

MESI_ISC
Specification

 Draft

Author: Yair Amitay

yair.amitay@yahoo.com

www.linkedin.com/in/yairamitay

Rev. 0.10

January 2013

mailto:yair.amitay@yahoo.com
http://www.linkedin.com/in/yairamitay

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 ii

This page has been intentionally left blank.

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 iii

Revision History

Rev. Date Author Description

0.10 1/3/2013 Yair

Amitay

Draft, Under Construction

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 iv

Contents
Introduction ... 1

Coherency Systems ... 2

Coherency protocol (Under Construction) ... 5

Project Purpose ... 6

MESI_ISC Coherency Concept .. 7

MESI Protocol (Under Construction) ... 7

Coherency Protocol ... 8

Coherency operation for a write miss ... 10

Coherency operation for a read miss .. 11

Coherency operation for a write to a Shared line ... 12

Examples for Coherency Scenarios .. 13

Write miss to a an Invalid location ... 13

Write miss to a Modified location in other master .. 14

Two parallel write misses to an Invalid location .. 15

Architecture .. 17

Operation (Under Construction) ... 17

System Performance (Under Construction) .. 18

Clock and reset (Under Construction) .. 18

Masters definition and requirements (Under Construction) ... 18

Integration MESI_ISC to existing systems (Under Construction) 18

Micro Architecture .. 19

Verification .. 20

Validation of Data Consistency ... 20

Validation of MESI Protocol ... 20

Random Stimulus .. 20

Verification Environment (Under Construction) .. 21

Timing, Power and Area ... 22

Design Environment ... 23

(Under Construction) .. 23

Tools .. 23

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 v

Synthesis ... 23

Simulation ... 23

Lint .. 23

IO Ports ... 24

Waveforms .. 26

Open Issues ... 27

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 1 of 10

1

Introduction

The MESI InterSection Controller (ISC) is a coherence system controller. It supports the

MESI coherence protocol. It synchronizes the memory requests of the system masters. It

enables to keep the consistency of the data in the memory and in the local caches.

This project provides a synthesizable controller core and it defines the requirements of

the system masters.

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 2 of 10

2

Coherency Systems

A coherency system is a system in which all the different copies of the same memory

address are consistency. It means that if a master writes a certain data to a memory

address then any other master that access this address read the update data. One of the

cases that an inconsistency can occur is when the system masters have memory caches. If

a data copy in the cache is not update according to the least written data the master that

own this cache may read the wrong data.

A system is coherent if it obeys the all following rules:

Rule 1

Time Maste

r

Address Write Data Read Data

T1 M1 A1 D1

T2 M1 A1 D1

T2 > T1

Rule 2

Time Master Address Write Data Read Data

T1 M1 A1 D1

T2 M2 A1 D1

T2 > T1

Rule 3

Time Master Address Write Data Read Data Comment

T1 M1 A1 D1

T2 M2 A1 D2

T3 M3 A1 D2

T4 M3 A1 D2 It is not allowed to read D1 at

this point

T4 > T3 > T2 > T1

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 3 of 10

Figure 1 describes an example of a basic system. It contains a main memory and three

masters. The masters are connected to the main memory and all of them can access the

memory through the arbiter. A write action of a master has three stages. First the master

performs a read access to the main memory and the requested memory data is copied to

the master`s cache. Then the local copy of the data in the cache is updated with the write

data. Later, the master may evict the cache line that contains the update data and write it

back to the memory. Data inconsistent can occur in several cases. The following scenario

describes an example of data inconsistent:

1. Master 1 write data D1 to address A1

a. Master 1 performs a read access to A1 in the main memory.

b. The data of A1 in the main memory, D0, is copied to the local cache of

master 1.

c. The data of A1 in the local cache is overwritten with the written data, D1.

2. Master 2 read from address A1

a. Master 2 performs a read access to A1 in the main memory.

b. The data of A1 in the main memory, D0, is copied to the local cache of

master 2.

The data of A1 in the memory in not update and Master 2 read the wrong data.

In a basic system data inconsistent can be prevented by software synchronization between

the masters.

Basic Cached Multi Master system Address, Write Data, Controls

Read Data

Main Memory

M3

Cache

M2

Cache

M1

Cache

Figure 1: Basic System

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 4 of 10

Figure 2 describes an example of a hardware coherency system. It is similar to the basic

system with some changes. Each master monitors (snoops) the actions of all other master.

A master can postpones main memory accesses of the other masters. A master postpones

a memory access of other master when it has a data copy of a certain memory address in

its cache and the other master tries to access this memory location. It evicts the cache line

that contains the certain data and writes it back to the memory. Then it enables the other

master to continue and access the memory. The following scenario describes an example

which preventing data inconsistent:

1. Master 1 write data D1 to address A1

a. Master 1 performs a read access to A1 in the main memory.

b. The data of A1 in the main memory, D0, is copied to the local cache of

master 1.

c. The data of A1 in the local cache is overwritten with the written data, D1.

2. Master 2 read from address A1

a. Master 2 starts to perform a read access to A1 in the main memory.

b. Master 1 detects this access and holds it.

c. Master 1 evicts the cache line that contains the data copy of A1. This line

contains data D1.

d. Data D1 is written to the main memory to address A1.

e. Master 1 releases the memory access of master 2 and lets it continue.

f. Master 2 finishes performing the read access from A1 in the main memory

and read the data D1.

In a coherency system data inconsistent is prevented by the hardware.

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 5 of 10

Coherency System Address, Write Data, Controls

Read Data

SnoopingMain Memory

M3

Cache

M2

Cache

M1

Cache

Figure 2: Schematic Coherence System

Coherency protocol (Under Construction)

Snoop protocol

Write back

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 6 of 10

3

Project Purpose

A coherence system contains several elements that together enable the coherency. The

major elements of the coherency mechanism are:

1. Coherency controller

2. Coherency masters

3. Coherency buses

This project provides a synthesizable coherency controller block. This block can be

combined to exist system with some the additional changes. In addition this project

defines the masters' behavior and requirements that enable a correct coherency operation.

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 7 of 10

4

MESI_ISC Coherency
Concept

MESI Protocol (Under Construction)

The MESI protocol is a protocol of memory and cache coherency. According to the MESI

protocol any cache can be in one of four states: Modified, Exclusive, Shared, and Invalid.

The next table describes, for any given pair of caches, the permitted states of a given

cache line:

 Cache A

Cache B M E S I

M X X X V

E X X X V

S X X V V

I V V V V

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 8 of 10

Figure 3 describes the MESI state machine.

Figure 3: MESI State Machine (Wikipedia)

Coherency Protocol

In a basic system any master has a bus port for performing the memory read accesses and

writes accesses. In coherency system the masters have additional port of coherency bus.

Both the main bus and the coherency bus are used for the coherence protocol as describes

below. The broadcast request enables preventing data conflicts.

The transactions of the main bus are initiated and drive by the masters. They respond by

the main memory, the system matrix or the coherency controller. The transactions that are

done in the main bus are:

1. Write access – A write access to the memory (legacy bus transaction).

2. Read access – A read access to the memory (legacy bus transaction).

3. Write broadcast – A write broadcast request. Asks for all other master to evict and

invalidate data of the requested address. This transaction type is unique for

coherency systems.

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 9 of 10

4. Read broadcast – A read broadcast request. Asks for all other master to evict

modified data of the requested address. This transaction type is unique for

coherency systems.

The coherency bus is unique for coherency systems. Its transactions are initiated and

drive by the coherency controller. They respond by the masters. The transactions that are

done in the coherency bus are:

1. Write snoop – Another master request to write to a requested memory location.

2. Read snoop – Another master request to read to a requested memory location.

3. Enable write – A respond to a write broadcast (which was performed in the main

bus). It means that the write to the requested memory location can be done.

4. Enable read – A respond to a read broadcast (which was performed in the main

bus). It means that the read to the requested memory location can be done.

In general, a coherency operation starts when a master (initiator) generates an access the

memory. Prior to any memory access the master sends a broadcast request in the main

memory. The coherency controller spreads the request to all the other masters and collects

the responds. Then it enable the initiator to perform the memory access. All the operation

of the coherency controller are done in the coherency bus.

A coherency operation occurs when one of the caches in the system performs a read miss,

a write miss, or a write to a Shared cache line. Write hit, read hit, line eviction, and line

invalidate do not cause to a coherency operations.

The following tables describe in details all the stages for the coherency operations. In the

tables the meanings of some expression are:

Source/destination: Initiator – A master which requests to perform one of the following

a memory accesses: (1) A read access to a memory location that is not present in its

cache, or (2) a write access to a memory location that is not present in its cache or present

and has a shared state.

Source/destination: Coherency Controller – The element that responsibles for the

broadcast management. In this project is the MESI_ISC.

Source/destination: Snooper – A master that receives a write or read snoop request.

Bus: Internal – An internal operation.

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 10 of 10

Coherency operation for a write miss

The following table describes the stages that are done for a write miss.

Stage Source Destination Bus Operation Comments
1 Initiator Coherency

Controller

Main Send write broadcast

2 Coherency

Controller

Initiator Main Acknowledge write

broadcast request

When it receive the

request

3 Coherency

Controller

Snooper Coherency Write snoop Done to all masters

except the initiator

4 Snooper Internal Evicts a dirty line

In case the line is M state

Cache state: E/S->I In case the line is E or S

states

Do nothing In case there is no a valid

line

5 Snooper Memory Main Write back line to

memory

Cache state: M->I

In case of eviction

6 Snooper Coherency

Controller

Coherency Acknowledge write

snoop

7 Coherency

Controller

Initiator Coherency Enable write After all masters

acknowledged the write

snoop broadcast

8 Initiator Memory Main Read line Fill line

 Initiator Internal Cache state: I->S For the cache line that

contains the read data

9 Initiator Internal Write to the cache

Cache state: S->M

For the cache line that

contains the read data

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 11 of 10

Coherency operation for a read miss

The following table describes the stages that are done for a read miss.

Stage Source Destination Bus Operation Comments
1 Initiator Coherency

Controller

Main Send read broadcast

2 Coherency

Controller

Initiator Main Acknowledge read

broadcast request

When it receive the

request

3 Coherency

Controller

Snooper Coherency Read snoop Done to all masters

except the initiator

4 Snooper Internal Evicts a dirty line In case the line is M

Cache state: E->S In case the line is E

Do nothing In case the line is S or

there is no a valid line

5 Snooper Main Write back line to

memory

Cache state: M->I

In case of eviction

6 Snooper Coherency

Controller

Coherency Acknowledge read

snoop

7 Coherency

Controller

Initiator Coherency Enable read After all masters

acknowledged the read

snoop

8 Initiator Memory Main Read line

Fill line

9 Initiator Internal Cache state: I->S For the cache line that

contains the read data

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 12 of 10

Coherency operation for a write to a Shared line

The following table describes the stages that are done for a write hit to a line in Shared

state.

Stage Source Destination Bus Operation Comments
1 Initiator Coherency

Controller

Main Send write broadcast

2 Coherency

Controller

Initiator Main Acknowledge write

broadcast request

3 Coherency

Controller

Snooper Coherency Write snoop Done to all masters ex-

cept the initiator
5 Snooper Internal Invalidates the valid

line:

Cache state: S->I

6 Snooper Coherency

Controller

Coherency Acknowledge write

snoop

7 Coherency

Controller

Initiator Coherency Enable write After all masters

acknowledged the write

snoop

8 Snooper Internal Write to the cache

Cache state: S->M

For the cache line that

contains the read data

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 13 of 10

Examples for Coherency Scenarios

Write miss to a an Invalid location

The following diagram describes a write miss of M0 to an address that is invalid in all

masters. M0 sends write-broadcast. M1 and M2 receive write-snoop and return

immediately acknowledge. M0 receives write-enable and writes to the memory (read A1

from memory and write to the cache).

wr brod A1

M0 event

M0 main bus

M0

Coherency bus

M1 event

M1 main bus

M1

Coherency bus

M2 event

M2 main bus

M2

Coherency bus

wr ack A1wr snoop A1

wr en A1

rd A1

wr ack A1wr snoop A1

wr miss A1 wr to cache

Figure 4: Write miss to a an Invalid location

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 14 of 10

Write miss to a Modified location in other master

The following diagram describes a write miss of M0 to an address that is modified in M1.

M0 sends write-broadcast. M1 and M2 receive write-snoop. M2 returns immediately

acknowledge. As a result of the write snoop, M1 evicts A1 and write it back to the

memory. Then M1 returns acknowledge. M0 receives write-enable and writes to the

memory (read A1 from memory and write to the cache).

wr brod A1

wr snoop

A1

wr en A1

rd A1

wr ack A1wr snoop A1

evict A1

wr A1

wr ack A1

wr miss A1 wr to cacheM0 event

M0 main bus

M0

Coherency bus

M1 event

M1 main bus

M1

Coherency bus

M2 event

M2 main bus

M2

Coherency bus

Figure 5: Write miss to a Modified location in other master

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 15 of 10

Two parallel write misses to an Invalid location

The following diagram describes a write miss of M0 to address A1 in parallel to a write

miss of M1 to address A1. A1 is invalid in all caches. M0 and M1 send separately write-

broadcasts. MESI_ISC respond first to M0. M1 and M2 receive write-snoop and return

immediately acknowledge. M0 receives write-enable and writes to the memory (read A1

from memory and write to the cache). Then MESI_ISC respond the broadcast of M1.

M0 and M2 receive write-snoop. M2 returns immediately acknowledge. As a result of the

write snoop, M0 evicts A1 and write it back to the memory. Then M0 returns

acknowledge. M1 receives write-enable and writes to the memory (read A1 from

memory and write to the cache).

wr brod A1

M0 event

M0 main bus

M0

Coherency bus

M1 event

M1 main bus

M1

Coherency bus

M2 event

M2 main bus

M2

Coherency bus

wr ack A1wr snoop A1

wr en A1

rd A1

wr ack A1wr snoop A1

wr miss A1 wr to cache

wr miss A1

wr brod A1

wr ack A1wr snoop A1

evict A1

wr A1

M0 event

M0 main bus

M0

Coherency bus

M1 event

M1 main bus

M1

Coherency bus

M2 event

M2 main bus

M2

Coherency bus

wr ack A1

wr en A1

rd A1

wr to cache

Time (continue)

Time

Figure 6: Two parallel write misses to an Invalid location

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 16 of 10

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 17 of 10

5

Architecture

Operation (Under Construction)

Figure 3 describe a coherence system with MESI_ISC

Coherency System with MESI_ISC
Address, Write Data, Controls

Read Data

MESI ISC

Coherency bus (snooping)Main Memory

M3

Cache

M2

Cache

M1

Cache

Figure 7: MESI_ISC Architecture and the Masters system

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 18 of 10

System Performance (Under Construction)

Clock and reset (Under Construction)

Masters definition and requirements (Under Construction)

Integration MESI_ISC to existing systems (Under Construction)

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 19 of 10

6

Micro Architecture

(Under Construction)

Figure 4 describes the micro-architecture of MESI_ISC

MP

Connector

Entry 0

m
e

s
i_

is
c
_
b

re
q

_
fi
fo

0

Entry 1

Entry

m-1

MP

Connector

MP

Connector

MP

Connector

Main Port 0

Entry n-1

Entry 1

Entry 0

m
e

s
i_

is
c
_
b

ro
a

d
_

fi
f

o

mesi_isc_breq_fifos_cntl

CP cntlCP cntlCP cntlCP cntl

Coherence

Port

Connector

mesi_isc_

breq_fifos

mesi_isc_broad

mesi_isc

Entry 0

m
e

s
i_

is
c
_
b

re
q

_
fi
fo

1

Entry 1

Entry

m-1

Entry 0

m
e

s
i_

is
c
_
b

re
q

_
fi
fo

2

Entry 1

Entry

m-1

Entry 0
m

e
s
i_

is
c
_
b

re
q

_
fi
fo

3

Entry 1

Entry

m-1

mesi_isc_broad_cntl

Coherence

Port

Connector

Coherence

Port

Connector

Coherence

Port

Connector

Coherence Port

0

Main Port 1 Main Port 2 Main Port 3

Coherence Port

1

Coherence Port

2

Coherence Port

3

Figure 8: MESI_ISC Micro-Architecture

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 20 of 10

7

Verification

(Under Construction)

Validation of Data Consistency

Validation of MESI Protocol

Random Stimulus

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 21 of 10

Verification Environment (Under Construction)

Figure 5 describes the MESI_ISC verification environment.

MESI_ISC Test Bench
Main bus: address and controls

Validation bus

Coherency bus

MESI ISC

Main Memory

Matrix

Validation

Master 0

Master 1

Master 2

Master 3

Main bus: read data and write Data

Stimulus

Clock

Reset

Dump

Seed

Test bus

Figure 9: MESU_ISC Verification Environment

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 22 of 10

8

Timing, Power and Area

(Under Construction)

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 23 of 10

9

Design Environment

(Under Construction)

Tools

Synthesis

Simulation

Lint

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 24 of 10

10

IO Ports

(Under Construction)

This section specifies the MESI_ISC IO ports.

Clock and reset

Port Direction Description

clk Input

rst Input

Main bus

Port Direction Description

mbus_cmd3_i Input

mbus_cmd2_i Input

mbus_cmd1_i Input

mbus_cmd0_i Input

mbus_addr3_i Input

mbus_addr2_i Input

mbus_addr1_i Input

mbus_addr0_i Input

mbus_ack3_o Output

mbus_ack2_o Output

mbus_ack1_o Output

mbus_ack0_o Output

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 25 of 10

Coherency Bus

Port Direction Description

cbus_ack3_i Input

cbus_ack2_i Input

cbus_ack1_i Input

cbus_ack0_i Input

cbus_addr_o Output

cbus_cmd3_o Output

cbus_cmd2_o Output

cbus_cmd1_o Output

cbus_cmd0_o Output

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 26 of 10

11

Waveforms

(Under Construction)

OpenCores MESI_ISC Specification 1/3/2013

www.opencores.org Rev 0.10 27 of 10

12

Open Issues

