
JPEG codec on Xilinx Microblaze processor

1. Introduction

This is an open source JPEG codec, including both encoder and decoder, for

embedded systems. It can be fully synthesized and implemented on FPGA.

Different to a fully hardware implementation, this JPEG codec is designed based

on Xilinx Microblaze processor with customized hardware accelerators. It is

expected to achieve high flexibility, low complexity at little cost of size and

performance. We aim to archive real time motion JPEG codec on a Xilinx

Spartan X3S1000 equivalent FPGA.

You can open the project with Xilinx EDK8.1 or higher. The verification hardware

platform I use is Xilinx XUP board with a Xilinx XC2V30P on it. It provides

necessary peripherals such as CF card for image storage and video output. The

board can be obtained at the cost of 300 euro if you are in a university. It’s not

difficult to port the design into other FPGA boards.

The code here includes two parts, a JPEG codec library and a test bench. The

test bench is to read a BMP file (<64KB) from CF card, drive JPEG code library

to compress it and write the JPG file back to CF card. You can also make your

own design to play with camera and video output based on it.

The JPEG codec library also can be used as a library or IP core for image

processing or video compression applications, for instance, MPEG codec. The IP

cores can be integrated immediately. It is actually part of my master project and I

try to write down in detail how I design and how to use it. Enjoy!

2. Features

1) Baseline JPEG encoder and decoder, compatible to JPEG standard

2) RGB to YUV conversion, 4:2:0 subsampling

3. Architecture

3.1 Hardware Architecture

3.2 Data Flow

1) For whole BMP File from CF Card Controller -> OPB Bus -> Microblaze -

> DLMB Bus -> BMP Buffer Memory.

The whole BMP file is read from CF card to BMP buffer memory. It is 64KB

dedicated data memory. That’s also the reason that the maximum BMP file size

is 64KB in current implementation.

2) For every BMP macroblock from Buffer Memory -> DLMB Bus -

>Microblaze->DLMB Bus -> Data Memory

Every BMP macroblock is then read and convert to YUV color domain and stored

in global arrays located in Data Memory.

3) For every YUV macroblock from Data Memory ->DLMB Bus ->Microblaze-

>DLMB Bus->Data Memory

It is DCT processing. Every YUV domain block is converted from spatial domain

to frequency domain.

4) For every frequency domain macroblock from Data Memory->DLMB Bus ->

Microblaze->OPB Bus->CF Card or ->DLMB Bus->Data Memory

Every macroblock is then quantized, zigzag scanned and Huffman encoded. The

result is written into CF card. Due to file buffer in file system, not every block is

written into CF card immediately.

4. Porting Guide

To port the design into other FPGA board is not difficult. All of these design files

is able to be reused for other FPGAs.

If you have other peripherals than CF card, for instance, camera, you need add

your own peripheral and write your own code to deal with it. All of the code

related to I/O is in bmp2jpg_mb.c and all other files can be left untouched.

5. Further improvement

1) Design hardware accelerator to improve performance and reduce memory

consumption.

2) Use external memory instead of on-chip memory to store BMP file.

3) Support more peripherals, for instance, camera and video output.

4) Try multiprocessor implementation and compare the result.

6. For further information, please refer to

http://www.opencores.org/projects.cgi/web/mb-jpeg/overview.

Sunwei sunwei388@gmail.com

Joris van Emden joris.van.emden@gmail.com

Marcel Lauwerijssen mlauwerijssen@morphore.com

Appendix A Release Notes

You can checkout source code with CVS. It’s also possible to download bit file

only from http://www.opencores.org/cvsweb.shtml/mb-jpeg/bitstreams/.

V0.2 2006/09/15

CVS tag: STEP7_2

Features

1. 4:2:0 subsampling support. Compression ratio is doubled.

2. Reduce file system resource usage. For xilfatfs, CONFIG_BUFCACHE_SIZE

2560 (default 10240), CONFIG_MAXFILES 2 (default 5), CONFIG_WRITE true

(default false)

Code size

Text 30920 Data 5156 Bss 13028 total 49104 bytes

(CF card access, file system and I/O are all included)

Platform

EDK8.1i2, ISE8.1i2 and Xilinx XUP2PRO board.

V0.11 2006/07/29

CVS tag: STEP2_2b

Features

The code is elaborate to reduce memory and resource usage. It is also platform

independent.

Resource

Number 4 input LUTs: 2,049 out of 27,392 7%

Number of PPC405s: 0 out of 2 0%

Number of Block RAMs: 64 out of 136 47%

Number of MULT18X18s: 3 out of 136 2%

Block RAMs are used for instruction memory (16 blocks, 32KB), data memory

(16 blocks, 32KB) and BMP buffer memory (32blocks, 64KB).

Code size

Text 30840 Data 5156 Bss 12276 total 48272 bytes

(CF card access, file system and I/O are all included)

Platform

EDK8.1i2, ISE8.1i2 and Xilinx XUP2PRO board.

V0.1 2006/07/19

CVS tag: STEP2_2b

Features

It includes a JPEG codec library and a testbench. It can read a BMP file (<64KB)

named “image01.bmp” on CF card, compress it and write “image01.jpg” back to

CF card.

Code size

Text 43284 Data 5680 Bss 32064 total 81028 bytes

(CF card access, file system and I/O are all included)

Platform

EDK8.1, ISE8.1 and Xilinx XUP2PRO board.

Appendix B Bug List

1. Non-8 multiplication image size is not supported.

2. BMP file size is limited to 64KB.

