AMI and HDB1 Line Codes - VHDL Implementation.

Ribamar Santarosa, ribamar@gmail.com

Outubro/Novembro 2006.

Abstract

Line codings are methods for coding digital data for making them less susceptible to signal losses during transmission. This project implements the AMI — Alternate Mark Inverse — and HDB1 — High Density Bipolar of order 1 codings. This file documents their implementation.

Specification. 1

AMI. This coding takes a binary sequency into a ternary sequency having the signals 0, +1, -1 by the following way:

- Inputs of 1 are coded as +1 or -1 alternately.
- Inputs of 0 are coded always as 0.

Example:

Input 1 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1 Output +1 0 -1 0 +1 -1 0 0 0 +1 0 -1 +1 0 0 -1 0 +1 0 0 0 -1 +1 -1

HDB1. This coding takes a binary sequency into a ternary sequency having the signals 0, +1, -1 by the following way:

1

- Inputs of 1 are coded as either +1 or -1.
- Paired inputs of 0 are coded as either +1+1 or -1-1.
- Isolated inputs of 0, ie, inputs of 0 not followed by 1 which weren't paired to another 0 (thus forming +1+1 or -1-1) are coded as 0.
- Outputs have always alternate signals. If the last output was -1 and the input is 00, the next output is coded as +1+1, if the last output was -1-1 and the input is 1, the next output is +1.

Example:

Inj	put	-																					
1	0	1	0	1	1	0	0	0	1	0	1	1	0	0	1	0	1	0	0	0	0	1	1
Out	ερι	ıt																					
+1	0	-1	0	+1	-1	+1	+1	0	-1	0	+1	-1	+1	+1	-1	0	+1	-1	-1	+1	+1	-1	+1

2 AMI Encoder.

Truth Table:

q	e	S_0	S_1	q^+
0	0	0	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	0

Karnaug	h Map	isn't ne	ecessary:
$e = e \cdot a'$			

$$S_0 = e \cdot q'$$

$$S_1 = e \cdot q$$

$$q^+ = e \oplus q$$

3 AMI Decoder.

Truth Table:								
e_0	e_1	S						
0	0	0						
0	1	1						
1	0	1						
1	1	X						

Karnaugh Map isn't necessary: $S=e_0+e_1$

Figure 2: State Map.

4 HDB1 Encoder.

Truth Table:

E	q_0	q_1	q_2	q_0^+	q_{1}^{+}	q_{2}^{+}	S_0	S_1
0	0	0	0	0	0	1	1	0
1	0	0	0	1	1	0	1	0
0	0	0	1	0	1	0	0	1
1	0	0	1	1	1	0	0	0
0	0	1	0	0	1	1	0	1
1	0	1	0	0	0	0	0	1
0	0	1	1	1	0	0	1	0
1	0	1	1	0	0	0	0	0
0	1	0	0	0	0	1	1	0
1	1	0	0	1	1	0	1	0
X	1	0	1	Х	Х	Х	X	Х
0	1	1	0	1	1	1	0	1
1	1	1	0	0	0	0	0	1
0	1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	0	1

			00	01	11	10	
a ⁺ .		00			1	1	
q_0 .	q_1q_2	01		X	X	1	
		11	1				
		10		1			
$q_0^+ =$	$= E.q_1'$	+E	$r'.q'_0.$	$q_1.q_2$	+E	$r'.q_0.$	$q_1.q'_2$
			Eq	0			
			00	01	11	10	
a ⁺ .		00			1	1	
q_1 .	$q_{1}q_{2}$	01	1	X	X	1	
		11					
		10	1	1			
q_1^+ =	$= E.q_{1}'$	$+ q'_{1}$	$.q_2$ -	+E'	$q_1.q'_2$	2	
			Eq	0			
			00	01	11	10	
a ⁺ .		00	1	1			
$\mathbf{y}_2 \cdot$	$q_{1}q_{2}$	01		X	X		
		11					
		10	1	1			

5 HDB1 Decoder.

Figure 4: State Map.

	e_1	e_0	q_1	q_0	q_0^+	q_1^+	S
	0	0	0	0	0	0	0
	0	0	0	1	0	0	1
	0	0	1	0	0	0	1
	0	0	1	1	X	X	X
	0	1	0	0	0	1	0
	0	1	0	1	0	0	0
	0	1	1	0	0	1	1
Truth Table:	0	1	1	1	X	X	X
	1	0	0	0	0	1	0
	1	0	0	1	1	0	1
	1	0	1	0	0	0	0
	1	0	1	1	X	X	X
	1	1	0	0	X	X	X
	1	1	0	1	X	X	X
	1	1	1	0	X	X	X
	1	1	1	1	X	X	X

	q_1q_0								
			00	01	11	10			
~0.		00			X				
q_0 :	e_0e_1	01			X				
		11	X	X	X	X			
		10		1	X				

$$q_0^+ = q_0'.e_0$$

			q_1q	<i>[</i> 0		
			00	01	11	10
1.		00			X	
q_1 :	e_0e_1	01	1		X	1
		11	X	X	X	X
		10	1		X	

$$q_1^+ = q_1'.e_1$$

q_1q_0											
			00	01	11	10					
c.		00		1	X	1					
Б.	e_1e_2	01			X	1					
		11	X	X	X	X					
		10		1	X						
<i>S</i> =	$S = q_0.e'_0 + q_1.e'_1$										