
I2C-Master Core
Specification

Author: Richard Herveille
RHerveille@opencores.org

Rev. 0.3
March 6, 2001

This page left blank intentionally

Revision History

Rev. Date Author Description
0.1 17/02/01 Richard Herveille First draft release
0.2 01/03/01 Richard Herveille Some cleaning up throughout the document

Added ‘Programming Examples’ section
0.3 Richard Herveille Added some comments after core-changes

- added BUSY bit (status register)
- changed I2C IO for ASIC support
- added comment for FGPA IO

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 1 of 14

1
Introduction

I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of
data exchange between devices. It is most suitable for applications requiring occasional
communication over a short distance between many devices.

The interface defines 3 transmission speeds:
- normal: 100kbps
- fast: 400kbps
- high speed:3.5Mbps

Only 100kbps and 400kbps modes are supported directly.

The I2C standard is a true multi-master bus including collision detection and arbitration
that prevents data corruption if two or more masters attempt to control the bus
simultaneously. This core, however, supports only single master operations, in which the
core is the master.

FEATURES
• Software programmable clock frequency
• Software programmable acknowledge bit
• Interrupt driven data-transfers
• Start/Stop/Repeated Start/Acknowledge generation
• Supports Clock Stretching/Wait state generation
• Single Master Operation

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 2 of 14

2
IO ports

2.1 WISHBONE interface signals

Port Width Direction Description
CLK_I 1 Input Master clock
RST_I 1 Input Synchronous reset, active high
nRESET 1 Input Asynchronous reset, active low
ADR_I 2 Input Lower address bits
DAT_I 16 Input Data towards the core
DAT_O 16 Output Data from the core
SEL_I 2 Input Byte select signals
WE_I 1 Input Write enable input
STB_I 1 Input Strobe signal/Core select input
CYC_I 1 Input Valid bus cycle input
ACK_O 1 Output Bus cycle acknowledge output
INTA_O 1 Output Interrupt signal output

nReset is not a WISHBONE compatible signal, it is provided for FPGA implementations.
Since most FPGAs provide a dedicated reset path using [nRESET] instead of [RST_I]
can result in lower cell-usage and higher performance. Use either [nRESET] or [RST_I].

2.2 External connections

Port Width Direction Description
SCLo 1 Output Serial Clock line output
SCLi 1 Input Serial Clock line input
SDAo 1 Output Serial Data line output
SDAi 1 Input Serial Data line input

The I2C interface uses a serial data line (SDA) and a serial clock line (SCL) for data
transfers. All devices connected to these two signals must have open drain or open
collector outputs. Both lines must be pulled-up to VCC by external resistors.

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 3 of 14

The tri-state buffers for the SCL and SDA lines have to be added at a higher hierarchical
level. Connections should be made according to the following figure:

For FPGA designs the compiler can automatically insert these buffers using the following
VHDL code:

SCL <= ‘0’ when (SCLo = ‘0’) else ‘Z’;
SDA <= ‘0’ when (SDAo = ‘0’) else ‘Z’;
SCLi <= SCL;
SDAi <= SDA;

SCLi

SCLo

SCL

SDAi

SDAo

SDA

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 4 of 14

3
Registers

3.1 Registers list

Name Address Width Access Description
PRER 0x00 16 RW Clock Prescale register
CTR 0x01 8 RW Control register
TXR 0x02 msb 8 RW Transmit register
RXR 0x03 msb 8 R Receive register
CR 0x02 lsb 8 RW Command register
SR 0x03 lsb 8 R Status register

3.2 Register description

3.2.1 Prescale Register
This register is used to prescale the SCL clock line. Due to the structure of the I2C
interface, the core uses a 4*SCL clock internally. The prescale register must be
programmed to this 4*SCL bitrate. Change the value of the prescale register only when
the ‘EN’ bit is cleared.

Example: CLK_I = 32MHz, desired SCL = 100KHz

Prescale = 32MHZ = 80 (dec) = 50 (hex)
 4 * 100 kHz

Reset value: 0xFFFF

3.2.2 Control register
Bit # Access Description
7 RW EN, I2C core enable bit.

When set to ‘1’ the core is enabled.
When set to ‘0’ the core is disabled.

6 RW IEN, I2C core interrupt enable bit.
When set to ‘1’ interrupt is enabled.
When set to ‘0’ interrupt is disabled.

5:0 RW Reserved

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 5 of 14

Reset Value: 0x00

The core responds to new commands only when the ‘EN’ bit is set. Pending commands
are finished. Clear the ‘EN’ bit only when no transfer is in progress, i.e. after a STOP
command, or when the command register has the STO bit set. When halted during a
transfer, the core can hang the I2C bus.

3.2.3 Transmit register
Bit # Access Description
7:1 RW Next byte to transmit via I2C
0 RW In case of a data transfer this bit represent the data’s LSB.

In case of a slave address transfer this bit represents the RW bit.
‘1’ for reading from slave
‘0’ for writing to slave

Reset value: 0x00

3.2.4 Receive register
Bit # Access Description
7:0 R Last byte received via I2C
Reset value: 0x00

3.2.5 Command register
Bit # Access Description
7 RW STA, generate (repeated) start condition
6 RW STO, generate stop condition
5 RW RD, read from slave
4 RW WR, write to slave
3 RW ACK, when a receiver, sent ACK (ACK = ‘0’) or NACK (ACK = ‘1’)
2:1 RW Reserved
0 RW IACK, Interrupt acknowledge. When set, clears a pending interrupt.
Reset Value: 0x00

The STA, STO, RD, WR and IACK bits are cleared automatically. These bits are always
read as zeros.

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 6 of 14

3.2.6 Status register
Bit # Access Description
7 R RxACK, Received acknowledge from slave.

This flag represents the addressed slave’s acknowledge.
‘1’ = No acknowledge received
‘0’ = Acknowledge received

6 R Busy, I2C bus busy
‘1’ after START signal detected
‘0’ after STOP signal detected

5:2 R Reserved
1 R TIP, Transfer in progress.

‘1’ when transferring data
‘0’ when transfer complete

0 R IF, Interrupt Flag. This bit is set when an interrupt is pending, which
will cause an processor interrupt request if IEN bit is set.
The Interrupt Flag is set when:
- Completed one byte transfer

Reset Value: 0x00

3.2.7 Notes

1) Combined Transmit register and Command register

The Transmit register and the Command register are both mapped to address 0x02. The
Transmit register is the MSB and the Command register the LSB.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
TxD7 TxD6 TxD5 TxD4 TxD3 TxD2 TxD1 TxD0 STA STO RD WR ACK Res Res IACK

2) Combined Receive and Status register

The Receive register and the Status register are both mapped to address 0x03. The
Receive register is the MSB and the Status register the LSB.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
RxD7 RxD6 RxD5 RxD4 RxD3 RxD2 RxD1 RxD0 RxACK Res Res Res Res Res TIP IF

3) Reserved bits

All reserved bits are read as zeros. To ensure forward compatibility they should be
written as zeros.

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 7 of 14

4
Operation

4.1 System Configuration

The I2C system uses a serial data line (SDA) and a serial clock line (SCL) for data
transfers. All devices connected to these two signals must have open drain or open
collector outputs. The logic AND function is exercised on both lines with external pull-up
resistors.

The I2C core is a single master device; therefore it starts generating a clock as soon as it
is released from reset. This being the slowest clock possible (CDR = 0xFF). The user
should program this register to the desired value before starting any transfers.

Data is transmitted synchronously to SCL on the SDA line on a byte-by-byte basis. Each
data byte is 8bits long. There is one SCL clock pulse for each data bit with the MSB
being transmitted first. There is an acknowledge bit following each transferred byte. Each
bit is sampled during the high period of SCL; therefore the SDA line may be changed
only during the low period of SCL and must be held stable during the high period of
SCL. A transition on the SDA line while SCL is high is interpreted as a command (see
START and STOP signals).

4.2 I2C Protocol

Normally, a standard communication consists of four parts:
1) START signal generation
2) Slave address transfer
3) Data transfer
4) STOP signal generation

SCL
SDA S A7 A6 A5 A4 A3 A2 A1 RW ack D7 D6 D5 D4 D3 D2 D1 D0 nack P

4.2.1 START signal

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and
SDA lines are high), a master can initiate a transfer by sending a START signal. A

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 8 of 14

START signal is defined as a high-to-low transition of SDA while SCL is high. The
START signal denotes the beginning of a new data transfer.
A repeated START is a START signal without first generating a STOP signal. The
master uses this method to communicate with another slave or the same slave in a
different transfer direction (e.g. writing to device to reading from device) without
releasing the bus.

The core generates a START signal when the STA-bit in the Command Register is set
and the RD or WR bits are set. Depending on the current status of the SCL line a START
or Repeated START is generated.

4.2.2 Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the
slave address. This is a seven-bit calling address followed by a RW bit. The RW bit
signals the slave data transfer direction. No two slaves in the system can have the same
address. Only the slave with an address that matches the one transmitted by the master
will respond by returning an acknowledge bit by pulling the SDA low at the 9th SCL
clock cycle.

Note: The core supports 10bit slave addresses. See the Philips I2C specifications for more
details.

The core treats a Slave Address Transfer as any other write action. Store the slave
device’s address in the Transmit Register and set the WR bit. The core will then transfer
the slave address on the bus.

4.2.3 Data Transfer

Once successful slave addressing is achieved, the data transfer can proceed on a byte-by-
byte basis in the direction specified by the RW bit sent by the master. Each transferred
byte is followed by an acknowledge bit on the 9th SCL clock cycle. If the slave signals a
No Acknowledge, the master can generate a STOP signal to abort the data transfer or
generate a repeated START signal and start a new transfer cycle.

If the master, as the receiving device, does not acknowledge the slave, the slave releases
the SDA line for the master to generate a STOP or repeated START signal.

For writing data to a slave store the data to transmit in the Transmit Register and set the
WR bit. For reading data from a slave, set the RD bit. During a transfer the core set the
TIP flag, indicating that a Transfer is In Progress. When the transfer is done the TIP flag
is reset, the IF flag set and, when enabled, an interrupt generated. The Receive Register
contains valid data after the IF flag has been set. The user may issue a new write or read
command when the TIP flag is reset.

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 9 of 14

4.2.4 STOP signal

The master can terminate the communication by generating a STOP signal. A STOP
signal is defined as a low-to-high transition of SDA while SCL is at logical ‘1’.

4.3 Arbitration Procedure

Since the I2C core supports single master configurations only, no Arbitration logic is
added to the core. Only clock synchronization is supported since slave devices can use
this protocol for clock stretching.

4.3.1 Clock Synchronization

Since the logical AND function is performed on the I2C signals, a high to low transition
on SCL or SDA affect all devices connected to the bus. The SCL clock signal can be
synchronized between multiple masters using this feature. Each device starts counting its
SCL low period when the current master drives SCL low. Once a device’s clock has gone
low, it holds the SCL line low until the clock high state is reached.

 wait

SCL1

SCL2

SCL
 Start counting
 low period here

4.3.2 Clock Stretching

Slave devices can use the clock synchronization mechanism to slow down the transfer bit
rate. After the master has driven SCL low the slave can drive SCL low for the required
period and then release it. If the slave’s SCL low period is greater than the master’s SCL
low period, the resulting SCL bus signal low period is stretched, thus inserting wait-
states.

Internal SCL first master

Internal SCL secondary master

Resulting SCL line

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 10 of 14

5
Architecture

The I2C core is built around four primary blocks; the Clock Generator, the Byte
Command Controller, the Bit Command Controller and the DataIO Shift Register.
All other blocks are for interfacing or for storing temporary values.

5.1 Clock Generator

The Clock Generator generates an internal 4*Fscl clock enable signal which triggers all
synchronous elements in the Bit Command Controller. It also handles clock stretching
needed by some slaves.

5.2 Byte Command Controller

The Byte Command Controller handles I2C traffic at the byte level. It takes data from the
Command Register and translates it into sequences based on the transmission of a single
byte. For example, by setting the START, STOP and READ bit in the Command
Register, the Byte Command Controller generates a sequence which results in the
generation of a START signal, the reading of a byte from the slave device and the

SCL

SDA

Prescale
Register

clock
generator

Command
Register

Status
Register

Byte
Command
Controller

Bit
Command
Controller

WISHBONE
Interface

Transmit
Register

Receive
Register

DataIO
Shift
Register

Fig. 5.1 Internal structure I2C Master Core

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 11 of 14

generation of a STOP signal. It does this by dividing each byte operation into separate
bit-operations, which are then sent to the Bit Command Controller.

No

Idle state

Read / Write
bit set ?

Yes

START
bit set ?

Yes

START signal state

No

START
generated ?

No

Yes

Read
bit set ?

Yes

READ state

Byte
Read ?

No

Yes

ACK state

WRITE state

Byte
Written ?

No

Yes

No

ACK bit
Read Written

NoYes

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 12 of 14

5.3 Bit Command Controller

The Bit Command Controller handles the actual transmission of data and the generation
of the specific levels for START, Repeated START and STOP signals by controlling the
SCL and SDA lines. The Byte Command Controller tells the Bit Command Controller
which operation has to be performed. For a single byte read, the Bit Command Controller
receives 8 separate read commands. Each bit-operation is divided into 4 pieces, except
for a STOP operation which is divided into 3 pieces, see figure 5.2.

Start SCL

SDA

Rep Start SCL

SDA

Stop SCL

SDA

Write SCL

SDA

Read SCL

SDA

5.4 DataIO Shift Register

The DataIO Shift Register contains the data associated with the current transfer. During a
read action data is shifted in from the SDA line. After a byte has been read the contents
are copied into the Receive Register. During a write action the Transmit Register’s
contents are copied into the DataIO Shift Register and are then transmitted onto the SDA
line.

A B C D

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 13 of 14

6
Programming examples

Example 1

Write 1 byte of data to a slave.

Slave address = 0x51 (b”1010001”)
Data to write = 0xAC

I2C Sequence:
1) generate start command
2) write slave address + write bit
3) receive acknowledge from slave
4) write data
5) receive acknowledge from slave
6) generate stop command

Commands:
1) write 0xA2 (address + write bit) to Transmit Register, set STA bit, set WR bit.
-- wait for interrupt or TIP flag to negate --
2) read RxACK bit from Status Register, should be ‘0’.

write 0x5C to Transmit register, set STO bit, set WR bit.
-- wait for interrupt or TIP flag to negate --
3) read RxACK bit from Status Register, should be ‘0’.

Second command sequenceFirst command sequence

SDA S Wr ack ack P

SCL

OpenCores I2C-Master core 06-03-01

www.opencores.org Rev 0.3 Preliminary 14 of 14

Example 2

Read a byte of data from an I2C memory device.

Slave address = 0x4E
Memory location to read from = 0x20

I2C sequence:
1) generate start signal
2) write slave address + write bit
3) receive acknowledge from slave
4) write memory location
5) receive acknowledge from slave
6) generate repeated start signal
7) write slave address + read bit
8) receive acknowledge from slave
9) read byte from slave
10) write no acknowledge (NACK) to slave, indicating end of transfer
11) generate stop signal

Commands:
1) write 0x9C (address + write bit) to Transmit Register, set STA bit, set WR bit.
-- wait for interrupt or TIP flag to negate --
2) read RxACK bit from Status Register, should be ‘0’.

write 0x20 to Transmit register, set WR bit.
-- wait for interrupt or TIP flag to negate --
3) read RxACK bit from Status Register, should be ‘0’.

write 0x9D (address + read bit) to Transmit Register, set STA bit, set WR bit.
-- wait for interrupt or TIP flag to negate --
4) set RD bit, set ACK to ‘1’ (NACK), set STO bit

Second command sequenceFirst command sequence

SDA S Wr ack ack

SCL

Fourth command sequenceThird command sequence

SDA R Rd ack D7 D6 D5 D4 D3 D2 D1 D0 nack P

SCL

