

Minimal OpenRISC
System on Chip

Author: Raul Fajardo

rfajardo@gmail.com

Rev. 1.1

September 23, 2010

Open Cores Minimal OpenRISC System on Chip 9/23/2010

Copyright (C) 2010 Raul Fajardo

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license should be included with this document. If not,
the license may be obtained from www.gnu.org, or by writing to the Free Software
Foundation.

This document is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

http://www.opencores.org/ Rev 1.1 Page 2 of 22

http://www.opencores.org/
http://www.gnu.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

History
Rev. Date Author Description

1.0 02/01/10 Raul Fajardo First Draft

1.1 09/23/10 Raul Fajardo First Revision

http://www.opencores.org/ Rev 1.1 Page 3 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

Table of Contents

INTRODUCTION..5

 1.1 SYSTEM OVERVIEW..5
 1.2 SYSTEM FEATURES...6

MINSOC ARCHITECTURE...8

 2.1 OR1200 OPENRISC IMPLEMENTATION...9
 2.2 WISHBONE INTERCONNECT..10

 2.2.1 Configuring the Interconnect...10

 2.2.2 Attaching Modules to the System..12

 2.3 START-UP MODULES..12

FIRMWARE..14

 3.1 BOOTSTRAPPING: A TINY BOOTLOADER...14
 3.2 COMMUNICATION TO SOC MODULES...15
 3.3 INTERRUPT PROCESSING..16

 3.3.1 Interrupt Processing on MinSoC..17

SIMULATION...18

 4.1 INITIALIZING MEMORY...19
 4.2 BUS FUNCTIONAL MODELS..19

CONCLUSION & FUTURE STEPS...21

http://www.opencores.org/ Rev 1.1 Page 4 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

 1
Introduction

MinSoC consists only of the minimal requirements for an implementation using
the OpenRISC processor. This documentation aims to support its use and applicability as
a base for custom projects. As an open source project, every part of it can be uncovered
and analyzed. However, without guidelines and explanation of what is intended with its
design, this task can be very difficult. Therefore, the following document gives an
overview of the project and explains its design goals and major details in order to allow
its user to adapt and extend MinSoC to fit his needs.

 1.1 System Overview

The Minimal OpenRISC System on Chip is a system on chip (SoC)
implementation with standard IP cores available at OpenCores. This implementation
consists of a standard project comprehending the standard IP cores necessary for a SoC
embedding the OpenRISC implementation OR1200.

This project idea is to offer a synthesizable SoC which can be uploaded to every
FPGA and be compatible with every FPGA board without the requirement of changing
its code. In order to deliver such a project, the project has been based on a standard
memory implementation and the Advanced Debug System, which allows system debug
and software upload with the same cables used for FPGA configuration.

The adaptation of the project to a target board is made in 2 steps maximum. First,
the “minsoc_defines.v” file has to be adjusted, generally one has to only uncomment his
FPGA manufacturer and FPGA model definitions. After that, a constraint file for your
specific pinout has to be created. Constraint files for standard boards can be found in the
backend directory of the project.

Furthermore, the project offers working testbench and firmwares for its SoC. The
current testbench can be run out of the box using Icarus Verilog v. 9.1. The firmwares are
nearly the same of those of orpsocv2 [BJ2009]. The differences are for now, that the

http://www.opencores.org/ Rev 1.1 Page 5 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

known UART "hello world" example now runs with interrupts and a new Ethernet
example has been added to it.

To complete, an on-chip memory instance is provided to embed the CPU's
firmware. The size of this memory can be adapted defining its address width inside of the
same minsoc_defines.v file, affecting simulation and synthesis equally. This enables the
customization of the SoC to the available resources of the target FPGA, for general
purposes, or to the memory amount required by the target firmware, for custom
implementation, e.g. ASIC.

An overview about the complete SoC and its external connections is on Figure 1.

 1.2 System Features

• OR1200 OpenRISC implementation

• Resizable on-chip memory

• System frequency selection

• JTAG debug featuring a multitude of cables

http://www.opencores.org/ Rev 1.1 Page 6 of 22

Figure 1: Overview of MinSoC: arrows leaving a module signalize a module's wishbone
master interface, arrows pointing to a module signalize a wishbone slave interface.
Double-sided arrows are different connections.

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

• Start-up option to automatically load your firmware on start-up from an external
SPI memory

• UART and Ethernet modules

• FPGA generic and specific code (Xilinx & Altera) for memory, clock adaptation
(PLLs and DCMs) and JTAG tap

• System configuration in a single definition file

• Example firmwares using UART and Ethernet

• Testbench included, simulating target software and system

http://www.opencores.org/ Rev 1.1 Page 7 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

 2
MinSoC Architecture

MinSoC has been designed so that minimal changes are necessary in order to
synthesize it for FPGAs of varied vendors. At the design stage, it has been decided that
RAM blocks present in the FPGA will serve as SoC memory for the CPU's firmware,
RAM module of Figure 1. Reasons for that decision are the availability of memory
blocks on every FPGA and not requiring external memory to provide a working SoC.

Instantiation of on-chip memories is different from device to device, making them
implementation dependent. A generic implementation would imply on the synthesizer
using logic blocks to create memory, however there are mostly not enough logic blocks
to support so much memory. Therefore, MinSoC includes implementations of most
Altera and Xilinx FPGA memory blocks. The FPGA manufacturer and model
configuration of the “minsoc_defines.v” file selects the correct implementation of the on-
chip memory.

The JTAG tap and an included clock divider can be optionally selected to be
target specific, having the advantage of higher speed and smaller size. The selection
between FPGA generic or specific instances can be made through the project definition
file, “minsoc_defines.v”. By selecting the FPGA specific modules, hardware modules
already implemented on the FPGA chip will be used instead of logic created ones. This
has generally the advantage of higher speed and smaller size. Moreover, a FPGA specific
JTAG tap allows the upload and debug of software through the same connection used to
configure the FPGA, while the generic JTAG requires the assignment of extra FPGA
pins, which must be then connected to the JTAG cable. Lastly, the included generic clock
divider can only divide the clock by even numbers. FPGA specific clock adaptation on
the other side does not only divide the clock by any number, but also allows for cleaner
clock signals.

The extra modules UART, Ethernet (ETH) and Start-Up (start-up Starter,
or1k_startup and SPI) can be excluded from MinSoC by commenting their definitions on
the file “minsoc_defines.v”. Start-up and Ethernet are commented by default.

http://www.opencores.org/ Rev 1.1 Page 8 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

 2.1 OR1200 OpenRISC Implementation

The OR1200 implementation [OR1200] is the core of the Minimal OpenRISC
System on Chip. The CPU is a 32-bit scalar RISC with Harvard microarchitecture Figure
2. Therefore, it has primarily two memory interfaces, an instruction interface and a data
interface. Through the instruction interface, the CPU fetches instructions from memory to
be executed, while the data interface stores/loads data on/from memory or sets/retrieves
registers on/from other modules. These are 32-bit wide Wishbone interfaces [HR2002].

Inputs of the Programmable Interrupt Controller (PIC) interface are connected to
interrupt signals from interface controllers of the SoC, specifically UART and Ethernet
controllers. This way, software can be programmed to hold on interrupt occurrence,
process interrupt and resume afterwards.

The Debug interface (DEBUG) allows control of software execution for OR1200.
This interface is connected to the Advanced Debug Interface [YN2008], which enables
debug of software using many JTAG cables. Because the Advanced Debug Interface is
also connected to the Wishbone bus, it can upload Software to system memory.

The Power Management interface (POWERM) can be used to sleep the OR1200
and reduce the power consumption, but it is left unconnected by MinSoC.

http://www.opencores.org/ Rev 1.1 Page 9 of 22

Figure 2: OpenRISC 1200 Architecture

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

 2.2 Wishbone Interconnect

OR1200, the CPU of MinSoC, communicates with the world via Wishbone
interfaces following its protocol [HR2002]. The majority of the IP cores in OpenCores
also provides a Wishbone interface, thus being compatible with this CPU. First, the CPU
must be connected to memory so it can execute software. Furthermore, different extra
modules might be necessary to fulfill a task. General Purpose IO is probably the best
example of a module to be applied to a system. GPIOs are used to inform states by
enabling a LED, to control external modules by software bit-banging, etc. For a computer
style standard text IO, UART modules are generally applied. Using a terminal program
on a computer, text can be sent from the CPU to the computer and vice-versa.

The connection of diverse modules to only two Wishbone interfaces or of two
interfaces to a single module requires an interconnect. An interconnect fulfill two
purposes, routing and arbitrating. A master requires connection to a slave by signalizing
the slave address on the interconnect. Only slave interfaces have addresses on the
interconnect. Master interfaces do not respond to transactions, they initiate them. The
interconnect grants the master a connection to the slave module if the slave connection is
idle and if there is a free bus to forward the connection.

There are two types of wishbone interconnects, shared bus and crossbar switch.
Two OpenCores projects implement each of these; shared bus [J2003] and crossbar
switch [UR2001]. A shared bus interconnect only allows one master to communicate
with one slave at the same time, while a crossbar switch may allow N masters connect to
N slaves at the same time, according to the number of implemented buses.

On MinSoC, the implemented interconnect “minsoc_tc_top.v” is an updated
version of the interconnect used on orpsoc project version 1. It is a double shared bus
interconnect. It can comply 8 masters/initiators and 9 slaves/targets. The slave addresses
can be given as parameters upon instantiation. Slave module 0 has its own bus and thus
can be accessed in parallel to any other target module. However, targets 1 to 8 share a bus
and cannot be accessed in parallel.

The modules connected to this interconnect can be seen on Figure 1. The symbol
for the interconnect is the thick arrow labeled Wishbone. Target 0 is the RAM module.
On upcoming versions it will be replaced with optionally wb_conbus [J2003] or
wb_conmax [UR2001].

 2.2.1 Configuring the Interconnect

The addresses for the targets on the interconnect can be defined as parameters on
minsoc_tc_top's instantiation. To define an address, its width and value must be given.
They both refer to the highest order bits of the 32-bit address. The default width for all
modules on “minsoc_defines.v” is 8-bits and the address for UART is 0x90 for example.

http://www.opencores.org/ Rev 1.1 Page 10 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

This way, every access to addresses starting from 0x90000000-0x90FFFFFF are going to
be forwarded to the UART module. Targets 0 and 1 may have any addresses on the
interconnect. Targets 2 to 8's MSB are predefined by the 6th parameter (t28_addr). 0x9 is
the default on MinSoC, thus targets 2 to 8 might have any addresses from 0x90- to 0x9F-
but no other. The reason for this is a check for valid target address on the second bus
arbiter. The arbiter only grants connection to the initiator, if the initiator has the address
to a valid target. Instead of checking all target addresses, it checks only two; the address
of the first target and the MSB address of targets 2-8.

Parameter
Parameter
Position

Target
Number

Used Definition
Default
Value

Purpose
Connected

Module

t0_addr_w 1 APP_ADDR_DEC_W 8
Target 0's address

width

t0_addr 2 0 APP_ADDR_SRAM 0x00 Target 0's address RAM

t1_addr_w 3 APP_ADDR_DEC_W 8
Target 1's address

width

t1_addr 4 1 APP_ADDR_FLASH 0x04 Target 1's address or1k_startup

t28c_addr_w 5 APP_ADDR_DECP_W 4

Address width of
MSB for targets

2-8

t28_addr 6
2-8

MSB
APP_ADDR_PERIP 0x9

MSB address of
targets 2-8

t28i_addr_w 7 APP_ADDR_DEC_W 8

Complete address
width of MSB

Target

2-8

t2_addr 8 2 APP_ADDR_SPI 0x97 Target 2's address
SPI

EEPROM

t3_addr 9 3 APP_ADDR_ETH 0x92 Target 3's address
ETH

Slave

t4_addr 10 4 APP_ADDR_AUDIO 0x9D Target 4's address NC

t5_addr 11 5 APP_ADDR_UART 0x90 Target 5's address UART

t6_addr 12 6 APP_ADDR_PS2 0x94 Target 6's address NC

http://www.opencores.org/ Rev 1.1 Page 11 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

t7_addr 13 7 APP_ADDR_RES1 0x9E Target 7's address NC

t8_addr 14 8 APP_ADDR_RES2 0x9F Target 8's address NC

 2.2.2 Attaching Modules to the System

To attach a new module to the system, the file “minsoc_top.v” has to be edited
and interconnect slots must be available. Most modules are controlled by a CPU and have
thus a slave interface. These modules are connected to a target slot on the interconnect. A
master interface, on the other hand, can be connected to the an initiator slot. Furthermore,
the module's Wishbone interface must be 32-bit wide so that the module can be directly
connected to the interconnect.

The UART module [MI2001] is connected to MinSoC. It exemplifies the
connection of external modules to the interconnect. In order to attach it to the system, its
Wishbone signals have to be connected to a target slot from the interconnect, clock and
reset to the correspondent system signals and the RX and TX signals forwarded as SoC
outputs. Since the UART module does not comprehend a Wishbone error signal, the error
input from the target slot must be assigned to 0. Please refer to “minsoc_top.v” lines 942-
950 for the interconnect target slot, lines 666-697 for the UART module instantiation,
line 308 for the zero assignment of the error signal and lines 248-265 for the wire
declarations. Notice that the external wires have the same name as the MinSoC outputs
for UART, line 20, implying their connection.

 2.3 Start-Up Modules

The modules, start-up Starter, or1k_startup [UM2009] and SPI [S2002]
comprehend the Start-Up circuitry. Its goal is the automatic upload of software from an
external SPI memory to the SoC main memory upon circuit power up. The Start-Up
circuit is triggered by the SoC reset signal. Although FPGA on-chip memory can be
synthesized to contain a software, this solution cannot be applied to external memory.

Depending on FPGA and board, different strategies are used to upload a
configuration file deployed on external memory on power-up. After the upload a reset
signal is triggered. This signal triggers then the Start-Up circuitry.

The start-up Starter module is coded directly on the “minsoc_top.v” file, lines
338-378. When triggered by the reset signal, it switches the data input signal from the
OR1200 instruction interface (wb_dat_i) from the interconnect to itself. A tiny program,
lines 365-374, sets the CPU program counter to or1k_startup module address. When the

http://www.opencores.org/ Rev 1.1 Page 12 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

CPU tries to fetch instructions from or1k_startup, the start-up Starter module switches the
data input signal from the OR1200 instruction interface back to the interconnect.

The or1k_startup module contains a small program which controls the SPI
interface to read data from the externally connected SPI EEPROM and write it to the
main memory. The or1k_startup module expects the first 4 bytes of the SPI memory to
inform the size of the program. After the whole program has been written to the main
memory, the or1k_startup module sets the CPU program counter to address 0x100, which
is the hardwired software reset for the OR1200. The MinSoC included software creates
hex files which contains the program size on its first 4 bytes. These hex files can be
written to EEPROMs and are compatible with the start-up circuit.

http://www.opencores.org/ Rev 1.1 Page 13 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

 3
Firmware

MinSoC contains two firmwares, a “Hello World” application using the UART
interface and an Ethernet interface example, which sends packets received over Ethernet
through UART. Both firmwares handle interrupts. The “Hello World” firmware responds
to character receive over UART by sending back the the next alphabetical character over
the same interface. The Ethernet firmware processes the Ethernet receive interrupt and
respond to it by sending the received packet through UART.

The two projects are Makefile projects, they are based on the MinSoC support
library, which is a slightly modified version of the support library found on the orpsocv2
project [BJ2009]. The support library includes the register definitions for the CPU itself,
register handling macros, CPU initialization code or reset function and interrupt
processing methods. Furthermore the Makefiles use a linker script from this library which
defines memory spaces (reset, interrupt handlers, program, stack, etc) and selects the
code to be attached to them.

Compiling the firmwares by calling “make all” creates for each firmware two
executable files (or32 extensions) and two hex files (hex extensions). Two files contain
the initialization of data and instruction cache and the CPU initialization (project-icdc
names), while the two other comprehend the CPU initialization only (project-nocache
names). If the OR1200 implementation has been synthesized without data and instruction
caches, the latter should be used. The hex files are used to program memories and for the
Testbench (RTL simulation), while the executable file can be used for the OpenRISC
simulator or by the OpenRISC gdb to upload the firmware and control its execution.

 3.1 Bootstrapping: a tiny bootloader

The necessity of a bootstrapping your program is generally unclear, because
commonly the operating system takes care of it. Therefore standard “Hello World”
programs are compiled without further care and uploaded to system memory, although it

http://www.opencores.org/ Rev 1.1 Page 14 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

will not work. There are essentially three mistakes here; the printf function of “stdio.h” is
not defined for the OpenRISC uClibc, the resulting executable does not have information
about its memory mapping and registers and stack are not initialized. So basically the
CPU will software reset to address 0x100, find some chunks of code and run it maybe
overwriting the very code while filling the stack. On operating systems, all this is solved
upon process creation (e.g. process fork).

The OpenRISC software reset is located at memory address 0x100, so there the
CPU initialization will take place (i.e. registers and stack initialization). Furthermore, a
memory space between 0x200 and 0x1000 is reserved for interrupt handling, since the
CPU jumps to those addresses when interrupt occurs. Finally, the program main memory
can be declared starting from the end of the interrupt handler address space until the end
of the available memory. The stack is placed on the main memory as well. This memory
space is created using a linker script, dividing exceptions from code and so on. On
MinSoC the memory space is defined on orp.ld under the “sw/support”.

Since C does not have direct access to registers, an assembly code, “reset.S”, is
required to initialize the registers (supervision register and general purpose registers) and
stack. The assembly code also contains and attaches the code to the defined memory
spaces. After the initializations, lines 109-111, the assembly instructs the CPU to jump to
the C main function. The C main function is defined then under the target project. The
stack size is defined on the “board.h” file of the support library under same directory.

 3.2 Communication to SoC Modules

Hardware modules are either controlled by registers or pins. Most IP cores have a
communication interface which allows a CPU access to its registers and thus its
functionality. Different registers can be addressed by the CPU through the
communication interface. Since all modules communicates using the same protocol and
over an interconnect, a register access from the CPU can be made directly through
physical address access from the software.

The address is composed of the module's address and the register address. For
instance, to access the Modem Status register of the UART module through software, a
variable must be assigned to the content of the address 0x90000006. The register Modem
Status is located on address 6 of the UART module, while the UART module is
addressed by the leading address 0x90 on the interconnect.

The header file “support.h” of the support library include 3 macros to access
register of different width; REG8(address), REG16(address), REG32(address) (i.e. “char
tmp = REG8(0x90000006);"). According to these macros, OR1200 instructions which
affects only the indicated width are asserted. For example, to send a character over
UART, a write to the Transmitter Holding Register address 0x00 is enough (e.g.
“REG8(0x9000000000) = 'H';”).

http://www.opencores.org/ Rev 1.1 Page 15 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

For clarity, the addresses of the modules on interconnect are defined on “board.h”
file. Also the internal registers of every module are defined by names for later use, their
names imply their functionality. The UART registers are found on “sw/support/uart.h”
and the Ethernet registers on “sw/eth/eth.h”. In MinSoC, the register accesses are
implemented then by “REG_W(IF_BASE+REG_ADDR)” (e.g.
“REG8(UART_BASE+UART_TX) = c;”). Although an addition operation is explicitly
declared for register accesses, it does not imply performance penalty. The compiler
recognizes that the two elements are defined constants and automatically replaces
operation and operands with the operation's result.

The way the module's registers control the module operation is defined by the
implementation. In order to write a driver for an IP core its documentation and possibly
its source code have to be examined. Their analysis points out how the module
functionality can be controlled through its registers.

 3.3 Interrupt Processing

Interrupts are used by firmwares to interrupt normal operation and respond to
other requests. The interrupt mechanism is hardwired on CPUs. Upon interrupt
occurrence, the program counter is set immediately to a certain memory address. It has
the advantage not to require the software to poll for occurrence of the event and respond
to the incoming request immediately.

An interrupt service routine can be divided in two steps, the interrupt handler and
the event processing. The interrupt handler takes care of the mechanics of the interrupt
and assures safe software operation, while the event processing takes care of the meaning
of the event, such as reacting to an external signal.

Because the software jumps into a specific memory address upon interrupt, a part
of the code for the interrupt must be placed on that address; the interrupt handler. The
interrupt handler saves the CPU state by filling up the stack with the values of the
registers; sets the return address to another small function, which reloads the register
values from stack and resumes the interrupt; and finally jumps the execution to a C event
processing function. Since C does not have direct access to CPU registers, the interrupt
handler must be programmed in assembly.

A C function can be used then to execute instructions requested by the interrupt
event (e.g. read data on packet reception interrupt). This C function is free to care only
about the real event, since the lower level CPU requisites have been covered by the
interrupt handler. As soon as the C function ends, the CPU executes the register and stack
state reload and resume the interrupt, jumping back to the program exactly where it has
been left.

http://www.opencores.org/ Rev 1.1 Page 16 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

External interrupts are connected to the OR1200 through the PIC (Programmable
Interface Controller) interface, all external interrupts are then bundled together to one
internal interrupt; the exception handled on address 0x800. In order to find out which
external interrupt occurred, the status register of PIC is retrieved. The asserted bits of the
status register indicate which interrupt events occurred. The support library includes a
mechanism to hide this task from the end user, so that external interrupt processing
functions can be programmed regardless also of this requisite.

 3.3.1 Interrupt Processing on MinSoC

On MinSoC the interrupt handlers are located under “sw/support/except.S”, two
labels for the register storage and end of exception functions are defined. They are
located on lines 211-275. To understand the CPU instructions used on “except.S” and the
task of the CPU general purpose registers, refer to “OpenRISC 1000 Architecture
Manual”; CPU instructions on pages 34-251, CPU general purpose register usage on
pages 333-335.

Regular interrupt processing functions are defined on the top source of the target
firmware (“sw/eth/eth.c”, “sw/uart/uart.c”, lines 11-28). None of them has
implementation, but any code inserted in these functions would be executed upon
interrupt occurrence, since the interrupt handlers call them. However, the CPU will only
process exceptions, if the exception handling of the CPU is active.

The function called by the interrupt handler to process external interrupts is
defined in the support library on “support.c” (hpint_except()). This first function calls
then int_main(), which finally retrieves the status of the PIC and calls registered interrupt
processing functions according to the asserted bits of the status register.

In order to use the external interrupt mechanism, the external interrupt mechanism
has to be initialized by the function “int_init()”, this function also enables the exception
handling of the CPU. Then, interrupt processing functions have to be registered
(“sw/uart/uart.c”, line 98-99). Furthermore, external interrupt processing functions are
allowed to have any name.

The bit order of the status register for the PIC is given by the OR1200
“pic_ints_i” input on the RTL project (“minsoc_top.v” line 589). For instance, this signal
is connected to the UART module interrupt signal through its 2nd bit (“minsoc_top.v” line
683). Then, in order for the external interrupt mechanism to call a given function on the
occurrence of this interrupt, the first variable of the registering function “int_add” has to
accord to the bit position of the correspondent interrupt signal on the “pic_ints_i” input of
OR1200 (e.g. int_add(2,&uart_interrupt);). Through the definition file
“minsoc_defines.v” lines 84-89, the position of the interrupts on the PIC status register
can be easily changed.

http://www.opencores.org/ Rev 1.1 Page 17 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

 4
Simulation

Simulation is the standard method to verify a hardware design. For Register
Transfer Level design, testbenches are created. Testbenches exercise the design
stimulating its inputs and monitoring its outputs. A testbench can be complex or simple,
depending on the design complexity and abstraction; and on how extensive the target
functionality or feature will be tested. Quality of a test is measured on code coverage,
which points out how extensively all design functionality and features are tested. Due to
the concurrency of hardware, tests might have to check if one feature can still respond,
while the design is busy performing other tasks. In order to narrow the testing down,
engineers design tests based on specification, which mostly includes use cases. Their task
is to inspect if the design behaves correctly, according to its specification.

MinSoC is a base platform for many purposes. Depending on the applied
firmware or included modules, the design will have a different task, which must be
verified by simulation. For this simulation, the project includes the main elements
necessary for every platform, so the user can concentrate on testing his platform only.

The first major task of MinSoC's testbench is to bring the target firmware to the
main memory. This way, the simulated design will execute the same target firmware
which will run later on chip. Then, external interfaces must be stimulated by the
testbench, as if they were connected to real external devices. To accomplish this,
implemented bus functional models comprehend send/receive tasks, which can be called
from within the testbench main routine in order to imitate connected devices. Although
the use of these test tools do not enable the test of every corner case of the chip
implementation, they allow a complete functional test of the design. Moreover, the
software being run on the very simulation can be debugged using the same OpenRISC
gdb port and the Advanced Debug System connecting software used for software
debugging on chip.

The included “bench/verilog/minsoc_bench.v” file contains the MinSoC
testbench. The behavior of the test environment or testbench routine is found on lines
141-170. The rest of the file defines the test environment, instantiates the MinSoC and

http://www.opencores.org/ Rev 1.1 Page 18 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

initializes the memory with the target firmware so the testbench routine can be easily
created.

The testbench routine stimulates the system for both example firmwares, UART
“Hello World!” and Ethernet. It sends the character 'A' through UART to test the
interrupt behavior of the “Hello World!” application and sends an Ethernet packet
through Ethernet to test the Ethernet application. UART data sent to the world by the SoC
will be displayed by the simulation on the simulating console, as if it were a terminal
program.

 4.1 Initializing Memory

To initialize the SoC memory, a testbench internal memory, a Verilog double
array called “program_mem” is pre-loaded with the content of a hex file generated by the
firmware Makefile project. This is accomplished by the Verilog command
“$readmemh()”, “minsoc_bench.v” line 96. Then, two different strategies to initialize the
SoC main memory are implemented, the applied one depends on the definitions of
“bench/verilog/minsoc_bench_defines.v”. Either the memory will be initialized previous
to simulation start (INITIALIZE_MEMORY_MODEL) or after simulation start
(START_UP). The latter option models the real circuit behavior using the SoC start-up
circuitry, but takes considerable longer to start executing the firmware. The former option
copies the content of the hex file directly to a memory model and starts the firmware
execution already on simulation start.

Technically, with the START_UP option, the testbench simulates a SPI EEPROM
serially sending the complete firmware content. Though, this is actually initiated by the
SoC and not by the testbench. The SoC (SPI master) asserts read requests on the interface
to acquire the data from the slave, which is then simulated by the testbench.

The INITIALIZE_MEMORY_MODEL option is more convenient, because it is a
lot faster. Besides, the START_UP design is already verified. Therefore, there is no
necessity of further exercising this part of the code. However, the testbench has to use a
memory model, four 8-bit memory arrays, for the INITIALIZE_MEMORY_MODEL
option, instead of the synthesizable memory. This memory model has the disadvantage of
not being equal to the memory for synthesis.

The synthesizable memory is implemented using vendor specific memory blocks
with fixed width and depth. To implement a resizable memory using these blocks, several
blocks are instantiated depending on the user input, using the Verilog generate statement.
In the testbench, the memory is filled in a loop, where the different memory blocks,
instances, are addressed by a loop variable. However, instances generated by the generate
statement are not allowed to be addressed by loop variables.

http://www.opencores.org/ Rev 1.1 Page 19 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

 4.2 Bus Functional Models

BFMs model the bus behavior, implementing specified bus tasks, as arbitration or
drive and sample of low-level signal behavior according to the bus protocol. They
provide tasks (Hardware Description Language functions), which permit the control of
transactions on the respective bus. With these tasks, data can be send/received to/from the
design by the testbench.

On MinSoC, Ethernet functional send and receive tasks are implemented to
exchange information between SoC and testbench (“minsoc_bench.v” lines 338-517). In
this model the incidence of collisions is ignored. Therefore, the model is not appropriated
for simulation of multiple concurrent Ethernet nodes.

The UART BFM consists of only the sending task (“minsoc_bench.v” lines 277-
293), since the reception of data from UART is forwarded to the simulating terminal
output by the “uart_decoder” task (“minsoc_bench.v” lines 297-327).

http://www.opencores.org/ Rev 1.1 Page 20 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

 5
Conclusion & Future

Steps

An implementation of a system embedding the OpenRISC requires a variety of
external elements covered here. Most importantly, the memory, the debug interface
(firmware upload) and the Wishbone interconnect are included and functional. Using an
already validated system reduces the final bug count, implementation effort and allows
the focus to be set on the final design task. The possibility of extension of the project and
update of existing elements is essential to cover the multitude of tasks required by the
embedded world.

To port most applications to MinSoC, the design of a custom firmware and
inclusion of new modules is sufficient. Though, module updates, port of new
technologies and possibly custom modules are sometimes necessary. To accomplish
these tasks, not only the comprehension of the very tasks and of the MinSoC design and
its interfaces is of big importance, but also the analysis of its source code.

http://www.opencores.org/ Rev 1.1 Page 21 of 22

http://www.opencores.org/

Open Cores Minimal OpenRISC System on Chip 9/23/2010

Bibliography
OR1200: Damjan Lampret, OpenRISC 1200 IP Core Specification, 2001,
http://www.opencores.org/openrisc,or1200

HR2002: Richard Herveille, SoC Interconnection: Wishbone, 2002,
http://www.opencores.org/opencores,wishbone

YN2008: Nathan Yawn, Advanced Debug System, 2008,
http://www.opencores.org/project,adv_debug_sys

J2003: John, WISHBONE Conbus IP Core, 2003,
http://www.opencores.org/project,wb_conbus

UR2001: Rudolf Usselmann, WISHBONE Conmax IP Core, 2001,
http://www.opencores.org/project,wb_conmax

MI2001: Igor Mohor, UART 16550 core, 2001,
http://www.opencores.org/project,uart16550

UM2009: Michael Unnebäck, OR1k Start-up, 2009,
http://www.opencores.org/openrisc,startup

S2002: Simons, SPI controller core, 2002, http://www.opencores.org/project,spi

BJ2009: Julius Baxter, ORPSoC - OpenRISC Reference Platform SoC and Test Suite,
2009, http://www.opencores.org/openrisc,orpsocv2

http://www.opencores.org/ Rev 1.1 Page 22 of 22

http://www.opencores.org/
http://www.opencores.org/openrisc,orpsocv2
http://www.opencores.org/project,spi
http://www.opencores.org/openrisc,startup
http://www.opencores.org/project,uart16550
http://www.opencores.org/project,wb_conmax
http://www.opencores.org/project,wb_conbus
http://www.opencores.org/project,adv_debug_sys
http://www.opencores.org/opencores,wishbone
http://www.opencores.org/openrisc,or1200

	 1.1 System Overview
	 1.2 System Features
	 2.1 OR1200 OpenRISC Implementation
	 2.2 Wishbone Interconnect
	 2.2.1 Configuring the Interconnect
	 2.2.2 Attaching Modules to the System

	 2.3 Start-Up Modules
	 3.1 Bootstrapping: a tiny bootloader
	 3.2 Communication to SoC Modules
	 3.3 Interrupt Processing
	 3.3.1 Interrupt Processing on MinSoC

	 4.1 Initializing Memory
	 4.2 Bus Functional Models

