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Chapter 1

Introduction

ForwardCom is a new instruction set architecture with corresponding hardware and software

standards. An introduction to ForwardCom can be found at the website www.forwardcom.info. A

full description and definition is found in the manual ForwardCom: An open-standard instruction

set for high-performance microprocessors.

The present document describes the softcore model A version 1.00 for implementing a Forward-

Com CPU in a Xilinx Artix-7 FPGA.

Features of model A version 1.00

• Runs on Nexys A7-100T FPGA board

• Maximum clock frequency 50 - 70 MHz, depending on configuration

• 32-bit or 64-bit registers

• Can execute one instruction per clock cycle

• Data memory 32 kB. Code memory 64 kB. Call stack 1023 entries.

• Implements all integer instructions, except multiplication, division, push, pop

• Implements all instruction formats and all addressing modes defined by the ForwardCom

standard version 1.11.

• No vector registers. No floating point instructions

• No system calls, no memory protection. Useful for embedded designs

• Memory reads and writes must be aligned

• RS232 serial interface for standard input and output

• On-chip loader (uses 2 kB code memory)

• On-chip debug interface

• On-chip event counter

• Code examples and test suite provided
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Prerequisites

• FPGA board Digilent Nexys A7 100T or Nexys 4

• Xilinx Vivado tools version 2020.1

• ForwardCom softcore

• ForwardCom binary tools ”forw” version 1.11 or later

• Serial terminal program, such as RealTerm or Tera Term

• Windows or Linux PC
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Chapter 2

Getting started

The softcore is available at github.com/ForwardCom/softcoreA.

Device-specific files for The Nexys A7-100T FPGA board are provided in the subfolder deviceA7100T.

• Install Vivado version 2020.1. If you are using a later version, make sure that it supports

Artix 7 series FPGAs

• Get the softcore project zip file A1.xpr.zip and unpack it. Open the project file A1.xpr with

Vivado.

• In Vivado, go to the Flow Navigator window and open Hardware Manager

• Connect the FPGA board to the PC with the USB cable that comes with the board. Turn on

the FPGA board on the slide switch on top. You will see a moving pattern on the display.

Install the FTDI driver on the PC if it does not install automatically.

• In Vivado Hardware Manager, click Open target -> Auto Connect. (If connection fails, restart

the computer and use a different USB port).

• Click Program device, and select the file {my directory}/A1/A1.runs/impl_1/top.bit

You will see numbers on the display

• Now you can upload a program to the soft core CPU. Choose hello.ex as a start. Upload

this file in binary mode to the virtual serial port that corresponds to the USB port. Use 57600

Baud, 8 data bits, 1 stop bit, no parity, no flow control. See below how to do this with a ter-

minal program:

• If you are using RealTerm:

Open RealTerm. On the Display tab, choose Display as All Chars, newLine mode.

On the Port tab, set Baud = 57600. In the Port field, find the port number that corresponds

to the USB connection. In my case, it shows 4=VCP0, but it may have a different num-

ber on your computer. The number may change if you use a different USB port. Press the

Open button twice to close the connection and open again. Look at the Status to the right

and make sure it is not Closed.

Go to the Send tab. Set checkmarks in ”+LF” in the first two lines. Set delays to 0. Under

”Dump file to port”, find the file you want to upload (hello.ex) and press Send. (If you want

to upload again, press the ”cpu reset” button on the FPGA board to activate the loader).

Press the Up button on the FPGA board if the program asks you to press Run. The hello.ex

program writes a welcoming text on the terminal.

• If you are using Tera Term:

On New Connection, click Serial. In the Port window, choose USB Serial Port.

Click on the Setup menu -> Serial Port. Set speed = 57600, and click New Setting

In the File menu -> Send file. Set Option = Binary. Open the file hello.ex
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Press the Up button on the FPGA board to start the program. You should see a Hello text

on the terminal.

• If you are using Linux:

I have not tried this on Linux yet. You need a serial terminal program that can transfer files.
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Chapter 3

Examples and test programs

Some code examples are available as assembly code at

github.com/ForwardCom/code-examples.

The same examples compiled for the softcore are available as .ex files at

github.com/ForwardCom/softcoreA/tree/main/deviceA7100T.

The following examples work on the softcore model A:

• hello.ex: Write a welcoming message on the serial terminal

• calculator.ex: Enter two integers a, and b. The program will calculate a+b, a-b, a*b, a/b,

and a modulo b.

• guess_number.ex: A guessing game. The user has to guess a random number. The pro-

gram tells if the number is bigger or smaller than your guess.

These examples are compiled from the assembly code and the libc_light.li function library. Up-

load one of the .ex files as described above to run these examples on the softcore,

The same examples can run on the emulator when linked with libc.li instead of libc_light.li.

Test suite

A test suite is provided for testing all instructions and formats. The source code for the test pro-

grams are available at:

github.com/ForwardCom/test-suite

The same test programs compiled for the softcore are available as .ex files at

github.com/ForwardCom/softcoreA/tree/main/deviceA7100T.

The following test programs work on the softcore model A:

• tests_arithmetics.ex: Test all integer arithmetic instructions

• tests_bool_bit.ex: Test all boolean and bit manipulation instructions

• tests_branch.ex: Test all jump, call, and branch instructions

• test_formats.ex: Test all instruction formats

The 32-bit version of the softcore obviously fails the tests on 64-bit operands.
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Chapter 4

User interface

The FPGA board is connected to a PC through a USB cable. Standard input and output are pro-

vided as an RS232 serial connection tunneled through the USB cable with an FTDI driver in-

stalled on the PC. A terminal program running on the PC may be used for user input and output.

The transmission parameters are 57600 Baud, 8 data bits, 1 stop bit, no parity, no flow control,

\LF as line feed. The Baud rate can be changed by modifying a configuration file (see page 21)

and rebuilding the hardware code.

The pushbuttons on the FPGA board are used as follows:

Operation Use pushbutton

Run ↑
Single step →
Restart ↓
Load program CPU reset

The Run button will make the program run if it has stopped at a breakpoint. Test programs and

examples often start with a breakpoint so that they will run only when you press the Run button.

The Single step button allows you to execute CPU instructions one by one for debugging pur-

poses. See chapter 7

The Restart button makes the program restart from the beginning. All registers are reset, but

static data are not reset.

The Load program button lets you load a new program. Press the Load program button and

send a new .ex file from the terminal program, as explained on page 5.

The pushbuttons on the FPGA board are small and impractical. You may add external pushbut-

tons as described on page 13.

Runtime errors are indicated by a flashing LED. The type of error is shown on the LED displays

with the following codes:

Error code Error when loading Error when running

E1 Error in .ex file Unknown instruction

E2 Code size too big Wrong operands for instruction

E3 Data size too big Array index overflow

E4 Memory read violation

E5 Memory write violation

E6 Misaligned memory read or write

The error code is followed by the code address where the error was detected, as a hexadecimal

number.

The LED display shows debugging information when there is no error (no flashing LED). See

chapter 7
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Chapter 5

Serial input and output

The following port numbers are provided for serial input and output.

Port number Function Bits

Input port 8 serial input bit 0-7: received byte

RS232 bit 8: (Data valid. Unreliable)

bit 9: At least one more input byte is ready

bit 12: Input buffer overflow error

bit 13: Frame error in start bit or stop bit

Input port 9 serial input status bit 0-15: Number of bytes in input buffer

bit 16: Input buffer overflow error

bit 17: Frame error in start bit or stop bit

Output port 9 serial input control bit 0: Clear buffer. Delete all data in input buffer and clear error status

bit 1: Clear error status but keep data

Output port 10 serial output bit 0-7: byte to send

RS232 other bits are reserved

Input port 11 serial output status bit 0-15: Number of bytes in output buffer

bit 16: Output buffer overflow error

bit 18: Ready. Output buffer is not full

Output port 11 serial output control bit 0: Clear buffer. Delete all data in output buffer and clear error status

bit 1: Clear error status but keep data

The size of the input buffer is 1kB. The size of the output buffer is 2kB. The Baud rate and buffer

sizes can be changed in a configuration file (see page 21).
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Chapter 6

Control registers and performance

counters

The following capabilities registers are supported:

Register Read/Write Functionality

capab0 R Microprocessor model = ”A”

capab1 R Microprocessor version = 0x10000

capab2 RW Disable error traps

capab4 R Code memory/cache size in bytes

capab5 R Data memory/cache size in bytes

capab8 R Support for operand sizes

capab9 R Support for operand sizes in vectors

capab12 R Maximum vector length in bytes

capab13 R Maximum vector length for permute instructions

capab14 R Maximum block size for permute instructions

capab15 R Maximum vector length for compress_sparse and expand_sparse.

The following performance counters are supported:

Register Functionality

perf1 CPU clock cycles

perf2 Number of instructions executed

perf3 Number of vector instructions executed

perf4 Vector registers in use

perf5 Jumps, calls, and return instructions

perf8 Runtime errors

The performance counter registers are read-only, but it is possible to reset these registers to

zero.

Details of these registers are provided in the ForwardCom manual.

10



Chapter 7

Debugger

The softcore has two debugging interfaces: A LED display for showing internal signals in the

CPU, and an external LCD display for showing the contents of each pipeline stage as well as

the result of each instruction.

Both displays are useful when single-stepping through the code. Set a breakpoint instruction in

the assembly code at the point where you want to begin single-stepping. Use the single-step

button (→) to execute instructions one by one. Use the run button (↑) to run to the next break-
point or end of program. It is possible to use external buttons instead of the small pushbuttons

on the FPGA board, as described in chapter 8.

7.1 LED display

The LED display on the FPGA board can show any internal signal in the CPU during single-

stepping. The sixteen switches on the FPGA board are used for selecting which signal to view.

All signals are shown as hexadecimal numbers on the LED display.

Switch number 7-4 are selecting which pipeline stage or unit to show, and switch 3-0 are select-

ing which signal from this stage or unit to show. For example, if you set switch 7-0 to 0101 1000,

you can see the output value from the ALU.

All the possible signals to view are defined in the file debugger.vh. You may modify the file de-

bugger.vh to show any signal that is not already defined and assigned to a switch combination.

All pipeline stages and units have registers (D-flip flops) at the output, showing the values after

one clock pulse. If you want to see an internal signal that is not output through a register from

the unit in question, then it is recommended to output this signal through a register before send-

ing it to the debug display. This makes sure that signals are properly synchronized so that you

do not see signals that belong to different clock periods at the same time on the display (which

can be very confusing). See the output debug1_out in the file decoder.sv for an example of how

to do this.

The LED display can also show register values. Set switch 8 high and set switch 0-5 to the reg-

ister number as a binary value. The LED display will show the lower 28 bits of the register as

a hexadecimal value on the lower seven LED display digits. The leftmost LED display digit will

show 8 if the register value is not known but waiting for a value to be calculated by the ALU. The

two rightmost digits show the tag of the instruction that will provide the value in this case.
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7.2 External LCD display

It is possible to add an external LCD display to show results and how instructions propagate

through the pipeline when single-stepping. Instructions for building the external LCD display are

given in chapter 8.

The LCD display has eight lines (four on each LCD unit). The eight lines show the contents of

the pipelines as follows:

Line Symbol Showing

1 F Fetch stage instruction

2 D Decode stage instruction

3 R Register read stage instruction

4 A Address generation stage instruction

5 d Data read stage instruction

6 X Execute (ALU) stage instruction

7 : ALU inputs

8 = ALU result

Each pipeline stage is represented by a line showing the code address (lower 16 bits as hex-

adecimal), instruction format, operand type, and instruction name. See figure 8.2 on page 14.

The operand type is coded with one letter as follows: b=int8, h=int16, w=int32, d=int64, q=int128,

F=float32, D=float64, Q=float128.

Line 7, indicated as ”:”, shows three hexadecimal numbers representing the lower 16 bits of

the values of up to three input operands of the current instruction. The first field shows the first

operand of 3-operand instructions, or a fallback value for instructions with less than 3 operands.

The second field shows the second operand of 3-operand instructions or the first operand of 2-

operand instructions. The third field shows the last operand.

Line 8, indicated as ”=”, shows the result of the current instruction as a hexadecimal number (32

bits). ”m1” indicates a mask bit of 1. ”m0” indicates a mask bit of 0, giving a fallback value. The

result of conditional and indirect jump instructions are indicated as ”jump” or ”no jump”.

Direct unconditional jump, call, and return instructions are only visible on the first line because

they are handled by the fetch unit only.

Pipeline bubbles (jump delays) are indicated by ”-”.

Pipeline stalls are indicated by ”#”. This occurs when the address generator stage or the execute

stage (ALU) is waiting for a register value.
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Chapter 8

Add-on boards

Adding external pushbuttons

It is convenient to add external pushbuttons to replace the small buttons on the FPGA board.

The following components are needed.

Component number

VERO board or similar 1

Pushbutton, for example Digitast 4

2x6 pin male connector 1

Resistor 10 kΩ 4

Table 8.1: Component list for external pushbuttons

The pushbuttons can be connected to the JB socket on the FPGA board according to this dia-

gram:

Figure 8.1: Circuit diagram for connecting external pushbuttons

An add-on board with both LCD display and pushbuttons is shown in figure 8.2. The buttons on

the photo are: Black: single step, Green: run, Red: restart, Blue: load.
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Figure 8.2: Prototype add-on board with LCD display and pushbuttons connected to FPGA board
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Adding external LCD display

An external LCD display is useful when debugging. The display shows all stages of the pipeline

as well as the result of each instruction during single-stepping. The display has eight lines di-

vided between two four-line LCD modules (see figure 8.2).

The components listed in table 8.2 are needed.

Component number

VERO board or similar 1

LCD display, 4 lines x 20 columns 2

16 pin male pin row for display 2

16 pin female connector for display 2

2x6 pin male connector 1

Smitt trigger 74HC14 or 40106 1

Diode 1N4148 2

Resistor 100 kΩ 1

Trimpot 10 kΩ or 22 kΩ 2

Capacitor 10 nF 1

Capacitor 10 µF 2

Component values are not critical

Table 8.2: Component list for external LCD display board

A circuit diagram for connecting the external LCD display is provided in figure 8.3. Explanation of

the diagram: The external LCD display board is connected to the JA socket on the FPGA board.

Pin 1-4 on JA are connected to DB4-DB7 on both displays. Pin 7 on JA is connected to RS on

both displays. Pin 8 on JA is connected to Enable on the upper display. Pin 9 on JA is connected

to Enable on the lower display. Pin 11 and 12 on JA provide ground and +3.3V supply.

3.3V is sufficient for the control logic of the LCD displays, but not enough for the backplane volt-

age. The circuit driven by a 74HC14 Smitt trigger is a charge pump generating a negative volt-

age for the LCD backplanes. Use the two trimming potentiometers to adjust the contrast on the

two display modules.
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Figure 8.3: Circuit diagram for connecting external LCD display
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Figure 8.4: Prototype add-on board with one display removed, showing the underlying

components
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Chapter 9

Test suite

A suite of test programs are provided for testing the softcore as well as the emulator. The test

programs are written in ForwardCom assembly language.

The following test programs are currently available:

• tests_arithmetics.as: Test all arithmetic instructions with general purpose registers with

operand size int8, int16, int32, and int64.

• tests_bool_bit.as: Test boolean and bit manipulation instructions with general purpose reg-

isters with operand size int8, int16, int32, and int64.

• tests_branch.as: Test jump, call, and branch instructions with general purpose registers

with operand size int8, int16, int32, and int64.

• tests_formats.as: Test all instruction formats for general purpose registers, including for-

mats for multi-format instructions, single-format instructions, and jump instructions.

The results of the tests are sent via the standard serial output to a terminal.

The tests are not fully exhaustive. ForwardCom instructions have an almost infinite number of

different variants and special cases. It is impossible to test all combinations of instruction vari-

ants and operand values, but the tests are intended to cover as many options and variants as

possible.

The test programs must be linked with the library libc_light.li if the softcore does not support mul-

tiplication, division, push, and pop instructions. Example of building a test program:

forw -ass -debug=1 tests_arithmetics.as -list=test.txt
forw -link -debug=1 tests_arithmetics.ex tests_arithmetics.ob

libc_light.li

See the ForwardCom manual for details about how to use the binary tools.

The softcore model A 1.00 will obviously fail tests for the instructions that are not supported, i.e.

instructions that involve multiplication or division.

The tests for operand size int64 will fail for the 32-bit version of the softcore. Instructions that

have a fixed operand size of int64 will be shown as working in the 32-bit softcore if the lower 32

bits of the result are correct.
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Chapter 10

Function library libc_light.li

libc_light.li is a limited version of the standard C library intended for small ForwardCom cores

that lack certain instructions. libc_light.li avoids the use of multiplication, division, push, pop, and

sys_call instructions. Input and output functions are accessing the input and output ports directly

rather than using system calls.

Programs for the softcore model A 1.00 must be linked with libc_light.li rather than with libc.li.

The following functions are provided in libc_light.li:
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Function

name

Functionality Source file

Common C functions:

atoi Interpret ASCII string as integer atoi_light.as

atol Interpret ASCII string as integer atoi_light.as

getch Wait for input from stdin. returns one character getch_light.as

getche Same as getch, with echo getch_light.as

gets_s Read a string from standard input until newline gets_light.as

_kbhit Return 1 if there is at least one character in the input

buffer, 0 otherwise

getch_light.as

printf Print formatted string to stdout printf_light.as

sprintf Print formatted string to string buffer printf_light.as

snprintf Same as sprintf, with length limit printf_light.as

putchar Print a single character to stdout putchar_light.as

puts Print a string to stdout, append newline puts_light.as

Non-standard functions:

clear_input Clear stdin input buffer clear_in-

put_light.as

divide_int Divide two 32-bit signed integers. return quotient and

remainder

di-

vide_int_light.as

getch_non-

blocking

Same as getch. Does not wait for input. Returns -1 if the

input buffer is empty

getch_light.as

multiply_int Multiplies two 32-bit signed integers. no overflow check multi-

ply_int_light.as

print_charac-

ters

Prints a very short string to stdout. The input is a 32-bit in-

teger holding up to 4 characters, or a 64-bit integer holding

up to 8 characters

print_charac-

ters_light.as

print_hex-

adecimal

Prints an integer as a hexadecimal number to stdout print_hexadeci-

mal_light.as

print_integer Print a 32-bit signed integer as decimal number to stdout print_inte-

ger_light.as

print_string Same as puts, does not append newline. Returns a

pointer to the first character after the string

print_string_light.as

_entry_point This startup code just calls main, unlike the startup code in

libc.li that checks for event handlers

startup_light.as

The functions printf, sprintf, and snprintf are following the C standard with the following limita-

tions: cannot print floating point numbers, cannot print octal, cannot print decimal integers with

more than 32 bits. 64 bit integers can be printed with format ”%lX”.
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Chapter 11

Technical description

11.1 Setting the configuration

Precompiled bitstream files for different configurations are provided in

github.com/ForwardCom/softcoreA/tree/main/deviceA7100T:

• A1T100R32.bit: 32 bit registers. 32 kB data memory. 64 kB code memory. 68 MHz

• A1T100R64.bit: 64 bit registers. 32 kB data memory. 64 kB code memory. 58 MHz

Other configurations can be built as follows.

The file defines.vh contains a choice of configuration files to include. Use config_r32.vh for a

configuration with 32-bit registers, or config_r64.vh for 64-bit registers. You may make your own

configuration with different memory sizes or other parameters.

Make sure you set the clock frequency to the value specified in the configuration file. To change

the clock frequency, open the Sources window in Vivado, expand the ”top” node, double click on

clock_generator, click on the Output Clocks tab, and set the requested output frequency to the

desired value.

The parameters in the configuration files are described here:

32 or 64 bit registers

The general purpose registers can be 32 or 64 bits. The line

`define SUPPORT_64BIT

enables support for 64-bit registers and calculations. Comment out this line for 32-bit registers.

The 32-bit configuration is using significantly less hardware resources than the 64-bit version.

This has consequences for the maximum clock frequency.

All calculations work the same with 32-bit registers as with 64-bit registers, except that only the

lower 32 bits of a 64-bit result are saved.

Clock frequency

The CPU clock frequency defined in the line

`define CLOCK_FREQUENCY

must match the value set with the clocking wizard.

The maximum clock frequency depends on the configuration. Differences in register size, mem-

ory sizes, and other details influence the maximum clock frequency. If you change the configura-

tion, you may need to experiment to find a suitable clock frequency. Vivado will give a warning if

the timing requirements cannot be met at the specified clock frequenty.

Serial input and output

The Baud rate for the RS232 serial input and output is defined by the line
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`define BAUD_RATE

The serial input and output have queues with power-of-2 sizes defined by the lines

`define IN_BUFFER_SIZE_LOG2

`define OUT_BUFFER_SIZE_LOG2

Memory sizes

The code memory and data memory have power-of-2 sizes defined by the lines

`define CODE_ADDR_WIDTH

`define DATA_ADDR_WIDTH

The number of entries in the call stack is a power of 2 defined by the line

`define STACK_POINTER_BITS

Mask register size

Not all of the bits of a register are needed when the register is used as a mask. In most cases,

only one bit is used. We can save hardware resources by not propagating all the bits of a mask

register to the execute stage. The number of mask bits to use are defined by the line:

`define MASKSZ

This size must be sufficient to contain an instruction tag, i.e. TAG_WIDTH. More bits may be

needed if the mask register contains option bits. A full register size may be needed if the mask

register is used for other purposes.

Instruction tag size

All instructions are identified by a tag when they propagate through the pipeline. The instruction

tag must have enough bits to distinguish the maximum number of instructions in flight or pend-

ing. This is defined by the line

`define TAG_WIDTH

Loader

The loader is supplied as a file containing the compiled loader code in hex format. The loader file

loader.mem is assembled from the source file loader.as and linked with the option -hex2 which

makes sure that the loader file is organized with 16 hexadecimal digits (64 bits) per line.

The name and maximum size of the loader are defined by the lines

`define LOADER_FILE

`define MAX_LOADER_SIZE

The loader code is explained in chapter 11.5.

11.2 Hardware in/out connections

The definition of input and output pins on the FPGA chip are covered by the constraints file Nexys-

A7-100T.xdc. This file is based on a template provided by Xilinx and modified to connect the in-

ternal signals to specific pins for switches, LEDs, board headers, etc.

This constraints file is specific for the Nexys A7-100T development board. A different file and dif-

ferent connections are needed for different FPGAmodels and different development boards.

A further constraints file, bitstream_settings_a.xdc, contains mainly code that is autogenerated

by the Vivado tool.
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11.3 Building the code

The A softcore version 1.00 has been developed with Xilinx Vivado version 2020.1. Note that

some versions of Vivado do not support the series 7 FPGAs.

The Vivado tool is placing source files in a deep and inflexible directory structure that is not very

convenient for version control. Therefore, the Github repository includes a zipfile named A1.xpr.zip

containing the entire project directory and files as well as all the individual source files. This file

was generated with the menu: File → Project → Archive.

Users of the softcore will need to unpack the zipfile into an appropriate base directory to get

started, and then replace individual source files with any versions that are newer than the zipfile.

The following source file directories contain files that you may modify or replace with newer ver-

sions:

{base}/A1/A1.srcs/sources_1/new: verilog files, header files, memory file

{base}/A1/A1.srcs/constrs_1/new: device-specific constraints files

All the other directories contain only files generated by the Vivado tool. They should not be modi-

fied manually, but may be deleted.

To rebuild the FPGA bitstream after any modifications, open the project file A1.xpr with Vivado.

Press the Generate Bitstream icon (green down arrow). This will take approximately 20 minutes.

If successful, you can load the new softcore into the FPGA board as described in chapter 2 page

5.

Prebuilt bitstream files for different configurations are provided at Github under devices.

Warnings during build

Vivado produces several warnings during the build process. The following warnings can safely

be ignored:

• [Netlist 29-345] The value of SIM_DEVICE on instance ’clock_generator_inst/inst/clkout1_buf’

of type ’BUFGCE’ is ’ULTRASCALE’; ... source netlist.

• [Designutils 20-4072] Reference run did not run incremental synthesis because the design

is too small; reverting to default synthesis

• [Constraints 18-5210] No constraints selected for write...

• [Power 33-332] Found switching activity that implies high-fanout reset nets being asserted

for excessive periods of time which may result in inaccurate power analysis.

• [Vivado 12-1017] Failed to delete one or more files in run directory .../A1/A1.runs/synth_1

• [Synth 8-6841] Block RAM (ram_reg) originally specified as a Byte Wide Write Enable RAM

cannot take advantage of ByteWide feature and is implemented with single write enable

per RAM

• [Synth 8-7129] Port instruction_in[29] in module ... is either unconnected or has no load

• [Synth 8-6841] Block RAM (ram_reg) originally specified as a Byte Wide Write Enable RAM

cannot take advantage of ByteWide feature and is implemented with single write enable

per RAM due to following reason...

You may disable unwanted warnings because it creates a risk that other warnings are overlooked.

Warnings other than these may indicate serious problems.
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Timing problems

When building a modified softcore, it often happens that it fails to meet the timing requirements.

The Vivado tool is not always able to find an optimal routing pattern. Small changes in the code

may result in a different routing pattern that is either faster or slower. If only a few signal paths

fail to meet the timing requirements by a small negative slack, then it is possible that the problem

will go away after any small change in the code, for example in the debug signals or the number

of bits in the mask register.

If the timing problem is more severe, then you need to redesign the code that is causing the

problem, or lower the clock frequency.

11.4 Description of the hardware code

The hardware code for the ForwardCom softcore is written in the hardware description language

SystemVerilog.

The CPU is based on a Harvard architecture with separate code memory and data memory that

can be accessed simultaneously. There is write access to the code memory for the sake of the

on-chip loader, but it is not possible to read from the code memory by other means than fetching

code.

The CPU design has six pipeline stages:

1. Fetch

2. Decode

3. Register read

4. Address generation

5. Data read

6. Execute

Instructions are propagating one by one through the pipeline, advancing one stage per clock cy-

cle.

The hardware design consists of modules. Each pipeline stage is a module. In addition to this,

there are modules for code memory, data memory, call stack, input/output, etc. Each module

has registers (D-flip flops) on its outputs, but not on its inputs. This means that it takes one clock

cycle to send a signal from one module to another. The complexity within each module is limited

to what can be completed in one clock period.

The following is a detailed description of each pipeline stage and each module.

Fetch stage

The fetch stage in the pipeline will fetch code from the code memory at a rate of two words (64

bits) per clock cycle from even addresses. The code words are loaded into a buffer with a size of

8 words.

While dispatching one instruction to the decode stage, the fetch unit is looking at the next in-

struction in the buffer in order to identify jump, call, and return instructions as early as possible.

The ISA is designed so that these instructions can be identified easily. Direct, unconditional jump

and call instructions with a 24-bit relative address are handled immediately by the fetch unit so
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that the target instruction can be loaded from the code memory with a delay of only one clock cy-

cle. Return instructions are handled equally fast, using a prefetched return address from the call

stack. This is possible only because the call stack and data stack are separate and independent.

Conditional jumps, indirect jumps and calls, and any other control transfer instructions have to

go through the pipeline. In this case, the fetch unit has to wait for a target address from the ALU.

This is causing a delay of 7 clock cycles for taken jumps. Not-taken conditional jumps are one

clock faster because the target is already in the code buffer.

The fetch unit is sending a return address to the call stack for all kinds of call instructions.

It takes two clock cycles to fetch code from the code memory: one clock cycle for sending the

address to the code memory, and one clock for getting the result back to the fetch unit. The fetch

unit keeps prefetching code from the next address as long as the code buffer is not full. A shift

register named next_underway keeps track of whether the next code words are underway from

the code memory. Another shift register target_underway does the same after a jump. Jump ad-

dresses are fed directly from the ALU to the code memory in order to save one clock cycle.

A reset signal will cause a jump to the start address of the loader. A restart signal will cause a

jump the the restart address which is the loader address plus 1.

Decode stage

The decoder identifies the instruction format, category, number of operands, register use, result

type, etc. It also assigns a unique tag to identify each instruction in the pipeline.

The outputs from the decoder includes the variables listed below. Possible values for each vari-

able are defined in the configuration file, described on page 21.

• vector_out: 1 if vector instruction

• category_out: single format, multiformat, or jump instruction

• format_out. Instruction format A, B, C, E

• rs_status_out. Use of RS register field: source register, vector, pointer, etc.

• rt_status_out. Use of RT register field: source register, vector, index, vector length

• ru_status_out. Use of RU register field: source register, vector

• rd_status_out. Use of RD register field: source register, vector

• mask_status_out. Use of mask register field: source register, vector

• mask_options_out. Mask may contain option bits (floating point only)

• mask_alternative_out. Mask register and fallback register used for alternative purposes

• fallback_use_out. Which register is used for fallback

• num_operands_out. Number of source operands. 0 - 3

• result_type_out. Type of result: normal register, system register, memory, other

• offset_field_out. Size of memory address field

• immediate_field_out. Size of immediate operand field

• scale_factor_out. Scale factor for array index

• index_limit_out. Array index has a limit
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Register read stage

The register file is included in the same module as this pipeline stage so that it is possible to

read register values without delay. This includes the 32 general purpose registers as well as

the numeric control register (NUMCONTR), data pointer (DATAP), and thread data pointer (TR-

HEADP), but not other system registers.

All registers needed by an instruction are read at this stage, and the values are propagated through

the pipeline to the stage where they are needed, i.e. the address generation stage or the execu-

tion stage.

The instruction tag is written to the destination register in the register file. This indicates to sub-

sequent instructions that the value of this register is not available yet. The tag identifies the in-

struction that is going to deliver the value. Subsequent stages in the pipeline must monitor the

result buses for results marked with the tag of any missing register value. The tag is then re-

placed by the new value and propagated through the rest of the pipeline. This mechanism may

be considered a form of register renaming. Multiple values of the same logical register may be

in flight in the pipeline at the same time. The tag of a missing register value is replaced by the

actual value as soon as it appears on one of the result buses. All stages in the pipeline after the

register read stage are monitoring the result buses for missing register values.

Each entry in the register file includes an extra bit which is 1 if the file contains a tag for a pend-

ing value, or 0 if the file contains the actual value of the register. The same applies to values

propagating through the pipeline.

It is important that tags are written to the register file in the same pipeline stage as all register

reads. This makes sure that we get the correct version of a changing register.

The register read stage is sending the values or tags of up to five registers, including a mask

register, to the address generation stage in the pipeline.

Address generation stage

The address generator calculates the address of a memory operand. All memory addresses are

relative to a base pointer, which may be a general purpose register, DATAP, THREADP, or IP.

The address may consist of three components: A base pointer, a scaled array index, and a con-

stant offset. A base pointer register is always present, the other components are optional.

The address generator sends the calculated address of a memory operand to the data memory

for any instruction that involves memory read or write. Memory read and memory write opera-

tions are initiated in the same pipeline stage so that a memory read never has to wait for a pre-

ceding write.

The address generator needs to wait for any missing register value needed for base pointer, ar-

ray index, vector length, or a value to write. This will generate stalls in the preceding pipeline

stages and bubbles in the subsequent pipeline stages whenever a needed register value is not

available yet.

Testing the validity of the calculated memory address should ideally be implemented in this stage,

but unfortunately this leads to timing problems because the address calculation involves two ad-

ditions. An extra compare operation after the two additions is difficult to fit into the time slot of a

single clock period. Therefore, the detection of memory access violations is currently postponed

to the next pipeline stage.

The address generation stage does some additional decoding in parallel with the address cal-

culation. It sorts the source operands of the instruction according to the order of priority defined

by the ForwardCom standard: immediate operand, memory operand, RT register, RS register,

RU register, RD register. Up to three source operands are taken from the fields defined by the in-

struction format according to this order of priority, with the last operand first. Immediate operands

26



are identified and sign-extended or uncompressed if needed. The values of all operands are

sent to the next pipeline stage as operand1_out, operand2_out, and operand3_out if the values

are available. The output memory_operand_out indicates that one source operand is a memory

operand that will be available after two clock cycles.

Data read stage

The main purpose of the data read stage is to wait one clock cycle for the value of a memory

operand to arrive from the data memory. Normally, the value of a memory operand will arrive just

in time for the execution stage to use it. However, the data read stage can catch and store the

value in case the instruction is delayed by a pipeline stall. The data read stage also checks if a

memory address is valid.

The operation to do in the execution stage is identified in the data read stage and indicated by

the variable opx_out. The operation for multiformat instructions is identified by the OP1 field only

so that opx_out = OP1.

Some single-format instructions are short forms of instructions that also exist in multiformat ver-

sions. These instructions are translated to the multiformat equivalents in opx_out. Single-format

instructions that do not have a multiformat equivalent are given a unique value of opx_out.

Branch instructions are split into the corresponding ALU operation, such as ”add” or ”compare” in

opx_out, and the branch condition indicated by opj_out.

The operand type ot_out is identified for instruction formats that do not have an operand type

field.

The data read stage decides which module to use for the execution stage. This is indicated by

exe_unit_out.

Execution stage, ALU

The ALU module implements the execution stage for most integer instructions, such as addition,

bit operations, shift, branch, etc. The latency is one clock cycle for all these instructions.

This is the most critical pipeline stage in terms of timing, and the one that determines the maxi-

mum clock frequency. This includes three critical steps:

1. Input multiplexers. Retrieve each source operand value from either the previous pipeline

stage (propagated value), from one of the result buses if the value was output in the pre-

ceding clock cycle, or directly from data memory. Data memory values with a size less than

64 bits must be selected from any position within a 64-bit memory line.

2. Do the actual calculation or operation

3. Cut off the result to the desired operand size, or replace it with a fallback value in case the

mask is zero

The result is output to result bus 1 as result_out together with register_a_out that identifies the

destination register, and tag_val_out that indicates the instruction tag.

Jump and branch instructions have the additional outputs jump_out and nojump_out, indicating

whether a branch is taken or not, and jump_pointer_out that gives the address of the jump target

in case the jump is taken.

The ALU module contains several general units that can service more than one instruction each.

This includes a compare unit that is used for signed and unsigned compare instructions, max,

min, and compare/branch instructions. A bit manipulation unit for bit operations such as clear,
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set, toggle, test, etc. A barrel shifter for all shift, rotate, and move_bits instructions. And a bit

scan module for bitscan and roundp2 instructions. There are also several single-purpose units.

The bitscan instruction appears to be particularly critical in terms of timing. Future implementa-

tions may move the bitscan instruction to a unit with a 2-clock latency.

Execution stage, in_out_ports

The in_out_ports unit implements the execution stage for interfaces to external communication

as well as several capabilities registers, performance counters, etc.

The RS232 serial interface consists of a UART receiver, a UART transmitter, and FIFO buffers

on both input and output.

System registers that can be renamed, i.e. NUMCONTR, DATAP, and THREADP, are accessed

in the register read stage, while all other system registers are implemented or accessed in the

in_out_ports module. Some of these registers are read-only, while others can also be written

or reset. It is necessary that read and write of the same register happens in the same pipeline

stage.

Register results are output to result bus 1 in the same was as for the ALU unit. The instruction

latency is one clock cycle.

Execution stage, mul_div

The mul_div unit implements the execution stage for instructions that have a latency higher than

one, such as multiplication and division. The result is output to result bus 2.

The multiplication and division units are not implemented yet.

Pipeline synchronization signals

There are no instruction queues between the pipeline stages. This means that if one pipeline

stage is waiting for an operand that is not available yet, then all preceding pipeline stages must

stand still and keep their data until the next pipeline stages are ready to receive a new instruc-

tion. This is called a pipeline stall. While one pipeline stage is waiting for an operand, all subse-

quent pipeline stages will be idle. This is called a pipeline bubble.

There are three units that can cause pipeline stalls and bubbles in the present design:

1. The fetch unit is waiting for an instruction to be fetched from the code memory after a jump

or after the code buffer has been exhausted by multiple triple-size instructions. This is

causing a bubble to propagate through the entire pipeline

2. The address generation stage is waiting for a register value needed for the address calcu-

lation. This is causing a stall in the preceding pipeline stages and a bubble in the subse-

quent stages

3. The execution stage is waiting for the value of a register operand. This is causing a stall in

the entire pipeline

The handling of pipeline stalls and bubbles is quite tricky and delicate because stalls must be

predicted one clock cycle in advance, and we must make sure that every instruction is dispatched

once, and only once, from each pipeline stage to the next. The dataread stage is sending out

predict_tag signals giving the instruction tag of the result that is predicted to be sent to result

bus 1 in the next clock cycle. The predict_tag signal is used by the register read stage to predict
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whether the necessary register values will be available for the address calculation stage in the

next clock cycle. In the same way, the data read stage is using the predict_tag signal to predict

whether all operands will be ready for the execution stage in the next clock cycle.

The register read stage and the data read stage will send out a stall_predict signal if they predict

a stall in the next clock cycle. These signals are fed to stall_in inputs of all preceding pipeline

stages, telling them to halt and keep their data until the pipeline is ready to proceed.

A stalled pipeline stage must keep all its data unchanged, with one exception. It must watch the

result buses for any results that match a missing register value for the contained instruction.

Pipeline bubbles are controlled by valid_in and valid_out signals. The valid_out signal of each

pipeline stage is connected to the valid_in signal of he next stage. This signal is 1 if a valid in-

struction is being propagated, or 0 if there is a pipeline bubble. All other inputs must be ignored

when the valid_in signal is zero.

Future designs may need handshaking signals for detecting whether a result bus is vacant, but

this is not relevant yet.

Data memory

The module named data_memory contains a RAM memory for data only. The size is a power of

2 determined by the variable DATA_ADDR_WIDTH defined in a configuration file.

The data RAM has one read port and one write port, each 64 bits wide. Reads and writes of less

than 64 bits are allowed, but all reads and writes must have natural alignment.

The input read_data_size indicates data sizes of 8, 16, 32, or 64 bits. Reads of less than 64 bits

are left-justified in the output read_data_out.

The 64-bit input write_data_in is divided into eight bytes enabled separately. The 8-bit input write_en-

able enables each byte separately. Memory writes of less than 64 bits are controlled by the ad-

dress generator by placing the data in the right position and enabling only the bytes that contain

actual data.

Code memory

The module named code_memory contains a memory for code only. The size is a power of 2

determined by the variable CODE_ADDR_WIDTH defined in a configuration file.

The code memory has one read port that is 64 bits wide. Unaligned reads are not possible. A

read of a 32-bit word from an odd address must be implemented as a 64-bit read from the pre-

ceding even address.

The code memory has one write port that can accept 64-bit writes to an even address or 32-bit

writes to an even or odd address. The write port is intended for the loader only.

A loader can be placed in the top of the code memory. A hex file with a name defined by LOADER_FILE

is placed at an address calculated as the end address of the code memory minus MAX_LOADER_SIZE.

This file must be organized as 64-bit lines.

Call stack

The call stack is used for function return addresses only. The size is a power of 2 determined by

the variable CALL_STACK_POINTER_BITS defined in a configuration file.

The call stack is accessed by the instruction fetch unit only. A return address is pushed on the

call stack when a call instruction is detected, and popped from the call stack when a return in-

struction is detected. The call stack cannot be accessed by data push and pop instructions.
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Return addresses are communicated via the push_data input and the pop_data output. The

value of pop_data is prefetched in advance so that it can be accessed immediately by the fetch

unit. The value of pop_data is valid one clock cycle after a push or pop operation. Therefore,

there must be a one clock cycle delay between a call or return and the next return. This is not a

problem in the current design because the fetch unit has a delay of at least one clock cycle after

any call or return anyway.

Debug displays

There are two debug displays as explained in chapter 7. A LED display on the FPGA board, and

an optional LCD display on an add-on board.

The LED display is controlled by a Verilog header file, debugger.vh. This file is included in the

top module so that it has direct access to all global signals. Local signals inside a module are

accessed through debug outputs from the module in questions. You may modify the file debug-

ger.vh to get access to a particular signal. debugger.vh includes an instance of a 7-segment dis-

play driver seg7.sv. The debugger writes an error code in the 7-segment LED display instead of

the selected debug information in case of a runtime error.

The external LCD display is driven by the module debug_display. It includes an instance of an

LCD driver named lcd. The LCD driver contains a state machine that writes to the LCD displays,

sending 4 bits at a time.

The debug_display module writes information about the contents of each pipeline stage to the

LCD displays. The debug_display module has only access to the outputs of each module. Source

operand values in the execute stage are reconstructed inside the debug_display module rather

than transferred from the execute modules. The translation of operation codes to opx, that oc-

curs in the data read stage, is mirrored inside the debug_display module for the display of pipeline

stages prior to the data read stage. This allows the debug display to write the names of instruc-

tions in all pipeline stages.

The debug_display module has internal registers on most signals to avoid timing problems and

to diminish restrictions on signal routing. It is no problem that the data are delayed a few clock

cycles because the LCD display is only useful during single-stepping.

Top module

The top module is instantiating the pipeline stages and other modules and making the connec-

tions between them.

Input and output connections to external devices are defined by the top module.

Byte based and word based addresses

Read and write address signals for the data memory are absolute addresses with byte granular-

ity. Address signals for the code memory have word granularity (4 bytes) and are relative to the

start of the code memory. The same applies to the instruction pointer.

Translation from word addresses to byte addresses occurs in the address generator when calcu-

lating an address relative to IP. Translation from byte addresses to word addresses occurs in the

ALU when executing an indirect jump, and in the code memory module when writing to the code

memory (only the loader should write to code memory).
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11.5 Loader

The loader is a piece of software written in ForwardCom assembly language. The loader can

load an executable program (.ex file) into the program memory and data memory. The source

code for the loader is in the file loader.as.

The loader is placed at the end of code memory. The start address of the loader is calculated as

the size of the code memory minus MAX_LOADER_SIZE. This address is hard-coded into the

softcore. The CPU will jump to this address at start and when the load button is pressed.

Debugging the loader is easier when MAX_LOADER_SIZE is a multiple of 0x100 so that the last

two digits of addresses on the debug display match addresses in the loader assembly listing.

A loaded program can be re-started by jumping to the RESTART code, which is placed at the

loader start address plus 1.

The loader works as follows. The user uploads the desired program as an executable file (.ex

file). The loader starts reading the .ex file through the RS232 serial interface. The first part of the

.ex file contains a file header and program headers, according to the official ForwardCom defini-

tion in the file elf_forwardcom.h. These headers are read into the beginning of data RAM and an-

alyzed to find code sections, const data sections, and data sections. The raw data of these sec-

tions are then read and placed in code memory and data memory. The program memory starts

at an address immediately following the end of data memory. Program code sections are placed

in code memory. Constant (read-only) IP-based data sections are placed at the end of data RAM

so that they can be addressed relative to the instruction pointer, IP.

Data sections with read/write access are read into the first vacant data RAM address and later

moved down to address zero when the loader has finished using the program headers. The rest

of data RAM is then cleared to zero.

The data stack pointer (r31) is set to the top of vacant data RAM, which is the beginning of const

data. The program start address, DATAP, and THREADP are set to the addresses defined in the

file header. These addresses are not stored in data RAM, but inserted in the RESTART code so

that all data RAM is available to the running program. When the loader has finished loading all

sections, it jumps to the RESTART code. The RESTART code sets the stack pointer, DATAP, and

THREADP, clears all other registers, and jumps to the program start address.

The loader works with both the 32-bit version and the 64-bit version of the softcore.

The loader assumes that the .ex file is fully position-independent. It is not able to relocate code

containing absolute addresses.

11.6 Resource use

This section discusses how different aspects of the softcore design affects the use of hardware

resources.

The use of LUTs (lookup tables) and registers (flip flops) in the 32-bit and 64-bit configurations

are listed in table 11.1.

The data memory is using a disproportionate amount of FPGA slices because it is implemented

as distributed RAM. I have problems making it use block RAM instead.

The propagation of source operand values through the pipeline is using 32 or 64 bits per operand

in each pipeline stage. If a pipeline stage is stalled, then it needs to keep the old instruction on

its output until the next stage is ready to receive it. At the same time, it needs to catch operand

values from the result buses for the pending next instruction. This doubles the required number

of registers. If we allow three source operands and a mask of 64 bits each, then we need 4*64*2

= 512 flip flops just for catching and propagating data in each pipeline stage. This number of flip
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Module Slice registers Slice LUTs

32-bit version 64-bit version 32-bit version 64-bit version

Fetch 351 350 1309 1286

Decode 175 188 400 465

Register read 1635 3010 3296 4711

Address generator 558 785 697 1550

Data read 356 561 2994 5267

Execute ALU 80 112 680 2437

Execute in/out, uart 703 1213 501 361

Execute mul/div

Code memory 15 15 103 115

Data memory 3 3 99 98

Call stack 29 29 442 445

Debug display 485 485 747 752

Total 4639 7032 12026 17873

Table 11.1: Resource use of softcore

flops is not a problem for an FPGA with 100,000 cells or more, but the associated logic and rout-

ing is actually consuming a significant amount of resources. We may reduce the resource use

for smaller applications by reducing the register size to 32 bits. The mask register may even be

reduced to 16 bits.

The result buses are also consuming a significant amount of resources because each pipeline

stage must monitor all result busses and compare the result tags with all four source operands

(including mask register). This is particularly critical in the execution stage where timing is criti-

cal. Therefore, we may let multiple execution units share the same result bus and use handshak-

ing logic to check when a result bus is vacant.

The timing problems that we encounter are often dominated by routing delays rather than logic

delays. It is necessary to take this into account and limit the number of cross connections be-

tween modules.

An important feature that distinguishes ForwardCom from other ISAs is that each instruction

can have many different variants. This feature is actually fairly cheap in terms of hardware re-

sources. There are many different instruction formats, and it takes many lines of verilog code

to decode these formats, but the resulting hardware is actually a fairly trivial combinational logic

with a limited number of inputs and outputs. It requires only a few bits to tell where an operand

is or what a register is used for - in contrast to the many bits used for handling and propagating

up to three or four operands of 64 bits each. The timing of the decoding process is not critical at

all because the logic to handle all aspects of the decoding process can be divided over several

pipeline stages. Likewise, we have several pipeline stages to handle the decoding and unpack-

ing of immediate constants and option bits, and it is not important which pipeline stage we place

this code in.

The fact that ForwardCom has instructions that combine memory read with arithmetic or logic

instructions comes at a significant price, though, because it makes the pipeline longer.

11.7 Future development

This section discusses some prospective future extensions to the ForwardCom softcore.

Multiplication and division instructions need to have a latency of more than one clock cycle. The

mul_div module is prepared for this purpose but not implemented yet. These instructions will use

result bus 2.
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Push and pop instructions will be split into multiple micro-operations in the decode stage. It will

be possible to push or pop multiple registers by a single instruction.

Vector instructions will be implemented with a separate pipeline for each 64-bit vector lane. Each

lane will have its own register file holding a 64-bit slice of each vector register. Designs with

small vectors may have direct access to a common data RAM. Designs with long vectors may

have one data cache or RAM for each vector lane. Memory access will be fast when aligned

by the maximum vector length but slower when not aligned because it requires a very big bar-

rel shifter to exchange data between lanes. The vector pipeline probably needs an extra stage

for data alignment.

A superscalar softcore will be able to fetch and decode at least two instructions per clock cy-

cle. There may be two pipelines for non-vector instructions: One for instructions with memory

operands, and a shorter pipeline for instructions without memory operands. There will proba-

bly be only one pipeline for vector instructions. It will be possible to execute two instructions

per clock cycle if they can go to two different pipelines. The short pipeline for instructions with-

out memory operands will make jump delays shorter. The instructions will be executed in order

within each pipeline.

11.8 Performance metrics

The maximum clock frequency varies from 50 to 70 MHz depending on register size, memory

sizes, and other configuration details. The current settings are 67.5 MHz for the 32-bit register

version and 58 MHz for the 64-bit register version of the softcore. The maximum clock frequency

can be increased by a few MHz when the memory sizes are reduced or some instructions re-

moved from the ALU. The bitscan instruction, in particular, is critical.

The maximum throughput is one instruction per clock cycle. The latency is one clock cycle for

most instructions.

Unconditional direct jumps, calls, and returns have a latency of 2 clock cycles.

Conditional jumps have a latency of 7 clocks when taken and 6 clocks when not taken. Indirect

and multiway jumps and calls have a latency of 7 clocks.

Memory reads have a delay of 2 clocks after the modification of a pointer or index register that is

needed in the address calculation. There is no delay for memory reads if address registers are

not modified in the preceding two instructions.

Memory writes have a delay similar to memory reads if address registers are modified within the

preceding two instructions. The same delay applies if the register holding the value to write is

modified within the preceding two instructions.

11.9 Portability

The hardware code written in SystemVerilog avoids device-specific code. It should be possible

to port this to other FPGAmodels, other FPGA brands, or even to an ASIC.

The clock generator is auto-generated by the Vivado clock vizard. It needs to be adjusted or re-

designed for other FPGAs.

The 7-segment display on the Nexys A7 FPGA board is used for debugging and error messag-

ing. Other FPGA boards may have other kinds of display.

The constraints files contain device-specific information about pin connections etc. The connec-

tions to external devices need to be redesigned for other FPGAs.
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Chapter 12

Revision history

Version 1.00, 2021-08-07

• First published ForwardCom softcore. Integer only. No vectors.
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Chapter 13

License

The hardware description code is published under the CERN Open Hardware License weakly-

reciprocal, version 2 or later. This is a license for hardware similar to the Gnu General Public

License for software.

All the code is written from scratch without importing any code from elsewhere. This makes sure

that all the code has the same license.

This manual is copyrighted 2021 by Agner Fog with a Creative Commons license CC-BY.
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