
LXP32
a lightweight open source 32-bit CPU core

Technical Reference Manual

Version 1.3

Copyright © 2016–2022 by Alex I. Kuznetsov.

The entire LXP32 IP core package, including the synthesizable RTL description,
verification environment, documentation and software tools, is distributed under
the terms of the MIT license reproduced below:

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Mentor Graphics and ModelSim are trademarks of Mentor Graphics Corporation.

Microsemi and IGLOO are trademarks of Microsemi Corporation.

Microsoft, Windows and Visual Studio are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

Verilog is a registered trademark of Cadence Design Systems, Inc.

Xilinx, Artix and Vivado are trademarks of Xilinx in the United States and other
countries.

All other trademarks are the property of their respective owners.

Contents

1 Introduction 1
1.1 Main features . 1
1.2 Implementation estimates . 2
1.3 Structure of this manual . 2

2 Instruction set architecture 5
2.1 Data format . 5
2.2 Instruction format . 5
2.3 Registers . 6
2.4 Addressing . 7
2.5 Stack . 7
2.6 Calling procedures . 8
2.7 Interrupt handling . 9

3 Integration 13
3.1 Overview . 13
3.2 Ports . 15
3.3 Generics . 16
3.4 Clock and reset . 17
3.5 Low Latency Interface . 18
3.6 WISHBONE instruction bus . 19
3.7 WISHBONE data bus . 20
3.8 Interrupts . 21
3.9 Synthesis and optimization . 22

4 Hardware architecture 25

5 Simulation 27
5.1 Requirements . 27
5.2 Running simulation using makefiles 28
5.3 Running simulation manually 29

iii

iv CONTENTS

5.4 Testbench parameters . 29

6 Development tools 31
6.1 lxp32asm – Assembler and linker 31
6.2 lxp32dump – Disassembler . 33
6.3 wigen – Interconnect generator 33
6.4 Building from source . 34

A Instruction set reference 37
A.1 List of instructions by group 37
A.2 Alphabetical list of instructions 38

add – Add . 38
and – Bitwise And . 38
call – Call Procedure . 39
cjmpxxx – Compare and Jump 39
divs – Divide Signed . 40
divu – Divide Unsigned . 41
hlt – Halt . 41
jmp – Jump . 42
iret – Interrupt Return . 42
lc – Load Constant . 42
lcs – Load Constant Short . 43
lsb – Load Signed Byte . 43
lub – Load Unsigned Byte . 44
lw – Load Word . 44
mods – Modulo Signed . 45
modu – Modulo Unsigned . 45
mov – Move . 46
mul – Multiply . 46
neg – Negate . 46
nop – No Operation . 47
not – Bitwise Not . 47
or – Bitwise Or . 47
ret – Return from Procedure 47
sb – Store Byte . 48
sl – Shift Left . 48
srs – Shift Right Signed . 48
sru – Shift Right Unsigned . 49
sub – Subtract . 49
sw – Store Word . 50
xor – Bitwise Exclusive Or . 50

CONTENTS v

B Instruction cycle counts 51

C LXP32 assembly language 53
C.1 Comments . 53
C.2 Literals . 53
C.3 Symbols . 54
C.4 Statements . 55

D WISHBONE datasheet 59
D.1 Instruction bus (LXP32C only) 59
D.2 Data bus . 60

E List of changes 61

Chapter 1

Introduction

1.1 Main features
LXP32 (Lightweight eXecution Pipeline) is a small 32-bit CPU IP core opti-
mized for FPGA implementation. Its key features include:

• portability (described in behavioral VHDL-93, not tied to any particu-
lar vendor);

• 3-stage hazard-free pipeline;

• 256 registers implemented as a RAM block;

• a simple instruction set with only 30 distinct opcodes;

• separate instruction and data buses, optional instruction cache;

• WISHBONE compatibility;

• 8 interrupts with hardwired priorities;

• optional divider.

As a lightweight CPU core, LXP32 lacks some features of more advanced
processors, such as nested interrupt handling, debugging support, floating-
point and memory management units. LXP32 is based on an original ISA
(Instruction Set Architecture) which does not currently have a C compiler.
It can be programmed in the assembly language covered by Appendix C.

Two major hardware versions of the CPU are provided: LXP32U which
does not include an instruction cache and uses the Low Latency Interface
(Section 3.5) to fetch instructions, and LXP32C which fetches instructions
over a cached WISHBONE bus protocol. These versions are otherwise
identical and have the same instruction set architecture.

1

2 CHAPTER 1. INTRODUCTION

1.2 Implementation estimates
Typical results of LXP32 core FPGA implementation are presented in Table
1.1. Note that these data are only useful as rough estimates, since actual
results depend greatly on tool versions and configuration, design constraints,
device utilization ratio and other factors.

Data on two configurations are provided:

• Compact: LXP32U (without instruction cache), no divider, 2-cycle
multiplier.

• Full: LXP32C (with instruction cache), divider, 2-cycle multiplier.

The slowest speed grade was used for clock frequency estimation.

Table 1.1: Typical results of LXP32 core FPGA implementation

Resource Compact Full

Microsemi® IGLOO®2 M2GL005-FG484

Logic elements (LUT+DFF) 1457 2086
LUTs 1421 1999
Flip-flops 706 1110

Mathblocks (MACC) 3 3
RAM blocks (RAM1K18) 2 3
Clock frequency 107.7 MHz 109.2 MHz

Xilinx® Artix®-7 xc7a15tfgg484-1

Slices 235 365
LUTs 666 1011
Flip-flops 528 883

DSP blocks (DSP48E1) 4 4
RAM blocks (RAMB18E1) 2 3
Clock frequency 111.9 MHz 120.2 MHz

1.3 Structure of this manual
General description of the LXP32 operation from a software developer’s
point of view can be found in Chapter 2, Instruction set architecture. Future
versions of the LXP32 CPU are intended to be at least backwards compatible
with this architecture.

1.3. STRUCTURE OF THIS MANUAL 3

Topics related to hardware, such as synthesis, implementation and
interfacing other IP cores, are covered in Chapter 3, Integration. A brief
description of the LXP32 pipelined architecture is provided in Chapter 4,
Hardware architecture. The LXP32 IP core package includes a verification
environment (self-checking testbench) which can be used to simulate the
design as described in Chapter 5, Simulation.

Documentation for tools shipped with the LXP32 IP core package (as-
sembler/linker, disassembler and interconnect generator) is provided in
Chapter 6, Development tools.

Appendices include a detailed description of the LXP32 instruction set,
instruction cycle counts and LXP32 assembly language definition. WISH-
BONE datasheet required by the WISHBONE specification is also provided.

Chapter 2

Instruction set architecture

2.1 Data format
Most LXP32 instructions work with 32-bit data words. A few instructions
that address individual bytes use little-endian order, that is, the least signif-
icant byte is stored at the lowest address. Signed values are encoded in a
2’s complement format.

2.2 Instruction format
All LXP32 instructions are encoded as 32-bit words, with the exception of
lc (Load Constant), which occupies two adjacent 32-bit words. Instructions
in memory must be aligned to word boundaries.

Most arithmetic and logical instructions take two source operands and
write the result to an independent destination register. General instruction
format is presented on Figure 2.1.

Figure 2.1: LXP32 instruction format

This format includes the following fields:

1. OPCODE – a 6-bit instruction code (see Appendix A).

5

6 CHAPTER 2. INSTRUCTION SET ARCHITECTURE

2. T1 – type of the RD1 field.

3. T2 – type of the RD2 field.

4. DST – register number (usually the destination register).

5. RD1 – register/direct operand 1.

6. RD2 – register/direct operand 2.

Some of these fields may not have meaning for a particular instruction;
such unused fields are replaced with zeros.

DST field specifies one of the 256 LXP32 registers. RD1 and RD2 fields
can denote either source register operands or direct (immediate) operands:
if the corresponding T field is 1, RD value is a register number, otherwise
it is interpreted as a direct signed byte in a 2’s complement format (valid
values range from -128 to 127).

For example, consider the following instruction that adds 10 to r0 and
writes the result to r1:

add r1, r0, 10

In this example, OPCODE is 010000, T1 is 1, T2 is 0, DST is 00000001,
RD1 is 00000000 and RD2 is 00001010. Hence, the instruction is encoded
as 0x4201000A.

For convenience, some instructions have alias mnemonics. For example,
LXP32 does not have a distinct mov opcode: instead, mov dst, src is an
alias for add dst, src, 0.

A complete list of LXP32 instructions is provided in Appendix A.

2.3 Registers
LXP32 has 256 registers denoted as r0 – r255. The first 240 of them (from
r0 to r239) are general-purpose registers (GPR), the last 16 (from r240 to
r255) are special-purpose registers (SPR). For convenience, some special-
purpose registers have alias names: for example, r255 can be also referred
to as sp (stack pointer). Special purpose registers are listed in Table 2.1.
Some of these registers are reserved: the software should not access them.

All registers are zero-initialized during the CPU reset.

2.4. ADDRESSING 7

Table 2.1: LXP32 special-purpose registers

Alias name Generic name Description

iv0 r240 Interrupt vector 0 (Section 2.7)
iv1 r241 Interrupt vector 1 (Section 2.7)
iv2 r242 Interrupt vector 2 (Section 2.7)
iv3 r243 Interrupt vector 3 (Section 2.7)
iv4 r244 Interrupt vector 4 (Section 2.7)
iv5 r245 Interrupt vector 5 (Section 2.7)
iv6 r246 Interrupt vector 6 (Section 2.7)
iv7 r247 Interrupt vector 7 (Section 2.7)
— r248 – r251 Reserved
cr r252 Control register (Section 2.7)
irp r253 Interrupt return pointer (Section 2.7)
rp r254 Return pointer (Section 2.6)
sp r255 Stack pointer (Section 2.5)

2.4 Addressing
All addressing in LXP32 is indirect. In order to access a memory location,
its address must be stored in a register; any available register can be used
for this purpose.

LXP32 uses a 32-bit address space. Each address refers to an individual
byte. Some instructions, namely lsb (Load Signed Byte), lub (Load Unsigned
Byte) and sb (Store Byte) provide byte-granular access, in which case all 32
bits in the address are significant. Otherwise the least two address bits are
ignored as LXP32 doesn’t support unaligned access to 32-bit data words
(during simulation, a warning is emitted if such a transaction is attempted).

A special rule applies to pointers that refer to instructions: since instruc-
tions are always word-aligned, the least significant bit is interpreted as the
IRF (Interrupt Return Flag). See Section 2.7 for details.

2.5 Stack
The current pointer to the top of the stack is stored in the sp register. To
the hardware this register is not different from general purpose registers,
that is, in no situation does the CPU access the stack implicitly (procedure
calls and interrupts use register-based conventions).

Software can access the stack as follows:

8 CHAPTER 2. INSTRUCTION SET ARCHITECTURE

// push r0 on the stack

sub sp, sp, 4

sw sp, r0

// pop r0 from the stack

lw r0, sp

add sp, sp, 4

Before using the stack, the sp register must be set up to point to a
valid memory location. The simplest software can operate stackless, or
even without data memory altogether if registers are enough to store the
program state.

2.6 Calling procedures
LXP32 provides a call instruction which saves the address of the next
instruction in the rp register and transfers execution to the address stored
in the register operand. Return from a procedure is performed by the
jmp rp instruction which also has a ret alias.

If a procedure must in turn call a nested procedure itself, the return
address in the rp register will be overwritten by the call instruction. Hence,
unless it is a tail call (see below), the procedure must save the rp value
somewhere; the most general solution is to use the stack:

sub sp, sp, 4

sw sp, rp

...

lc r0, Nested_proc

call r0

...

lw rp, sp

add sp, sp, 4

ret

Procedures that don’t use the call instruction (sometimes called leaf
procedures) don’t need to save the rp value.

Since ret is just an alias for jmp rp, one can also use Compare and
Jump instructions (cjmpxxx) to perform a conditional procedure return. For
example, consider the following procedure which calculates the absolute
value of r1:

Abs_proc:

cjmpsge rp, r1, 0 // return immediately if r1>=0

neg r1, r1 // otherwise, negate r1

ret // jmp rp

2.7. INTERRUPT HANDLING 9

A tail call is a special type of procedure call where the calling procedure
calls a nested procedure as the last action before return. In such cases
the call instruction can be replaced with jmp, so that when the nested
procedure executes ret, it returns directly to the caller’s parent procedure.

Although the LXP32 architecture doesn’t mandate any particular calling
convention, some general recommendations are presented below:

1. Pass arguments and return values through the r1–r31 registers (a
procedure can have multiple return values).

2. If necessary, the r0 register can be used to load the procedure address.

3. Designate r0–r31 registers as caller-saved, that is, they are not guar-
anteed to be preserved during procedure calls and must be saved by
the caller if needed. The procedure can use them for any purpose,
regardless of whether they are used to pass arguments and/or return
values.

2.7 Interrupt handling

Control register
LXP32 supports 8 interrupts with hardwired priority levels (interrupts with
lower vector numbers have higher priority). Interrupt vectors (pointers to
interrupt handlers) are stored in the iv0–iv7 registers. Interrupt handling
is controlled by the cr register (Table 2.2).

Table 2.2: Control register

Bit Description

0 Enable interrupt 0
…

7 Enable interrupt 7
8 Interrupt 0 wake-up flag

…
15 Interrupt 7 wake-up flag
31–16 Reserved

Disabled interrupts are ignored altogether: if the CPU receives an in-
terrupt request signal while the corresponding interrupt is disabled, the
interrupt will not be processed even if it is enabled later.

10 CHAPTER 2. INSTRUCTION SET ARCHITECTURE

Wake-up flag marks the interrupt as a wake-up interrupt (see below).
Like other registers, cr is zero-initialized during the CPU reset, meaning

that no interrupts are initially enabled.

Invoking interrupt handlers
Interrupt handlers are invoked by the CPU similarly to procedures (Section
2.6), the difference being that in this case return address is stored in the
irp register (as opposed to rp), and the least significant bit of the register
(IRF – Interrupt Return Flag) is set.

An interrupt handler returns using the jmp irp instruction which also
has an iret alias. Until the interrupt handler returns, the CPU will defer
further interrupt processing (although incoming interrupt requests will
still be registered). This also means that the irp register value will not
be unexpectedly overwritten. When executing the jmp irp instruction,
the CPU will recognize the IRF flag and resume interrupt processing as
usual. It is also possible to perform a conditional return from the interrupt
handler, similarly to the technique described in Section 2.6 for conditional
procedure returns.

Wake-up interrupts
When a wake-up interrupt is received, the interrupt handler is not called,
but the CPU still resumes execution if halted by the hlt instruction. The
effect is similar to invoking an interrupt with an empty handler (containing
only iret), but without the overhead of interrupt processing. Wake-up
interrupts do not affect the CPU when it is not halted.

Unlike normal interrupts, wake-up interrupts are processed even when
the CPU executes an interrupt handler for another interrupt.

Non-returnable interrupts
If an interrupt vector has the least significant bit (IRF) set, the CPU will
resume interrupt processing immediately. One should not try to invoke
iret from such a handler since the irp register could have been overwritten
by another interrupt. This technique can be useful when the CPU’s only
task is to process external events:

// Set the IRF to mark the interrupt as non-returnable

lc iv0, main_loop@1

mov cr, 1 // enable the interrupt

2.7. INTERRUPT HANDLING 11

hlt // wait for an interrupt request

main_loop:

// Process the event...

hlt // wait for the next interrupt request

Note that iret is never called in this example.

Chapter 3

Integration

3.1 Overview
The LXP32 IP core is delivered in a form of a synthesizable RTL description
expressed in VHDL-93. It does not use any technology specific primitives
and should work out of the box with major FPGA synthesis software. LXP32
can be integrated in both VHDL and Verilog® based SoC designs.

Major LXP32 hardware versions have separate top-level design units:

• lxp32u_top – LXP32U (without instruction cache),

• lxp32c_top – LXP32C (with instruction cache).

A high level block diagram of the CPU is presented on Figure 3.1.
Schematic symbols for LXP32U and LXP32C are shown on Figure 3.2.

LXP32U uses the Low Latency Interface (LLI) described in Section 3.5
to fetch instructions. This interface is designed to interact with low latency
on-chip peripherals such as RAM blocks. It works best with slaves that
can return the instruction on the next cycle after its address has been set,
although the slave can still introduce wait states if needed. Low Latency
Interface can be also connected to a custom (external) instruction cache.

To achieve the least possible latency, some LLI outputs are not regis-
tered. For this reason the LLI is not suitable for interaction with off-chip
peripherals.

LXP32C is designed to work with high latency memory controllers and
uses a simple instruction cache based on a ring buffer. The instructions are
fetched over the WISHBONE instruction bus. To maximize throughput, the
CPU makes use of the WISHBONE registered feedback signals [CTI_O()]
and [BTE_O()]. All outputs on this bus are registered. This version is also

13

14 CHAPTER 3. INTEGRATION

Figure 3.1: LXP32 CPU block diagram

Figure 3.2: Schematic symbols for LXP32U and LXP32C

3.2. PORTS 15

recommended for use in situations where LLI combinatorial delays are
unacceptable.

Both LXP32U and LXP32C use the WISHBONE protocol for the data
bus.

3.2 Ports

Port Direction Bus width Description

Global signals

clk_i in 1 System clock
rst_i in 1 Synchronous reset, active high

Instruction bus – Low Latency Interface (LXP32U only)

lli_re_o out 1 Read enable output, active high
lli_adr_o out 30 Address output
lli_dat_i in 32 Data input
lli_busy_i in 1 Busy flag input, active high

Instruction bus – WISHBONE (LXP32C only)

ibus_cyc_o out 1 Cycle output
ibus_stb_o out 1 Strobe output
ibus_cti_o out 3 Cycle type identifier
ibus_bte_o out 2 Burst type extension
ibus_ack_i in 1 Acknowledge input
ibus_adr_o out 30 Address output
ibus_dat_i in 32 Data input

Data bus

dbus_cyc_o out 1 Cycle output
dbus_stb_o out 1 Strobe output
dbus_we_o out 1 Write enable output
dbus_sel_o out 4 Select output
dbus_ack_i in 1 Acknowledge input
dbus_adr_o out 30 Address output
dbus_dat_o out 32 Data output
dbus_dat_i in 32 Data input

Other ports

irq_i in 8 Interrupt requests

16 CHAPTER 3. INTEGRATION

3.3 Generics
The following generics can be used to configure the LXP32 IP core parame-
ters.

DBUS_RMW
By default, LXP32 uses the dbus_sel_o (byte enable) port to perform
byte-granular write transactions initiated by the sb (Store Byte) instruction.
If this option is set to true, dbus_sel_o is always tied to "1111", and byte-
granular write access is performed using the RMW (read-modify-write)
cycle. The latter method is slower, but can work with slaves that do not
have the [SEL_I()] port.

This feature is designed with the assumption that read and write trans-
actions do not cause side effects, thus it can be unsuitable for some slaves.

DIVIDER_EN
LXP32 includes a divider unit which has quite a low performance but
occupies a considerable amount of resources. It can be disabled by setting
this option to false.

IBUS_BURST_SIZE
Instruction bus burst size. Default value is 16. Only for LXP32C.

IBUS_PREFETCH_SIZE
Number of words that the instruction cache will read ahead from the current
instruction pointer. Default value is 32. Only for LXP32C.

MUL_ARCH
LXP32 provides three multiplier options:

• "dsp" is the fastest architecture designed for technologies that provide
fast parallel 16× 16 multipliers, which includes most modern FPGA
families. One multiplication takes 2 clock cycles.

• "opt" architecture uses a semi-parallel multiplication algorithm based
on carry-save accumulation of partial products. It is designed for
technologies that do not provide fast 16× 16 multipliers. One multi-
plication takes 6 clock cycles.

3.4. CLOCK AND RESET 17

• "seq" is a fully sequential design. One multiplication takes 34 clock
cycles.

The default multiplier architecture is "dsp". This option is recom-
mended for most modern FPGA devices regardless of optimization goal
since it is not only the fastest, but also occupies the least amount of general-
purpose logic resources. However, it will create a timing bottleneck on
technologies that lack fast multipliers.

For older FPGA families that don’t provide dedicated multipliers the
"opt" architecture can be used if decent throughput is still needed. It
is designed to avoid creating a timing bottleneck on such technologies.
Alternatively, "seq" architecture can be used when throughput is not a
concern.

START_ADDR
Address of the first instruction to be executed after CPU reset. Default value
is 0. The two least significant bits are ignored as instructions are always
word-aligned.

3.4 Clock and reset
All flip-flops in the CPU are triggered by a rising edge of the clk_i signal.
No specific requirements are imposed on the clk_i signal apart from usual
constraints on setup and hold times.

LXP32 is reset synchronously when the rst_i signal is asserted. If the
system reset signal comes from an asynchronous source, a synchronization
circuit must be used; an example of such a circuit is shown on Figure 3.3.

Figure 3.3: Reset synchronization circuit

18 CHAPTER 3. INTEGRATION

In SRAM-based FPGAs flip-flops and RAM blocks have deterministic
state after a bitstream is loaded. On such technologies LXP32 can operate
without reset. In this case the rst_i port can be tied to a logical 0 in the
RTL design to allow the synthesizer to remove redundant logic.

clk_i and rst_i signals also serve the role of [CLK_I] and [RST_I]
WISHBONE signals, respectively, for both instruction and data buses.

3.5 Low Latency Interface
Low Latency Interface (LLI) is a simple pipelined synchronous protocol
with a typical latency of 1 cycle used by LXP32U to fetch instructions. It
was designed to allow simple connection of the CPU to on-chip program
RAM or cache. The timing diagram of the LLI is shown on Figure 3.4.

Figure 3.4: Low Latency Interface timing diagram (LXP32U)

To request a word, the master produces its address on lli_adr_o and
asserts lli_re_o. The request is considered valid when lli_re_o is high
and lli_busy_i is low on the same clock cycle. On the next cycle after a
valid request, the slave must either produce data on lli_dat_i or assert
lli_busy_i to indicate that data are not ready. lli_busy_i must be held
high until the valid data are present on the lli_dat_i port.

The data provided by the slave are only required to be valid on the
next cycle after a valid request (if lli_busy_i is not asserted) or on the
cycle when lli_busy_i is deasserted after being held high. Otherwise
lli_dat_i is undefined.

The values of lli_re_o and lli_adr_o are not guaranteed to be pre-
served by the master while the slave is busy.

3.6. WISHBONE INSTRUCTION BUS 19

The simplest slaves such as on-chip RAM blocks which are never busy
can be trivially connected to the LLI by connecting address, data and read
enable ports and tying the lli_busy_i signal to a logical 0 (you can even
ignore lli_re_o in this case, although doing so can theoretically increase
power consumption).

Since the lli_re_o output signal is not registered, this interface is
not suitable for interaction with off-chip peripherals. Also, care should be
taken to avoid introducing too much additional combinatorial delay on its
outputs.

The instruction bus, whether LLI or WISHBONE, doesn’t support access
to individual bytes and uses a 30-bit address port to address 32-bit words
(instructions are always word-aligned). The lower two bits of the 32-bit
address are ignored for the purpose of addressing. Consider the following
example:

lc r0, 0x10000000

jmp r0

// 0x04000000 will appear on lli_adr_o or ibus_adr_o

3.6 WISHBONE instruction bus
The LXP32C CPU fetches instructions over the WISHBONE bus. Its param-
eters are defined in the WISHBONE datasheet (Appendix D). For a detailed
description of the bus protocol refer to the WISHBONE specification, revi-
sion B3.

With classic WISHBONE handshake decent throughput can be only
achieved when the slave is able to terminate cycles asynchronously. It is
usually possible only for the simplest slaves which should probably be using
the Low Latency Interface instead. To maximize throughput for complex,
high latency slaves, LXP32C instruction bus uses optional WISHBONE
address tags [CTI_O()] (Cycle Type Identifier) and [BTE_O()] (Burst Type
Extension). These signals are hints allowing the slave to predict the address
that will be set by the master in the next cycle and prepare data in advance.
The slave can ignore these hints, processing requests as classic WISHBONE
cycles, although performance would almost certainly suffer in this case.

A typical LXP32C instruction bus burst timing diagram is shown on
Figure 3.5.

20 CHAPTER 3. INTEGRATION

Figure 3.5: Typical WISHBONE instruction bus burst (LXP32C)

3.7 WISHBONE data bus
LXP32 uses the WISHBONE bus to interact with data memory and other
peripherals. This bus is distinct from the instruction bus; its parameters are
defined in the WISHBONE datasheet (Appendix D).

The data bus uses a 30-bit dbus_adr_o port to address 32-bit words;
the dbus_sel_o port is used to select individual bytes to be written or read.
The upper 30 bits of the address appear on the dbus_adr_o port, while the
lower two bits are decoded to create a 4-bit dbus_sel_o signal. Consider:

lc r0, 0x20000002

sb r0, 0x55

// write 0x55 to the address in r0

// 0x08000000 will appear on dbus_adr_o

// 0x4 will appear on dbus_sel_o

The byte-granular access feature is optional. If it is not needed, the
dbus_sel_o port can be left unconnected. It is also possible to set the
DBUS_RMW generic to true to enable byte-granular access emulation using
the read-modify-write (RMW) cycle, which works even if the interconnect
or slave doesn’t provide the [SEL_I()] port (Section 3.3).

For a detailed description of the bus protocol refer to the WISHBONE
specification, revision B3.

3.8. INTERRUPTS 21

Typical timing diagrams for write and read cycles are shown on Figure
3.6. In these examples the peripheral terminates the cycle asynchronously;
however, it can also introduce wait states by delaying the dbus_ack_i

signal.

Figure 3.6: Typical WISHBONE data bus WRITE and READ cycles

3.8 Interrupts
LXP32 registers an interrupt condition when the corresponding request
signal goes from 0 to 1. Transitions from 1 to 0 are ignored. All interrupt
request signals must be synchronous with the system clock (clk_i); if
coming from an asynchronous source, they must be synchronized using a
sequence of at least two flip-flops clocked by clk_i. These flip-flops are not
included in the LXP32 core in order not to increase interrupt processing
delay for interrupt sources that are inherently synchronous. Failure to
properly synchronize interrupt request signals will cause timing violations
that will manifest itself as intermittent, hard to debug faults.

22 CHAPTER 3. INTEGRATION

3.9 Synthesis and optimization

Technology specific primitives
LXP32 RTL design is described in behavioral VHDL. However, it can also
benefit from certain special resources provided by most FPGA devices,
namely, RAM blocks and dedicated multipliers. For improved portability,
hardware description that can potentially be mapped to such resources is
localized in separate design units:

• lxp32_ram256x32 – a dual-port synchronous 256× 32 bit RAM with
one write port and one read port;

• lxp32_mul16x16 – an unsigned 16 × 16 multiplier with an output
register.

These design units contain behavioral description of respective hardware
that is recognizable by FPGA synthesis tools. Usually no adjustments are
needed as the synthesizer will automatically infer an appropriate primitive
from its behavioral description. If automatic inference produces unsatis-
factory results, these design units can be replaced with library element
wrappers. The same is true for ASIC logic synthesis software which is
unlikely to infer complex primitives.

LXP32 implements its own bypass logic dealing with situations when
RAM read and write addresses collide. It does not depend on the read/write
conflict resolution behavior of the underlying primitive.

General optimization guidelines
This subsection contains general advice on achieving satisfactory synthesis
results regardless of the optimization goal. Some of these suggestions are
also mentioned in other parts of this manual.

1. If the technology doesn’t provide dedicated multiplier resources, con-
sider using "opt" or "seq" multiplier architecture (Section 3.3).

2. Ensure that the instruction bus has adequate throughput. For LXP32C,
check that the slave supports the WISHBONE registered feedback
signals [CTI_I()] and [BTE_I()].

3. Multiplexing instruction and data buses, or connecting them to the
same interconnect that allows only one master at a time to be ac-
tive (i.e. shared bus interconnect topology) is not recommended. If

3.9. SYNTHESIS AND OPTIMIZATION 23

you absolutely must do so, assign a higher priority level to the data
bus, otherwise instruction prefetches will massively slow down data
transactions.

4. For small programs, consider mapping code and data memory to the
beginning or end of the address space (i.e. 0x00000000–0x000FFFFF
or 0xFFF00000–0xFFFFFFFF) to be able to load pointers with the lcs
instruction which saves both memory and CPU cycles as compared to
lc.

Optimizing for timing
1. Set up reasonable timing constraints. Do not overconstrain the design

by more than 10–15 %.

2. Analyze the worst path. The natural LXP32 timing bottleneck usually
goes from the scratchpad (register file) output through the ALU (in
the Execute stage) to the scratchpad input. If timing analysis lists
other critical paths, the problem can lie elsewhere. If the rst_i

signal becomes a bottleneck, promote it to a global network or, with
SRAM-based FPGAs, consider operating without reset (see Section
3.4). Critical paths affecting the WISHBONE state machines could
indicate problems with interconnect performance.

3. Configure the synthesis tool to reduce the fanout limit. Note that
setting this limit to a too small value can lead to an opposite effect.

4. Synthesis tools can support additional options to improve timing,
such as the Retiming algorithm which rearranges registers and combi-
natorial logic across the pipeline in attempt to balance delays. The
efficiency of such algorithms is not very predictable. In general, sloppy
designs are the most likely to benefit from it, while for a carefully
designed circuit timing can sometimes get worse.

Optimizing for area
1. Consider disabling the divider if not using it (see Section 3.3).

2. Relaxing timing constraints can sometimes allow the synthesizer to
produce a more area-efficient circuit.

3. Increase the fanout limit in the synthesizer settings to reduce buffer
replication.

Chapter 4

Hardware architecture

The LXP32 CPU is based on a 3-stage hazard-free pipelined architecture
and uses a large RAM-based register file (scratchpad) with two read ports
and one write port. The pipeline includes the following stages:

• Fetch – fetches instructions from the program memory.

• Decode – decodes instructions and reads register operand values from
the scratchpad.

• Execute – executes instructions and writes the results (if any) to the
scratchpad.

LXP32 instructions are encoded in such a way that operand register
numbers can be known without decoding the instruction (Section 2.2).
When the Fetch stage produces an instruction, scratchpad input addresses
are set immediately, before the instruction itself is decoded. If the instruc-
tion does not use one or both of the register operands, the corresponding
data read from the scratchpad are discarded. Collision bypass logic in
the scratchpad detects situations where the Decode stage tries to read a
register which is currently being written by the Execute stage and forwards
its value, bypassing the RAM block and avoiding Read After Write (RAW)
pipeline hazards. Other types of data hazards are also impossible with this
architecture.

As an example, consider the following simple code chunk:
mov r0, 10 // alias for add r0, 10, 0

mov r1, 20 // alias for add r1, 20, 0

add r2, r0, r1

Table 4.1 illustrates how this chunk is processed by the LXP32 pipeline.
Note that on the fourth cycle the Decode stage requests the r1 register value

25

26 CHAPTER 4. HARDWARE ARCHITECTURE

while the Execute stage writes to the same register. Collision bypass logic in
the scratchpad ensures that the Decode stage reads the correct (new) value
of r1 without stalling the pipeline.

Table 4.1: Example of the LXP32 pipeline operation

Cycle Fetch Decode Execute

1 add r0, 10, 0

2 add r1, 20, 0 add r0, 10, 0

Request r10 (discarded)
Request r0 (discarded)
Pass 10 and 0 as operands

3 add r2, r0, r1 add r1, 20, 0 Perform the addition
Request r20 (discarded) Write 10 to r0

Request r0 (discarded)
Pass 20 and 0 as operands

4 add r2, r0, r1 Perform the addition
Request r0 Write 20 to r1

Request r1 (bypass)
Pass 10 and 20 as operands

5 Perform the addition
Write 30 to r2

When an instruction takes more than one cycle to execute, the Execute
stage simply stalls the pipeline.

Branch hazards are impossible in LXP32 as well since the pipeline is
flushed whenever an execution transfer occurs.

Chapter 5

Simulation

LXP32 package includes an automated verification environment (self-
checking testbench) which verifies the LXP32 CPU functional correctness.
The environment consists of two major parts: a test platform which is a
SoC-like design providing peripherals for the CPU to interact with, and
the testbench itself which loads test firmware and monitors the platform’s
output signals. Like the CPU itself, the test environment is written in
VHDL-93.

A separate testbench for the instruction cache (lxp32_icache) is also
provided. It can be invoked similarly to the main CPU testbench.

5.1 Requirements
The following software is required to simulate the LXP32 design:

• An HDL simulator supporting VHDL-93. LXP32 package includes
scripts (makefiles) for the following simulators:

– GHDL – a free and open-source VHDL simulator which supports
multiple operating systems1;

– Mentor Graphics® ModelSim® simulator (vsim);
– Xilinx® Vivado® Simulator (xsim).

With GHDL, a waveform viewer such as GTKWave is also recom-
mended (Figure 5.1)2.

1http://ghdl.free.fr/
2http://gtkwave.sourceforge.net/

27

http://ghdl.free.fr/
http://gtkwave.sourceforge.net/

28 CHAPTER 5. SIMULATION

Some FPGA vendors provide limited versions of the ModelSim®
simulator for free as parts of their design suites. These versions
should suffice for LXP32 simulation.
Other simulators can be used with some preparations (Section 5.3).

• GNU make and coreutils are needed to simulate the design using
the provided makefiles. Under Microsoft® Windows®, MSYS or
Cygwin can be used.

• LXP32 assembler/linker program (lxp32asm) must be present (Sec-
tion 6.1). A prebuilt executable for Microsoft® Windows® is already
included in the LXP32 package, for other operating systems lxp32asm
must be built from source (Section 6.4).

Figure 5.1: GTKWave displaying the LXP32 waveform dump produced by
GHDL

5.2 Running simulation using makefiles
To simulate the design, go to the verify/lxp32/run/<simulator> direc-
tory and run make. The following make targets are supported:

5.3. RUNNING SIMULATION MANUALLY 29

• batch – simulate the design in batch mode. Results will be written
to the standard output. This is the default target.

• gui – simulate the design in GUI mode. Note: since GHDL doesn’t
have a GUI, the simulation itself will be run in batch mode; upon a
completion, GTKWave will be run automatically to display the dumped
waveforms.

• compile – compile only, don’t run simulation.

• clean – delete all the produced artifacts.

5.3 Running simulation manually
LXP32 testbench can be also run manually. The following steps must be
performed:

1. Compile the test firmware in the verify/lxp32/src/firmware di-
rectory:

lxp32asm -f textio filename.asm -o filename.ram

Produced *.ram files must be placed to the simulator’s working direc-
tory.

2. Compile the LXP32 RTL description (rtl directory).

3. Compile the common package (verify/common_pkg).

4. Compile the test platform (verify/lxp32/src/platform directory).

5. Compile the testbench itself (verify/lxp32/src/tb directory).

6. Simulate the tb design unit defined in the tb.vhd file.

5.4 Testbench parameters
Simulation parameters can be configured by overriding generics defined by
the tb design unit:

• CPU_DBUS_RMW – DBUS_RMW CPU generic value (see Section 3.3).

• CPU_MUL_ARCH – MUL_ARCH CPU generic value (see Section 3.3).

30 CHAPTER 5. SIMULATION

• MODEL_LXP32C – simulate the LXP32C version. By default, this option
is set to true. If set to false, LXP32U is simulated instead.

• TEST_CASE – if set to a non-empty string, specifies the file name of
a test case to run. If set to an empty string (default), all tests are
executed.

• THROTTLE_DBUS – perform pseudo-random data bus throttling. By
default, this option is set to true.

• THROTTLE_IBUS – perform pseudo-random instruction bus throttling.
By default, this option is set to true.

• VERBOSE – print more messages.

Chapter 6

Development tools

6.1 lxp32asm – Assembler and linker
lxp32asm is a combined assembler and linker for the LXP32 platform. It
takes one or more input files and produces executable code for the CPU.
Input files can be either source files in the LXP32 assembly language
(Appendix C) or linkable objects. Linkable object is a relocatable format for
storing compiled LXP32 code together with symbol information.

lxp32asm operates in two stages:

1. Compile.
Source files are compiled to linkable objects.

2. Link.
Linkable objects are combined into a single executable module. Ref-
erences to symbols defined in external modules are resolved at this
stage.

In the simplest case there is only one input source file which doesn’t
contain external symbol references. If there are multiple input files, one
of them must define the entry (or Entry) symbol at the beginning of the
code.

Command line syntax

lxp32asm [options | input files]

31

32 CHAPTER 6. DEVELOPMENT TOOLS

General options

• -c – compile only (skip the Link stage).

• -h, --help – display a short help message and exit.

• -o file – output file name.

• -- – do not interpret the subsequent command line arguments as
options. Can be used if there are input file names starting with a
dash.

Compiler options

• -i dir – add dir to the list of directories used to search for included
files. Multiple directories can be specified with multiple -i arguments.

Linker options (ignored in compile-only mode)

• -a align – object alignment. Must be a power of 2 and can’t be less
than 4. Default value is 4.

• -b addr – base address, that is, the address in memory where the exe-
cutable image will be located. Must be a multiple of object alignment.
Default value is 0.

• -f fmt – executable image format. See below for the list of supported
formats.

• -m file – generate a map file. A map file is a human-readable list of
all object and symbol addresses in the executable image.

• -s size – size of the executable image. Must be a multiple of 4. If
total code size is less than the specified value, the executable image
is padded with zeros. By default, the image is not padded.

Output formats
Output formats that can be specified with the -f command line option are
listed below.

• bin – raw binary image (little-endian). This is the default format.

• textio – text format representing binary data as a sequence of zeros
and ones. This format can be directly read from VHDL (using the
std.textio package) or Verilog® (using the $readmemb function).

6.2. LXP32DUMP – DISASSEMBLER 33

• dec – text format representing each word as a decimal number.

• hex – text format representing each word as a hexadecimal number.

6.2 lxp32dump – Disassembler
lxp32dump takes an executable image and produces a source file in LXP32
assembly language. The produced file is a valid program that can be
compiled by lxp32asm.

Command line syntax

lxp32dump [options | input file]

Supported options are:

• -b addr – executable image base address, only used for comments.

• -f fmt – input file format. All lxp32asm output formats are sup-
ported. If this option is not supplied, autodetection is performed.

• -h, --help – display a short help message and exit.

• -na – do not use instruction aliases (such as mov, ret, not) and
register aliases (such as sp, rp).

• -o file – output file name. By default, the standard output stream
is used.

• -- – do not interpret subsequent command line arguments as options.

6.3 wigen – Interconnect generator
wigen is a small tool that generates VHDL description of a simple WISH-
BONE interconnect based on shared bus topology. It supports any number
of masters and slaves. The interconnect can then be used to create a SoC
based on LXP32.

For interconnects with multiple masters a priority-based arbitration cir-
cuit is inserted with lower-numbered masters taking precedence. However,
when a bus cycle is in progress ([CYC_O] is asserted by the active master),
the arbiter will not interrupt it even if a master with a higher priority level
requests bus ownership.

34 CHAPTER 6. DEVELOPMENT TOOLS

Command line syntax

wigen [option(s)] nm ns ma sa ps [pg]

• nm – number of masters,

• ns – number of slaves,

• ma – master address width,

• sa – slave address width,

• ps – port size (8, 16, 32 or 64),

• pg – port granularity (8, 16, 32 or 64, default: the same as port size).

Supported options are:

• -e entity – name of the design entity (default is "intercon").

• -h, --help – display a short help message and exit.

• -o file – output file name (default is entity.vhd).

• -p – generate pipelined arbiter (reduced combinatorial delays, in-
creased latency).

• -r – generate WISHBONE registered feedback signals ([CTI_IO()]
and [BTE_IO()]).

• -u – generate unsafe slave decoder (reduced combinatorial delays
and resource usage, may not work properly if the address is invalid).

6.4 Building from source
Prebuilt tool executables for 32-bit Microsoft® Windows® are included in
the LXP32 IP core package. For other platforms the tools must be built from
source. Since they are developed in C++ using only the standard library, it
should be possible to build them for any platform that provides a modern
C++ compiler.

6.4. BUILDING FROM SOURCE 35

Requirements
The following software is required to build LXP32 tools from source:

1. A modern C++ compiler, such as Microsoft® Visual Studio® 2013 or
newer, GCC 4.8 or newer, Clang 3.4 or newer.

2. CMake 3.3 or newer.

Build procedure
This software uses CMake as a build system generator. Building it involves
two steps: first, the cmake program is invoked to generate a native build
environment (a set of Makefiles or an IDE project); second, the generated
environment is used to build the software. More details can be found in
the CMake documentation.

Examples

In the following examples, it is assumed that the commands are run from
the tools subdirectory of the LXP32 IP core package tree.

For Microsoft® Visual Studio®:
mkdir build

cd build

cmake -G "NMake Makefiles" ../src

nmake

nmake install

For MSYS:
mkdir build

cd build

cmake -G "MSYS Makefiles" ../src

make

make install

For MinGW without MSYS:
mkdir build

cd build

cmake -G "MinGW Makefiles" ../src

mingw32-make

mingw32-make install

For other platforms:

36 CHAPTER 6. DEVELOPMENT TOOLS

mkdir build

cd build

cmake ../src

make

make install

Appendix A

Instruction set reference

See Section 2.2 for a general description of LXP32 instruction encoding.

A.1 List of instructions by group

Instruction Description Opcode

Data transfer

mov Move alias for add dst, src, 0

lc Load Constant 000001

lcs Load Constant Short 101xxx

lw Load Word 001000

lub Load Unsigned Byte 001010

lsb Load Signed Byte 001011

sw Store Word 001100

sb Store Byte 001110

Arithmetic operations

add Add 010000

sub Subtract 010001

neg Negate alias for sub dst, 0, src

mul Multiply 010010

divu Divide Unsigned 010100

divs Divide Signed 010101

modu Modulo Unsigned 010110

mods Modulo Signed 010111

Bitwise operations

37

38 APPENDIX A. INSTRUCTION SET REFERENCE

not Bitwise Not alias for xor dst, src, -1

and Bitwise And 011000

or Bitwise Or 011001

xor Bitwise Exclusive Or 011010

sl Shift Left 011100

sru Shift Right Unsigned 011110

srs Shift Right Signed 011111

Execution transfer

jmp Jump 100000

cjmpxxx Compare and Jump 11xxxx (xxxx = condition)
call Call Procedure 100001

ret Return from Procedure alias for jmp rp

iret Interrupt Return alias for jmp irp

Miscellaneous instructions

nop No Operation 000000

hlt Halt 000010

A.2 Alphabetical list of instructions

add – Add
Syntax

add DST, RD1, RD2

Encoding

010000 T1 T2 DST RD1 RD2

Example: add r2, r1, 10→ 0x4202010A

Operation

DST := RD1 + RD2

and – Bitwise And
Syntax

and DST, RD1, RD2

A.2. ALPHABETICAL LIST OF INSTRUCTIONS 39

Encoding

011000 T1 T2 DST RD1 RD2

Example: and r2, r1, 0x3F→ 0x6202013F

Operation

DST := RD1 ∧ RD2

call – Call Procedure
Save a pointer to the next instruction in the rp register and transfer execu-
tion to the address pointed by the operand.

Syntax

call RD1

Encoding

100001 1 0 11111110 RD1 00000000

RD1 must be a register.

Example: call r1→ 0x86FE0100

Operation

rp := return_address

goto RD1

Pointer in RD1 is interpreted as described in Section 2.4.

cjmpxxx – Compare and Jump
Compare two operands and transfer execution to the specified address if a
condition is satisfied.

Syntax

cjmpe DST, RD1, RD2 (Equal)

cjmpne DST, RD1, RD2 (Not Equal)

cjmpsg DST, RD1, RD2 (Signed Greater)

40 APPENDIX A. INSTRUCTION SET REFERENCE

cjmpsge DST, RD1, RD2 (Signed Greater or Equal)

cjmpsl DST, RD1, RD2 (Signed Less)

cjmpsle DST, RD1, RD2 (Signed Less or Equal)

cjmpug DST, RD1, RD2 (Unsigned Greater)

cjmpuge DST, RD1, RD2 (Unsigned Greater or Equal)

cjmpul DST, RD1, RD2 (Unsigned Less)

cjmpule DST, RD1, RD2 (Unsigned Less or Equal)

Encoding

OPCODE T1 T2 DST RD1 RD2

Opcodes:

cjmpe 111000

cjmpne 110100

cjmpsg 110001

cjmpsge 111001

cjmpug 110010

cjmpuge 111010

cjmpsl, cjmpsle, cjmpul, cjmpule instructions are aliases for cjmpsg,
cjmpsge, cjmpug, cjmpuge, respectively, with RD1 and RD2 operands
swapped.

Example: cjmpuge r2, r1, 5→ 0xEA020105

Operation

if condition then goto DST

Pointer in DST is interpreted as described in Section 2.4. Unlike most
instructions, cjmpxxx does not write to DST.

divs – Divide Signed
Syntax

divs DST, RD1, RD2

A.2. ALPHABETICAL LIST OF INSTRUCTIONS 41

Encoding

010101 T1 T2 DST RD1 RD2

Example: divs r2, r1, -3→ 0x560201FD

Operation

DST := (signed) RD1 / (signed) RD2

The result is rounded towards zero and is undefined if RD2 is zero. If the
CPU was configured without a divider, this instruction returns 0.

divu – Divide Unsigned
Syntax

divu DST, RD1, RD2

Encoding

010100 T1 T2 DST RD1 RD2

Example: divu r2, r1, 73→ 0x52020107

Operation

DST := RD1 / RD2

The result is rounded towards zero and is undefined if RD2 is zero. If the
CPU was configured without a divider, this instruction returns 0.

hlt – Halt
Halt the CPU until an enabled interrupt is received.

Syntax

hlt

Encoding

000010 0 0 00000000 00000000 00000000

Operation

Pause execution until an interrupt is received.

42 APPENDIX A. INSTRUCTION SET REFERENCE

jmp – Jump
Transfer execution to the address pointed by the operand.

Syntax

jmp RD1

Encoding

100000 1 0 00000000 RD1 00000000

RD1 must be a register.

Example: jmp r1→ 0x82000100

Operation

goto RD1

Pointer in RD1 is interpreted as described in Section 2.4.

iret – Interrupt Return
Return from an interrupt handler.

Syntax

iret

Alias for jmp irp.

lc – Load Constant
Load a 32-bit word to the specified register. Note that values from the
[-1048576; 1048575] range can be loaded more efficiently using the lcs
instruction.

Syntax

lc DST, WORD32

A.2. ALPHABETICAL LIST OF INSTRUCTIONS 43

Encoding

000001 0 0 DST 00000000 00000000 WORD32

Unlike other instructions, lc occupies two 32-bit words.

Example: lc r1, 0x12345678→ 0x04010000 0x12345678

Operation

DST := WORD32

lcs – Load Constant Short
Load a signed value from the [-1048576; 1048575] range (a sign extended
21-bit value) to the specified register. Unlike the lc instruction, this instruc-
tion is encoded as a single word.

Syntax

lcs DST, VAL

Encoding

101 VAL[20:16] DST VAL[15:0]

Example: lcs r1, -1000000→ 0xB001BDC0

Operation

DST := (signed) VAL

lsb – Load Signed Byte
Load a byte from the specified address to the register, performing sign
extension.

Syntax

lsb DST, RD1

44 APPENDIX A. INSTRUCTION SET REFERENCE

Encoding

001011 1 0 DST RD1 00000000

RD1 must be a register.

Example: lsb r2, r1→ 0x2E020100

Operation

DST := (signed) (*(BYTE*)RD1)

Pointer in RD1 is interpreted as described in Section 2.4.

lub – Load Unsigned Byte
Load a byte from the specified address to the register. Higher 24 bits are
zeroed.

Syntax

lub DST, RD1

Encoding

001010 1 0 DST RD1 00000000

RD1 must be a register.

Example: lub r2, r1→ 0x2A020100

Operation

DST := *(BYTE*)RD1

Pointer in RD1 is interpreted as described in Section 2.4.

lw – Load Word
Load a word from the specified address to the register.

Syntax

lw DST, RD1

A.2. ALPHABETICAL LIST OF INSTRUCTIONS 45

Encoding

001000 1 0 DST RD1 00000000

RD1 must be a register.

Example: lw r2, r1→ 0x22020100

Operation

DST := *RD1

Pointer in RD1 is interpreted as described in Section 2.4.

mods – Modulo Signed
Syntax

mods DST, RD1, RD2

Encoding

010111 T1 T2 DST RD1 RD2

Example: mods r2, r1, 10→ 0x5E02010A

Operation

DST := (signed) RD1 mod (signed) RD2

Modulo operation satisfies the following condition: if Q = A/B and R = A
mod B, then A= B ·Q+ R.

The result is undefined if RD2 is zero. If the CPU was configured without a
divider, this instruction returns 0.

modu – Modulo Unsigned
Syntax

modu DST, RD1, RD2

Encoding

010110 T1 T2 DST RD1 RD2

Example: modu r2, r1, 10→ 0x5A02010A

46 APPENDIX A. INSTRUCTION SET REFERENCE

Operation

DST := RD1 mod RD2

Modulo operation satisfies the following condition: if Q = A/B and R = A
mod B, then A= B ·Q+ R.

The result is undefined if RD2 is zero. If the CPU was configured without a
divider, this instruction returns 0.

mov – Move
Syntax

mov DST, RD1

Alias for add DST, RD1, 0

mul – Multiply
Multiply two 32-bit values. The result is also 32-bit.

Syntax

mul DST, RD1, RD2

Encoding

010010 T1 T2 DST RD1 RD2

Example: mul r2, r1, 3→ 0x4A020103

Operation

DST := RD1 * RD2

Since the product width is the same as the operand width, the result of a
multiplication does not depend on operand signedness.

neg – Negate
Syntax

neg DST, RD2

Alias for sub DST, 0, RD2

A.2. ALPHABETICAL LIST OF INSTRUCTIONS 47

nop – No Operation
Syntax

nop

Encoding

000000 0 0 00000000 00000000 00000000

Operation

This instruction does not alter the machine state.

not – Bitwise Not
Syntax

not DST, RD1

Alias for xor DST, RD1, -1.

or – Bitwise Or
Syntax

or DST, RD1, RD2

Encoding

011001 T1 T2 DST RD1 RD2

Example: or r2, r1, 0x3F→ 0x6602013F

Operation

DST := RD1 ∨ RD2

ret – Return from Procedure
Return from a procedure.

Syntax

ret

Alias for jmp rp.

48 APPENDIX A. INSTRUCTION SET REFERENCE

sb – Store Byte
Store the lowest byte from the register to the specified address.

Syntax

sb RD1, RD2

Encoding

001110 1 T2 00000000 RD1 RD2

RD1 must be a register.

Example: sb r2, r1→ 0x3B000201

Operation

(BYTE)RD1 := RD2 ∧ 0x000000FF

Pointer in RD1 is interpreted as described in Section 2.4.

sl – Shift Left
Syntax

sl DST, RD1, RD2

Encoding

011100 T1 T2 DST RD1 RD2

Example: sl r2, r1, 5→ 0x72020105

Operation

DST := RD1 << RD2

The result is undefined if RD2 is outside the [0; 31] range.

srs – Shift Right Signed
Syntax

srs DST, RD1, RD2

A.2. ALPHABETICAL LIST OF INSTRUCTIONS 49

Encoding

011111 T1 T2 DST RD1 RD2

Example: srs r2, r1, 5→ 0x7E020105

Operation

DST := ((signed) RD1) >> RD2

The result is undefined if RD2 is outside the [0; 31] range.

sru – Shift Right Unsigned
Syntax

sru DST, RD1, RD2

Encoding

011110 T1 T2 DST RD1 RD2

Example: sru r2, r1, 5→ 0x7A020105

Operation

DST := RD1 >> RD2

The result is undefined if RD2 is outside the [0; 31] range.

sub – Subtract
Syntax

sub DST, RD1, RD2

Encoding

010001 T1 T2 DST RD1 RD2

Example: sub r2, r1, 5→ 0x46020105

Operation

DST := RD1 - RD2

50 APPENDIX A. INSTRUCTION SET REFERENCE

sw – Store Word
Store the value of the register to the specified address.

Syntax

sw RD1, RD2

Encoding

001100 1 T2 00000000 RD1 RD2

RD1 must be a register.

Example: sw r2, r1→ 0x33000201

Operation

*RD1 := RD2

Pointer in RD1 is interpreted as described in Section 2.4.

xor – Bitwise Exclusive Or
Syntax

xor DST, RD1, RD2

Encoding

011010 T1 T2 DST RD1 RD2

Example: xor r2, r1, 0x3F→ 0x6A02013F

Operation

DST := RD1 ⊕ RD2

Appendix B

Instruction cycle counts

Cycle counts for LXP32 instructions are listed in Table B.1, based on an
assumption that no pipeline stalls are caused by the instruction bus latency
or cache misses. These data are provided for reference purposes; the
software should not depend on them as they can change in future hardware
revisions.

Table B.1: Instruction cycle counts

Instruction Cycles Instruction Cycles

add 1 modu 37
and 1 mov 1
call 4 mul 2, 6 or 343

cjmpxxx 5 or 21 neg 1
divs 36 nop 1
divu 36 not 1
hlt N/A or 1
jmp 4 ret 4
iret 4 sb ≥ 22

lc 2 sl 2
lcs 1 srs 2
lsb ≥ 32 sru 2
lub ≥ 32 sub 1
lw ≥ 32 sw ≥ 22

mods 37 xor 1

1Depends on whether the jump is taken or not.
2Depends on the data bus latency.
3Depends on the multiplier architecture. See Section 3.3.

51

Appendix C

LXP32 assembly language

This appendix defines the assembly language used by LXP32 development
tools.

C.1 Comments
LXP32 assembly language supports C style comments that can span across
multiple lines and single-line C++ style comments:

/*

* This is a comment.

*/

// This is also a comment

From a parser’s point of view comments are equivalent to whitespace.

C.2 Literals
LXP32 assembly language uses numeric and string literals similar to those
provided by the C programming language.

Numeric literals can take form of decimal, hexadecimal or octal numbers.
Literals prefixed with 0x are interpreted as hexadecimal, literals prefixed
with 0 are interpreted as octal, other literals are interpreted as decimal. A
numeric literal can also start with an unary plus or minus sign which is also
considered a part of the literal.

String literals must be enclosed in double quotes. The most common
escape sequences used in C are supported (Table C.1). Note that strings

53

54 APPENDIX C. LXP32 ASSEMBLY LANGUAGE

are not null-terminated in the LXP32 assembly language; when required,
terminating null character must be inserted explicitly.

Table C.1: Escape sequences used in string literals

Sequence Interpretation

\\ Backslash character
\" Double quotation mark
\' Single quotation mark (can be also used directly)
\t Tabulation character
\n Line feed
\r Carriage return
\xXX Character with a hexadecimal code of XX (1–2 digits)
\XXX Character with an octal code of XXX (1–3 digits)

C.3 Symbols
Symbols (labels) are used to refer to data or code locations. LXP32 assembly
language does not have distinct code and data labels: symbols are used in
both these contexts.

Symbol names must be valid identifiers. A valid identifier must start with
an alphabetic character or an underscore, and may contain alphanumeric
characters and underscores.

A symbol definition must be the first token in a source code line followed
by a colon. A symbol definition can occupy a separate line (in which case
it refers to the following statement). Alternatively, a statement can follow
the symbol definition on the same line.

Symbols can be used as operands to the lc and lcs instruction state-
ments. A symbol reference can end with a @n sequence, where n is a
numeric literal; in this case it is interpreted as an offset (in bytes) relative
to the symbol definition. For the lcs instruction, the resulting address must
still fit into the sign extended 21-bit value range (0x00000000–0x000FFFFF
or 0xFFF00000–0xFFFFFFFF), otherwise the linker will report an error.

By default all symbols are local, that is, they can be only referenced from
the module where they were defined. To make a symbol accessible from
other modules, use the #export directive. To reference a symbol defined
in another module use the #import directive.

A symbol named entry or Entry has a special meaning: it is used to
inform the linker about the program entry point if there are multiple input

C.4. STATEMENTS 55

files. It does not have to be exported. If defined, this symbol must precede
the first instruction or data definition statement in the module. Only one
module in the program can define the entry symbol.

lc r10, jump_label

lc r11, data_word

// ...

sw r11, r0 // store the value of r0 to the

// location pointed by data_word

jmp r10 // transfer execution to jump_label

// ...

jump_label:

mov r1, r0

// ...

data_word:

.word 0x12345678

C.4 Statements
Each statement occupies a single source code line. There are three kinds of
statements:

• Directives provide directions for the assembler that do not directly
cause code generation.

• Data definition statements insert arbitrary data to the generated code.

• Instruction statements insert LXP32 CPU instructions to the generated
code.

Directives
The first token of a directive statement always starts with the # character.

#define identifier [token ...]

Defines a macro that will be substituted with zero or more tokens. The
identifier must satisfy the requirements listed in Section C.3. Tokens
can be anything, including keywords, identifiers, literals and separators
(i.e. comma and colon characters).

56 APPENDIX C. LXP32 ASSEMBLY LANGUAGE

#error [msg]

Raises a compiler error. If msg is supplied, uses it as an error message.

#export identifier

Declares identifier as an exported symbol. Exported symbols can be
referenced by other modules.

#ifdef | #ifndef identifier

...

#else

...

#endif

Define C preprocessor-style conditional sections which are processed or
not based on whether a certain macro has been defined. #else is optional.
Can be nested.

#import identifier

Declares identifier as an imported symbol. Used to refer to symbols
exported by other modules.

#include filename

Processes filename contents as it were literally inserted at the point of
the #include directive. filename must be a string literal.

#message msg

Prints msg to the standard output stream. msg must be a string literal.

Data definition statements
The first token of a data definition statement always starts with the . (pe-
riod) character.

.align [alignment]

Ensures that code generated by the next data definition or instruction
statement is aligned to a multiple of alignment bytes, inserting padding
zeros if needed. alignment must be a power of 2 and can’t be less than
4. Default alignment is 4. Instructions and words are always at least
word-aligned; the .align statement can be used to align them to a larger
boundary, or to align byte data (see below).

C.4. STATEMENTS 57

The .align statement is not guaranteed to work if the requested align-
ment is greater than the section alignment specified for the linker (see
Subsection 6.1).

.byte token [, token ...]

Inserts one or more bytes to the output code. Each token can be either
a numeric literal with a valid range of [-128; 255] or a string literal. By
default, bytes are not aligned.

To define a null-terminated string, the terminating null character must
be inserted explicitly.

.reserve n

Inserts n zero bytes to the output code.

.word token [, token ...]

Inserts one or more 32-bit words to the output code. Tokens must be
numeric literals.

Instruction statements
Instruction statements have the following general syntax:

instruction [operand [, operand ...]]

Depending on the instruction, operands can be registers, numeric literals
or symbols. Supported instructions are listed in Appendix A.

Appendix D

WISHBONE datasheet

D.1 Instruction bus (LXP32C only)

General information

WISHBONE revision B3
Type of interface MASTER
Supported cycles BLOCK READ

Signal names

clk_i CLK_I
rst_i RST_I
ibus_cyc_o CYC_O
ibus_stb_o STB_O
ibus_cti_o CTI_O()
ibus_bte_o BTE_O()
ibus_ack_i ACK_I
ibus_adr_o ADR_O()
ibus_dat_i DAT_I()

Supported tag signals

ibus_cti_o Cycle Type Identifier (address tag)
“010” (Incrementing burst cycle)
“111” (End-of-Burst)

ibus_bte_o Burst Type Extension (address tag)
“00” (Linear burst)

Dimensions

Port size 32

59

60 APPENDIX D. WISHBONE DATASHEET

Port granularity 32
Maximum operand size 32
Data transfer ordering BIG/LITTLE ENDIAN
Data transfer sequence UNDEFINED

D.2 Data bus

General information

WISHBONE revision B3
Type of interface MASTER
Supported cycles SINGLE READ/WRITE

RMW

Signal names

clk_i CLK_I
rst_i RST_I
dbus_cyc_o CYC_O
dbus_stb_o STB_O
dbus_we_o WE_O
dbus_sel_o SEL_O()
dbus_ack_i ACK_I
dbus_adr_o ADR_O()
dbus_dat_o DAT_O()
dbus_dat_i DAT_I()

Dimensions

Port size 32
Port granularity 8
Maximum operand size 32
Data transfer ordering LITTLE ENDIAN
Data transfer sequence UNDEFINED

Appendix E

List of changes

Version 1.3 (2022-08-28)
This release removes support for temporarily blocked interrupts (interrupts
can still be disabled) and introduces wake-up interrupts.

Version 1.2 (2021-10-21)
This release introduces a few non-breaking changes to the software and
testbench. The CPU RTL description hasn’t been changed from the previous
release.

• lxp32asm now supports C-style conditional processing directives:
#ifdef, #ifndef, #else and #endif.

• #define directive can now declare a macro with zero subsitute tokens.

• A new #error directive.

• Minor changes to the testbench.

Version 1.1 (2019-01-11)
This release introduces a minor but technically breaking hardware change:
the START_ADDR generic, which used to be 30-bit, has been for convenience
extended to a full 32-bit word; the two least significant bits are ignored.

The other breaking change affects the assembly language syntax. Previ-
ously all symbols used to be public, and multiple modules could not define

61

62 APPENDIX E. LIST OF CHANGES

symbols with the same name. As of now only symbols explicitly exported
using the #export directive are public. #extern directive has been replaced
by #import.

Other notable changes include:

• A new instruction, lcs (Load Constant Short), has been added, which
loads a 21-bit sign extended constant to a register. Unlike lc, it is
encoded as a single word and takes one cycle to execute.

• Optimizations in the divider unit. Division instructions (divs and
divu) now take one fewer cycle to execute (modulo instructions are
unaffected).

• LXP32 assembly language now supports a new instruction alias, neg
(Negate), which is equivalent to sub dst, 0, src.

Version 1.0 (2016-02-20)
Initial public release.

	Title
	Contents
	1 Introduction
	1.1 Main features
	1.2 Implementation estimates
	1.3 Structure of this manual

	2 Instruction set architecture
	2.1 Data format
	2.2 Instruction format
	2.3 Registers
	2.4 Addressing
	2.5 Stack
	2.6 Calling procedures
	2.7 Interrupt handling
	Control register
	Invoking interrupt handlers
	Wake-up interrupts
	Non-returnable interrupts

	3 Integration
	3.1 Overview
	3.2 Ports
	3.3 Generics
	DBUS_RMW
	DIVIDER_EN
	IBUS_BURST_SIZE
	IBUS_PREFETCH_SIZE
	MUL_ARCH
	START_ADDR

	3.4 Clock and reset
	3.5 Low Latency Interface
	3.6 WISHBONE instruction bus
	3.7 WISHBONE data bus
	3.8 Interrupts
	3.9 Synthesis and optimization
	Technology specific primitives
	General optimization guidelines
	Optimizing for timing
	Optimizing for area

	4 Hardware architecture
	5 Simulation
	5.1 Requirements
	5.2 Running simulation using makefiles
	5.3 Running simulation manually
	5.4 Testbench parameters

	6 Development tools
	6.1 lxp32asm – Assembler and linker
	Command line syntax
	Output formats

	6.2 lxp32dump – Disassembler
	Command line syntax

	6.3 wigen – Interconnect generator
	Command line syntax

	6.4 Building from source
	Requirements
	Build procedure

	A Instruction set reference
	A.1 List of instructions by group
	A.2 Alphabetical list of instructions
	add – Add
	and – Bitwise And
	call – Call Procedure
	cjmpxxx – Compare and Jump
	divs – Divide Signed
	divu – Divide Unsigned
	hlt – Halt
	jmp – Jump
	iret – Interrupt Return
	lc – Load Constant
	lcs – Load Constant Short
	lsb – Load Signed Byte
	lub – Load Unsigned Byte
	lw – Load Word
	mods – Modulo Signed
	modu – Modulo Unsigned
	mov – Move
	mul – Multiply
	neg – Negate
	nop – No Operation
	not – Bitwise Not
	or – Bitwise Or
	ret – Return from Procedure
	sb – Store Byte
	sl – Shift Left
	srs – Shift Right Signed
	sru – Shift Right Unsigned
	sub – Subtract
	sw – Store Word
	xor – Bitwise Exclusive Or

	B Instruction cycle counts
	C LXP32 assembly language
	C.1 Comments
	C.2 Literals
	C.3 Symbols
	C.4 Statements
	Directives
	Data definition statements
	Instruction statements

	D WISHBONE datasheet
	D.1 Instruction bus (LXP32C only)
	D.2 Data bus

	E List of changes

