
1.1.- BASIC BEHAVIOUR

The microcoded machine (μM) is built around a register bank and an 8-bit 
ALU with registered operands T1 and T2. It performs all its operations in two 
cycles, so I have divided it in two stages: an operand stage and an ALU stage. 
This is nothing more than a 2-stage pipeline.

In the operand stage, registers T1 and T2 are loaded with either the 
contents of the register bank (RB) or the input signal DI. 

In the ALU stage, the ALU output is written back into the RB or loaded 
into the output register DO. Besides, flags are updated according to μI.

Every microinstruction (μI) controls the operation of the operand stage 
and the succeeding ALU stage; that is, the execution of a μI extends over 2 
succeeding clock cycles, and microinstructions overlap each other. This means 
that the part of the μI that controls the 2nd stage has to be pipelined; in the 
VHDL code, I have divided the μI in a field_1 and a field_2, the latter of which 
is registered (pipelined) and controls the 2nd μM stage (ALU).

Many of the control signals are encoded in the microinstructions in what I 
have improperly called flags. You will see many references to flags in the 
following text (#end,#decode, etc.). They are just signals that you can activate 
individually in each μI, some are active in the 1st stage, some in the 2nd. They 
are all explained in a separate section.

Note that microinstructions are atomic: both stages are guaranteed to 
execute in all circumstances. Once the 1st stage of a  μI has executed, the only 
thing that can prevent the execution of the 2nd stage is a reset.

It might have been easier to design the machine so that microinstructions 
executed in one cycle, thus needing no pipeline for the μI itself. I arbitrarily 
chose to 'split' the microcode execution, figuring that it would be easier for 
me to understand and program the microcode; in hindsight it may have been a 
mistake but in the end, once the debugging is over, it makes little difference.

The core as it is now does not support wait states: it does all its 
external accesses (memory or i/o, read or write) in one clock cycle. It would 
not be difficult to improve this with some little modification to the 
micromachine, without changes to the microcode. 

The register bank reads asynchronously, while writes are synchronous. This 
is the standard behaviour of a Spartan LUT-based RAM. The register bank holds 
all the 8080 registers, including the accumulator, plus temporary, 'hidden' 
registers (x,y,w,z). Only the PSW register is held out of the register bank, in 
a DFF-8 register.



1.2.- MICROMACHINE CONTROL

1.2.1.- Microcode operation
There is little more to the core that what has already been said; all the 

CPU operations are microcoded, including interrupt response, reset and 
instruction opcode fetch. The microcode source code can be seen in file 
ucode/light8080.m80.

The microcode table is a synchronous ROM with 512 32-bit words, designed 
to fit in a Spartan 3 block ram. Each 32-bit word makes up a microinstruction. 
The microcode 'program counter' (uc_addr in the VHDL code) thus is a 9-bit 
register.

Out of those 512 words, 256 (the upper half of the table) are used as a 
jump-table for instruction decoding. Each entry at 256+NN contains a 'JSR' μI to 
the start of the microcode for the instruction whose opcode is NN. This 
seemingly unefficient use of RAM is in fact an optimization for the Spartan-3 
architecture to which this design is tailored – and works well enough in other 
architectures. The jump table is built automatically by the microcode assembler, 
as explained later.

The upper half of the table can only be used for decoding; JSR 
instructions can only point to the lower half, and execution from address 0x0ff 
rolls over to 0x00 (or would; the actual microcode does not use this 'feature').

The micromachine supports one level of micro-subroutine calls; it can also 
return from those calls; The uc_addr gets loaded with some constant values upon 
reset, intr or instruction fetch. And finally, there is the decoding jump table 
mentioned above, so these are the possible sources of uc_addr each cycle:

1. Constant value of 0x0001 at reset (see VHDL source for details).
2. Constant value of 0x0003 at the beginning (fetch cycle) of every 

instruction.
3. Constant value of 0x0007 at interrupt acknowledge.
4. uc_addr + 1 in normal microinstruction execution
5. Some 8-bit value included in JSR microinstructions (calls).
6. The return value preserved in the last JSR (used when flag #ret is 

raised)

All of this is readily apparent, I hope, by inspecting the VHDL source. 
Note that there is only one jump microinstruction (JSR) which doubles as 'call'; 
whenever a jump is taken the  the 1-level-deep  'return stack' is loaded with 
the return address (address of the μI following the jump). You just have to 
ignore the return address when you don't need it (e.g. the jumps in the decoding 



jump table). I admit this scheme is awkward and inflexible; but it was the first 
I devised, it works and fits the area budget: more than enough in this project.
 
A list of all predefined, 'special' microcode addresses follows.

0x001 – reset
After reset, the  μI program counter  (uc_addr in the VHDL code) is 

initialized to 0x00. The program counter works as a pre-increment counter when 
reading the microcode rom, so the μI at address 0 never gets executed (unless 
'rolling over' from address 0x0ff, which the actual microcode does not). Reset 
starts at address 1 and takes 2 microinstructions to clear PC to 0x0000. It does 
nothing else. After clearing the PC the microcode runs into the fetch routine.

0x003 – fetch
The fetch routine places the PC in the address output lines while post-

incrementing it, and then enables a memory read cycle. In doing so it relies on 
T2 being 0x00 (necessary for the ADC to behave like an INC in the oversimplified 
ALU), which is always true by design. After the fetch is done, the #decode flag 
is raised, which instructs the micromachine to take the value in the DI signal 
(data input from external memory) and load it into the IR and the microcode 
address counter, while setting the high address bit to 1. At the resulting 
address there will be a JSR μI pointing to the microcode for the 8080 opcode in 
question (the microcode assembler will make sure of that). The #decode flag will 
also clear registers T1 and T2.

0x007 – halt
Whenever a HALT instruction is executed, the #halt flag is raised, which 

when used in the same μI as flag #end, makes the the micromachine jump to this 
address. The μI at this address does nothing but raise flags #halt and #end. The 
micromachine will keep jumping to this address until the halt state is left, 
something which can only happen by reset or by interrupt. The #halt  flag, when 
raised, sets the halt output signal, which will be cleared when the CPU exits 
the halt state. 

1.2.2.- Conditional jumps

 There is a conditional branch microinstruction: TJSR. This instruction 
tests certain condition and, if the condition is true, performs exactly as JSR. 
Otherwise, it ends the microcode execution exactly as if the flag #end had been 
raised. This microinstruction has been made for the conditional branches and 
returns of the 8080 CPU and is not flexible enough for any other use.
 The condition tested is encoded in the register IR, in the field ccc (bits 
5..3), as encoded in the conditional instructions of the 8080 – you can look 
them up in any 8080 reference. Flags are updated in the 2nd stage, so a TJSR 



cannot test the flags modified by the previous μI. But it is not necessary; this 
instruction will always be used to test conditions set by previous 8080 
instructions, separated at least by the opcode fetch μIs, and probably many 
more. Thus, the condition flags will always be valid upon testing. 

1.2.3.- Implicit operations

Most micromachine operations happen only when explicitly commanded. But 
some happen automatically and have to be taken into account when coding the 
microprogram:

• Register IR is loaded automatically when the flag #decode is raised. The 
microcode program counter is loaded automatically with the same value as 
the IR, as has been explained above. From that point on, execution resumes 
normally: the jump table contains normal JSR microinstructions.

• T1 is cleared to 0x00 at reset, when the flag #decode is active or when 
the flag #clrt1 is used. 

• T2 is cleared to 0x00 at reset, when the flag #decode is active or when 
the flag #end is used. 

• When flag #end is raised, execution continues at μcode address 0x0003.
• When both flags #halt and #end are raised, execution continues at μcode 

address 0x0007, unless there is an interrupt pending.
• When flag #ret is raised, execution continues in the address following the 

last JSR executed.  If such a return is tried before a JSR has executed 
since the last reset, the results are undefined – this never happens with 
the microcode source as it is now.

Notice that both T1 and T2 are cleared at the end of the opcode fetch, so 
they are guaranteed to be 0x00 at the beginning of  the instruction microcode. 
And T2 is cleared to at the end of the instruction microcode, so it is 
guaranteed clear for its use in the fetch microcode. T1 can be cleared if a 
microinstruction so requires. Refer to the section on microinstruction flags.

1.3.- Microinstructions

The microcode for the CPU is a source text file encoded in a format 
described below. This 'microcode source' is assembled by the microcode assembler 
(described later) which then builds a microcode table in VHDL format. There's 
nothing stopping you from assembling the microcode by hand directly on the VHDL 
source, and in a machine this simple it might have been preferable.



1.3.1.- Microcode source format

The microcode source format is more similar to most early assembly 
languages that to other microcodes sources you may have seen. Each non-blank, 
non-comment line of code contains a single microinstruction in the format 
informally described below:

<microinstruction line> := 
[<label>] | (*1)
<operand stage control> ; <ALU stage control> [; [<flag list>]] |
JSR <destination address>|TJSR <destination address>

<label> := {':' immediately followed by a common identifier}
<destination address> := {an identifier defined as a label anywhere in the file}
<operand stage control> :=  <op_reg> = <op_src> | NOP
<op_reg> := T1 | T2
<op_src> := <register> | DI | <IR register>
<IR register> := {s}|{d}|{p}0|{p}1 (*3)
<register> := _a|_b|_c|_d|_e|_h|_l|_f|_a|_ph|_pl|_x|_y|_z|_w|_sh|_sl|
<ALU stage control> := <alu_dst> = <alu_op> | NOP 
<alu_dst> := <register> | DO
<alu_op> := add|adc|sub|sbb| and|orl|not|xrl| rla|rra|rlca|rrca| aaa|
            t1|rst|daa|cpc|sec|psw
<flag list> := <flag> [, <flag> ...] 
<flag> := #decode|#di|#ei|#io|#auxcy|#clrt1|#halt|#end|#ret|#rd|#wr|#setacy (*2)

    #ld_al|#ld_addr|#fp_c|#fp_r|#fp_rc

*1 Labels appear alone by themselves in a line
*2 There are some restrictions on the flags that can be used together
*3 Registers are specified by IR field

Please bear in mind that this is just an informal description; I just made 
it up from my personal notes and the assembler source. The ultimate reference is 



the microcode source itself and the assembler source. 
Due to the way that flags have been encoded (there's less than one bit per 

flag in the microinstruction), there are restrictions on what flags can be used 
together. See the section on flags.

The assembler will complain if the source does not comply with the 
expected format; but syntax check is somewhat weak.

In the microcode source you will see words like __reset, __fetch, etc. 
which don't fit the above syntax. Those were supposed to be assembler pragmas, 
which the assembler would use to enforce the alignment of the microinstructions 
to certain addresses. I finally decided not to use them and align the 
instructions myself. The assembler ignores them but I kept them as a reminder.

The 1st part of the  μI controls the ALU operand stage; we can load either 
T1 or T2 with either the contents of the input signal DI, or the selected 
register from the register bank. Or, we can do nothing (NOP).

The 2nd part of the  μI controls the ALU stage; we can instruct the ALU to 
perform some operation on the operands T1 and T2 loaded by this same 
instruction, in the previous stage; and we can select where to load the ALU 
result, eiher in the output register DO or in the register bank. Or we can do 
nothing of the above (NOP).

The write address for the register bank used in the 2nd stage has to be the 
same as the read address used in the 1st stage; that is, if both μI parts use the 
RB, both have to use the same address (the assembler will enforce this 
restriction). This is due to an early, silly mistake that I chose not to fix: 
there is a single μI field that holds both addresses. 

This is a very annoying limitation that unduly complicates the microcode 
and wastes many microcode slots for no saving in hardware; the only reason not 
to improve this and use two independent field addresses is my personal design 
style of 'no major changes until design is finished and working'. In fact, as 
you can see in the VHDL source, the machine is prepared to use 2 independent 
address fields with little modification. I  may do this improvement and others 
in a later version, but only when I deem the design 'finished' (since the design 
as it is already exceeds my modest performance target).

1.3.2.- Microcode ALU operations

Operation encoding result notes
ADD 001100 T2 + T1
ADC 001101 T2 + T1 + CY
SUB 001110 T2 - T1
SBB 001111 T2 – T1 - CY
AND 000100 T1 AND T2



ORL 000101 T1 OR T2
NOT 000110 NOT T1 
XRL 000111 T1 XOR T2
RLA 000000 8080 RLC
RRA 000001 8080 RRC
RLCA 000010 8080 RAL
RRCA 000011 8080 RAR
T1 010111 T1
RST 011111 8*IR(5..3), as per RST instruction
DAA 101000 DAA T1 (but only after executing 2 in a row)
CPC 101100 UNDEFINED CY complemented
SEC 101101 UNDEFINED CY set
PSW 110000 PSW

Notice that ALU operation DAA takes two cycles to complete; it uses a 
dedicated circuit with an extra pipeline stage. So it has to be executed twice 
in a row before taking the result – refer to microcode source for an example.

 The PSW register is updated with the ALU result at every cycle, whatever 
ALU operation is executed – though every ALU operation computes flags by 
different means, as it is apparent in the case of CY. Which flags are updated, 
and which keep their previous values, is defined by a microinstruction field 
named flag_pattern. See the VHDL code for details.

1.3.3.- Microcode binary format

POS NAME PURPOSE

31..29 uc_flags1 Encoded flag of group 1 (see section on flags)
28..26 uc_flags2 Encoded flag of group 2 (see section on flags)
25 load_addr Address register load enable (note 1)
24 load_al AL load enable (note 1)
23 load_t1 T1 load enable
22 load_t2 T2 load enable
21 mux_in T1/T2 source mux control (0 for DI, 1 for reg bank)
20..19 rb_addr_sel Register bank address source control (note 2)
18..15 ra_field Register bank address (used both for write and read)



POS NAME PURPOSE

14 (unused) Reserved 
13..10 (unused) Reserved for write register bank address, unused yet
11..10 uc_jmp_addr(7..6) JSR/TJSR jump address, higher 2 bits
9..8 flag_pattern PSW flag update control (note 3)  (pipelined signal)
7 load_do DO load enable (note 4) (pipelined signal)
6 we_rb Register bank write enable (pipelined signal)
5..0 uc_jmp_addr(5..0) JSR/TJSR jump address, lower 6 bits
5..0 (several) Encoded ALU operation

Note 1: load_al 

AL is a temporary register for the lower byte of the external 16 bit 
address. The memory interface (and the IO interface) assumes external 
synchronous memory, so the 16 bit address has to be externally loaded as 
commanded by load_addr.

Note that both halves of the address signal load directly from the 
register bank output; you can load AL with PC, for instance, in the same cycle 
in which you modify the PC – AL will load with the pre-modified value.

Note 2 : rb_addr_sel

A microinstruction can access any register as specified by ra_field,  or 
the register fields in the 8080 instruction opcode: S, D and RP (the 
microinstruction can select which register of the pair). In the microcode source 
this is encoded like this:

{s}  -> 0 & SSS
{d}  -> 0 & DDD
{p}0 -> 1 & PP & 0  (HIGH byte of register pair)
{p}1 -> 1 & PP & 1  (LOW byte of register pair)

SSS = IR(5 downto 3) (source register)  
DDD = IR(2 downto 0) (destination register)
PP  = IR(5 downto 4) (register pair)

Note 3 : flag_pattern

Selects which flags of the PSW, if any, will be updated by the 
microinstruction:
* When flag_pattern(0)='1', CY is updated in the PSW.



* When flag_pattern(1)='1', all flags other than CY are updated in the PSW.

Note 4 : load_do

 DO is the data ouput register that is loaded with the ALU output, so the 
load enable signal is pipelined.

Note 5 : JSR-H and JSR-L

These fields overlap existing fields which are unused in JSR/TJSR 
instructions (fields which can be used with no fear of secondary effects).

1.3.4 Flags

Flags is what I have called those signals of the microinstruction that you 
assert individually in the microcode source. Due to the way they have been 
encoded, I have separated them in two groups. Only one flag in each group can be 
used in any instruction. These are all the flags in the format thay appear in 
the microcode source:

* Flags from group 1: use only one of these
#decode : Load address counter and IR with contents of data input 

lines, thus starting opcode decoging.
#ei : Set interrupt enable register.
#di :      Reset interrupt enable register.
#io :      Activate io signal for 1st cycle.
#auxcy : Use aux carry instead of regular carry for this μI. 
#clrt1 :   Clear T1 at the end of 1st cycle.
#halt :    Jump to microcode address 0x07 without saving return value, 

when used with flag #end, and only if there is no interrupt 
pending. Ignored otherwise.

* Flags from group 2: use only one of these
#setacy :  Set aux carry at the start of 1st cycle (used for ++).
#end :     Jump to microinstruction address 3 after the present m.i.
#ret :     Jump to address saved by the last JST or TJSR m.i.
#rd :      Activate rd signal for the 2nd cycle.
#wr :      Activate wr signal for the 2nd cycle.



* Independent flags: no restrictions
#ld_al :   Load AL register with register bank output as read by opn. 1  

(used in memory and io access). 
#ld_addr : Load address register (H byte = register bank output as read 

by operation 1, L byte = AL). 
      Activate vma signal for 1st cycle.

* PSW update flags: use only one of these
#fp_r :   This instruction updates all PSW flags except for C.
#fp_c :    This instruction updates only the C flag in the PSW.
#fp_rc :   This instruction updates all the flags in the PSW.

1.4.- NOTES ON THE MICROCODE ASSEMBLER

Please refer to the comments in util/uasm.pl for a reference on the usage 
of the assembler.

I will admit up front that the microcode source format, and the assembler 
program itself, are a mess. They were hacked in a few low quality hours, and 
then often retouched but never redesigned, in order to avoid the 'never ending 
project' syndrome.

Please note that use of the assembler, and the microcode assembly source, 
is optional and perhaps overkill for this simple core. All you need to build the 
microcode is in the vhdl source file. 

During the testing phase of the project, after the design was deemed 
finished, I caught a grand total of 26 bugs. Of those 26, 15 were in the perl 
assembler program itself. Though the assembler certainly saved me a lot of 
mistakes in the hand-assembly of the microcode, a half-cooked assembler like 
this one may do more harm than good. I expect that the program now behaves 
correctly; I have done numerous modifications to the microcode source for 
testing purposes and I have not found any more bugs in the assembler. But you 
have been warned: don't trust the assembler too much (in case someone actually 
wants to mess with these things at all).

The assembler is a Perl program (util/uasm.pl) that will read a microcode 
source file and write to stdout a  microcode table in the form of a chunk of 
VHDL code. You are supposed to capture that output and paste it into the VHDL 
source (Actually, I used another perl script to do that, but I don't want to 
overcomplicate an already messy documentation). 

The assembler can do some other operations on the source. The invocation 
options are documented in the program source.



Perl is included in all the flavors of Unix that I am aware of, and is 
readily available for Windows. You don't need any extra modules or libraries, 
any distribution of Perl 5 will do – earlier versions might not, I haven't 
tested. The windows distribution I used (ActivePerl) installs itself with little 
user interaction and is ready to use with no configuration at all, even in 
Vista. 

2.- CPU DETAILS

2.1.- Synchronous memory and i/o interface

The core is designed to connect to external synchronous memory similar to 
the internal fpga ram blocks found in the Spartan series. It can be used with 
asynchronous ram provided that you add the necessary registers (I have used it 
with external SRAM included on a development board with no trouble).

Signal 'vma' is the master read/write enable. It is designed to be used as 
a synchronous rd/wr enable. All other memory/io signals are only valid when vma 
is active. Read data is sampled in the positive clock edge following deassertion 
of vma. Than is, the core expects external memory and io to behave as an 
internal fpga block ram would.

I think the interface is simple enough to be fully described by the 
comments in the header of the VHDL source file. 

2.2.- Interrupt response

Interrupt response has been greatly simplified, but it follows the outline 
of the original procedure. The most conspicuous difference is that inta is 
active for the entire duration of the instruction, and not only the opcode fetch 
cycle.

Whenever a high value is sampled in line intr in any positive clock edge, 
an interrupt pending flag is internally raised. After the current instruction 
finishes execution, the interrupt pending flag is sampled. If active, it is 
cleared, interrupts are disabled and the processor enters an inta cycle. If 
inactive, the processor enters a fetch cycle as usual.

Tha inta cycle is identical to a fetch cycle, with the exception that inta 
signal is asserted high. 

The processor will fetch an opcode during the first inta cycle and will 
execute it normally, except the PC increment will not happen and inta will be 
high for the duration of the instruction. Note that though pc increment is 
inhibited while inta is high, pc can be explicitly changed (rst, jmp, etc.).

After the special inta instruction execution is done, the processor 
resumes normal execution, with interrupts disabled.



The above means that any instruction (even XTHL, which the original 8080 
forbids) can be used as an interrupt vector and will be executed normally. The 
core has been tested with rst, lxi and inr, for example.

Since there's no M1 signal available, feeding multi-byte instructions as 
interrupt vectors can be a little complicated. It is up to you to deal with this 
situation.

2.3.- Instruction timing

This core is slower than the original in terms of clocks per instruction. 
Since the original 8080 was itself one of the slowest micros ever, this does not 
say much for the core. Yet, one of these clocked at 50MHz can outperform a 8080 
at 30 Mhz, which is fast enough for many control applications. 

A comparative table follows.

Opcode Intel 8080 Light8080 Opcode Intel 8080 Light8080

MOV r1, r2 5 6 XRA M 7 9

MOV r, M 7 9 XRI data 7 9

MOV M, r 7 9 ORA r 4 6

MVI r, data 7 9 ORA M 7 9

MVI M, data 10 12 ORI data 7 9

LXI rp, data16 10 14 CMP r 4 6

LDA addr 13 16 CMP M 7 9

STA addr 13 16 CPI data 7 9

LHLD addr 16 19 RLC 4 5

SHLD addr 16 19 RRC 4 5

LDAX rp 7 9 RAL 4 5

STAX rp 7 9 RAR 4 5

XCHG 4 16 CMA 4 5

ADD r 4 6 CMC 4 5

ADD M 7 9 STC 4 5

ADI data 7 9 JMP 10 15

ADC r 4 6 Jcc 10 12/16

ADC M 7 9 CALL 17 29



Opcode Intel 8080 Light8080 Opcode Intel 8080 Light8080

ACI data 7 9 Ccc 11/17 12/30

SUB r 4 6 RET 10 14

SUB M 7 9 Rcc 5/11 5/15

SUI data 7 9 RST n 11 20

SBB r 4 6 PCHL 5 8

SBB M 7 9 PUSH rp 11 19

SBI data 7 9 PUSH PSW 11 19

INR r 5 6 POP rp 10 14

INR M 10 13 POP PSW 10 14

INX rp 5 6 XTHL 18 32

DCR r 5 6 SPHL 5 8

DCR M 10 14 EI 4 5

DCX rp 5 6 DI 4 5

DAD rp 10 8 IN port 10 14

DAA 4 6 OUT port 10 14

ANA r 4 6 HLT 7 5

ANA M 7 9 NOP 4 5

ANI data 7 9

XRA r 4 6
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