REG_POINTER;rt_status = register_type;offset_field = `OFFSET_3;end else if (op1 == 1) begin// format 3.1.1B: jump with 2 registers, 32-bit immediate operand and a 32-bit jump offsetrs_status = register_type;immediate_field = `IMMED_3;end else begin// single format instructions in format 3.1immediate_field = `IMMED_3;if (num_operands > 0) rt_status = register_type;if (num_operands > 1 || mask_used) rs_status = register_type;if (num_operands > 2) rd_status = register_type;// mixed formats. fallback use unknownendend else if (il == 3 && mode == 2) begin// format 3.2.x Eif (mode2 == 0) begin// format 3.2.0: RD = f3(RD, RU, [RS+IM4]).. broadcastrs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_LENGTH;offset_field = `OFFSET_3;broadcast = 1;if (num_operands > 1 || mask_used) ru_status = `REG_VECTOR;if (num_operands > 2) rd_status = `REG_VECTOR;if (mask_used && num_operands == 1) beginfallback_use = `FALLBACK_RU;endend else if (mode2 == 1) begin// format 3.2.1: RD = f3(RD, RU, [RS+IM4]). Length RTrs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_LENGTH;offset_field = `OFFSET_3;if (num_operands > 1 || mask_used) ru_status = `REG_VECTOR;if (num_operands > 2) rd_status = `REG_VECTOR;if (mask_used && num_operands == 1) beginfallback_use = `FALLBACK_RU;endend else if (mode2 == 2) begin// format 3.2.2: RD = f3(RD, RU, [RS+RT*OS+IM4]).. scalarrs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;offset_field = `OFFSET_3;scale_factor = `SCALE_OS;if (num_operands > 1 || mask_used) ru_status = `REG_VECTOR;if (num_operands > 2) rd_status = `REG_VECTOR;if (mask_used && num_operands == 1) beginfallback_use = `FALLBACK_RU;endend else if (mode2 == 3) begin// format 3.2.3: RD = f3(RD, RU, [RS+RT*OS]).. limit IM4rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_INDEX;scale_factor = `SCALE_OS;index_limit = 1;if (num_operands > 1 || mask_used) ru_status = `REG_VECTOR;if (num_operands > 2) rd_status = `REG_VECTOR;if (mask_used && num_operands == 1) beginfallback_use = `FALLBACK_RU;endend else if (mode2 == 5) begin// format 3.2.5: RD = f3(RU, [RS+IM2], IM4). Length=RT.rs_status = `REG_POINTER;if (instruction_in[`RT] != 5'H1F) rt_status = `REG_LENGTH;offset_field = `OFFSET_2;immediate_field = `IMMED_3;if (num_operands > 2 || mask_used) ru_status = `REG_VECTOR;if ((mask_used | mask_alternative) && num_operands < 3) beginfallback_use = `FALLBACK_RU; ru_status = `REG_VECTOR;endend else if (mode2 == 7) begin// format 3.2.7: RD = f3(RS, RT, IM4).immediate_field = `IMMED_3;if (num_operands > 1) rt_status = `REG_VECTOR;if (num_operands > 2 || mask_used) rs_status = `REG_VECTOR;if ((mask_used | mask_alternative) && num_operands < 3) beginfallback_use = `FALLBACK_RS; rs_status = `REG_VECTOR;endend else begin// other formats unusedformat_error = 1;endend else if (il == 3 && mode == 3) begin// format 3.3A: RD = f3(RS, RT, IM2-3).immediate_field = `IMMED_3;if (num_operands > 1) rt_status = `REG_VECTOR;if (num_operands > 2 || mask_used) rs_status = `REG_VECTOR;if (mask_used && num_operands < 3) fallback_use = `FALLBACK_RS;end else if (il == 3 && mode == 0 && M) begin// format 3.8A: RD = f3(RS, RT, IM2-3).immediate_field = `IMMED_3;if (num_operands > 1) rt_status = `REG_OPERAND;if (num_operands > 2 || mask_used) rs_status = `REG_OPERAND;if (mask_used && num_operands < 3) fallback_use = `FALLBACK_RS;end// detect type of resultresult_type = `RESULT_REG; // default result typeif (category == `CAT_MULTI && op1 == `II_STORE) beginresult_type = `RESULT_MEM; // store instructionrd_status = `REG_OPERAND; // source is rdend else if (il == 2 && mode == 5 &&(op1 == `II_STOREI || op1 == `II_FENCE || op1 == `II_CMPSWAP || op1 == `II_XTR_STORE)) beginresult_type = `RESULT_MEM; // various complex memory instructionsend else if (il == 1 && mode == 0 && M && // format 1.8(op1 == `II_WR_SPEC || op1 == `II_WR_CAPA)) beginresult_type = `RESULT_SYS; // write system registersend else if (il == 1 && mode == 0 && M && op1 == `II_OUTPUT_18) beginresult_type = `RESULT_NONE; // output, format 1.8end else if (category == `CAT_MULTI && op1 == `II_NOP) beginresult_type = `RESULT_NONE; // nopend else if (il == 1 && mode == 2 && op1 == `II_OUTPUT_18) beginresult_type = `RESULT_NONE; // output, format 1.2end else if (il == 1 && mode == 3 && op1 == `II_CLEAR) beginresult_type = `RESULT_NONE; // the clear instruction goes directly to the vector register file, not through the ALUend else if (category == `CAT_JUMP && il == 1) beginif ((op1 <= `II_UNCOND_JUMP && mode == 7) || (op1 >= `II_COMPARE_FIRST && op1 <= `II_COMPARE_LAST) || op1 >= `II_INDIRECT_JUMP) result_type = `RESULT_NONE;end else if (category == `CAT_JUMP && il > 1 && op1 == 0) begin // jump formats 2.5.0A and 3.1.0A have opj in byte 7if ((instruction_in[61:56] >= `II_COMPARE_FIRST && instruction_in[61:56] <= `II_COMPARE_LAST) || instruction_in[61:56] >= `II_INDIRECT_JUMP) result_type = `RESULT_NONE;end else if (category == `CAT_JUMP && il > 1) begin // other jump formats have opj in byte 0if ((instruction_in[5:0] >= `II_COMPARE_FIRST && instruction_in[5:0] <= `II_COMPARE_LAST) || instruction_in[5:0] >= `II_INDIRECT_JUMP) result_type = `RESULT_NONE;endend// update tagsalways_comb beginnext_tag = 0;tag_write = 0;if (tag_used[current_tag]) begin // tag in use should have been predictedtag_error = 1;end else begintag_error = 0;end// instructions without a result register need a tag in addressgenerator to distinguish instructionsif (valid & !stall_in) begin// needs a new tagtag_write = 1;if (¤t_tag) next_tag = 1; // skip value 0else next_tag = current_tag + 1;end else beginnext_tag = current_tag;endend// send tag to register filealways_ff @(posedge clock) if (clock_enable) beginif (tag_write && !stall_in) begintag_write_out <= result_type == `RESULT_REG || result_type == `RESULT_SYS;tag_a_out <= {result_type[0], instruction_in[`RD]};tag_val_out <= current_tag;current_tag <= next_tag;if (tag_used[next_tag]) beginstall_out <= 1; // other reasons for stall out?end else beginstall_out <= 0;endend else begintag_write_out <= 0;stall_out <= 0;endif (reset) current_tag <= 1;end// other outputsalways_ff @(posedge clock) if (clock_enable) beginif (reset) valid_out <= 0;else if (!stall_in) valid_out <= valid_in;if (!stall_in) begininstruction_pointer_out <= instruction_pointer_in;instruction_out <= instruction_in;vector_out <= register_type == `REG_VECTOR;category_out <= category;format_out <= format;rs_status_out <= rs_status;rt_status_out <= rt_status;ru_status_out <= ru_status;rd_status_out <= rd_status;mask_status_out <= (mask_used || mask_options) ? register_type : `REG_UNUSED;mask_options_out <= mask_options;mask_alternative_out <= mask_alternative;fallback_use_out <= fallback_use;num_operands_out <= num_operands;result_type_out <= result_type;offset_field_out <= offset_field;immediate_field_out <= immediate_field;scale_factor_out <= scale_factor;index_limit_out <= index_limit;// debug outputdebug1_out[1:0] <= il;debug1_out[6:4] <= mode;debug1_out[8] <= M;debug1_out[14:12] <= mode2;debug1_out[17:16] <= offset_field;debug1_out[21:20] <= immediate_field;endend// update list of tags in usegenvar i; // generation loop for all bits in tag_usedfor (i=0; i < (2**`TAG_WIDTH); i++) beginalways_ff @(posedge clock) if (clock_enable && !stall_in) beginif (reset) begintag_used[i] <= 0;end else if (i == current_tag) begintag_used[i] <= 1;end else if ((write_en1 && i == write_tag1) || (write_en2 && i == write_tag2)) begintag_used[i] <= 0;endendendendmodule
Go to most recent revision | Compare with Previous | Blame | View Log
