

KRPAN
FPGA P&R

Software

Author: Marko Mlinar
marko.mlinar@campus.fri.uni-lj.si

Rev. 0.3
April 20, 2001

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 2 of 13

Revision History

Rev. Date Author Description
0.1 02 feb 01 Marko Mlinar Updated template for SW requirements
0.2 10 feb 01 Marko Mlinar Added initial project info
0.3 17 apr 01 MM

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 3 of 13

1
Introduction

Placement and routing software is a tool, which automatically (or with some user help)
distributes given elements, so that they ma tch certain criteria. For FPGA (Field
Programmable Gate Array) this usually is limited number of FPGA resources (connections,
number of programmable elements, speed of (or part of) circuit, etc). More about resources
and their functionality can be found in FPGA Architecture. All these functions serve simple
goal – to program user defined net-list into desired FPGA.
Since P&R is NP-complete problem, no optimal practical solution for large placement can
be found, so we are forced to search for sub-optimal solution.
Java programming language was chosen, to allow full portability on several platforms.
Also we conjecture that Java will become more used and supported and will have more
computing potential. It is estimated Java would run 100% slower than matching C program,
for this application.

P&R Model
More general model is assumed, than described in above document: given rectangular array
(X×Y) of K input LUTs (Look Up Tables), where each of them is capable of calculating
any binary function of N inputs and one output. They are connected using routing matrix.
Due to simplicity the optimization process is divided into three parts1:

• Mapping: net-list is covered with LUTs to satisfy: number of inputs <= K
• Placing: such positions are assigned to LUTs that total wire-length is minimized

(wire length is approximated using sum of minimal spanning trees for every net)
• Routing: in this step we try to find optimal Steiner trees using given free routing

resources

Thus P&R goal is to find placement of LUTs and nets (wire segments), that satisfies:

1. Every element in the user-specified net-list must be mapped into specific suitable
architecture resource

2. Every LUT is placed in the rectangular array
3. If LUT is placed at position (x, y), no other LUT can share same position
4. For each connection a - b in given net-list there exist wire segment placement that

connects a and b in desired direction
5. User specified constraints are met (e.g. path delay, clock speed…)

Note: Due to practical reasons (and algorithm goal) some assumptions were made that
could prohibit P&R software to reach optimal solution.

1 Authors are aware that (for this architecture) solution can be found in single step.

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 4 of 13

2
Description

This section specifies program, its functionality and usage information in detail. Also
program arguments and input/output file format are explained here.

2.1 Program Usage
Program KRPAN is a command line tool. Valid parameters must be supplied as specified
below:

2.1.1 Help Option -h
Displays following help screen.

Program KRPAN v0.2, FPGA Mapping&Placement&Routing utility.
(C) 2001 Marko Mlinar.
KRPAN comes with ABSOLUTELY NO WARRANTY; see license.txt for details.

 Usage: KRPAN input_file [output_file] [-option [-option ...]]

 Valid options:
 -h -? --help this screen
 -v --verbose verbose output to log file
 -d --debug verbose debug output to log file
 -g --graphics display progress graphically
 -sd --sdir {dir} sets source dir (default ".")
 -dd --ddir {dir} sets destination dir (default ".")
 -l --log {file} sets different log file (default "KRPAN.log")
 -b
 -c --clear include unused cells in configuration

Usage example:
KRPAN -sd examples -dd . -g test.v
(generates bit stream specification file named 'test.v.bin', if successful)

2.1.2 Verbose Option -v
Forces program to display current progress details.

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 5 of 13

2.1.3 Debug Option -d
Similar to verbose option, but stronger. Program internal data and structures are displayed.
Most important of internal structures is Graph.toString() print-out:

Graph: ffs.mapped.preplaced before annealing
Number of nodes: 10

IOC Node: rst(x-1 y21 temp2) nets(2): GND, *rst
IOC Node: clk(x24 y12 temp2) nets(2): GND, *clk
IOC Node: a(x11 y-1 temp2) nets(2): GND, *a
IOC Node: b(x17 y24 temp2) nets(2): GND, *b
IOC Node: q(x-1 y15 temp2) nets(2): q, *null
GPC Node: (y_reg_LUT,y_reg)(x15 y16 temp9) nets(9): b, GND, GND, GND, GND, GCLK0, GND, GRST, *y
GPC Node: (x_reg_LUT,x_reg)(x17 y21 temp9) nets(9): a, GND, GND, GND, GND, GCLK0, GSET, GND, *x
GPC Node: (a14_1,q_reg)(x13 y18 temp9) nets(9): a, GND, GND, GND, GND, GCLK1, n130, GND, *q
GPC Node: (a13_0,null)(x19 y23 temp9) nets(9): y, GND, GND, GND, GND, GND, GND, GND, *n93
GPC Node: (U33,null)(x19 y21 temp9) nets(9): x, GND, GND, GND, GND, GND, GND, GND, *n130

GND Net GND, nodes(34) *null, rst, clk, a, b, (y_reg_LUT,y_reg), (y_reg_LUT,y_reg), (y_reg_LUT,y_reg), (y_reg_LUT,y_reg),
(y_reg_LUT,y_reg), (x_reg_LUT,x_reg), (x_reg_LUT,x_reg), (x_reg_LUT,x_reg), (x_reg_LUT,x_reg), (x_reg_LUT,x_reg),
(a14_1,q_reg), (a14_1,q_reg), (a14_1,q_reg), (a14_1,q_reg), (a14_1,q_reg), (a13_0,null), (a13_0,null), (a13_0,null),
(a13_0,null), (a13_0,null), (a13_0,null), (a13_0,null), (U33,null), (U33,null), (U33,null), (U33,null), (U33,null),
(U33,null), (U33,null)
VCC Net VCC, nodes(1) *null
GCLK0 Net GCLK0, nodes(3) *SR1, (y_reg_LUT,y_reg), (x_reg_LUT,x_reg)
GCLK1 Net GCLK1, nodes(2) *SR3, (a14_1,q_reg)
GRST Net GRST, nodes(2) *SR5, (y_reg_LUT,y_reg)
GSET Net GSET, nodes(2) *SR4, (x_reg_LUT,x_reg)
PIO_CLK Net PIO_CLK, nodes(1) *null
Nets(9):
Net rst, nodes(3) *rst, SR5, SR4
Net clk, nodes(2) *clk, SR1
Net a, nodes(3) *a, (x_reg_LUT,x_reg), (a14_1,q_reg)
Net b, nodes(2) *b, (y_reg_LUT,y_reg)
Net x, nodes(2) *(x_reg_LUT,x_reg), (U33,null)
Net q, nodes(2) *(a14_1,q_reg), q
Net y, nodes(2) *(y_reg_LUT,y_reg), (a13_0,null)
Net n93, nodes(2) *(a13_0,null), SR3
Net n130, nodes(2) *(U33,null), (a14_1,q_reg)

First nodes are listed, each having type, name, some parameters including nets node is
connected to. Net, that node is writing to (output net) is marked with star *.
After list of nodes list of all global and all local nets is supplied. Each net description starts
with net name, total number of nodes it is connected to and list of them. Net source node is
marked with * and is listed first.
There are various node types, as shown in Table 1 that can be printed or displayed,
depending of state P&R tool is in. If node is not to be displayed, it is displayed in gray
color - meaning some internal error has occurred.

Table 1: Node types

Log name and
color displayed

Matching Class Description

PORTx NodePort Input(0) or output(1) module port
PRIM NodePrim Primitive function (e.g. AND2)
FF NodeFF D type flip-flop
LUTx func NodeLUT x input Look-Up-Table with function func
IOC NodeIOC IOC as defined in architecture specification
GPC NodeGPC GPC as defined in architecture specification
SR NodeSR Special resource node - not displayed

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 6 of 13

2.1.4 Graphics Option -g
Displays progress graphically, using Java AWT. Graphical mode allows user to manually
place (using first mouse button) nodes and get overview on circuit and possible problems.
Figure 1 shows sample graphical display after routing. Numbers represent number of free
routing channels per node. "Matches" represents connections. Bottom label displays current
status and object info currently under mouse. Double click on right list selects action SW
should perform.

Figure 1: Graphical display of routed net-list.

2.1.5 Log Option -l
Specifies different log file name; default KRPAN.log.

2.1.6 Source and Destination Directory Option (-sd and -dd)
Specifies source or destination directory. Source directory specifies relative to where main
source file is, and where libraries and dependent files are located.

2.1.7 Include Empty Cells Option -c
If specified, cells that are not assigned are included in configuration bit-stream as empty.

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 7 of 13

2.2 Input File
Various formats are supported by KRPAN. File format is specified with its extension:

• EDIF [*.edf]
• Verilog - HDL [*.v]

WARNING: KRPAN does not support complete language grammars, for languages
specified above. Only technology independent data should be supplied.

2.2.1 Limitations of EDIF parser
Only technology independent data is extracted from EDIF file, all other data is ignored.

2.2.2 Limitations of VERILOG parser
This version only supports technology independent net lists for GTECH library. Exactly
one module should be in each file. Other limitations are:

• no memory support (e.g.: reg [31:0] mem [1023:0])
• no special wire support - only wire, input and output are valid
• no meta data info such as #

2.2.3 Specifying Special Signal
Some port names are reserved and are used for accessing special resources:

• PIO_CLK accesses the GPIO clock
• WB_CLK accesses the WISHBONE clock, which is driven to FPGA WB interface

They should be defined as external ports, e.g.:
module neg(PIO_CLK, out_clk);
input PIO_CLK;
output out_clk;

 assign out_clk = ~PIO_CLK;
endmodule;

2.3 Log File
Specifies stream where should be debug and verbose output written. Default value is
KRPAN.log.

2.4 Output File
Default output file name is input file name, with added .bin extension. It holds bit stream
data of specified design and it is functionally equal to input net-list. See bit stream
appendix in FPGA architecture document.

2.4 Example of Use
Command line:
java –jar KRPAN.jar tst.edf

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 8 of 13

tst.edf file
(edif TST
 (edifversion 2 0 0)
 (ediflevel 0)
 (keywordmap (keywordlevel 0))
 (library MCNC
 (ediflevel 0)
 (technology (numberdefinition))
 (cell INV (celltype generic)
 (view nl (viewtype net-list)
 (interface
 (port IN
 (direction INPUT))
 (port OUT
 (direction OUTPUT)))))
 (cell AND2 (celltype generic)
 (view nl (viewtype net-list)
 (interface
 (port I0
 (direction INPUT))
 (port I1
 (direction INPUT))
 (port OUT
 (direction OUTPUT)))))
 (cell OR2 (celltype generic)
 (view nl (viewtype net-list)
 (interface
 (port I0
 (direction INPUT))
 (port I1
 (direction INPUT))
 (port OUT
 (direction OUTPUT)))))
 (cell NAND2 (celltype generic)
 (view nl (viewtype net-list)
 (interface
 (port I0
 (direction INPUT))
 (port I1
 (direction INPUT))
 (port OUT
 (direction OUTPUT)))))
 (cell NOR2 (celltype generic)
 (view nl (viewtype net-list)
 (interface
 (port I0
 (direction INPUT))
 (port I1
 (direction INPUT))
 (port OUT
 (direction OUTPUT))))))
 (library EDIF_TEST
 (ediflevel 0)
 (technology (numberdefinition))
 (cell TST (celltype generic)
 (view nl (viewtype net-list)
 (interface
 (port a
 (direction INPUT))
 (port b
 (direction INPUT))
 (port c
 (direction INPUT))
 (port d
 (direction INPUT))
 (port e
 (direction INPUT))
 (port f
 (direction INPUT))
 (port p
 (direction OUTPUT))
 (port q
 (direction OUTPUT)))
 (contents
 (instance I1 (viewref nl (cellref NAND2
(libraryref MCNC))))
 (instance I2 (viewref nl (cellref NOR2
(libraryref MCNC))))
 (instance I3 (viewref nl (cellref NAND2
(libraryref MCNC))))
 (instance I4 (viewref nl (cellref OR2
(libraryref MCNC))))
 (instance I5 (viewref nl (cellref AND2
(libraryref MCNC))))
 (instance I6 (viewref nl (cellref NAND2
(libraryref MCNC))))
 (instance I7 (viewref nl (cellref NOR2
(libraryref MCNC))))

 (instance I8 (viewref nl (cellref AND2 (libraryref MCNC))))
 (instance I9 (viewref nl (cellref OR2 (libraryref MCNC))))
 (instance I10 (viewref nl (cellref AND2 (libraryref MCNC))))
 (instance I11 (viewref nl (cellref NAND2 (libraryref MCNC))))
 (instance I12 (viewref nl (cellref OR2 (libraryref MCNC))))
 (net na
 (joined
 (portref a)
 (portref I0 (instanceref I8))
 (portref I0 (instanceref I5))))
 (net nb
 (joined
 (portref b)
 (portref I0 (instanceref I1))))
 (net nc
 (joined
 (portref c)
 (portref I1 (instanceref I1))
 (portref I0 (instanceref I2))))
 (net nd
 (joined
 (portref d)
 (portref I1 (instanceref I2))))
 (net ne
 (joined
 (portref e)
 (portref I0 (instanceref I3))))
 (net nf
 (joined
 (portref f)
 (portref I1 (instanceref I3))))
 (net n1
 (joined
 (portref OUT (instanceref I1))
 (portref I0 (instanceref I12))
 (portref I0 (instanceref I4))))
 (net n2
 (joined
 (portref OUT (instanceref I2))
 (portref I1 (instanceref I7))
 (portref I1 (instanceref I4))))
 (net n3
 (joined
 (portref OUT (instanceref I3))
 (portref I1 (instanceref I6))
 (portref I1 (instanceref I10))))
 (net n4
 (joined
 (portref OUT (instanceref I4))
 (portref I1 (instanceref I5))
 (portref I0 (instanceref I6))))
 (net n5
 (joined
 (portref OUT (instanceref I5))
 (portref I0 (instanceref I9))))
 (net n6
 (joined
 (portref OUT (instanceref I6))
 (portref I1 (instanceref I8))
 (portref I0 (instanceref I7))))
 (net n7
 (joined
 (portref OUT (instanceref I7))
 (portref I1 (instanceref I9))
 (portref I0 (instanceref I10))))
 (net n8
 (joined
 (portref OUT (instanceref I8))
 (portref I0 (instanceref I11))))
 (net n9
 (joined
 (portref OUT (instanceref I9))
 (portref I1 (instanceref I11))))
 (net n10
 (joined
 (portref OUT (instanceref I10))
 (portref I1 (instanceref I12))))
 (net n11
 (joined
 (portref OUT (instanceref I11))
 (portref p)))
 (net n12
 (joined
 (portref OUT (instanceref I12))
 (portref q)))))))
 (design TST
 (cellref TST
 (libraryref EDIF_TEST))))

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 9 of 13

2.5 Constraints
(not implemented yet)

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 10 of 13

3
Modules

This section should cover program structure, internal functionality, and dependencies and
describes how program should be built. See KRPAN API specification for more internal
details.

3.1 Program Structure
Program is basically divided into following parts, for which we can assume that are
executed sequentially:

1. parser (org.opencores.edifp and org.opencores.verilog package)
2. constraint handling (org.opencores.constraints package, UNIMPLEMENTED)
3. mapping (org.opencores.mapping package)
4. preplacement (org.opencores.placement package)
5. placement (org.opencores.placement package)
6. routing (org.opencores.routing package)
7. constraint testing (org.opencores.constraints package, UNIMPLEMENTED)
8. bitstream generation (org.opencores.structure package)

In following sections above parts are explained in detail.

3.1.1 Parser
Two manually built LL(1) parsers for net-list loading. Both use large hash-type dictionary
for identifier names, which shortens loading time.

3.1.2 Constraint Handling
(Not yet implemented)

3.1.3 Mapping
Elements (e.g. gates) are mapped to special purpose functions and other elements, which
exist in the architecture (see FPGA Architecture Specification document for more details).
Optimal mapping (for unit-delay net-list) algorithm, called FlowMap, was chosen because
its speed and good results.

3.1.4 Pre-placement
The goal of this part is to find valid position for every resource, so there are no conflicts.
Only valid placement is found, not optimal.

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 11 of 13

3.1.5 Placement
After we have valid placement, we search for better placement solution, which allows us to
minimize delay and to improve routing resources utilization. Simulated annealing is used
for searching for near-optimal solution.

3.1.6 Routing
This part assigns valid positions to metal segments and connects them in a way that design
functionality stays the same with minimal possible delays.

3.1.7 Constraint Handling
(Not yet implemented)

3.1.8 Bitstream Generation
Actually generated using writeBitstream method and it is not in special package.

3.2 Building and Running KRPAN

KRPAN is Sun Java compatible. It requires at least Sun Java 2 SDK v1.2. It is available for
various platforms. There are many other Java compilers and interpreters, which can be
used, but only if they are fully compatible with Sun's. Some of them also allow binary file
generation, but this is platform specific. In this section building with javac is supplied.
First decompress jar files, which contains sources, documents and examples:
jar xf sources.jar
jar xf examples.jar
jar xf docs.jar
mkdir class

When decompressing jar packages you should get following directory structure:

examples
 edif

v
source

org
 opencores
 edifp
 graphics
 JLex
 mapping

 placement
 routing
 structure
 util
 verilogp
doc
 index-files

org
 …

class

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 12 of 13

Then compile sources using:
javac -O -d class -g:none source/org/opencores/*.java
source/org/opencores/edifp/*.java source/org/opencores/graphics/*.java
source/org/opencores/JLex/*.java source/org/opencores/mapping/*.java
source/org/opencores/placement/*.java source/org/opencores/routing/*.java
source/org/opencores/structure/*.java source/org/opencores/util/*.java
source/org/opencores/verilogp/*.java

You should get a whole directory tree of classes into class directory. Now run:

java -cp class org.opencores.Main [KRPAN parameters]

Your KRPAN should be working now. Please refer to your jar utility documentation if
you want to build .jar file. OpenCores signed jar package (named KRPAN.jar) is also
available for download at www.opencores.org.

OpenCores FPGA P&R Software 20.4.01

www.opencores.org Rev 0.3 Page 13 of 13

5
Performance

This section should discuss the performance (e.g. speed, quality) and do some comparisons.

