
MB-LITE: A robust, light-weight soft-core

implementation of the MicroBlaze architecture

Tamar Kranenburg

Delft University of Technology

EEMCS, Circuits and Systems group

Mekelweg 4, 2628 CD Delft, The Netherlands

Email: info@takar.nl

Rene van Leuken

Delft University of Technology

EEMCS, Circuits and Systems group

Mekelweg 4, 2628 CD Delft, The Netherlands

Email: t.g.r.m.vanleuken@tudelft.nl

Abstract—Due to the ever increasing number of microproces-
sors which can be integrated in very large systems on chip the
need for robust, easily modifiable microprocessors has emerged.
Within this paper a light-weight cycle compatible implementation
of the MicroBlaze architecture called MB-LITE is presented in
an attempt to fill the gap in quality between commercial and
open source processors. Experimental results showed that MB-
LITE obtains very high performance compared with other open
source processors while using very few hardware resources. The
microprocessor can be easily extended with existing IP thanks
to an easily configurable data memory bus and a wishbone
bus adapter. All components are modular to optimize design
reuse and are developed using a two-process design methodology
for improved performance, simulation and synthesis speeds. All
components have been thoroughly tested and verified on a FPGA.
Currently an architecture with four MB-LITE cores in a NoC
architecture is in development which will be implemented in
90nm process technology.

I. INTRODUCTION

The increase in capacity of Field Programmable Gate Arrays

(FPGAs) made it possible to include many microprocessors

within a System On Chip (SOC). Concepts in the field of

Parallel Computing and Network on Chip architectures can be

simulated using FPGA technology. Both commercial as well as

open source processors have been used to this extend [1], [2],

[3], [4]. However, a commercial processor (e.g. MicroBlaze

from Xilinx or NIOS2 from Altera) poses stringent restrictions

on portability since it is expensive or even impossible to

fabricate it on silicon - or even on other devices. Furthermore,

including very specific components like for example a custom

data bus is a tedious task.

Open source processors do not have these limitations, but

aspects like design quality, support and documentation can

become a bottleneck. In [5] it was concluded that most open

source designs are hard to modify due to their complexity, the

lack of a unified design methodology or the absence of clear

documentation. Furthermore, most of these microprocessors

are not portable and will only work on specific FPGAs.

In this paper the design and implementation of MB-LITE

is presented in an attempt to provide an easily modifiable

high quality open source processor. MB-LITE is a light-

weight implementation of the MicroBlaze architecture [6]. The

microprocessor is cycle and architectural compatible with the

MicroBlaze specification. A wishbone bus and easily config-

urable data bus are provided. All components are modular,

making it very easy to modify the memory topology. A two-

process design methodology is used to optimize readability,

performance and synthesis.

The remainder of this paper is organized as follows. In

Section II several existing processors are discussed. Section III

will focus on the design of MB-LITE while in Section IV the

performance with respect to several other cores is discussed.

Finally several conclusions will be presented in Section V.

II. BACKGROUND

A. Evaluation of open source processors

In [5] several open source processors were evaluated. As-

pects like design quality, performance, available documenta-

tion and the set of available features were taken into account.

For the development of prototypes it is important that the

design can be quickly modified so the design needs to be

simple and flexible. The processor needs to be robust and

a tool chain with standard libraries need to be available. A

single-threaded, single-issue RISC architecture meets this goal

best. Four processors were selected for further investigation

(OpenFire, OpenRISC, LEON3 and aeMB). Additionally a

comparison was made with MicroBlaze.

LEON3 is an implementation of the relatively complex

UltraSPARC architecture and has many features. A drawback

is that it has a bus (AMBA) which is rather hard to adapt.

Furthermore, the architecture is quite complex so it will in

general be hard to make modifications. Both OpenFire and

aeMB implement the MicroBlaze architecture but do not have

many features. Both processors would need improvements

in terms of portability and available features. However, the

documentation of both processors is shallow and no design

methodology was applied. Improving these processors implies

that thorough insight in the design need to be gained, which

is tedious and time consuming. The resource utilization of

all processors was measured and their relative performance

was compared using the execution time of the Dhrystone

benchmark. All optional components and features were dis-

abled. It turned out that existing open source processors have

low to moderate performance, while resource utilization is

Listing 1. Example of the two process design methodology. Signals r, rin
and variable v are of the same type, hence they can be easily assigned to each
other eliminating the need for long assignment lists.

f e t c h o <= r ;

PROCESS(f e t c h i , r , r s t i)

VARIABLE v : f e t c h o u t t y p e ;

BEGIN

IF r s t i = ’1 ’ THEN

v . p r o g r a m c o u n t e r := (OTHERS => ’ 0 ’) ;

ELSIF f e t c h i . h a z a r d = ’1 ’ THEN

v . p r o g r a m c o u n t e r := r . p r o g r a m c o u n t e r ;

ELSIF f e t c h i . b r a nc h = ’1 ’ THEN

v . p r o g r a m c o u n t e r := f e t c h i . b r a n c h t a r g e t ;

ELSE

v . p r o g r a m c o u n t e r :=

i n c r e m e n t (r . p r o g r a m c o u n t e r) ;

END IF ;

r i n <= v ;

END PROCESS ;

PROCESS(c l k i)

BEGIN

IF r i s i n g e d g e (c l k i) THEN

IF e n a i = ’1 ’ THEN

r <= r i n ;

END IF ;

END IF ;

END PROCESS ;

medium to high. Comparing these results with commercial

implementations justifies the development of MB-LITE.

B. Structured VHDL design

Traditional VHDL design approaches contain many small

processes and do not follow a unified naming convention. As

a result these designs are hard to understand and tedious to

maintain [7]. No benefit is taken from the increased level of

abstraction offered by behavioral VHDL models.

A good solution to the bottlenecks of such ad-hoc designs

is also given in [7]. Combinational and sequential elements

are explicitly separated to clarify time dependencies between

processes. The algorithm is completely determined by the

combinational process. Component results are stored in the

sequential process. Due to this separation a synthesizer can

take more advantage of its optimizing capabilities. As a result

the models become easier to understand and become less

error-prone. Using a high abstraction level is recommended

to keep the code size to a minimum while gaining a much

better structure. As a consequence these designs will be easier

to understand, debug and maintain. A fragment of a MB-

LITE component modeled using this methodology is shown

in Listing 1.

C. The MicroBlaze architecture

MicroBlaze is a RISC architecture and almost identical to the

MIPS architecture of early 1980s. It is a Harvard architecture

with 32-bit instruction and data words. The architecture is

designed to be implemented with five pipeline stages. Most

instructions - except for branches - have a latency of one cycle.

The architecture provides a single interrupt. A few notable

differences between MicroBlaze and MIPS will be discussed

in this section.

A conditional branch in the MIPS architecture consists of

two subsequent instructions. First, an arithmetic operation is

executed and second the branch is performed based on the

result of the previous instruction. Therefore just a single adder

and a comparator is necessary to execute a branch. Micro-

Blaze does both the evaluation of a condition as well as the

computation of the target address within a single instruction,

hence more hardware is required.

The MicroBlaze architecture need the values of three reg-

isters at the same time, since the definition of store word

is MEM[Ra+Rb] = Rd. All three register values need to be

forwarded which requires additional logic compared with the

MIPS architecture.

III. DESIGN

A. Organization

The organization of MB-LITE is based on the MIPS processor

described in [8] because this is a well-known implementa-

tion and the architecture is straight-forward. It has the same

pipeline stages Instruction Fetch (IF), Instruction Decode (ID),

Execute (EX), Memory (MEM) and Write-back (WB). Several

modifications to the MIPS organization are applied in order to

obtain a MicroBlaze compatible implementation.

MB-LITE implements distributed control in order to elimi-

nate the need for a centralized and complex pipeline controller.

All dependencies like stalls, hazards and forwards are solved

locally. It is therefore relatively easy to understand the design,

since the dependencies have been made clear and simple to

understand. For example, the signal alu src a for example

is evaluated and used in the execution stage and depends on

the decoded operation and the register values being forwarded

by other stages. Using this approach, the logic necessary for

selecting the correct values of the ALU operands is straightfor-

ward. Almost all forwarding logic is collected in the execution

stage in order to obtain a structured, strictly synchronous

design.

The ID stage decodes the instruction into clear, well defined

signals. These control signals travel along with the instruction.

The execute stage set the ALU operands and the operation

which needs to be executed. Besides all basic functionality like

shifting, adding and logic operations the ALU can be extended

with a multiplier and barrel shifter.

Several techniques are applied to solve hazards. For data

hazards forwarding is applied to reduce the number of stalls to

a minimum. The structural hazard which occur when the same

register is read and written concurrently is also solved using

operand forwarding. When the result of a load instruction is

immediately used, these techniques can not be applied and a

stall will be inserted in the pipeline. Finally, control hazards

are solved using a pipeline flush.

B. Data memory bus

To simplify connecting components like memories, co-

processors, bridges and adapters an easily modifiable address

decoder was designed. The memory map and the number of

outputs can be configured using VHDL generics. The bus is

Fig. 1. Example of a memory topology build using the address decoder. Fast
local memory is connected to the lower part of the memory map, while multi
cycle transactions can be connected using the wishbone bus adapter.

responsible for decoding the selected address and steering the

control, address and data signals to the appropriate output

ports. The decoder can be connected directly to the MB-LITE

data bus and does not introduce additional delay.

Since many peripherals for the wishbone bus are available

an adapter is developed to convert the MB-LITE data memory

side of the processor to a wishbone master interface. The

adapter can be connected directly to the MB-LITE core or to

the decoder. The wishbone bus introduces a delay of one cycle

in order to avoid asynchronous control paths. An example of

a memory topology including the address decoder and bus

adapter is shown in Figure 1. The wishbone bus is modeled

in accordance with revision 3B of the wishbone specification.

During a wishbone cycle the execution of the processor is

interrupted until the transaction is finished.

The data memory interface consists of basic control signals

and can be connected to any type of synchronous memory. For

halfword and byte data transfers a memory with four indepen-

dent WRITE ENABLE inputs is needed. Since such a component

is not available on every platform a memory consisting of four

independent memory components is included as well. The data

interface of MB-LITE has a 4-bit select signal which can be

used for reading or writing specific bytes.

IV. RESULTS

A. Verification

The behavioral model of MB-LITE has been extensively veri-

fied for proper functionality. A character device was designed

and connected to the data interface of MB-LITE in order to

receive feedback. This interface, which uses the TXTIO library,

is capable of printing characters to the console of a simulator.

To verify the design a large test bench have been carefully

assembled and obtains full statement coverage. All statements

in the behavioral VHDL model are executed at least once

during this simulation, which makes the execution of individ-

ual instructions very reliable. During this simulation a wide

range of programs are executed and the output is compared

with expected results. Several standard libraries like STDIO.H,

MATH.H and FLOAT.H are included in this test bench as well

as often used functions such as STRCPY and MALLOC. The

test bench have been executed with and without the optional

multiplier and barrel shifter.

Fig. 2. Plot of a wishbone write cycle.

The data bus components have been tested using the same

procedure. A memory topology was set up using the address

decoder and the wishbone bus. The lower part of the memory

was connected to block RAM while the upper part of the mem-

ory connected through the wishbone bus adapter to a wishbone

compatible IO device. During the tests of the wishbone bus

the acknowledge delay of the bus was altered to see if all

rules and exceptions of the wishbone bus specification have

been met. An example of a wishbone write cycle is shown in

Figure 2.

A VHDL netlist was generated from the behavioral model

using ISE 10.1. The functionality of the synthesized design

was successfully verified by comparing the simulation of the

behavioral model with the simulation of the synthesized model

with time annotation.

B. Performance

The performance of the MB-LITE processor has been com-

pared to several other designs. All designs were synthesized

using a Virtex 5 development board (XC5VLX110-3FF1760)

using Xilinx XST 10.1.03. To obtain a valid comparison all

processors have been configured with as few as possible fea-

tures. Multipliers, barrel shifters, bus controllers and interrupts

amongst others have been disabled in all designs. As a result,

we measure the performance of the bare core.

Performance was estimated in terms of clock frequency and

execution time of the Dhrystone benchmark. To this extend

the Dhrystone benchmark has been ported to MicroBlaze by

replacing functions with equivalent MicroBlaze routines. The

results of these measurements are shown in Figure 3. AeMB

seems to obtain a very high clock frequency, but in the end it

takes a lot of time to execute the Dhrystone benchmark. This

is due to the fact that AeMB is designed for interchanged

execution of two-threads. Due to this time multiplexing many

dependencies can be removed and the clock frequency can

be much higher compared with general designs. Since we are

primarily interested in the execution of a single thread we

consider this as a feature rather than a possible performance

advantage.

Although the clock frequency of OpenRISC does not deviate

that much from the other designs, the real execution time is

very high. Besides, it uses a considerable amount of hardware

resources. It was found that the both the architecture as well

as the tool chain are not very efficient. The performance of

LEON3 is quite disappointing. Apparently the tool chain can

aeMB MB−Lite MicroBlaze OpenFire OpenRISC LEON3
0

100

200

300
M

H
z

aeMB MB−Lite MicroBlaze OpenFire OpenRISC LEON3
0

10

20

30

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

#
 o

f
fl
ip

fl
o
p
s

aeMB MB−Lite MicroBlaze OpenFire OpenRISC LEON3
0

500

1000

1500

2000

#
 o

f
L
U

T
s

0

1000

2000

3000

4000

Fig. 3. Clock frequency, execution time of 1000 iterations of the Dhry-
stone benchmark and resource utilization of several open source processors.
Simulation results of OpenFire could not be obtained.

not take much benefit of the SPARC register windows. The

execution time of MB-LITE is considerably lower than all other

designs, including the commercial implementation of Xilinx.

Furthermore, the resource utilization is very low.

C. Realizations

An implementation of MB-LITE in a Xilinx Virtex5 consist-

ing of a configuration of the MB-LITE core, memory, multi-

plier, barrel shifter and an 16550 compatible UART results in

a clock speed of 65 MHz and a resource usage of 1450 LUT’s,

3 multiplier blocks and BRAM36 blocks. Implementations

with other peripherals produce about the same numbers. The

software which was used to test these implementations was

generated by the standard MicroBlaze tool chain and used

without modification. Currently a configuration of four MB-

LITE cores in a NoC architecture is in the design stage.

The goal is to realize this design in 90nm CMOS process

technology.

V. CONCLUSION

In this paper the design and implementation of an easily

modifiable open source processor was presented [9]. MB-

LITE is a light-weight implementation of the MicroBlaze

architecture and is designed to obtain high performance using

few logic elements. This has been achieved by applying a

synchronous two-process design methodology in which com-

binational and sequential logic is strictly separated. Com-

parisons with other processors show that MB-LITE and the

implementation of Xilinx have equivalent performance, while

using far less resources.

Conformance with the MicroBlaze architectural specifica-

tion was thoroughly verified using both behavioral as well

as netlist simulations with annotated time information. The

design is cycle as well as architecturally compatible with

MicroBlaze. MB-LITE might thus be used to replace Micro-

Blaze in most designs in order to make them better portable.

The two-process design methodology is not only used to

improve design speed, but also to increase readability, facilitate

code maintenance, reduce code-size and improve simulation

and synthetization speeds. Using modularity as basic rule, a

highly configurable multiplexed bus and wishbone bus adapter

can be easily attached and modified.

All components are inferred instead of explicitly instanti-

ated. Therefore this design can be much easier ported to other

technologies. The separation between standard and specific

components and the use of strict synchronous components

facilitates the implementation of MB-LITE in an IC fabrication

process without having to change the structure of the design.

The maximum clock frequency of MB-LITE is comparable

with MicroBlaze, while the execution time of the Dhrystone

benchmark is much lower than all evaluated processors. Be-

sides, the resource requirements of this processor are far less

than many other designs, while the core provides at least

the same functionality. The core can be configured to use a

multiplier or barrel shifter and implements a single interrupt.

The small size of the MB-LITE processor, the modularity

of the bus as well as the application of the two-process

design methodology makes this processor very well suited

for research and development of Very Large Scale Integrated

Systems On Chips and On-Chip Networks. Future research

will focus on embedding the MB-LITE in a reconfigurable

fabric as well as implementing this processor in a UMC 90

nm process technology.

REFERENCES

[1] D. Sheldon, R. Kumar, F. Vahid, D. Tullsen, and R. Lysecky, “Conjoin-
ing soft-core FPGA processors,” Computer-Aided Design, International

Conference on, pp. 694–701, 2006.
[2] F. Plavec, B. Fort, Z. G. Vranesic, and S. D. Brown, “Experiences with

soft-core processor design,” in IPDPS ’05: Proceedings of the 19th IEEE

International Parallel and Distributed Processing Symposium. IEEE
Computer Society, 2005, p. 167.2.

[3] R. Holsmark, A. Johansson, and S. Kumar, “On connecting cores to
packet switched on-chip networks: A case study with MicroBlaze pro-
cessor cores,” 7th IEEE Workshop DDECS 04, april 2004.

[4] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on chip:
Concepts, architectures, and implementations,” IEEE Design and Test of

Computers, vol. 22, no. 5, pp. 414–421, 2005.
[5] T. Kranenburg, “Reference design of a portable and customizable micro-

processor for rapid system prototyping,” Master’s thesis, Delft University
of Technology, 2009.

[6] MicroBlaze Processor Reference Guide, Xilinx, January 2008.
[7] J. Gaisler. Fault-tolerant microprocessors for space applications. [Online].

Available: http://www.gaisler.com/doc/vhdl2proc.pdf
[8] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative

Approach, 3rd ed. Morgan Kaufmann Publishers, 2003.
[9] T. Kranenburg. Mb-lite project. [Online]. Available: http://www.

opencores.org/project/mblite

