
Hardware looping
unit

Author: Nikolaos Kavvadias
nkavv@physics.auth.gr

nkavv@uop.gr
nikolaos.kavvadias@gmail.com

Rev. 0.2
April 3, 2010

mailto:nikolaos.kavvadias@gmail.com
mailto:nkavv@uop.gr
mailto:nkavv@physics.auth.gr

 OpenCores 4/3/2010

This page has been intentionally left blank.

www.opencores.org Rev 0.2 ii

http://www.opencores.org/

 OpenCores 4/3/2010

Revision History
Rev. Date Author Description
0.1 04/04/12 Nikolaos

Kavvadias
First Draft.

0.1.b 04/04/27 Nikolaos
Kavvadias

Corrected carry-select adder implementation
(csa8.vhd). Removed fa_nc.vhd file.

0.1.c 09/03/23 Nikolaos
Kavvadias

Added GHDL Makefile:
/bench/vhdl/Makefile.ghdl

0.1.d 10/02/09 Nikolaos
Kavvadias

Fixed some minor documentation typos. New
files common.[c|h], Makefile in /sw.

0.2 10/04/03 Nikolaos
Kavvadias

Xilinx ISE synthesis scripts. gen_ixgen.c in /sw.
Other minor updates.

www.opencores.org Rev 0.2 iii

http://www.opencores.org/

 OpenCores 4/3/2010

Contents
 INTRODUCTION...1

1.1. Files included in the distribution...2
 ARCHITECTURE..3

2.1. Using the hardware looping unit within a programmable processor................................4
 OPERATION...6
 REGISTERS..8

List of Registers...8
 CLOCKS..9
 IO PORTS...10
 APPENDIX A...11

A.1. Usage of the gen_priority_encoder generation tool..11
A.2. Usage of the gen_hw_looping generation tool..11
A.2. Usage of the gen_ixgen generation tool..11

 APPENDIX B...13
 APPENDIX C...14
 REFERENCES..15

www.opencores.org Rev 0.2 iv

http://www.opencores.org/

 OpenCores 4/3/2010

1
Introduction

This document discusses the details for the design of the hardware looping unit (HWLU).
The design is based on recent published work [1],[2],[3]. Its main purpose is to provide
an enhancement to program control units found in modern microprocessors, by efficiently
handling loop increments in nested loop structures. As mentioned in [3] this unit was
originally used to handle loop nesting up to five levels, which suffices for the studied
benchmarks in their work. The main advantage of the presented architecture is that
successive last iterations of nested loops are performed in a single cycle. This architecture
can be useful in the case that all data processing in context of the nested loop structure is
performed in the inner loop, which is rather often in multidimensional signal processing
applications as performance-critical code in image coding and video compression
standards.

This implementation, which is called “hardware looping unit”, is actually a somewhat
enhanced clone of the MediaBreeze looping unit. MediaBreeze is an SIMD, addressing
and looping engine adapted to high-end (and very power consuming) microprocessors.
As detailed in [1],[2] and given their proclaimed figures, the whole architecture is not
suitable to power-sensitive embedded computing.

For the architecture, portable VHDL code that promotes design reuse is provided. The
design has a simple synchronous interface with a single system clock. Also, the means
are provided for reusing the VHDL code in applications with different maximum number
of loops. For this reason, two software tools are provided in the distribution, that generate
the parts of the architecture (both the priority encoder and top-level module as discussed
later) that depend on the implied maximum number of loops.

NOTE: Compared to another looping unit proposed for use in embedded systems,
currently named ZOLC (Zero Overhead Loop Controller) [4], there exists a tradeoff as
for slightly better cycle performance, the HWLU necessitates redundant hardware. While
with ZOLC, a complex loop structure with an arbitrary number and combination of loops
can be controlled, by using a single process unit (one adder, one comparator etc), HWLU
demands this hardware replicated for each loop. Also ZOLC supports loop structures with
loop parameter values changing at run-time.

www.opencores.org Rev 0.2 1

http://www.opencores.org/

 OpenCores 4/3/2010

1.1. Files included in the distribution

The current distribution (version 0.2) contains the following files:

Directory/file Description/usage
hwlu/syn/leonardo/bin
hwlu_5_csadder.scr LeonardoSpectrum synthesis script for

HWLU. Utilizes an 8-bit carry-select adder.
hwlu_5_generic.scr LeonardoSpectrum synthesis script for

HWLU. Uses a generic adder.
hwlu/syn/xst/bin
change_dw.pl Perl script for changing the value of the DW

generic at declaration site.
Makefile.ise Xilinx ISE (XST) Makefile template.
run_xst_hwlu.sh Bash script for running a set of synthesis

jobs.
hwlu/rtl/vhdl
add_dw.vhd DW-bit adder
cmpeq.vhd Equality comparator
reg_dw.vhd DW-bit register with synchronous reset and

load enable
fa.vhd 1-bit full-adder cell
mux2_1.vhd 2-to-1 DW-bit multiplexer
csa8.vhd 8-bit carry select adder (top-level of adder)
index_inc.vhd Index incrementer (increments by 1)
prenc_loops5.vhd Automatically generated priority encoder
hw_loops5_top.vhd Automatically generated top-level module of

the architecture
hwlu/bench/vhdl
hw_loops5_top_tb.vhd Testbench for hw_loops5_top.vhd
Makefile.ghdl Generic Makefile for GHDL
hwlu/doc
hwlu_spec.pdf This document (specification)
hwlu/sw
common.c Commonly used functions
common.h Prototypes for commonly used functions
gen_hw_looping.c Parameterized software utility that can

generate the top-level file of the HWLU
architecture for a given number of supported
loops

gen_priority_encoder.c Parameterized software utility that can
generate the priority encoder module for a
given number of support loops

gen_ixgen.c Generator for the compact form of the index
generator unit.

Makefile Makefile for building the software tools

www.opencores.org Rev 0.2 2

http://www.opencores.org/

 OpenCores 4/3/2010

2
Architecture

The hardware looping architecture (HWLU) naturally can incorporate any number of
levels of loop nesting in hardware to eliminate branch instruction overhead for loop
increments. The user can re-generate the corresponding files for modules
hw_looping(structural) and priority_encoder(rtl) for a different number of supported
loops. Its operation is similar to control mechanisms found in recent DSPs. Figure 1
shows the block diagram of the hardware looping architecture.

cmpeq cmpeq cmpeq

reset
loop1_count loop2_count loopn_count

priority encoder

flag(1) flag(2) flag(n)

index1 index1+1 index2 index2+1 indexn indexn+1

task_loopn_end

reset_vct

reset
control

index
inc_by_1

index
inc_by_1

index
inc_by_1

incl(1) incl(2) incl(n)

reset_vct_ix

loops_end

Figure 1. Block diagram of the hardware looping unit

Loop index values are produced every clock cycle based on the loop bound values
(possibly read from a lookup table) for each level of nesting. The initial value for the loop
indices is zero as by reset, and the maximum value is equal to the loop_bound minus one.
In the following cycle of a last iteration for a specific loop, the loop index is reset to its
initial value.

www.opencores.org Rev 0.2 3

http://www.opencores.org/

 OpenCores 4/3/2010

The priority encoder performs the actual control logic in context of the HWLU and
operates asynchronously by detecting the equality comparators (cmpeq) outputs (bitwise
flag signals) and an external signal from the datapath (task_loopn_end), where n is the
enumeration of the inner loop. This signal is produced by the corresponding hardware
module that performs the inner loop operations, which may be a dedicated accelerator
engine.

If a specific loop is terminating, this loop as well as all its inner loops are reset in the
subsequent cycle. If this loop is not the outermost one, its neighboring outer loop index is
incremented. In case that none of the loops is terminating, then the inner loop is
incremented. Signal task_loopn_end guards this increment operation.

Finally, signal loops_end designates that processing in the entire loop structure has
terminated, and can be made available to the main control unit of the microprocessor.

2.1. Using the hardware looping unit within a
programmable processor

Figure 2 indicates a possible design of a control unit used in a programmable instruction
set processor. It is implied that the register architecture of the processor is partitioned, so
that the loop index registers are stored into dedicated registers (the register bank
comprised by the increment-by-1 units) and a general-purpose register file (not shown
here) is used for other subroutine arguments, global variables etc.

Main control
unit

Main
datapath

HW
accelerator

inner loop processing

control

status

control

HWLU
(hardware

looping unit)

task_loopn_end
designates status
of inner loop

index1
index2

.

.
indexn

output
enable

loop1_count
loop2_count

.

.
loopn_count

loops_end
loop bound

registers

loop1_count
loop2_count
loopn_count

data outputs

Figure 2. Usage of the hardware looping unit in a programmable processor

www.opencores.org Rev 0.2 4

http://www.opencores.org/

 OpenCores 4/3/2010

As can be seen, usual processing (e.g. for control-dominated segments of the user
program) is implemented in the main datapath, which communicates through control and
status channels with the main control unit. When appropriate, the main control unit
activates the hardware acceleration datapath unit. Also, at that time, the output enable
input to the loop bound register bank shown in the figure is active, so that the loop_bound
value can be read by the HWLU. In our example, this unit performs all the inner loop
processing. All index variables, are made available to the acceleration unit so that (high-
bandwidth) data and address computation can be serviced as needed. When its operation
terminates, the HWLU is acknowledged through the task_loopn_end asynchronous flag.
On an active loops_end signal, which occurs when the loop structure is exited, the main
control unit pauses the HWLU e.g. by deasserting the output enable signal to the loop
bound values lookup table.

www.opencores.org Rev 0.2 5

http://www.opencores.org/

 OpenCores 4/3/2010

3
Operation

The operation of the core is rather simple. Input signal clk is the system clock for the
design. Input signal task_loopn_end is the termination status flag from the computation
unit that performs the operations devoted to the inner loop.

The core performs one loop increment per cycle and when a final iteration for a specific
loop is reached, this loop as well as its inner loops are reset in the same cycle.

The operation of the core can be halted in case the signal task_loopn_end is deasserted.
Then, the contents of the index registers of the hardware looping unit are not changed and
any activity beyond the comparator modules is ceased.

The loop bound register outputs is assumed that they can be tristated. This can be
achieved with an appropriate design of the loop bound busses. Only when signal output
enable (as shown in Figure 2) is active, the loop bound register values can be read from
the hardware looping unit.

In the following figures (Figure 3 and 4) the operating modes of the hardware looping
unit are indicated.

Figure 3. Normal operation of the HWLU

www.opencores.org Rev 0.2 6

http://www.opencores.org/

 OpenCores 4/3/2010

Figure 4. Operation of the HWLU when signal task_loopn_end is deasserted

www.opencores.org Rev 0.2 7

http://www.opencores.org/

 OpenCores 4/3/2010

4
Registers

The hardware looping unit contains a single register bank with non user-addressable
registers. Parameter DW denotes the register bitwidth and is implemented as a generic in
the VHDL sources for the design. The size of the register bank is adjustable through
parameter NLP, denoting the maximum number of supported loops.

It is assumed that a possible configuration for the loop bound register bank is This section
specifies all internal registers. It should completely cover the interface between the core
and the host as seen from the software view.

List of Registers

Name Address Width Access Description
index1_reg n.a. DW R/W Index register for loop 1
index2_reg n.a. DW R/W Index register for loop 2
… … … … …
indexn_reg n.a. DW R/W Index register for loop n (NLP in the VHDL

sources). This is the index register for the inner
loop

Table 1: List of registers

All index registers have are reset value of zero (0).

www.opencores.org Rev 0.2 8

http://www.opencores.org/

 OpenCores 4/3/2010

5
Clocks

The design uses a single clock which is the system clock (master clock of the processor
core where the hardware looping unit) can be situated. There is no inhererent limitation
for the system clock timing characteristics except as constrained by the synthesis results.

Name Source Rates (MHz) Remarks Description
Max Min Resolution

clk Input
Pad

As by
synth.

- - Must be
synchronized with
the main control
unit clock..

System clock.

Table 2: List of clocks

www.opencores.org Rev 0.2 9

http://www.opencores.org/

 OpenCores 4/3/2010

6
IO Ports

This section specifies the IO ports for the hardware looping unit.

Port Width Direction Description
clk 1 Input Clock input
reset 1 Input Reset input
task_loopn_end 1 Input Termination flag for the data computations

occurring during an iteration of the inner loop
loop1_count DW Input Loop bound value for loop 1
loop2_count DW Input Loop bound value for loop 2
…
loopn_count DW Input Loop bound value for loop n
loops_end 1 Output Termination flag for the entire loop structure
index1 DW Output Index register output for loop 1
index2 DW Output Index register output for loop 2
…
indexn DW Output Index register output for loop n

Table 3: List of I/O ports

The reset input is used as synchronous reset in the index incrementer units and as an
asynchronous input for the reset control operations.

www.opencores.org Rev 0.2 10

http://www.opencores.org/

 OpenCores 4/3/2010

Appendix A
Software tools

This appendix summarizes the usage of the delivered software tools.

A.1. Usage of the gen_priority_encoder generation tool

Usage of the gen_priority_encoder tool is summarized below:

Usage: gen_priority_encoder <num loops> <output base>
where:
num loops = give number of supported loops
output base = output file base name. The generated files will be named:
 <output base>.vhd for the module

A.2. Usage of the gen_hw_looping generation tool

Usage of the gen_hw_looping tool is summarized below:

Usage: gen_hw_looping <num loops> <output base>
where:
num loops = give number of supported loops
output base = output file base name. The generated files will be named:
 <output base>_top.vhd

A.3. Usage of the gen_ixgen generation tool

Usage of the gen_ixgen tool is summarized below:

Usage: gen_ixgen -nlp <num loops> <output base>
where:
-nlp <num loops> = give number of supported loops (default = 1)

www.opencores.org Rev 0.2 11

http://www.opencores.org/

 OpenCores 4/3/2010

output base = output file base name. The generated files will be named:
 <output base><nlp>_pf.vhd

www.opencores.org Rev 0.2 12

http://www.opencores.org/

 OpenCores 4/3/2010

Appendix B
TODOs

This section summarizes some additions to the hardware looping unit distribution that
might appear in the future.

• A comprehensive table summarizing the modes of operation in Section 3
(Operation).

• Generation tool for simple testbench for the top-level module.

• Incorporation of the loop bound register bank in the hardware looping unit. Its
initialization sequence will be determined by the main control unit.

• Synthesis results for Mentor LeonardoSpectrum, Synopsys FPGA Compiler II,
Synopsys Design Compiler.

• Flexible versions of the hw_looping(structural) and priority_encoder(rtl)
entity/architectures through the use of conditional generate statements. These
versions will generate the appropriate hardware supporting from 1 up to 5 loops as
selected by the used at compile-time. These will be provided as an alternative
method to produce the corresponding modules in case it is not intended to use our
generation tools.

• Processing enable control inputs so that operation of the core is halted when
requested e.g. by an external signal.

• Low-level ANSI C code generation for the looping logic.

www.opencores.org Rev 0.2 13

http://www.opencores.org/

 OpenCores 4/3/2010

Appendix C
Revision history

• Version 0.1.b
Corrected carry-select adder implementation (csa8.vhd). Removed fa_nc.vhd.
The synthesis scripts now refer to relative paths.

• Version 0.1.c
Added GHDL Makefile.

• Version 0.1.d
 Fixed documentation typos.
• Version 0.2

Xilinx ISE synthesis scripts, gen_ixgen index generator tool and minor updates.

www.opencores.org Rev 0.2 14

http://www.opencores.org/

 OpenCores 4/3/2010

References

1. D. Talla, L. K. John, and D. Burger, “Bottlenecks in Multimedia Processing with
SIMD Style Extensions and Architectural Enhancements,” IEEE Transactions on
Computers, Vol. 52, No. 8, pp. 1015-1031, August 2003.

2. D. Talla, “Architectural Techniques to Accelerate Multimedia Applications on
General-Purpose Processors,” Ph.D. thesis, University of Texas at Austin, August
2001.

3. D. Talla and L. K. John, “Cost-effective hardware acceleration of multimedia
applications,” In Proceedings of the IEEE International Conference on Computer
Design, pp. 415-424, September 2001, Austin, Texas.

4. N. Kavvadias and S. Nikolaidis, “Parametric architecture for implementing
multimedia algorithms,” In Proceedings of the 14th International Conference on
Digital Signal Processing, July 2002, Santorini, Greece.

www.opencores.org Rev 0.2 15

http://www.opencores.org/

