
1 | P a g e

FT816 Floating Point Accelerator
Robert Finch – rob<remove>@finitron.ca

Overview:
FT816 floating point accelerator consists of two ninety-six bit floating point accumulators

between which floating point or fixed point operations occur. Basic operations include ADD,

SUB, MUL, DIV, FIX2FLT, FLT2FIX, SWAP, NEG and ABS. The floating point accumulators operate

as a memory mapped device placed by default between $FEA200 and $FEA2FF. The floating

point accelerator communicates through a byte wide data port and twenty-four bit address

port. It was intended for use primarily with smaller byte oriented cpu’s like the 65xx, 68xx series

in order to provide them with some floating point capability.

Floating Point Representation:
The floating point representation is triple precision (3x a 32 bit float) and consists of a 16 bit

exponent, and eighty bit mantissa. Note that the representation is a non-standard one. The

mantissa is represented as a two complement number. The mantissa has one binary digit before

the decimal point. The exponent is also represented as a two’s complement number but with an

inverted sign bit.

95 80 79 0

SEEEEEEEEEEEEEEE SM.MMMMMM………MMMMMMMM

Range
Exponent ranges from -32768 to + 32767. The range is represented based at zero.

SEEEEEE….
field

Exponent

FFFF 32767 maximum exponent
…

8000 0
…

0000 -32768 minimum exponent

There are 79 bits in the mantissa plus a sign bit. So the range is -2^79 to +2^79 (approximately

24 digits of precision). The mantissa is represented in two’s complement form.

2 | P a g e

Operations Supported
Floating point calculations are performed by loading the floating point accumulators with values

then setting an operation code in a command register.

Operation Opcode

ADD 1 FAC1 = FAC2 + FAC1
SUB 2 FAC1 = FAC2 – FAC1

MUL 3 FAC1 = FAC2 * FAC1

DIV 4 FAC1 = FAC2 / FAC1
FIX2FLT 5 FAC1 = convert to float(FAC1)

FLT2FIX 6 FAC1 = convert to fixed(FAC1)
ABS 7 FAC1 = ABS(FAC1)

NEG 16 FAC1 = -FAC1
SWAP 17 FAC1 is swapped with FAC2

FIXED_ADD 81h FAC1 = FAC1 + FAC2
FIXED_SUB 82h FAC1 = FAC1 – FAC2

FIXED_MUL 83h FAC1 = FAC1 * FAC2
FIXED_DIV 84h FAC1 = FAC2 / FAC1

FIXED_ABS 87h FAC1 = ABS(FAC1)
After the opcode is set in the command register, the operation status may be read from the

status register. The most significant bit of the status register indicates a busy status.

Operation
Values are transferred to and from the FAC registers using cpu load and store instructions. Once

values have been loaded into the FAC registers an operation may be performed by loading the

command register with one of the given operations. Before the next operation can begin the

status register must be polled to make sure that the FPU isn’t busy. If the FPU is busy and

another operation is specified it will be ignored.

3 | P a g e

Registers
Registers are mapped into the memory space of the system. The default is to map registers

between $FEA200 and $FEA2FF. This mapping is controllable by optionally setting a parameter

for the core.

$FEA200 FAC1 LSB of manitssa

…

$FEA209 FAC1 MSB of mantissa
$FEA20A FAC1 LSB of exponent

$FEA20B FAC1 MSB of exponent

$FEA20F Command / status register

$FEA210 FAC2 LSB of manitssa

…
$FEA219 FAC2 MSB of mantissa

$FEA21A FAC2 LSB of exponent
$FEA21B FAC2 MSB of exponent

Command Register
The command register is write-only and shared with the status register which is read-only. It

accepts an eight bit command value. The commands supported are listed under the Operations

Supported section.

Status Register
 The status register located at $FEA20F has the following format:

Busy 0 0 LT EQ GT ZF VF

 Busy – 1 = indicates that an FPU operation is in progress. 0 means the operation is complete.

LT – indicates that FAC1 is less than FAC2

EQ – indicates that the FAC’s are equal

GT – indicates that FAC1 is greater than FAC2

ZF – indicates that FAC1 is zero (typically FAC1 holds the result of an operation)

VF – indicates that overflow occurred during the operation.

4 | P a g e

Performance
The performance of the floating point unit is at least several times what a software solution

could accomplish. Performance is somewhat dependent on the data. Below is a sample.

FIX2FLT: 114 clock cycles to convert 100.0 to floating point from fixed

MUL: 176 clock cycles to multiply 100.0 * 8.0.

SUB: 33 clock cycles to subtract 100.0-8.0.

ADD: 16 clock cycles to add 100.0+8.0

DIV: 93 clock cycles to divide 100.0 / 8.0

Multiply works at a rate of one bit every two clock cycles. So it takes 160 clock cycles to process

multiplication of the mantissa. There is also overhead for adjusting the sign of the operands and

result.

Divide works at a rate of one bit per clock cycle. It takes 80 clock cycles to process the mantissa.

There is also overhead for adjusting the signs of the operands and result.

Size
The core is estimated to be approximately 2300 4-LUTs in size (or about 2050 logic cells).

Clocks
The floating point unit uses a single clock which is also used as the clock for bus interfacing. The

core may be clocked with a relatively high frequency clock.

5 | P a g e

Module Ports
 FT816Float(rst, clk, vda, rw, ad, db, rdy); module

Signal In/Out Size Active Purpose

rst I 1 high synchronous resets the core

clk I 1 positive edge clocks the core
vda I 1 high indicates a valid data address is present

rw I 1 high high for read, low for write cycle
ad I 24 high address bus

db I/O 8 high bi-directional data bus
rdy O 1 high high when bus transfer is ready

For a write cycle the core performs a data transfer within the current clock cycle and no wait-

states are incurred.

For a read cycle there are two wait-states inserted to allow the core to transfer data from

internal registers, before ready becomes active.

IF the core is not addressed then the ready signal will be high allowing it to be wire -and’ed with

other ready signals.

Parameters

Name Default Value
pIOAddress $FEA200 This parameter controls where in the memory space the core

appears. The core reserves a block of 256 consecutive
addresses.

pRdyStyle 1 This parameter controls the value of the ready signal when
the core is not selected. It should be 1 or 0.

6 | P a g e

Kudoos
The core originated as a direct translation of the floating point routines written in 6502

assembler code presented in Dr. Dobb's Journal, August 1976, pages 17-19. It has since been

extended to higher precision and optimized for better performance. It bears little resemblance

to the original code.

Floating Point Routines for the 6502

by Roy Rankin, Department of Mechanical Engineering,

 Stanford University, Stanford, CA 94305

 (415) 497-1822

and

 Steve Wozniak, Apple Computer Company

 770 Welch Road, Suite 154

 Palo Alto, CA 94304

 (415) 326-4248

