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 1 
Introduction

MinSoC consists only of the minimal requirements for an implementation using 
the OpenRISC processor. This documentation aims to support its use and applicability as 
a base for custom projects. As an open source project, every part of it can be uncovered 
and analyzed. However, without guidelines and explanation of what is intended with its 
design,  this  task  can  be  very  difficult.  Therefore,  the  following  document  gives  an 
overview of the project and explains its design goals and major details in order to allow 
its user to adapt and extend MinSoC to fit his needs. 

 1.1 System Overview

The  Minimal  OpenRISC  System  on  Chip  is  a  system  on  chip  (SoC) 
implementation  with  standard  IP  cores  available  at  OpenCores.  This  implementation 
consists of a standard project comprehending the standard IP cores necessary for a SoC 
embedding the OpenRISC implementation OR1200.

This project idea is to offer a synthesizable SoC which can be uploaded to every 
FPGA and be compatible with every FPGA board without the requirement of changing 
its  code.  In order to deliver such a project, the project has been based on a standard 
memory implementation and the Advanced Debug System, which allows system debug 
and software upload with the same cables used for FPGA configuration.

The adaptation of the project to a target board is made in 2 steps maximum. First,  
the “minsoc_defines.v” file has to be adjusted, generally one has to only uncomment his 
FPGA manufacturer and FPGA model definitions. After that, a constraint file for your 
specific pinout has to be created. Constraint files for standard boards can be found in the 
backend directory of the project. 

Furthermore, the project offers working testbench and firmwares for its SoC. The 
current testbench can be run out of the box using Icarus Verilog v. 9.1. The firmwares are 
nearly the same of those of orpsocv2  [BJ2009]. The differences are for now, that the 
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known  UART  "hello  world"  example  now  runs  with  interrupts  and  a  new  Ethernet 
example has been added to it.

To  complete,  an  on-chip  memory  instance  is  provided  to  embed  the  CPU's 
firmware. The size of this memory can be adapted defining its address width inside of the 
same minsoc_defines.v file, affecting simulation and synthesis equally. This enables the 
customization  of  the  SoC to  the  available  resources  of  the  target  FPGA,  for  general 
purposes,  or  to  the  memory  amount  required  by  the  target  firmware,  for  custom 
implementation, e.g. ASIC. 

An overview about the complete SoC and its external connections is on Figure 1.

 1.2 System Features

• OR1200 OpenRISC implementation

• Resizable on-chip memory

• System frequency selection

• JTAG debug featuring a multitude of cables
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Figure 1: Overview of MinSoC: arrows leaving a module signalize a module's wishbone  
master  interface,  arrows  pointing  to  a  module  signalize  a  wishbone  slave  interface.  
Double-sided arrows are different connections. 

http://www.opencores.org/


Open Cores Minimal OpenRISC System on Chip 9/23/2010

• Start-up option to automatically load your firmware on start-up from an external 
SPI memory

• UART and Ethernet modules

• FPGA generic and specific code (Xilinx & Altera) for memory, clock adaptation 
(PLLs and DCMs) and JTAG tap

• System configuration in a single definition file

• Example firmwares using UART and Ethernet

• Testbench included, simulating target software and system
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 2 
MinSoC Architecture

MinSoC has been designed so that minimal  changes are necessary in order to 
synthesize it for FPGAs of varied vendors. At the design stage, it has been decided that 
RAM blocks present in the FPGA will serve as SoC memory for the CPU's firmware,  
RAM module  of  Figure  1.  Reasons  for  that  decision  are  the  availability  of  memory 
blocks on every FPGA and not requiring external memory to provide a working SoC. 

Instantiation of on-chip memories is different from device to device, making them 
implementation dependent.  A generic implementation would imply on the synthesizer 
using logic blocks to create memory, however there are mostly not enough logic blocks 
to  support  so  much  memory.  Therefore,  MinSoC  includes  implementations  of  most 
Altera  and  Xilinx  FPGA  memory  blocks.  The  FPGA  manufacturer  and  model 
configuration of the “minsoc_defines.v” file selects the correct implementation of the on-
chip memory. 

The JTAG tap and an included clock divider can be optionally selected to be 
target  specific,  having the  advantage  of  higher  speed and smaller  size.  The selection 
between FPGA generic or specific instances can be made through the project definition 
file,  “minsoc_defines.v”.  By selecting the FPGA specific  modules,  hardware modules 
already implemented on the FPGA chip will be used instead of logic created ones. This 
has generally the advantage of higher speed and smaller size. Moreover, a FPGA specific 
JTAG tap allows the upload and debug of software through the same connection used to 
configure the FPGA, while the generic JTAG requires the assignment of extra FPGA 
pins, which must be then connected to the JTAG cable. Lastly, the included generic clock 
divider can only divide the clock by even numbers.  FPGA specific clock adaptation on 
the other side does not only divide the clock by any number, but also allows for cleaner 
clock signals. 

The  extra  modules  UART,  Ethernet  (ETH)  and  Start-Up  (start-up  Starter, 
or1k_startup and SPI) can be excluded from MinSoC by commenting their definitions on 
the file “minsoc_defines.v”. Start-up and Ethernet are commented by default. 
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 2.1 OR1200 OpenRISC Implementation

The OR1200 implementation  [OR1200] is the core of the Minimal OpenRISC 
System on Chip. The CPU is a 32-bit scalar RISC with Harvard microarchitecture Figure
2. Therefore, it has primarily two memory interfaces, an instruction interface and a data 
interface. Through the instruction interface, the CPU fetches instructions from memory to 
be executed, while the data interface stores/loads data on/from memory or sets/retrieves 
registers on/from other modules. These are 32-bit wide Wishbone interfaces [HR2002]. 

Inputs of the Programmable Interrupt Controller (PIC) interface are connected to 
interrupt signals from interface controllers of the SoC, specifically UART and Ethernet 
controllers.  This  way,  software  can  be  programmed  to  hold  on  interrupt  occurrence, 
process interrupt and resume afterwards. 

The Debug interface (DEBUG) allows control of software execution for OR1200. 
This interface is connected to the Advanced Debug Interface  [YN2008], which enables 
debug of software using many JTAG cables. Because the Advanced Debug Interface is 
also connected to the Wishbone bus, it can upload Software to system memory. 

The Power Management interface (POWERM) can be used to sleep the OR1200 
and reduce the power consumption, but it is left unconnected by MinSoC. 
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 2.2 Wishbone Interconnect

OR1200,  the  CPU  of  MinSoC,  communicates  with  the  world  via  Wishbone 
interfaces following its protocol  [HR2002]. The majority of the IP cores in OpenCores 
also provides a Wishbone interface, thus being compatible with this CPU. First, the CPU 
must be connected to memory so it can execute software. Furthermore, different extra 
modules might be necessary to fulfill a task. General Purpose IO is probably the best 
example of a module to be applied to a system. GPIOs are used to inform states by 
enabling a LED, to control external modules by software bit-banging, etc. For a computer 
style standard text IO, UART modules are generally applied. Using a terminal program 
on a computer, text can be sent from the CPU to the computer and vice-versa. 

The connection of diverse modules to only two Wishbone interfaces or of two 
interfaces  to  a  single  module  requires  an  interconnect.  An  interconnect  fulfill  two 
purposes, routing and arbitrating. A master requires connection to a slave by signalizing 
the  slave  address  on  the  interconnect.  Only  slave  interfaces  have  addresses  on  the 
interconnect.  Master interfaces do not respond to transactions,  they initiate them. The 
interconnect grants the master a connection to the slave module if the slave connection is 
idle and if there is a free bus to forward the connection. 

There are two types of wishbone interconnects, shared bus and crossbar switch. 
Two OpenCores  projects  implement  each  of  these;  shared  bus  [J2003] and  crossbar 
switch  [UR2001]. A shared bus interconnect  only allows one master  to communicate 
with one slave at the same time, while a crossbar switch may allow N masters connect to 
N slaves at the same time, according to the number of implemented buses.

On  MinSoC,  the  implemented  interconnect  “minsoc_tc_top.v”  is  an  updated 
version of the interconnect used on orpsoc project version 1. It is a double shared bus 
interconnect. It can comply 8 masters/initiators and 9 slaves/targets. The slave addresses 
can be given as parameters upon instantiation. Slave module 0 has its own bus and thus 
can be accessed in parallel to any other target module. However, targets 1 to 8 share a bus 
and cannot be accessed in parallel. 

The modules connected to this interconnect can be seen on Figure 1. The symbol 
for the interconnect is the thick arrow labeled Wishbone. Target 0 is the RAM module. 
On  upcoming  versions  it  will  be  replaced  with  optionally  wb_conbus  [J2003] or 
wb_conmax [UR2001]. 

 2.2.1 Configuring the Interconnect

The addresses for the targets on the interconnect can be defined as parameters on 
minsoc_tc_top's instantiation. To define an address, its width and value must be given. 
They both refer to the highest order bits of the 32-bit address. The default width for all 
modules on “minsoc_defines.v” is 8-bits and the address for UART is 0x90 for example. 
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This way, every access to addresses starting from 0x90000000-0x90FFFFFF are going to 
be forwarded to the UART module.  Targets 0 and 1 may have any addresses on the 
interconnect. Targets 2 to 8's MSB are predefined by the 6th parameter (t28_addr). 0x9 is 
the default on MinSoC, thus targets 2 to 8 might have any addresses from 0x90- to 0x9F- 
but no other. The reason for this is a check for valid target address on the second bus 
arbiter. The arbiter only grants connection to the initiator, if the initiator has the address 
to a valid target. Instead of checking all target addresses, it checks only two; the address 
of the first target and the MSB address of targets 2-8. 

Parameter
Parameter 
Position

Target 
Number

Used Definition
Default 
Value

Purpose
Connected 

Module

t0_addr_w 1 APP_ADDR_DEC_W 8
Target 0's address 

width

t0_addr 2 0 APP_ADDR_SRAM 0x00 Target 0's address RAM

t1_addr_w 3 APP_ADDR_DEC_W 8
Target 1's address 

width

t1_addr 4 1 APP_ADDR_FLASH 0x04 Target 1's address or1k_startup

t28c_addr_w 5 APP_ADDR_DECP_W 4

Address width of 
MSB for targets

2-8

t28_addr 6
2-8 

MSB
APP_ADDR_PERIP 0x9

MSB address of 
targets 2-8

t28i_addr_w 7 APP_ADDR_DEC_W 8

Complete address 
width of MSB 

Target

2-8

t2_addr 8 2 APP_ADDR_SPI 0x97 Target 2's address
SPI

EEPROM

t3_addr 9 3 APP_ADDR_ETH 0x92 Target 3's address
ETH

Slave

t4_addr 10 4 APP_ADDR_AUDIO 0x9D Target 4's address NC

t5_addr 11 5 APP_ADDR_UART 0x90 Target 5's address UART

t6_addr 12 6 APP_ADDR_PS2 0x94 Target 6's address NC
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t7_addr 13 7 APP_ADDR_RES1 0x9E Target 7's address NC

t8_addr 14 8 APP_ADDR_RES2 0x9F Target 8's address NC

 2.2.2 Attaching Modules to the System

To attach a new module to the system, the file “minsoc_top.v” has to be edited 
and interconnect slots must be available. Most modules are controlled by a CPU and have 
thus a slave interface. These modules are connected to a target slot on the interconnect. A 
master interface, on the other hand, can be connected to the an initiator slot. Furthermore, 
the module's Wishbone interface must be 32-bit wide so that the module can be directly 
connected to the interconnect. 

The  UART  module  [MI2001] is  connected  to  MinSoC.  It  exemplifies  the 
connection of external modules to the interconnect. In order to attach it to the system, its 
Wishbone signals have to be connected to a target slot from the interconnect, clock and 
reset to the correspondent system signals and the RX and TX signals forwarded as SoC 
outputs. Since the UART module does not comprehend a Wishbone error signal, the error 
input from the target slot must be assigned to 0. Please refer to “minsoc_top.v” lines 942-
950 for the interconnect target slot, lines 666-697 for the UART module instantiation, 
line  308  for  the  zero  assignment  of  the  error  signal  and lines  248-265  for  the  wire 
declarations. Notice that the external wires have the same name as the MinSoC outputs 
for UART, line 20, implying their connection. 

 2.3 Start-Up Modules

The  modules,  start-up  Starter,  or1k_startup  [UM2009] and  SPI  [S2002] 
comprehend the Start-Up circuitry. Its goal is the automatic upload of software from an 
external  SPI memory to the SoC main  memory upon circuit  power up.  The Start-Up 
circuit  is  triggered by the SoC reset  signal.  Although FPGA on-chip memory can be 
synthesized to contain a software, this solution cannot be applied to external memory. 

Depending  on  FPGA  and  board,  different  strategies  are  used  to  upload  a 
configuration file deployed on external memory on power-up. After the upload a reset 
signal is triggered. This signal triggers then the Start-Up circuitry. 

The start-up Starter module is coded directly on the “minsoc_top.v” file,  lines 
338-378. When triggered by the reset signal, it switches the data input signal from the 
OR1200 instruction interface (wb_dat_i) from the interconnect to itself. A tiny program, 
lines 365-374, sets the CPU program counter to or1k_startup module address. When the 
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CPU tries to fetch instructions from or1k_startup, the start-up Starter module switches the 
data input signal from the OR1200 instruction interface back to the interconnect. 

The  or1k_startup  module  contains  a  small  program  which  controls  the  SPI 
interface to read data from the externally connected SPI EEPROM and write it to the 
main memory. The or1k_startup module expects the first 4 bytes of the SPI memory to 
inform the size of the program. After the whole program has been written to the main 
memory, the or1k_startup module sets the CPU program counter to address 0x100, which 
is the hardwired software reset for the OR1200. The MinSoC included software creates 
hex files which contains the program size on its first 4 bytes.  These hex files can be 
written to EEPROMs and are compatible with the start-up circuit. 
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 3 
Firmware

MinSoC contains two firmwares, a “Hello World” application using the UART 
interface and an Ethernet interface example, which sends packets received over Ethernet 
through UART. Both firmwares handle interrupts. The “Hello World” firmware responds 
to character receive over UART by sending back the the next alphabetical character over 
the same interface. The Ethernet firmware processes the Ethernet receive interrupt and 
respond to it by sending the received packet through UART. 

The two projects are Makefile projects, they are based on the MinSoC support 
library, which is a slightly modified version of the support library found on the orpsocv2 
project [BJ2009]. The support library includes the register definitions for the CPU itself, 
register  handling  macros,  CPU  initialization  code  or  reset  function  and  interrupt 
processing methods. Furthermore the Makefiles use a linker script from this library which 
defines  memory spaces  (reset,  interrupt  handlers,  program,  stack,  etc)  and selects  the 
code to be attached to them. 

Compiling the firmwares by calling “make all”  creates for each firmware two 
executable files (or32 extensions) and two hex files (hex extensions). Two files contain 
the initialization of data and instruction cache and the CPU initialization (project-icdc 
names),  while the two other comprehend the CPU initialization only (project-nocache 
names). If the OR1200 implementation has been synthesized without data and instruction 
caches, the latter should be used. The hex files are used to program memories and for the 
Testbench (RTL simulation), while the executable file can be used for the OpenRISC 
simulator or by the OpenRISC gdb to upload the firmware and control its execution. 

 3.1 Bootstrapping: a tiny bootloader

The  necessity  of  a  bootstrapping  your  program is  generally  unclear,  because 
commonly  the  operating  system  takes  care  of  it.  Therefore  standard  “Hello  World” 
programs are compiled without further care and uploaded to system memory, although it 
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will not work. There are essentially three mistakes here; the printf function of “stdio.h” is 
not defined for the OpenRISC uClibc, the resulting executable does not have information 
about its memory mapping and registers and stack are not initialized. So basically the 
CPU will software reset to address 0x100, find some chunks of code and run it maybe 
overwriting the very code while filling the stack. On operating systems, all this is solved 
upon process creation (e.g. process fork).

The OpenRISC software reset is located at memory address 0x100, so there the 
CPU initialization will take place (i.e. registers and stack initialization). Furthermore, a 
memory space between 0x200 and 0x1000 is reserved for interrupt handling, since the 
CPU jumps to those addresses when interrupt occurs. Finally, the program main memory 
can be declared starting from the end of the interrupt handler address space until the end 
of the available memory. The stack is placed on the main memory as well. This memory 
space  is  created  using  a  linker  script,  dividing  exceptions  from code  and so  on.  On 
MinSoC the memory space is defined on orp.ld under the “sw/support”. 

Since C does not have direct access to registers, an assembly code, “reset.S”, is 
required to initialize the registers (supervision register and general purpose registers) and 
stack.  The assembly code also contains and attaches the code to the defined memory 
spaces. After the initializations, lines 109-111, the assembly instructs the CPU to jump to 
the C main function. The C main function is defined then under the target project. The 
stack size is defined on the “board.h” file of the support library under same directory. 

 3.2 Communication to SoC Modules

Hardware modules are either controlled by registers or pins. Most IP cores have a 
communication  interface  which  allows  a  CPU  access  to  its  registers  and  thus  its 
functionality.  Different  registers  can  be  addressed  by  the  CPU  through  the 
communication interface. Since all modules communicates using the same protocol and 
over  an  interconnect,  a  register  access  from the  CPU can  be  made  directly  through 
physical address access from the software. 

The address is composed of the module's address and the register address. For 
instance, to access the Modem Status register of the UART module through software, a 
variable must be assigned to the content of the address 0x90000006. The register Modem 
Status  is  located  on  address  6  of  the  UART  module,  while  the  UART  module  is 
addressed by the leading address 0x90 on the interconnect. 

The header  file  “support.h”  of  the  support  library include  3 macros  to  access 
register of different width; REG8(address), REG16(address), REG32(address) (i.e. “char 
tmp = REG8(0x90000006);" ). According to these macros, OR1200 instructions which 
affects  only the indicated  width are  asserted.   For example,  to  send a  character  over 
UART,  a  write  to  the  Transmitter  Holding  Register  address  0x00  is  enough  (e.g. 
“REG8(0x9000000000) = 'H';”). 
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For clarity, the addresses of the modules on interconnect are defined on “board.h” 
file. Also the internal registers of every module are defined by names for later use, their  
names imply their functionality.  The UART registers are found on “sw/support/uart.h” 
and  the  Ethernet  registers  on  “sw/eth/eth.h”.  In  MinSoC,  the  register  accesses  are 
implemented  then  by  “REG_W(IF_BASE+REG_ADDR)”  (e.g. 
“REG8(UART_BASE+UART_TX) = c;” ). Although an addition operation is explicitly 
declared  for  register  accesses,  it  does  not  imply  performance  penalty.  The  compiler 
recognizes  that  the  two  elements  are  defined  constants  and  automatically  replaces 
operation and operands with the operation's result. 

The way the module's registers control the module operation is defined by the 
implementation. In order to write a driver for an IP core its documentation and possibly 
its  source  code  have  to  be  examined.  Their  analysis  points  out  how  the  module 
functionality can be controlled through its registers. 

 3.3 Interrupt Processing

Interrupts  are used by firmwares  to interrupt  normal  operation and respond to 
other  requests.  The  interrupt  mechanism  is  hardwired  on  CPUs.  Upon  interrupt 
occurrence, the program counter is set immediately to a certain memory address. It has 
the advantage not to require the software to poll for occurrence of the event and respond 
to the incoming request immediately. 

An interrupt service routine can be divided in two steps, the interrupt handler and 
the event processing. The interrupt handler takes care of the mechanics of the interrupt 
and assures safe software operation, while the event processing takes care of the meaning 
of the event, such as reacting to an external signal. 

Because the software jumps into a specific memory address upon interrupt, a part 
of the code for the interrupt must be placed on that address; the interrupt handler. The 
interrupt  handler  saves  the  CPU state  by filling  up  the  stack  with  the  values  of  the 
registers;  sets the return address to another  small  function,  which reloads the register 
values from stack and resumes the interrupt; and finally jumps the execution to a C event 
processing function. Since C does not have direct access to CPU registers, the interrupt 
handler must be programmed in assembly. 

A C function can be used then to execute instructions requested by the interrupt 
event (e.g. read data on packet reception interrupt). This C function is free to care only 
about  the real  event,  since the lower level  CPU requisites  have been covered by the 
interrupt handler. As soon as the C function ends, the CPU executes the register and stack 
state reload and resume the interrupt, jumping back to the program exactly where it has 
been left. 
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External interrupts are connected to the OR1200 through the PIC (Programmable 
Interface Controller)  interface,  all external interrupts are then bundled together to one 
internal interrupt; the exception handled on address 0x800. In order to find out which 
external interrupt occurred, the status register of PIC is retrieved. The asserted bits of the 
status register indicate which interrupt events occurred. The support library includes a 
mechanism to  hide  this  task  from the  end user,  so  that  external  interrupt  processing 
functions can be programmed regardless also of this requisite. 

 3.3.1 Interrupt Processing on MinSoC

On MinSoC the interrupt handlers are located under “sw/support/except.S”, two 
labels  for  the  register  storage  and  end  of  exception  functions  are  defined.  They  are 
located on lines 211-275. To understand the CPU instructions used on “except.S” and the 
task  of  the  CPU  general  purpose  registers,  refer  to  “OpenRISC  1000  Architecture 
Manual”;  CPU instructions  on pages 34-251,  CPU general  purpose register  usage on 
pages 333-335. 

Regular interrupt processing functions are defined on the top source of the target 
firmware  (“sw/eth/eth.c”,  “sw/uart/uart.c”,  lines  11-28).  None  of  them  has 
implementation,  but  any  code  inserted  in  these  functions  would  be  executed  upon 
interrupt occurrence, since the interrupt handlers call them. However, the CPU will only 
process exceptions, if the exception handling of the CPU is active. 

The  function  called  by  the  interrupt  handler  to  process  external  interrupts  is 
defined in the support library on “support.c” (hpint_except()).  This first function calls 
then int_main(), which finally retrieves the status of the PIC and calls registered interrupt 
processing functions according to the asserted bits of the status register. 

In order to use the external interrupt mechanism, the external interrupt mechanism 
has to be initialized by the function “int_init()”, this function also enables the exception 
handling  of  the  CPU.  Then,  interrupt  processing  functions  have  to  be  registered 
(“sw/uart/uart.c”,  line 98-99).  Furthermore,  external  interrupt  processing functions  are 
allowed to have any name. 

The  bit  order  of  the  status  register  for  the  PIC  is  given  by  the  OR1200 
“pic_ints_i” input on the RTL project (“minsoc_top.v” line 589). For instance, this signal 
is connected to the UART module interrupt signal through its 2nd bit (“minsoc_top.v” line 
683). Then, in order for the external interrupt mechanism to call a given function on the 
occurrence of this interrupt, the first variable of the registering function “int_add” has to 
accord to the bit position of the correspondent interrupt signal on the “pic_ints_i” input of 
OR1200  (e.g.  int_add(2,&uart_interrupt);).  Through  the  definition  file 
“minsoc_defines.v” lines 84-89, the position of the interrupts on the PIC status register 
can be easily changed. 
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 4 
Simulation

Simulation  is  the  standard  method  to  verify  a  hardware  design.  For  Register 
Transfer  Level  design,  testbenches  are  created.  Testbenches  exercise  the  design 
stimulating its inputs and monitoring its outputs. A testbench can be complex or simple, 
depending on the design complexity and abstraction; and on how extensive the target 
functionality or feature will be tested. Quality of a test is measured on code coverage, 
which points out how extensively all design functionality and features are tested. Due to 
the concurrency of hardware, tests might have to check if one feature can still respond, 
while the design is busy performing other tasks. In order to narrow the testing down, 
engineers design tests based on specification, which mostly includes use cases. Their task 
is to inspect if the design behaves correctly, according to its specification. 

MinSoC  is  a  base  platform  for  many  purposes.  Depending  on  the  applied 
firmware  or  included  modules,  the  design  will  have  a  different  task,  which  must  be 
verified  by  simulation.  For  this  simulation,  the  project  includes  the  main  elements 
necessary for every platform, so the user can concentrate on testing his platform only. 

The first major task of MinSoC's testbench is to bring the target firmware to the 
main memory.  This way,  the simulated design will  execute the same target  firmware 
which  will  run  later  on  chip.  Then,  external  interfaces  must  be  stimulated  by  the 
testbench,  as  if  they  were  connected  to  real  external  devices.  To  accomplish  this, 
implemented bus functional models comprehend send/receive tasks, which can be called 
from within the testbench main routine in order to imitate connected devices. Although 
the  use  of  these  test  tools  do  not  enable  the  test  of  every  corner  case  of  the  chip 
implementation,  they  allow  a  complete  functional  test  of  the  design.  Moreover,  the 
software being run on the very simulation can be debugged using the same OpenRISC 
gdb  port  and  the  Advanced  Debug  System  connecting  software  used  for  software 
debugging on chip. 

The  included  “bench/verilog/minsoc_bench.v”  file  contains  the  MinSoC 
testbench. The behavior of the test environment or testbench routine is found on lines 
141-170. The rest of the file defines the test environment, instantiates the MinSoC and 
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initializes the memory with the target firmware so the testbench routine can be easily 
created. 

The testbench routine stimulates the system for both example firmwares, UART 
“Hello  World!”  and  Ethernet.  It  sends  the  character  'A'  through  UART  to  test  the 
interrupt  behavior  of  the  “Hello  World!”  application  and  sends  an  Ethernet  packet 
through Ethernet to test the Ethernet application. UART data sent to the world by the SoC 
will be displayed by the simulation on the simulating console, as if it were a terminal 
program. 

 4.1 Initializing Memory

To initialize the SoC memory,  a testbench internal  memory,  a  Verilog double 
array called “program_mem” is pre-loaded with the content of a hex file generated by the 
firmware  Makefile  project.  This  is  accomplished  by  the  Verilog  command 
“$readmemh()”, “minsoc_bench.v” line 96. Then, two different strategies to initialize the 
SoC  main  memory  are  implemented,  the  applied  one  depends  on  the  definitions  of 
“bench/verilog/minsoc_bench_defines.v”. Either the memory will be initialized previous 
to  simulation  start  (INITIALIZE_MEMORY_MODEL)  or  after  simulation  start 
(START_UP). The latter option models the real circuit behavior using the SoC start-up 
circuitry, but takes considerable longer to start executing the firmware. The former option 
copies the content of the hex file directly to a memory model and starts the firmware 
execution already on simulation start. 

Technically, with the START_UP option, the testbench simulates a SPI EEPROM 
serially sending the complete firmware content. Though, this is actually initiated by the 
SoC and not by the testbench. The SoC (SPI master) asserts read requests on the interface 
to acquire the data from the slave, which is then simulated by the testbench. 

The INITIALIZE_MEMORY_MODEL option is more convenient, because it is a 
lot  faster.  Besides,  the  START_UP design  is  already verified.  Therefore,  there  is  no 
necessity of further exercising this part of the code. However, the testbench has to use a 
memory model,  four  8-bit  memory arrays,  for  the  INITIALIZE_MEMORY_MODEL 
option, instead of the synthesizable memory. This memory model has the disadvantage of 
not being equal to the memory for synthesis. 

The synthesizable memory is implemented using vendor specific memory blocks 
with fixed width and depth. To implement a resizable memory using these blocks, several 
blocks are instantiated depending on the user input, using the Verilog generate statement. 
In the testbench, the memory is filled in a loop, where the different  memory blocks, 
instances, are addressed by a loop variable. However, instances generated by the generate 
statement are not allowed to be addressed by loop variables. 

http://www.opencores.org/ Rev 1.1 Page 19 of 22

http://www.opencores.org/


Open Cores Minimal OpenRISC System on Chip 9/23/2010

 4.2 Bus Functional Models

BFMs model the bus behavior, implementing specified bus tasks, as arbitration or 
drive  and  sample  of  low-level  signal  behavior  according  to  the  bus  protocol.  They 
provide tasks (Hardware Description Language functions), which permit the control of 
transactions on the respective bus. With these tasks, data can be send/received to/from the 
design by the testbench. 

On  MinSoC,  Ethernet  functional  send  and  receive  tasks  are  implemented  to 
exchange information between SoC and testbench (“minsoc_bench.v” lines 338-517). In 
this model the incidence of collisions is ignored. Therefore, the model is not appropriated 
for simulation of multiple concurrent Ethernet nodes. 

The UART BFM consists of only the sending task (“minsoc_bench.v” lines 277-
293), since the reception of data from UART is forwarded to the simulating terminal 
output by the “uart_decoder” task (“minsoc_bench.v” lines 297-327). 
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 5 
Conclusion & Future 

Steps

An implementation of a system embedding the OpenRISC requires a variety of 
external  elements  covered  here.  Most  importantly,  the  memory,  the  debug  interface 
(firmware upload) and the Wishbone interconnect are included and functional. Using an 
already validated system reduces the final bug count, implementation effort and allows 
the focus to be set on the final design task. The possibility of extension of the project and 
update of existing elements is essential to cover the multitude of tasks required by the 
embedded world. 

To  port  most  applications  to  MinSoC,  the  design  of  a  custom firmware  and 
inclusion  of  new  modules  is  sufficient.  Though,  module  updates,  port  of  new 
technologies  and possibly custom modules  are  sometimes  necessary.   To accomplish 
these tasks, not only the comprehension of the very tasks and of the MinSoC design and 
its interfaces is of big importance, but also the analysis of its source code. 
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