
 I2C-Master / Slave Core Specification

Authors
TooMuch Semiconductor Solutions (info@toomuchsemi.com)

Copyright & License

Copyright (c) 2007 TooMuch Semiconductor Solutions Pvt Ltd.

Revision No.

1.0

Disclaimer

This source file may be used and distributed without restriction .

This software is provided “as is” and without any express or implied warranties, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. in no event shall the author or
contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including,
but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including
negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of
such damage.

Introduction
I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between
devices. It is most suitable for applications requiring occasional communication over a short distance between
many devices.

Devices controlling the buses are called as Master. Master is responsible for generation of bus control and
synchronizing signals. Slaves just follow the Master. Any I2C device can be either receiver or transmitter. The I2C
standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two
or more masters attempt to control the bus simultaneously.

Design implementation
This design serves both as I2C compatible master and slave. It has two state machines,first is the main state
machine which is same for either master or slave , while second is responsible for generating clock signal in
master mode. These state machines have been interface with a module which is used for decoding the commands
from processor. On top of these, a module has been created which actually interfaces with the processor. The
communication between design and processor follow the Wishbone protocol.

This Design supports the following functionalities:

 Both Master and slave operation

 Both Interrupt and non interrupt data-transfers

 Start/Stop/Repeated Start generation

 Fully supports arbitration process

 Software programmable acknowledge bit

 Software programmable time out feature

 programmable address register

 Programmable SCL frequency

 Soft reset of I2C Master/Salve

 Programmable maximum SCL low period

 synthesis core

Limitation
Design does not support clock stretching .

Pin Interfaces

Processor interface signals

Port Width Direction Description

clk 1 input system clock

reset 1 input system reset

add_bus [7:0] input processor address bus

data_bus [7:0] inout processor data bus

as 1 input When asserted indicates address
present on bus is valid.

ds 1 input When asserted indicates data on data
bus is valid

rw 1 input “1” indicates read,”0” indicates
write,from processor side.

irq 1 output interrupt bit for processor

I2C connections

Port Width Direction Description

SCL_oe 1 out Serial Clock enable line

SCL_o 1 out Serial clock line output

SCL_In 1 In Serial clock input line

SDA_oe 1 Out Serial data enable line

SDA_o 1 Out Serial data output line

SDA_In 1 In Serial data input line

Registers Implemented

 Name Width Access Description

PRER 8 RW Clock Prescale register

CTR 8 RW Control register

SR 8 R Status register

TO 8 W Time out Register

ADDR 8 W Address Register

DTR 8 RW Data Transmit Register

DRR 8 R Data Receive Register

Register description

Pre-scale Register

This register is used to prescale the SCL clock line. Due to the structure of the I2C interface, the core uses a
4*SCL clock internally. The prescale register must be programmed to this 4*SCL bit rate. This is used for
programming the SCL frequency.

Control register

Bit Access Description

7
RW EN: I2C core enable bit. This bit must be cleared before any other control bit has any

effect.
If this bit is set then all state machines will go into reset state.
When set to ‘0’ the core is enabled.
When set to ‘1’ the core is disabled.

6

RW IEN: I2C core interrupt enable bit. Processor will response to interrupt from core if this bit
is set.
When set to ‘1’ interrupt is enabled.
When set to ‘0’ interrupt is disabled.

5
RW Mode select: When processor changes this bit from 0 to 1,controller will generate

a START Condition in and will be in Master mode. Changing this bit from 1 to 0, stop
condition will be generated and controller will switch to slave mode. Design will be in
slave mode if this bit is “0”

4
RW Transmit direction : In master mode if

“1” selects an I2C master transmit
“0” selects an I2C master receive.

3 RW Ack:This bit specifies the value of SDA line during acknowledge cycle(9th SCL pulse).

2 RW Rep_start:This bit indicates that processor wants a repeated START.

1
RW Inter_reset: This bit serves as interrupt acknowledge. Processor must set this bit after

serving the interrupt.

0

RW Halt: This bit must be set by processor once design has transmitted 8 bits and
acknowledge bit. Because design waits for new command once it is finish with previous
command.

Note: Design automatically clears the last two bits of control register, so after every byte transfer processor should
set these bits to continue the transfer,within timeout period. Otherwise because of timeout Master will release the
bus and will go in idle mode.

Status register, SR

Bit Access Description

7

R TIP:This bit indicates that one byte of data is being transferred. This bit will be set at rising edge
of acknowledge cycle.
“1” Byte transfer completed.
“0” Byte transfer in progress.

6 R Addr_match:This bit will be set when address of the core matches.

5
R Bus busy:This bit indicates the bus is involved in transaction. This will be set at start condition

and cleared at stop.

4 R Arb_lost:This bit will go high if master has lost its arbitration.

3 R Time_out: This bit indicates that maximum time for which SCL can be in low state, has elapsed

2

R slave rw:
“1” master receiving / Slave transmitting
“0” master transmitting / Slave receiving

1
R Interrupt_pending:This bit is set when the interrupt is pending. This will be set after

transaction of one byte

0 R Ack_state:This bit will indicate the status of SDA line during ack cycle.

Timeout Register, TO

The time-out register is used to determine the maximum time that SCL is allowed to be LOW before the I2C state
machine is reset. When the I2C interface is operating, at every SCL low transition counter will be enabled and
reseted at other transition.

1. In the master mode, the time-out feature starts every time the SCL goes LOW. If SCL stays LOW for a
time period greater than the time-out value, the Core concludes there is a bus error and generates an
interrupt and releases the buses. processor needs to read the status register and reset the core.

Bit Access Description

7-0 w Time Out value

 Address Register, ADDR:

 ADDR is not affected by the Core hardware. The contents of this register are irrelevant when Core is in a
master mode. In the slave modes, the seven most significant bits must be loaded with the micro-controller's
address.

 The most significant bit corresponds to the first bit received from the I2C-bus after a start condition. A
logic 1 in ADDR corresponds to a HIGH level on the I2C-bus, and a logic 0 corresponds to a LOW level on the
bus. The least significant bit is not used but should be programmed with a ‘0’.

Bit Access Description

7:0 w Address of slave

Data Register,DR:

This register contains the data to and from I2C bus. Tis is 8 bit wide. The received data after each complete
transfer of byte is placed in this register. Core will not wait whether the placed data has been read or not.

Bit Access description

7-0 RW I2C data

The address bus used in design will be used by processor to indicate that which register processor
wants to access.

State Machine

Scl generator process

This machine will be used only in master mode to generate SCL pulses of desired frequency determined by
PRESCALE register.

IDLE: In this state machine will left the buses free and will be waiting for command. If there is a transaction in
MODE bit from “0” to “1” core will go to START state,and will act as Master.

START: Here machine will generate the Start condition by pulling down the SDA line low while SCL is high.
After start hold time has elapsed machine will go to SCL_LOW_EDGE.

SCL_LOW_EDGE: This state will simply generate a low edge of SCL. In this state clock counters will be
reseted. On the next clock pulse machine will move to SCL_LOW state.

SCL_LOW: In this state machine will keep SCL low and counters will be started. If Arbitration lost has been
detected then machine will switch to IDLE state. If low time has been reached then machine will go into idle state
after updating the status ragister. if byte transfer has completed and arbitration has lost then also machine will go
to idle state,to ensure previous byte has been transferred. Otherwise machine will move to SCL_HIGH_EDGE.
SDA line will be set in this state according to conditions.

SCL_HIGH_EDGE: This state also will reset the clock counter. In this state a high edge on SCL will be
generated. On the next clock pulse machine will move to SCL_HIGH. But it will also check the incoming SCL
line o obtain the clock synchronization.

SCL_HIGH:This state will keep SCL high,and clock counter will be started. Depending upon the command from
the processor it will move to appropriate state after counter has reached to high hold time. If no specific command
is given from processor it will move to SCL_LOW_EDGE. Otherwise it will remain in this state.

Master/slave state machine

Main state machine
Machine will be triggered at falling edge of SCL.

present state input/condition Next state

Idle start_detected address_shift

address_shift bit_count=8 address_ack

 stop_detected Idle

address_ack arbitration_lost Idle

 stop_detected Idle

 acknowledge_receive && master && receive receive_data

 acknowledge_receive && master && tx transmit_data

 acknowledge_receive && slave && receive receive_data

 acknowledge_receive && slave && Tx transmit_data

 No acknowledge_receive Idle

Receive_data Bit_count=8 send_ack

 Stop_detected Idle

transmit_data Bit_count=8 wait_ack

 Stop_detected Idle

send_ack Stop_detected Idle

 receive_data

wait_ack Arbitration_lost Idle

 Stop_detected Idle

 Ack_receive transmit_data

 No_ack_receive Idle

Note: Start and stop condition will be detected if those has been generated by either the core itself or some other
master.

Interrupt will be generated in following conditions:

 Finish of core transmission or receive.

Arbitration lost condition

Addressed matched

Stop conditions

Time out condition

Repeated start condition

Operation of core:
The processor will start the communication by asserting address strobe and data strobe. Then in next pulse it will
address the internal register and will set the command and data in respective registers. After getting interrupt from
core, processor will check the status register and will send the command to take the further action.

Addresses of Registers

Register name Address

prescale register 0000_0010

control register 0000_0100

status register 0000_1000

time out register 0000_1010

address register 0000_1100

data transmit register 0000_1110

Data receive register 0000_0000

Example
Core sequence:

1) Clear the software reset

2) Assert AS and DS

3) Write into prescale register for generating SCL clock frequency

4) Write into Timeout register

5) Change the mode to master mode by writing in control register

6) Write the data register transmitted as the slave address on SDA line

7) Read the status register and send command to master for transmitting and write into data register

8) Generate repeated start and send different address.

9) After the data has been transmitted change the mode to slave by writing in control register

10) Accept the address that being transmitted on SDA line

11)Check for address match flag bit.

Synthesis result

Technology Device speed grade Fmax Resource used

Xilinx 3s50pq208 -4 155.28MHz LUTs:216

	Authors
	Introduction
	Design implementation
	Limitation
	Pin Interfaces
	Processor interface signals
	I2C connections
	
	Registers Implemented
	Register description
	Pre-scale Register
	Control register
	Status register, SR
	Timeout Register, TO
	 Address Register, ADDR:

	State Machine
	Scl generator process
	
	Master/slave state machine

	Main state machine
	Operation of core:
	Addresses of Registers
	Example
	Synthesis result

