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1 Introduction

1.1 Scope

This document describes specific IP cores provided with the GRLIB IP library. When applicable, the
cores use the GRLIP plug&play configuration method as described in the ‘GRLIB User’s Manual’. 

1.2 IP core overview

The tables below lists the provided IP cores and their AMBA plug&play device ID. The license col-
umn indicates if a core is available under GNU GPL and/or under a commercial license. Cores
marked with FT are only available in the FT version of GRLIB. Note: the open-source version of
GRLIB includes only cores marked with GPL or LGPL.

Table 1. Processors and support functions

Name Function Vendor:Device License

LEON3 SPARC V8 32-bit processor 0x01 : 0x003 COM/GPL

DSU3 Multi-processor Debug support unit 0x01 : 0x004 COM/GPL

IRQMP Multi-processor Interrupt controller 0x01 : 0x00D COM/GPL

GRFPU High-performance IEEE-754 Floating-point unit - COM

GRFPU-Lite Low-area IEEE-754 Floating-point unit - COM

LEON3FT Fault-tolerant SPARC V8 32-bit Processor 0x01 : 0x053 FT

Table 2. Floating-point units

Name Function Vendor:Device License

GRFPU High-performance IEEE-754 Floating-point unit - COM

GRFPU-Lite Low-area IEEE-754 Floating-point unit - COM

Table 3. Memory controllers

Name Function Vendor:Device License

SRCTRL 8/32-bit PROM/SRAM controller 0x01 : 0x008 COM/GPL

SDCTRL PC133 SDRAM controller 0x01 : 0x009 COM/GPL

FTSDCTRL 32/64-bit PC133 SDRAM Controller with EDAC 0x01 : 0x055 FT

FTSRCTRL Fault Tolerant 32-bit PROM/SRAM/IO Controller 0x01 : 0x051 FT

MCTRL 8/16/32-bit PROM/SRAM/SDRAM controller 0x04 : 0x00F LGPL

FTMCTRL 8//32-bit PROM/SRAM/SDRAM controller with EDAC 0x01 : 0x054 FT

AHBSTAT AHB failing address register 0x01 : 0x052 COM/GPL

DDRCTRL 8/16/32/64-bit DDR controller with two AHB ports (Xilinx only) 0x01 : 0x023 COM/GPL

DDRSPA Single-port 16/32/64 bit DDR266 controller (Xilinx and Altera) 0x01 : 0x025 COM/GPL

SSRCTRL 32-bit synchronous SRAM (SSRAM) controller 0x01 : 0x00A COM

FTSRCTRL8 8-bit SRAM / 16-bit IO Memory Controller with EDAC 0x01 : 0x056 FT

SPIMCTRL SPI Memory controller 0x01 : 0x045 COM/GPL
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Table 4. AMBA Bus control

Name Function Vendor:Device License

AHB2AHB Uni-directional AHB/AHB Bridge 0x01:0x020 COM

AHBBRIDGE Bi-directional AHB/AHB Bridge 0x01:0x020 COM

AHBCTRL AMBA AHB bus controller with plug&play - COM/GPL

AHBCTRL_MB AMBA AHB bus controller for multiple buses with plug&play COM

APBCTRL AMBA APB Bridge with plug&play 0x01 : 0x006 COM/GPL

AHBTRACE AMBA AHB Trace buffer 0x01 : 0x017 COM/GPL

Table 5. PCI interface

Name Function Vendor:Device License

PCITARGET 32-bit target-only PCI interface 0x01 : 0x012 COM/GPL

PCIMTF/GRPCI 32-bit PCI master/target interface with FIFO 0x01 : 0x014 COM/GPL

PCITRACE 32-bit PCI trace buffer 0x01 : 0x015 COM/GPL

PCIDMA DMA controller for PCIMTF 0x01 : 0x016 COM/GPL

PCIARB PCI Bus arbiter 0x04 : 0x010 LGPL

WILD2AHB WildCard Debug Interface with DMA Master Interface 0x01 : 0x079 COM/GPL

Table 6. On-chip memory functions

Name Function Vendor:Device License

AHBRAM Single-port RAM with AHB interface 0x01 : 0x00E COM/GPL

AHBROM ROM generator with AHB interface 0x01 : 0x01B COM/GPL

SYNCRAM Parametrizable 1-port RAM - COM/GPL

SYNCRAM_2P Parametrizable 2-port RAM - COM/GPL

SYNCRAM_DP Parametrizable dual-port RAM - COM/GPL

REGFILE_3P Parametrizable 3-port register file - COM/GPL

FTAHBRAM RAM with AHB interface and EDAC protection 0x01 : 0x050 FT

Table 7. Serial communication

Name Function Vendor:Device License

AHBUART Serial/AHB debug interface 0x01 : 0x007 COM/GPL

AHBJTAG JTAG/AHB debug interface 0x01 : 0x01C COM/GPL

APBPS2 PS2 Keyboard interface with APB interface 0x01 : 0x060 COM/GPL

APBUART Programmable UART with APB interface 0x01 : 0x00C COM/GPL

CAN_OC Opencores CAN 2.0 MAC with AHB interface 0x01 : 0x019 COM/GPL

GRCAN CAN 2.0 Controller with DMA 0x01 : 0x03D COM

GRSPW SpaceWire link with RMAP and AHB interface 0x01 : 0x01F FT

I2CMST I2C Master with APB interface 0x01 : 0x028 COM/GPL

I2CSLV I2C Slave with APB interface 0x01 : 0x03E COM/GPL

SPICTRL SPI Controller with APB interface 0x01 : 0x02D COM/GPL
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Table 8. Ethernet interface

Name Function Vendor:Device License

GRETH Gaisler Research 10/100 Mbit Ethernet MAC with AHB I/F 0x01 : 0x01D COM/GPL

GRETH_GIGA Gaisler Research 10/100/1000 Mbit Ethernet MAC with AHB 0x01 : 0x01D COM

Table 9. USB interface

Name Function Vendor:Device License

GRUSBHC USB-2.0 Host controller (UHCI/EHCI) with AHB I/F 0x01 : 0x027 COM

USBDCL USB-2.0 device controller / AHB debug communication link 0x01 : 0x022 COM

Table 10. MIL-STD-1553 Bus interface

Name Function Device ID License

B1553BC 1553 Bus controller with AHB interface 0x01 : 0x070 COM

B1553RT 1553 Remote terminal with AHB interface 0x01 : 0x071 COM

B1553BRM 1553 BC/RT/Monitor with AHB interface 0x01 : 0x072 COM

Table 11. Encryption

Name Function Vendor:Device License

GRAES 128-bit AES Encryption/Decryption Core 0x01 : 0x073 COM

GRECC Elliptic Curve Cryptography Core 0x01 : 0x074 COM

Table 12. Simulation and debugging

Name Function Vendor:Device License

SRAM SRAM simulation model with srecord pre-load - COM/GPL

MT48LC16M16 Micron SDRAM model with srecord pre-load - Free

MT46V16M16 Micron DDR model - Free

CY7C1354B Cypress ZBT SSRAM model with srecord pre-load - Free

AHBMSTEM AHB master simulation model with scripting 0x01 : 0x040 COM/GPL

AHBSLVEM AHB slave simulation model with scripting 0x01 : 0x041 COM/GPL

AMBAMON AHB and APB protocol monitor - COM
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Note: The CCSDS functions are described in separate manuals.

Note*: The underlying SSRAM controller used in the FLASH_1X1 and SRAM_1X1 cores is provided in VHDL
netlist format in the GRLIB GPL distribution. The VHDL source code is only provided under commercial license.
Note**: The 10/100 Mbit Media Access Controller (MAC) is available in the GRLIB GPL distribution. The 1000 Mbit
MAC is only provided under commercial license.

Note: The HAPS functions are described in separate manuals.

Table 13. CCSDS Telecommand and telemetry functions

Name Function Vendor:Device License

GRTM CCSDS Telemetry Encoder 0x01 : 0x030 FT

GRTC CCSDS Telecommand Decoder 0x01 : 0x031 FT

GRPW Packetwire receiver with AHB interface 0x01 : 0x032 COM/GPL

GRCTM CCSDS Time manager 0x01 : 0x033 COM/GPL

GRHCAN CAN controller with DMA 0x01 : 0x034 FT

GRFIFO External FIFO Interface with DMA 0x01 : 0x035 COM

GRADCDAC Combined ADC / DAC Interface 0x01 : 0x036 COM

GRPULSE General Purpose Input Output 0x01 : 0x037 FT

GRTIMER General Purpose Timer Unit 0x01 : 0x038 FT

AHB2PP Packet Parallel Interface 0x01 : 0x039 FT

GRVERSION Version and Revision information register 0x01 : 0x03A FT

APB2PW PacketWire Transmitter Interface 0x01 : 0x03B COM/GPL

PW2APB PacketWire Receiver Interface 0x01 : 0x03C COM/GPL

GRCE/GRCD CCSDS/ECSS Convolutional Encoder and Quicklook Decoder N/A FT

GRTMRX CCSDS Telemetry Receiver 0x01 : 0x082 {internal}

GRTCTX CCSDS Telecommand Transmitter 0x01 : 0x083 {internal}

Table 14. HAPS functions

Name Function Vendor:Device License

HAPSTRAK HapsTrak controller for HAPS boards 0x01 : 0x077 GPL

FLASH_1X1 32/16-bit PROM Controller for HAPS FLASH_1x1 0x01 : 0x00A COM *

SRAM_1X1 32-bit SSRAM / PROM Controller for HAPS SRAM_1x1 0x01 : 0x00A COM *

TEST_1X2 Controller for HAPS test daughter board TEST_1x2 0x01 : 0x078 COM/GPL

BIO1 Controller for HAPS I/O board BIO1 0x01 : 0x07A COM/GPL

SDRAM_1X1 32-bit SDRAM Controller for HAPS SDRAM_1x1 0x01 : 0x009 COM/GPL

DDR_1X1 64-bit DDR266 Controller for HAPS DDR_1x1 0x01 : 0x025 COM/GPL

GEPHY_1X1 Ethernet Controller for HAPS GEPHY_1x1 0x01 : 0x00A COM **
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1.3 Implementation characteristics

The table below shows the approximate area for some of the GRLIP IP blocks mapped on Virtex2,
Actel-AX and typical ASIC technologies. The area depends strongly on configuration options (gener-
ics), optimization constraints and used synthesis tools. The data in the table should therefore be seen
as an indication only. The tools used to obtain the area was Synplify-8.1 for FPGA and Synopsys DC
for ASIC. The LUT area for Altera Stratix devices is roughly the same as for Virtex2. Using XST
instead of Synplify for Xilinx FPGAs gives typically 15% larger area.

Table 15. Approximate area consumption for some standard GRLIB IP cores

Block

Virtex2 AX/RTAX ASIC

LUT RAM16 Cells RAM64 Gates

AHBCTRL 200 500 1,000

AHBJTAG 120 350 1,000

AHBUART (DSU UART) 450 800 2,000

APBCTRL 150 200 800

APBPS2 450 800 2,000

APBUART 200 300 1,000

APBVGA 250 4 - 1,400 

ATACTRL 400 600 2,000

CAN_OC (CAN-2.0 core with AHB I/F) 1,600 2 2,800 2 8,000

GRCAN (CAN 2.0 Controller with DMA) 2,300 4,800 20,000

DDRCTRL 1,600 2 - 10,000

DDRSPA (32-bit) 900 2 - -
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DIV32 (64/32-bit iterative divider) 400 500 2,000

GPTIMER (16-bit scaler + 2x32-bit timers) 250 400 1,300

GRETH 10/100 Mbit Ethernet MAC 1,500 2,500 2 8,000

GRETH 10/100 Mbit Ethernet MAC with EDCL 2,600 1 4,000 4 15,000

GRFPU-Lite including LEON3 controller 4,000 6 7,000 4 35,000

GRFPU IEEE-754 floating-point unit 8,500 2 - 100,000

GRFPC for LEON3 5,000 4 - 25,000

GRGPIO, 16-bit configuration 100 150 800

GRSWP Spacewire link 1,900 3 2,800 3 15,000

GRSWP Spacewire link with RMAP 3,000 4 4,500 4 25,000

GRTC CCSDS telecommad decoder front-end 2,000 3,000 15,000

I2CMST I2C Master 200 300 1,500

I2CSLV I2C Slave 150 250 1,000

IRQMP (1 processor) 300 350 1,500

LEON3, 8 + 8 Kbyte cache 4,300 12 6,500 40 20,000

LEON3, 8 + 8 Kbyte cache + DSU3 5,000 12 7,500 40 25,000

LOGAN, 32 channels, 1024 traces, 1 trigger 300 2 - -

MCTRL 350 1,000 1,500

MCTRL including SDRAM support 600 1,400 2,000

MUL32 (32x32 multiplier, 4-cycle iterative) 200 1,400 5,500

PCI_TARGET, simple PCI target 150 500 800

PCI_MTF, master/target PCI with FIFO 1,100 4 2,000 4 6,000

PCIDMA, master/target PCI with FIFO/DMA 1,800 4 3,000 4 9,000 

PCITRACE 300 2 600 4 1,400

SRCTRL 100 200 500

SDCTRL 300 600 1,200

SPICTRL 400 700 2,500

SPIMCTRL 300 600 1,200

SVGACTRL 1,200 2 1,600 2 8,000

USBDCL 2,000 12,000

Table 16. Approximate area consumption for some FT GRLIB IP cores

Block RTAX2000 (Cells) ASIC (gates)

GRFPU-Lite-FT including LEON3 controller 7,100 + 4 RAM64K36 36,000

GRFPCFT for LEON3 - 30,000 + RAM

LEON3FT, 8 + 4 Kbyte cache 7,500 + 40 RAM64K36 22,000 + RAM

LEON3FT, 8 + 4 Kbyte cache + DSU3 8,500 + 44 RAM64K36 27,000 + RAM

LEON3FT, 8 + 4 Kbyte cache with FPU + DSU3 16,000 + 48 RAM64K36 60,000 + RAM

FTSRCTRL 700 2,500

FTSRCTRL8 750 -

FTSDCTRL 1,000 3,500

FTAHBRAM (2 Kbyte with EDAC) 300 + 5 RAM64K36 2,000 + RAM

Table 15. Approximate area consumption for some standard GRLIB IP cores

Block

Virtex2 AX/RTAX ASIC

LUT RAM16 Cells RAM64 Gates
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The table below show the area resources for some common FPGA devices. It can be used to quickly
estimate if a certain GRLIB design will fit the target device.

Table 17. Area resources for some common FPGA devices

FPGA Logic Memory

Actel AX1000 18,144 Cells 32 RAM64K36

Actel AX2000 32,248 Cells 64 RAM64K36

Xilinx Spartan3-1500 33,248 LUT 64 RAMB16

Xilinx Virtex2-3000 28,672 LUT 96 RAMB16

Xilinx Virtex2-6000 67,584 LUT 144 RAMB16
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2 AHB2AHB - Uni-directional AHB to AHB bridge

2.1 Overview

Uni-directional AHB to AHB bridge is used to connect two AHB buses clocked by synchronous
clocks with any frequency ratio. The bridge is connected through a pair consisting of an AHB slave
and an AHB master interface. AHB transfer forwarding is performed in one direction, AHB transfers
to the slave interface are forwarded to the master interface. Application of the uni-directional bridge
include system partitioning, clock domain partitioning and system expansion.

Features offered by the uni-directional AHB to AHB bridge are:

• single and burst AHB transfers

• data buffering in internal FIFOs

• efficient bus utilization through use of SPLIT response and data prefetching

• posted writes

• dead-lock detection logic enables use of two uni-directional bridges to build bi-directional bridge
(see AHB/AHB bridge core)

2.2 Operation

2.2.1 General

Address space occupied by the AHB/AHB bridge on the slave bus is configurable and determined by
Bank Address Registers in the slave interface AHB Plug&Play configuration record. 

The bridge is capable of handling single and burst transfers of all burst types. Supported transfer sizes
(HSIZE) are byte, halfword and word. 

For AHB write transfers write data is always buffered in internal FIFO implementing posted writes.
For AHB read transfers the bridge uses GRLIB’s AMBA Plug&Play information to determine
whether the read data will be prefetch and buffered in internal FIFO. If the target address for an AHB
read burst transfer is a prefetchable location the read data will be prefetched and buffered. 

BUS 
CONTROL

 SLAVE 1

AHB Bus 0

Figure 1.  Two AHB buses connected with (uni-directional) AHB/AHB bridge 
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 MASTER 1  MASTER 2  MASTER N

BUS 
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 MASTER 1  MASTER N
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27

AHB master initiating a read transfer to the bridge is always splitted on the first transfer attempt to
allow other masters to use the slave bus while the bridge performs read transfer on the master bus. 

If the interrupt forwarding is enabled the interrupts on the slave bus interrupt lines will be forwarded
to the master bus and vice versa.

2.2.2 AHB read transfers

When a read transfer is registered on the slave interface the bridge gives SPLIT response. The master
that initiated the transfer will be de-granted allowing other bus master to use the slave bus while the
bridge performs read transfer on the master side. The master interface requests the bus and starts the
read transfer on the master side. Single transfers on the slave side are translated to single transfers
with the same AHB address and control signals on the master side. Translation of burst transfers from
slave to master side depends on burst type, burst length and the AHB/AHB bridge configuration. 

If the read FIFO is enabled and the transfer is a burst transfer to a prefetchable location the master
interface will prefetch data in the internal read FIFO. Burst type as well as other AHB address and
control signals are the same as for the splitted transfer on the slave side. Fixed length bursts have
length according to the number of beats in the transfer. If the splitted burst on the slave side was an
incremental burst of unspecified length (INCR), the length of the burst is unknown. In this case the
master interface performs an incremental burst of configurable length (determined by VHDL generic
rburst). The bridge can be configured to recognize an INCR read burst marked as instruction fetch
(indicated on HPROT signal). In this case the prefetching on the master side is completed at the end of
cache line (cache line size is configurable through VHDL generic iburst). When the burst transfer is
completed on the master side, the splitted master that initiated the transfer (on the slave side) is
allowed in bus arbitration by asserting appropriate HSPLIT signal to the AHB controller. The splitted
master re-attempts the transfer and the bridge will return data with zero wait states.

If the read FIFO is disabled or the burst is to non-prefetchable area the burst transfer on the master
side is performed using sequence of NONSEQ, BUSY and SEQ transfers. First access in the burst on
the master side is of NONSEQ type. Since the master interface can not decide whether the splitted
burst will continue on the slave side or not, the master bus is held by performing BUSY transfers. On
the slave side the splitted master that initiated the transfer is allowed in bus arbitration by asserting
HSPLIT signal to the AHB controller. The first access in the transfer is completed by returning read
data. Next access in the transfer on the slave side is extended by asserting HREADY low. On the mas-
ter side the next access is started by performing SEQ transfer (and then holding the bus using BUSY
transfers). This sequence is repeated until the transfer is ended on the slave side.

In case of an error response on the master side the error response will be given for the same access
(address) on the slave side. SPLIT and RETRY responses on the master side are re-attempted until
OKAY or ERROR response is received. 

2.2.3 AHB write transfers

AHB/AHB bridge implements posted writes. During the AHB write transfer on the slave side the data
is buffered in the internal write FIFO and the transfer is completed on the slave side by always giving
OKAY response. The master interface requests the bus and performs the write transfer when the mas-
ter bus is granted. If the burst transfer is longer than the size of the write FIFO the SPLIT response is
given when the FIFO gets full. When the FIFO becomes empty the splitted master is allowed to re-
attempt the remaining accesses of the write burst transfer. 

2.2.4 Locked transfers

The AHB/AHB bridge supports locked transfers. The master bus will be locked when the bus is
granted and remain locked until the transfer completes on the slave side. 

Locked transfers can however not be made after another access which received SPLIT until it has
received split complete. This is because the bridge will return split complete for the first access first
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which will cause deadlock since the arbiter is not allowed to change master until a locked transfer has
been completed.

2.3 Registers

The core does not implement any registers.

2.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x020. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

2.5 Implementation

2.5.1 Technology mapping

Uni-directional AHB to AHB bridge has one technology mapping generic memtech. memtech selects
which memory technology will be used to implement FIFO memories.

2.5.2 RAM usage

Uni-directional AHB to AHB bridge instantiates one or two syncram_2p blocks from the technology
mapping library (TECHMAP). If prefetching is enabled one syncram_2p block with organization
rbufsz x 32 is used to implement read FIFO (rbufsz is the size of the read FIFO). One syncram_2p
block with organization wbufsz x 32, is always used to implement write FIFO (where wbufsz is the
size of the write FIFO).

2.6 Configuration options

Table 18 shows the configuration options of the core (VHDL generics).

Table 18. Configuration options (VHDl generics)

Generic Function Allowed range Default

memtech Memory technology

hsindex Slave I/F AHB index 0 to NAHBMAX-1 0

hmindex Master I/F AHB index 0 to NAHBMAX-1 0

dir 0 - clock frequency on the master bus is lower then the 
frequency on the slave bus
1 - clock frequency on the master bus is higher or equal 
to the frequency on the slave bus

0 - 1 0

ffact Frequency scaling factor between AHB clocks on master 
and slave buses.

1 - 15 2

slv Slave bridge. Used in bi-directional bridge configuration 
where slv is set to 0 for master bridge and 1 for slave 
bridge. When a dead-lock condition is detected slave 
bridge (slv=1) will give RETRY response to current 
access, effectively resolving the dead-lock situation. 

0 - 1 0

pfen Prefetch enable. Enables read FIFO. 0 - 1 0

irqsync Interrupt forwarding. Forward interrupts from slave 
interface to master interface and vice versa. 
0 - no interrupt forwarding, 1 - forward interrupts 1 - 15, 
2 - forward interrupts 0 - 31. 
Since interrupts are forwarded in both directions, inter-
rupt forwarding should be enabled for one bridge only in 
a bi-directional AHB/AHB bridge.

0 - 2 0
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rbufsz Read FIFO size. Determines the maximum length of 
prefetching read bursts on the master side. For systems 
where AHB masters perform fixed length burst (INCRx , 
WRAPx) rbufsz should not be less than the length of the 
longest fixed length burst. 

2 - 32 8

wbufsz Write FIFO size 2 - 32 2

iburst Instruction fetch burst length 4 - 8 8

rburst Incremental read burst length. Determines the length of 
incremental read burst of unspecified length (INCR) on 
the master interface.

4 - 32 8

bar0 Address area 0 decoded by the bridge’s slave interface. 
Appears as memory address register (BAR0) on the 
slave interface. The generic has the same bit layout as 
bank address registers with bits [19:18] suppressed (use 
functions ahb2ahb_membar and ahb2ahb_iobar in 
gaisler.misc package to generate this generic).

0 - 1073741823 0

bar1 Address area 1 (BAR1) 0 - 1073741823 0

bar2 Address area 2 (BAR2) 0 - 1073741823 0

bar3 Address area 3 (BAR2) 0 - 1073741823 0

sbus The number of the AHB bus to which the slave interface 
is connected. The value appears in bits [1:0] of the user-
defined register 0 in the slave interface configuration 
record and master configuration record.

0-3 0

mbus The number of the AHB bus to which the master inter-
face is connected. The value appears in bits [3:2] of the 
user-defined register 0 in the slave interface configura-
tion record and master configuration record.

0-3 0

ioarea Address to configuration area for the master interface 
AHB bus. Appears in the bridge’s slave interface user-
defined register 1. 

0 - 16#FFF# 0

ibrsten Instruction fetch burst enable. If set, bridge will perform 
bursts of iburst length for opcode access (HPROT[0] = 
‘0’), otherwise bursts of rburst length will be used both 
for data and opcode access.

0 - 1 0

Table 18. Configuration options (VHDl generics)

Generic Function Allowed range Default
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2.7 Signal descriptions

Table 19 shows the interface signals of the core (VHDL ports).

2.8 Library dependencies

Table 20 shows the libraries used when instantiating the core (VHDL libraries).

2.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

entity ahb2ahb_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ...  -- other signals
    );
end;

architecture rtl of ahb2ahb_ex is
  constant NCPU : integer := 4;

Table 19. Signal descriptions (VHDL ports)

Signal name Field Type Function Active

RST Input Reset Low

HCLKM Input AHB master bus clock -

HCLKS Input AHB slave bus clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

AHBSO2 * Input AHB slave input vector signals (on master i/f 
side). Used to decode cachability and prefetch-
ability Plug&Play information on master bus.

-

LCKI slck
blck

Input Used in systems with multiple AHB/AHB 
bridges (e.g. bi-directional AHB/AHB bridge) to 
detect dead-lock condition. Tie to “00” in sys-
tems with only uni-directional AHB/AHB bus.

High

LCKO slck
blck

Output Indicates possible dead-lock condition High

* see GRLIB IP Library User’s Manual

Table 20. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Component declaration
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  -- AMBA signals, maser bus
signal ahbmi1 : ahb_mst_in_type;
  signal ahbmo_m : ahb_mst_out_vector := (others =>  ahbm_none);
  signal ahbsi_m : ahb_slv_in_type;
  signal ahbso_m : ahb_slv_out_type := (others => a hbs_none);
-- AMBA signals, slave bus
signal ahbmi_s : ahb_mst_in_type;
  signal ahbmo_s : ahb_mst_out_vector := (others =>  ahbm_none);
  signal ahbsi_s : ahb_slv_in_type;
  signal ahbso_s : ahb_slv_out_type := (others => a hbs_none);
signal ahbsov_s : ahb_slv_out_vector;
signal nolock : ahb2ahb_ctrl_type;
begin

nolock <= (others => ‘0’);

  -- AHB/AHB uni-directional bridge
ahb2ahb0 : ahb2ahb generic map (
    hsindex  => 1,
    hmindex  => 3,
    dir      => 0,
    slv      => 0,
    ffact    => 2,
    memtech => memtech,
    pfen     => 1,
    irqsync  => 1,
    rbufsz   => 16,
    wbufsz   => 8,    
    iburst   => 4, 
    rburst   => 16,  
    bar0     => ahb2ahb_membar(16#600#, ’1’, ’1’, 1 6#E00#),
    bar1     => ahb2ahb_iobar(16#800#, 16#800#),
    bar2     => 0,
    bar3     => 0,    
    sbus     => 0,
    mbus     => 1,
    ioarea   => hsb_ioarea,
    ibrsten  => 0)
  port map (
    hclkm  => hclkm,
    hclks  => hclks,
    rstn   => rstn, 
    ahbsi  => ahbsi_S, 
    ahbso  => ahbso_s,
    ahbmi  => ahbmi_m, 
    ahbmo  => ahbmo_m,
    ahbso2 => ahbsov_m,
    lcki   => nolock,
    lcko   => open);

end;
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3 AHBBRIDGE - Bi-directional AHB/AHB bridge

3.1 Overview

A pair of uni-directional bridges (AHB2AHB) can be instantiated to form a bi-directional bridge. The
bi-directional AHB/AHB bridge (AHBBRIDGE) instantiates two uni-directional bridges which are
configured to suite bus architecture shown in figure 2. The bus architecture consists of two AHB
buses: a high-speed AHB bus hosting LEON3 CPU(s) and external memory controller and a low-
speed AHB bus hosting communication IP-cores. For other bus architectures, a more general bi-direc-
tional bridge can be created by instantiating two uni-directional AHB to AHB bridges (see
AHB2AHB core).

3.2 Operation

3.2.1 General

AHB/AHB bridge is connected to each AHB bus through a pair consisting of AHB Master and AHB
Slave interface. Address space occupied by the AHB/AHB bridge on each bus is determined by Bank
Address Registers which are configured through VHDL-generics. Bridge is capable of handling sin-
gle and burst transfers in both direction. Internal FIFOs are used for data buffering. The bridge imple-
ments SPLIT response to improve AHB bus utilization. For more information on AHB transfers
please refer to uni-directional AHB/AHB bridge (AHB2AHB) documentation.

The requirements on the two bus clocks are that they are synchronous and that the high-speed bus
clock runs at higher frequency then the low-speed bus clock. Allowed frequency ratio between the
two clocks is two or higher. (Although AHBBRIDGE does not support bus architectures where buses
are running at the same clock frequency or where CPU bus runs at lower frequency than the bus host-
ing communication cores, a bridge supporting such bus architecture can be created using two uni-
directional AHB/AHB bridges (see AHB2AHB core)).

The two uni-directional bridges forming the bi-directional AHB/AHB bridge are configured asym-
metrically. Configuration of the bridge connecting high-speed bus with the low-speed bus (down bus)
is optimized for the bus traffic generated by the CPU since the CPU is the only master on the high-
speed bus (except for the bridge itself). Read transfers generated by the CPU are single read transfers
generated by single load instructions (LD), read bursts of length two generated by double load instruc-
tions (LDD) or incremental read bursts of maximal length equal to cache line size (4 or 8 words) gen-

Figure 2.  LEON3 system with a bi-directional AHB/AHB bridge
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erated during instruction cache line fill. The size of the read FIFO for the down bridge is therefore
configurable to 4 or 8 entries which is the maximal read burst length. If a read burst is instruction
fetch (indicated on AHB HPROT signal) to a prefetchable area the bridge will prefetch data to the end
of a instruction cache line. If a read burst to a prefetchable area is data access two words will be
prefetched (this transfer is generated by LDD instruction). The write FIFO has two entries capable of
buffering the longest write burst (generated by STD instruction). The down bridge also performs
interrupt forwarding, interrupt lines 1-15 on both buses are monitored and an interrupt on one bus is
forwarded to the another one.

Since the low-speed bus does not host a LEON3 CPU all AHB transfers forwarded by the uni-direc-
tional bridge connecting the low-speed bus and the high-speed bus (up bridge) are data transfers.
Therefore the bridge does not make distinction between instruction and data transfers. Size of read
and write FIFOs for this bridge is configurable and should be set by the user to suite burst transfers
generated by the cores on the low-speed bus.

A dead-lock situation can occur if the bus is simultaneously accessed from both buses. Bridge con-
tains dead-lock detection logic which will resolve dead-lock condition by giving RETRY response on
the low-speed bus.

3.3 Registers

The core does not implement any registers.

3.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x020. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.
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3.5 Configuration options

Table 21 shows the configuration options of the core (VHDL generics).

Table 21. Configuration options

Generic Function Allowed range Default

memtech Memory technology - 0

ffact Frequency ratio 2 - 2

hsb_hsindex AHB slave index on the high-speed bus 0 to NAHBMAX-1 0

hsb_hmindex AHB master index on the high-speed bus 0 to NAHBMAX-1 0

hsb_iclsize Cache line size (in number of words) for CPUs on the 
high-speed bus. Determines the number of the words that 
are prefetched by the bridge when CPU performs 
instruction bursts.

4, 8 8

hsb_bank0 Address area 0 mapped on the high-speed bus and 
decoded by the bridge’s slave interface on the low-speed 
bus. Appears as memory address register (BAR0) on the 
bridge’s low-speed bus slave interface. The generic has 
the same bit layout as bank address registers with bits 
[19:18] suppressed (use functions ahb2ahb_membar and 
ahb2ahb_iobar in gaisler.misc package to generate this 
generic).

0 - 1073741823 0

hsb_bank1 Address area 1 mapped on the high-speed bus 0 - 1073741823 0

hsb_bank2 Address area 2 mapped on the high-speed bus 0 - 1073741823 0

hsb_bank3 Address area 3 mapped on the high-speed bus 0 - 1073741823 0

hsb_ioarea High-speed bus configuration area will appear in the 
bridge’s slave interface user-defined register 1 on the 
low-speed bus. 

0 - 16#FFF# 0

lsb_hsindex AHB slave index on the low-speed bus 0 to NAHBMAX-1 0

lsb_hmindex AHB master index on the low-speed bus 0 to NAHBMAX-1 0

lsb_rburst Size of the prefetch buffer for read transfers initiated on 
the low-speed-bus and crossing the bridge.

16, 32 16

lsb_wburst Size of the write buffer for write transfers initiated on the 
low-speed bus and crossing the bridge.

16, 32 16

lsb_bank0 Address area 0 mapped on the low-speed bus and 
decoded by the bridge’s slave interface on the high-speed 
bus. Appears as memory address register (BAR0) on the 
bridge’s high-speed bus slave interface. The generic has 
the same bit layout as bank address registers with bits 
[19:18] suppressed (use functions ahb2ahb_membar and 
ahb2ahb_iobar in gaisler.misc package to generate this 
generic).

0 - 1073741823 0

lsb_bank1 Address area 1 mapped on the low-speed bus 0 - 1073741823 0

lsb_bank2 Address area 2 mapped on the low-speed bus 0 - 1073741823 0

lsb_bank3 Address area 3 mapped on the low-speed bus 0 - 1073741823 0

lsb_ioarea Address to low-speed bus configuration area will appear 
in the bridge’s slave interface user-defined register 1 on 
the high-speed bus. 

0 - 16#FFF# 0
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3.6 Signal descriptions

Table 22 shows the interface signals of the core (VHDL ports).

3.7 Library dependencies

Table 23 shows the libraries used when instantiating the core (VHDL libraries).

Table 22. Signal descriptions

Signal name Type Function Active

RST Input Reset Low

HSB_HCLK Input High-speed AHB clock -

LSB_HCLK Input Low-speed AHB clock -

HSB_AHBSI Input High-speed bus AHB slave input signals -

HSB_AHBSO Output High-speed bus AHB slave output signals -

HSB_AHBSOV Input High-speed bus AHB slave input signals -

HSB_AHBMI Input High-speed bus AHB master input signals -

HSB_AHBMO Output High-speed bus AHB master output signals -

LSB_AHBSI Input Low-speed bus AHB slave input signals -

LSB_AHBSO Output Low-speed bus AHB slave output signals -

LSB_AHBSOV Input Low-speed bus AHB slave input signals -

LSB_AHBMI Input Low-speed bus AHB master input signals -

LSB_AHBMO Output Low-speed bus AHB master output signals -

Table 23. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Component declaration
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4 AHBCTRL - AMBA AHB controller with plug&play support

4.1 Overview

The AMBA AHB controller is a combined AHB arbiter, bus multiplexer and slave decoder according
to the AMBA 2.0 standard. 

The controller supports up to 16 AHB masters, and 16 AHB slaves. The maximum number of masters
and slaves are defined in the GRLIB.AMBA package, in the VHDL constants NAHBSLV and NAH-
BMST. It can also be set with the nahbm and nahbs VHDL generics.

Figure 3.  AHB controller block diagram

4.2 Operation

4.2.1 Arbitration

The AHB controller supports two arbitration algorithms: fixed-priority and round-robin. The selection
is done by the VHDL generic rrobin. In fixed-priority mode (rrobin = 0), the bus request priority is
equal to the master’s bus index, with index 0 being the lowest priority. If no master requests the bus,
the master with bus index 0 (set by the VHDL generic defmast) will be granted. 

In round-robin mode, priority is rotated one step after each AHB transfer. If no master requests the
bus, the last owner will be granted (bus parking). The VHDL generic mprio can be used to specify one
or more masters that should be prioritized when the core is configured for round-robin mode.

During incremental bursts, the AHB master should keep the bus request asserted until the last access
as recommended in the AMBA 2.0 specification, or it might loose bus ownership. For fixed-length
burst, the AHB master will be granted the bus during the full burst, and can release the bus request
immediately after the first access has started. For this to work however, the VHDL generic fixbrst
should be set to 1.

4.2.2 Decoding

Decoding (generation of HSEL) of AHB slaves is done using the plug&play method explained in the
GRLIB User’s Manual. A slave can occupy any binary aligned address space with a size of 1 - 4096
Mbyte. A specific I/O area is also decoded, where slaves can occupy 256 byte - 1 Mbyte. The default
address of the I/O area is 0xFFF00000, but can be changed with the ioaddr and iomask VHDL gener-
ics. Access to unused addresses will cause an AHB error response.
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4.2.3 Plug&play information

GRLIB devices contain a number of plug&play information words which are included in the AHB
records they drive on the bus (see the GRLIB user’s manual for more information). These records are
combined into an array which is connected to the AHB controller unit. 

The plug&play information is mapped on a read-only address area, defined by the cfgaddr and cfg-
mask VHDL generics, in combination with the ioaddr and iomask VHDL generics. By default, the
area is mapped on address 0xFFFFF000 - 0xFFFFFFFF. The master information is placed on the first
2 kbyte of the block (0xFFFFF000 - 0xFFFFF800), while the slave information is placed on the sec-
ond 2 kbyte block. Each unit occupies 32 bytes, which means that the area has place for 64 masters
and 64 slaves. The address of the plug&play information for a certain unit is defined by its bus index.
The address for masters is thus 0xFFFFF000 + n*32, and 0xFFFFF800 + n*32 for slaves.

Figure 4.  AHB plug&play information record

4.3 AHB split support

AHB SPLIT functionality is supported if the split VHDL generic is set to 1. In this case, all slaves
must drive the AHB SPLIT signal. 

It is important to implement the split functionality in slaves carefully since locked splits can otherwise
easily lead to deadlocks. A locked access to a slave which is currently processing (it has returned a
split response but not yet split complete) an access which it returned split for to another master must
be handled first. This means that the slave must either be able to return an OKAY response to the
locked access immediately or it has to split it but return split complete to the master performing the
locked transfer before it has finished the first access which received split.

4.4 AHB bus monitor

An AHB bus monitor is integrated into the core. It is enabled with the enbusmon generic. It has the
same functionality as the AHB and arbiter parts in the AMBA monitor core (AMBAMON). For more
information on which rules are checked se the AMBAMON documentation. 

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0
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C = Cacheable

P = Prefetchable
TYPE

0010 = AHB Memory space

0011 = AHB I/O space

0001 = APB I/O space
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4.5 AHB early burst termination

The core will perform early burst termination if the VHDL generic enebterm is set to 1. The core will
agressively re-arbitrate all transfers which are not locked. This functionality is only intended to be
used, and can only be enabled, in simulation.

4.6 Registers

The core does not implement any registers.
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4.7 Configuration options

Table 24 shows the configuration options of the core (VHDL generics).

Table 24. Configuration options

Generic Function Allowed range Default

ioaddr The MSB address of the I/O area. Sets the 12 most sig-
nificant bits in the 32-bit AHB address (i.e. 31 downto 
20)

0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O area 
and the start address together with ioaddr.

0 - 16#FFF# 16#FFF#

cfgaddr The MSB address of the configuration area. Sets 12 bits 
in the 32-bit AHB address (i.e. 19 downto 8).

0 - 16#FFF# 16#FF0#

cfgmask The address mask of the configuration area. Sets the size 
of the configuration area and the start address together 
with cfgaddr. If set to 0, the configuration will be dis-
abled.

0 - 16#FFF# 16#FF0#

rrobin Selects between round-robin (1) or fixed-priority (0) bus 
arbitration algorithm.

0 - 1 0

split Enable support for AHB SPLIT response 0 - 1 0

defmast Default AHB master 0 - NAHBMST-1 0

ioen AHB I/O area enable. Set to0 to disable the I/O area 0 - 1 1

nahbm Number of AHB masters 1 - NAHBMST NAHBMST

nahbs Number of AHB slaves 1 - NAHBSLV NAHBSLV

timeout Perform bus timeout checks (NOT IMPLEMENTED). 0 - 1 0

fixbrst Enable support for fixed-length bursts 0 - 1 0

debug Print configuration (0=none, 1=short, 2=all cores) 0 - 2 2

fpnpen Enables full decoding of the PnP configuration records. 
When disabled the user-defined registers in the PnP con-
figuration records are not mapped in the configuration 
area.

0 - 1 0

icheck Check bus index 0 - 1 1

devid Assign unique device identifier readable from plug and 
play area.

N/A 0

enbusmon Enable AHB bus monitor 0 - 1 0

assertwarn Enable assertions for AMBA recommendations. Viola-
tions are asserted with severity warning.

0 - 1 0

asserterr Enable assertions for AMBA requirements. Violations 
are asserted with severity error.

0 - 1 0

hmstdisable Disable AHB master rule check. To disable a master rule 
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the 
rule number, e.g 0x80 disables rule 7.

N/A 0

hslvdisable Disable AHB slave tests. Values are assigned as for 
hmstdisable.

N/A 0

arbdisable Disable Arbiter tests. Values are assigned as for hmstdis-
able.

N/A 0

mprio Master(s) with highest priority. This value is converted 
to a vector where each position corresponds to a master. 

To prioritize masters x and y set this generic to 2x + 2y.

N/A 0

enebterm Enable early burst termination, only in simulation. 0 - 1 0
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4.8 Signal descriptions

Table 25 shows the interface signals of the core (VHDL ports).

4.9 Library dependencies

Table 26 shows libraries used when instantiating the core (VHDL libraries).

4.10 Component declaration

library grlib;
use grlib.amba.all;

component ahbctrl 
  generic (
    defmast : integer := 0;-- default master
    split   : integer := 0;-- split support
    rrobin  : integer := 0;-- round-robin arbitrati on
    timeout : integer range 0 to 255 := 0;  -- HREA DY timeout
    ioaddr  : ahb_addr_type := 16#fff#;  -- I/O are a MSB address
    iomask  : ahb_addr_type := 16#fff#;   -- I/O ar ea address mask
    cfgaddr : ahb_addr_type := 16#ff0#;  -- config area MSB address
    cfgmask : ahb_addr_type := 16#ff0#; -- config a rea address maskk
    nahbm   : integer range 1 to NAHBMST := NAHBMST ; -- number of masters
    nahbs   : integer range 1 to NAHBSLV := NAHBSLV ; -- number of slaves
    ioen    : integer range 0 to 15 := 1;   -- enab le I/O area
    disirq  : integer range 0 to 1 := 0; -- disable  interrupt routing
    fixbrst : integer range 0 to 1 := 0; -- support  fix-length bursts
    debug : integer range 0 to 2 := 2; -- print con figuration to consolee
    fpnpen : integer range 0 to 1 := 0;     -- full  PnP configuration decoding
    icheck  : integer range 0 to 1 := 1
    devid       : integer := 0;     -- unique devic e ID
    enbusmon    : integer range 0 to 1 := 0; --enab le bus monitor
    assertwarn  : integer range 0 to 1 := 0; --enab le assertions for warnings 
    asserterr   : integer range 0 to 1 := 0; --enab le assertions for errors
    hmstdisable : integer := 0; --disable master ch ecks           
    hslvdisable : integer := 0; --disable slave che cks
    arbdisable  : integer := 0; --disable arbiter c hecks
    mprio       : integer := 0; --master with highe st priority
    enebterm    : integer range 0 to 1 := 0  --enab le early burst termination
);
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    msti    : out ahb_mst_in_type;
    msto    : in  ahb_mst_out_vector;
    slvi    : out ahb_slv_in_type;

Table 25. Signal descriptions

Signal name Field Type Function Active

RST N/A Input AHB reset Low

CLK N/A Input AHB clock -

MSTI * Output AMBA AHB master interface record array -

MSTO * Input AMBA AHB master interface record array -

SLVI * Output AMBA AHB slave interface record array -

SLVO * Input AMBA AHB slave interface record array -

* see GRLIB IP Library User’s Manual

Table 26. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions
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    slvo    : in  ahb_slv_out_vector;
    testen  : in  std_ulogic := ’0’;
    testrst : in  std_ulogic := ’1’;
    scanen  : in  std_ulogic := ’0’;
    testoen : in  std_ulogic := ’1’
  );
  end component;

4.11 Instantiation

This example shows the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

.

.

  -- AMBA signals
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => a hbs_none);

signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);

begin

-- ARBITER

ahb0 : ahbctrl -- AHB arbiter/multiplexer
  generic map (defmast => CFG_DEFMST, split => CFG_ SPLIT, 
rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO, nahbm =>  8, nahbs => 8)
  port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso) ;

-- AHB slave

sr0 : srctrl generic map (hindex => 3)
port map (rstn, clkm, ahbsi, ahbso(3), memi, memo, sdo3);

-- AHB master

e1 : eth_oc 
      generic map (mstndx => 2, slvndx => 5, ioaddr  => CFG_ETHIO, irq => 12, memtech => 
memtech)
      port map (rstn, clkm, ahbsi, ahbso(5), ahbmi  => ahbmi,
ahbmo => ahbmo(2), ethi1, etho1);
...
end;

4.12 Debug print-out

If the debug generic is set to 2, the plug&play information of all attached AHB units are printed to the
console during the start of simulation. Reporting starts by scanning the master interface array from 0
to NAHBMST - 1 (defined in the grlib.amba package). It checks each entry in the array for a valid
vendor-id (all nonzero ids are considered valid) and if one is found, it also retrieves the device-id. The
descriptions for these ids are obtained from the GRLIB.DEVICES package, and are then printed on
standard out together with the master number. If the index check is enabled (done with a VHDL
generic), the report module also checks if the hindex number returned in the record matches the array
number of the record currently checked (the array index). If they do not match, the simulation is
aborted and an error message is printed.
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This procedure is repeated for slave interfaces found in the slave interface array. It is scanned from 0
to NAHBSLV - 1 and the same information is printed and the same checks are done as for the master
interfaces. In addition, the address range and memory type is checked and printed. The address infor-
mation includes type, address, mask, cacheable and pre-fetchable fields. From this information, the
report module calculates the start address of the device and the size of the range. The information
finally printed is type, start address, size, cacheability and pre-fetchability. The address ranges cur-
rently defined are AHB memory, AHB I/O and APB I/O. APB I/O ranges are ignored by this module.

# vsim -c -quiet leon3mp
VSIM 1> run
# LEON3 MP Demonstration design
# GRLIB Version 1.0.7
# Target technology: inferred,  memory library: inf erred
# ahbctrl: AHB arbiter/multiplexer rev 1
# ahbctrl: Common I/O area disabled
# ahbctrl: Configuration area at 0xfffff000, 4 kbyt e
# ahbctrl: mst0: Gaisler Research        Leon3 SPAR C V8 Processor
# ahbctrl: mst1: Gaisler Research        AHB Debug UART
# ahbctrl: slv0: European Space Agency   Leon2 Memo ry Controller
# ahbctrl:       memory at 0x00000000, size 512 Mby te, cacheable, prefetch
# ahbctrl:       memory at 0x20000000, size 512 Mby te
# ahbctrl:       memory at 0x40000000, size 1024 Mb yte, cacheable, prefetch
# ahbctrl: slv1: Gaisler Research        AHB/APB Br idge
# ahbctrl:       memory at 0x80000000, size 1 Mbyte
# apbctrl: APB Bridge at 0x80000000 rev 1
# apbctrl: slv0: European Space Agency   Leon2 Memo ry Controller
# apbctrl:       I/O ports at 0x80000000, size 256 byte
# apbctrl: slv1: Gaisler Research        Generic UA RT
# apbctrl:       I/O ports at 0x80000100, size 256 byte
# apbctrl: slv2: Gaisler Research        Multi-proc essor Interrupt Ctrl.
# apbctrl:       I/O ports at 0x80000200, size 256 byte
# apbctrl: slv3: Gaisler Research        Modular Ti mer Unit
# apbctrl:       I/O ports at 0x80000300, size 256 byte
# apbctrl: slv7: Gaisler Research        AHB Debug UART
# apbctrl:       I/O ports at 0x80000700, size 256 byte
# apbctrl: slv11: Gaisler Research        General P urpose I/O port
# apbctrl:       I/O ports at 0x80000b00, size 256 byte
# grgpio11: 8-bit GPIO Unit rev 0
# gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32 -bit timers, irq 8
# irqmp: Multi-processor Interrupt Controller rev 3 , #cpu 1
# apbuart1: Generic UART rev 1, fifo 4, irq 2
# ahbuart7: AHB Debug UART rev 0
# leon3_0: LEON3 SPARC V8 processor rev 0
# leon3_0: icache 1*8 kbyte, dcache 1*8 kbyte

VSIM 2>
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5 AHBCTRL_MB - AMBA AHB bus controller bus with support for multipl e
AHB buses

5.1 Overview

AMBA AHB bus controller with support for multiple AHB buses performs arbitration and bus control
on one AHB bus identically to single-bus AHB controller (AHBCTRL). In addition AHBCTRL_MB
can decode plug&play information for multiple AHB buses making it suitable for use in multiple
AHB bus systems. The AMBA AHB bus controller supports systems with up to 4 AHB buses.

Figure 5.  System with multiple AHB buses

The AMBA AHB controller with support for multiple AHB buses is a combined AHB arbiter, bus
multiplexer and slave decoder according to the AMBA 2.0 standard. 

The controller supports up to 16 AHB masters, and 16 AHB slaves per AHB bus. The maximum num-
ber of masters and slaves per bus are defined in the GRLIB.AMBA package, in the VHDL constants
NAHBSLV and NAHBMST. It can also be set with the nahbm and nahbs VHDL generics.

Figure 6.  AHB controller block diagram
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5.2 Operation

5.2.1 Arbitration

The AHB controller supports two arbitration algorithms: fixed-priority and round-robin. The selection
is done by the VHDL generic rrobin. In fixed-priority mode (rrobin = 0), the bus request priority is
equal to the master’s bus index, with index 0 being the lowest priority. If no master requests the bus,
the master with bus index 0 (set by the VHDL generic defmast) will be granted. 

In round-robin mode, priority is rotated one step after each AHB transfer. If no master requests the
bus, the last owner will be granted (bus parking).

During incremental bursts, the AHB master should keep the bus request asserted until the last access
as recommended in the AMBA 2.0 specification, or it might loose bus ownership. For fixed-length
burst, the AHB master will be granted the bus during the full burst, and can release the bus request
immediately after the first access has started. For this to work however, the VHDL generic fixbrst
should be set to 1.

5.2.2 Decoding

Decoding (generation of HSEL) of AHB slaves is done using the plug&play method explained in the
GRLIB User’s Manual. A slave can occupy any binary aligned address space with a size of 1 - 4096
Mbyte. A specific I/O area is also decoded, where slaves can occupy 256 byte - 1 Mbyte. The default
address of the I/O area is 0xFFF00000, but can be changed with the cfgaddr and cfgmask VHDL
generics. Access to unused addresses will cause an AHB error response.

5.2.3 Plug&play information

GRLIB devices contain a number of plug&play information words which are included in the AHB
records they drive on the bus (see the GRLIB user’s manual for more information). These records are
combined into an array which is connected to the AHB controller unit. 

The plug&play information is mapped on a read-only address area, defined by the cfgaddr and cfg-
mask VHDL generics. By default, the area is mapped on address 0xFFFFF000 - 0xFFFFFFFF and
contains information for all buses in the system. The master information is placed on the first 2 kbyte
of the block (0xFFFFF000 - 0xFFFFF800), while the slave information is placed on the second 2
kbyte block. The master and slave information area contains plug&play information for all AHB
buses in the system where each bus occupies 512 bytes (masters on bus 0 occupy 0xFFFFF000 -
0xFFFFF200, masters on bus 1 occupy 0xFFFFF200 - 0xFFFFF400, ...). Each unit occupies 32 bytes,
which means that the area has place for 16 masters and 16 slaves per bus (64 master and 64 slaves
totally). The address of the plug&play information for a certain unit is defined by the AHB bus and its
master/slave index. The address for masters is thus 0xFFFFF000 + bus*512 + n*32, and 0xFFFFF800
+ bus*512 + n*32 for slaves (where bus is bus number and n is master/slave index). In a multiple
AHB bus system one AHB controller should decode plug&play information (e.g. AHBCTRL_MB on
bus 0) while configuration area should be disabled for the AHB controllers on other buses.
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Figure 7.  AHB plug&play information record

5.3 AHB split support

AHB SPLIT functionality is supported if the split VHDL generic is set to 1. In this case, all slaves
must drive the AHB SPLIT signal.

It is important to implement the split functionality in slaves carefully since locked splits can otherwise
easily lead to deadlocks. A locked access to a slave which is currently processing (it has returned a
split response but not yet split complete) an access which it returned split for to another master must
be handled first. This means that the slave must either be able to return an OKAY response to the
locked access immediately or it has to split it but return split complete to the master performing the
locked transfer before it has finished the first access which received split.

5.4 Registers

The core does not implement any registers.

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

31 20 19 16 15 4 3 0

Identification Register 00

10 9

HADDR P MASK TYPEC0 0ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

Bank Address Registers

USER-DEFINED

USER-DEFINED

USER-DEFINED

00

04

08

10

14

18

1C

0C

18 17

BAR0

BAR1

BAR2

BAR3

C = Cacheable

P = Prefetchable
TYPE

0010 = AHB Memory space

0011 = AHB I/O space

0001 = APB I/O space
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5.5 Configuration options

Table 27 shows the configuration options of the core (VHDL generics).

Table 27. Configuration options

Generic Function Allowed range Default

ioaddr The MSB address of the I/O area. Sets the 12 most sig-
nificant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O area 
and the start address together with ioaddr.

0 - 16#FFF# 16#FFF#

cfgaddr The MSB address of the configuration area. 0 - 16#FFF# 16#FF0#

cfgmask The address mask of the configuration area. Sets the size 
of the configuration area and the start address together 
with cfgaddr. If set to 0, the configuration will be dis-
abled.

0 - 16#FFF# 16#FF0#

rrobin Selects between round-robin (1) or fixed-priority (0) bus 
arbitration algorithm.

0 - 1 0

split Enable support for AHB SPLIT response 0 - 1 0

defmast Default AHB master 0 - NAHBMST-1 0

ioen AHB I/O area enable. Set ot 0 to disable the I/O area 0 - 1 1

nahbm Number of AHB masters 1 - NAHBMST NAHBMST

nahbs Number of AHB slaves 1 - NAHBSLV NAHBSLV

timeout Perform bus timeout checks (NOT IMPLEMENTED). 0 - 1 0

fixbrst Enable support for fixed-length bursts 0 - 1 0

debug Print configuration (0=none, 1=short, 2=all cores) 0 - 2 2

fpnpen Enables full decoding of the PnP configuration records. 
When disabled the user-defined registers in the PnP con-
figuration records are not mapped in the configuration 
area.

0 - 1 0

icheck Check bus index 0 - 1 1

busndx AHB bus number 0 - 3 0

devid Assign unique device identifier readable from plug and 
play area.

N/A 0

enbusmon Enable AHB bus monitor 0 - 1 0

assertwarn Enable assertions for AMBA recommendations. Viola-
tions are asserted with severity warning.

0 - 1 0

asserterr Enable assertions for AMBA requirements. Violations 
are asserted with severity error.

0 - 1 0

hmstdisable Disable AHB master rule check. To disable a master rule 
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the 
rule number, e.g 0x80 disables rule 7.

N/A 0

hslvdisable Disable AHB slave tests. Values are assigned as for 
hmstdisable.

N/A 0

arbdisable Disable Arbiter tests. Values are assigned as for hmstdis-
able.

N/A 0

mprio Master(s) with highest priority. This value is converted 
to a vector where each position corresponds to a master. 

To prioritize masters x and y set this generic to 2x + 2y.

N/A 0

enebterm Enable early burst termination, only in simulation. 0 - 1 0
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5.6 Signal descriptions

Table 28 shows the interface signals of the core (VHDL ports).

5.7 Library dependencies

Table 29 shows libraries used when instantiating the core (VHDL libraries).

5.8 Component declaration

library grlib;
use grlib.amba.all;

component ahbctrl 
  generic (
    defmast : integer := 0;-- default master
    split   : integer := 0;-- split support
    rrobin  : integer := 0;-- round-robin arbitrati on
    timeout : integer range 0 to 255 := 0;  -- HREA DY timeout
    ioaddr  : ahb_addr_type := 16#fff#;  -- I/O are a MSB address
    iomask  : ahb_addr_type := 16#fff#;   -- I/O ar ea address mask
    cfgaddr : ahb_addr_type := 16#ff0#;  -- config area MSB address
    cfgmask : ahb_addr_type := 16#ff0#; -- config a rea address maskk
    nahbm   : integer range 1 to NAHBMST := NAHBMST ; -- number of masters
    nahbs   : integer range 1 to NAHBSLV := NAHBSLV ; -- number of slaves
    ioen    : integer range 0 to 15 := 1;   -- enab le I/O area
    disirq  : integer range 0 to 1 := 0; -- disable  interrupt routing
fixbrst : integer range 0 to 1 := 0; -- support fix -length bursts
debug : integer range 0 to 2 := 2; -- print configu ration to consolee
    fpnpen : integer range 0 to 1 := 0;     -- full  PnP configuration decoding
busndx  : integer range 0 to 3 := 0;
    icheck  : integer range 0 to 1 := 1
);
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    msti    : out ahb_mst_in_type;
    msto    : in  ahb_mst_out_bus_vector;
    slvi    : out ahb_slv_in_type;
    slvo    : in  ahb_slv_out_bus_vector
  );
  end component;

Table 28. Signal descriptions

Signal name Field Type Function Active

RST N/A Input AHB reset Low

CLK N/A Input AHB clock -

MSTI * Output AMBA AHB master interface record array -

MSTO * Input AMBA AHB master interface record array (vector) -

SLVI * Output AMBA AHB slave interface record array -

SLVO * Input AMBA AHB slave interface record array (vector) -

* see GRLIB IP Library User’s Manual

Table 29. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions
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5.9 Instantiation

This example shows how the core can be instantiated. Note that master and slave outputs from all
AHB buses in the systems are combined into vectors ahbmo and ahbso where each element holds
master or slave outputs on one AHB bus. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

.

.

  -- AMBA signals
  signal ahbsi0, ahbsi1 : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_bus_vector := (others => (others => ahbs_none));

signal ahbmi1, ahbmi0: ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_bus_vector := (others => (others => ahbm_none));

begin

-- ARBITERS/MULTIPLEXERS
hsahb0 : ahbctrl_mb -- AHB arbiter/multiplexer
  generic map (defmast => CFG_NCPU+1, split => 1, r robin => CFG_RROBIN, ioaddr => CFG_AHBIO,
               ioen => 1, nahbm => CFG_NCPU+2, nahb s => 3, fpnpen => 1)
  port map (rstn, clkf, ahbmi0, ahbmo, ahbsi0, ahbs o);

  lsahb0 :   ahbctrl_mb-- AHB arbiter/multiplexer
  generic map (defmast => maxahbm-1, split => 1, rr obin => CFG_RROBIN, ioaddr => 16#FFF#,     
              iomask => 16#FFF#, ioen => 1, nahbm = > maxahbm, nahbs => 8, busndx => 1,
              cfgmask => 0, fpnpen => 1)
  port map (rstn, clks, ahbmi1, ahbmo, ahbsi1, ahbs o);

-- AHB slave
sr0 : srctrl generic map (hindex => 3)
port map (rstn, clkm, ahbsi0, ahbso(0)(3), memi, me mo, sdo3);

-- AHB master
e1 : eth_oc 
      generic map (mstndx => 2, slvndx => 5, ioaddr  => CFG_ETHIO, irq => 12, 
                   memtech => memtech)
      port map (rstn, clkm, ahbsi0, ahbso(0)(5), ah bmi  => ahbmi0,
                ahbmo => ahbmo(0)(2), ethi1, etho1) ;
...
end;

5.10 Debug print-out

If the debug generic is set to 2, the plug&play information of all attached AHB units on the current
AHB bus are printed to the console during the start of simulation. Reporting starts by scanning the
master interface array from 0 to NAHBMST - 1 (defined in the grlib.amba package). It checks each
entry in the array for a valid vendor-id (all nonzero ids are considered valid) and if one is found, it also
retrieves the device-id. The descriptions for these ids are obtained from the GRLIB.DEVICES pack-
age, and are then printed on standard out together with the master number. If the index check is
enabled (done with a VHDL generic), the report module also checks if the hindex number returned in
the record matches the array number of the record currently checked (the array index). If they do not
match, the simulation is aborted and an error message is printed.

This procedure is repeated for slave interfaces found in the slave interface array. It is scanned from 0
to NAHBSLV - 1 and the same information is printed and the same checks are done as for the master
interfaces. In addition, the address range and memory type is checked and printed. The address infor-
mation includes type, address, mask, cacheable and pre-fetchable fields. From this information, the
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report module calculates the start address of the device and the size of the range. The information
finally printed is type, start address, size, cacheability and pre-fetchability. The address ranges cur-
rently defined are AHB memory, AHB I/O and APB I/O. APB I/O ranges are ignored by this module.

# vsim -c -quiet leon3mp
VSIM 1> run
# LEON3 MP Demonstration design
# GRLIB Version 1.0.7
# Target technology: inferred,  memory library: inf erred
# ahbctrl: AHB arbiter/multiplexer rev 1
# ahbctrl: Common I/O area disabled
# ahbctrl: Configuration area at 0xfffff000, 4 kbyt e
# ahbctrl: mst0: Gaisler Research        Leon3 SPAR C V8 Processor
# ahbctrl: mst1: Gaisler Research        AHB Debug UART
# ahbctrl: slv0: European Space Agency   Leon2 Memo ry Controller
# ahbctrl:       memory at 0x00000000, size 512 Mby te, cacheable, prefetch
# ahbctrl:       memory at 0x20000000, size 512 Mby te
# ahbctrl:       memory at 0x40000000, size 1024 Mb yte, cacheable, prefetch
# ahbctrl: slv1: Gaisler Research        AHB/APB Br idge
# ahbctrl:       memory at 0x80000000, size 1 Mbyte
# apbctrl: APB Bridge at 0x80000000 rev 1
# apbctrl: slv0: European Space Agency   Leon2 Memo ry Controller
# apbctrl:       I/O ports at 0x80000000, size 256 byte
# apbctrl: slv1: Gaisler Research        Generic UA RT
# apbctrl:       I/O ports at 0x80000100, size 256 byte
# apbctrl: slv2: Gaisler Research        Multi-proc essor Interrupt Ctrl.
# apbctrl:       I/O ports at 0x80000200, size 256 byte
# apbctrl: slv3: Gaisler Research        Modular Ti mer Unit
# apbctrl:       I/O ports at 0x80000300, size 256 byte
# apbctrl: slv7: Gaisler Research        AHB Debug UART
# apbctrl:       I/O ports at 0x80000700, size 256 byte
# apbctrl: slv11: Gaisler Research        General P urpose I/O port
# apbctrl:       I/O ports at 0x80000b00, size 256 byte
# grgpio11: 8-bit GPIO Unit rev 0
# gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32 -bit timers, irq 8
# irqmp: Multi-processor Interrupt Controller rev 3 , #cpu 1
# apbuart1: Generic UART rev 1, fifo 4, irq 2
# ahbuart7: AHB Debug UART rev 0
# leon3_0: LEON3 SPARC V8 processor rev 0
# leon3_0: icache 1*8 kbyte, dcache 1*8 kbyte

VSIM 2>
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6 AHBJTAG - JTAG Debug Link with AHB Master Interface

6.1 Overview

The JTAG debug interface provides access to on-chip AMBA AHB bus through JTAG. The JTAG
debug interface implements a simple protocol which translates JTAG instructions to AHB transfers.
Through this link, a read or write transfer can be generated to any address on the AHB bus.

6.2 Operation

6.2.1 Transmission protocol

The JTAG Debug link decodes two JTAG instructions and implements two JTAG data registers: the
command/address register and data register. A read access is initiated by shifting in a command con-
sisting of read/write bit, AHB access size and AHB address into the command/address register. The
AHB read access is performed and data is ready to be shifted out of the data register. Write access is
performed by shifting in command, AHB size and AHB address into the command/data register fol-
lowed by shifting in write data into the data register. Sequential transfers can be performed by shifting
in command and address for the transfer start address and shifting in SEQ bit in data register for fol-
lowing accesses. The SEQ bit will increment the AHB address for the subsequent access. Sequential
transfers should not cross a 1 kB boundary. Sequential transfers are always word based.

Table 30.  JTAG debug link Command/Address register
34 33 32 31 0

W SIZE AHB ADDRESS

34 Write (W) - ‘0’ - read transfer, ‘1’ - write transfer

33 32 AHB transfer size - “00” - byte, “01” - half-word, “10” - word, “11”- reserved

31 30 AHB address

Table 31.  JTAG debug link Data register
32 31 0

SEQ AHB DATA

32 Sequential transfer (SEQ) - If ‘1’ is shifted in this bit position when read data is shifted out or write 
data shifted in, the subsequent transfer will be to next word address.

31 30 AHB Data - AHB write/read data. For byte and half-word transfers data is aligned according to big-
endian order where data with address offset 0 data is placed in MSB bits.

Figure 8.  JTAG Debug link block diagram
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6.3 Registers

The core does not implement any registers mapped in the AMBA AHB or APB address space.

6.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x01C. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

6.5 Configuration options

Table 32 shows the configuration options of the core (VHDL generics).

Table 32. Configuration options

Generic Function Allowed range Default

tech Target technology 0 - NTECH 0

hindex AHB master index 0 - NAHBMST-1 0

nsync Number of synchronization registers between clock 
regions

1 - 2 1

idcode JTAG IDCODE instruction code (generic tech only) 0 - 255 9

manf Manufacturer id. Appears as bits 11-1 in TAP controllers 
device identification register. Used only for generic tech-
nology. Default is Gaisler Research manufacturer id.

0 - 2047 804

part Part number (generic tech only). Bits 27-12 in device id. 
reg.

0 - 65535 0

ver Version number (generic tech only). Bits 31-28 in device 
id. reg.

0 - 15 0

ainst Code of the JTAG instruction used to access JTAG 
Debug link command/address register

0 - 255 2

dinst Code of the JTAG instruction used to access JTAG 
Debug link data register

0 - 255 3

scantest Enable scan test support 0 - 1 0
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6.6 Signal descriptions

Table 33 shows the interface signals of the core (VHDL ports). 

6.7 Library dependencies

Table 34 shows libraries used when instantiating the core (VHDL libraries).

6.8 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.jtag.all;

Table 33. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input System clock (AHB clock domain) -

TCK N/A Input JTAG clock* -

TCKN N/A Input Inverted JTAG clock* -

TMS N/A Input JTAG TMS signal* High

TDI N/A Input JTAG TDI signal* High

TDO N/A Output JTAG TDO signal* High

AHBI *** Input AHB Master interface input -

AHBO *** Output AHB Master interface output -

TAPO_TCK N/A Output TAP Controller User interface TCK signal** High

TAPO_TDI N/A Output TAP Controller User interface TDI signal** High

TAPO_INST[7:0] N/A Output TAP Controller User interface INSTsignal** High

TAPO_RST N/A Output TAP Controller User interface RST signal** High

TAPO_CAPT N/A Output TAP Controller User interface CAPT signal** High

TAPO_SHFT N/A Output TAP Controller User interface SHFT signal** High

TAPO_UPD N/A Output TAP Controller User interface UPD signal** High

TAPI_TDO N/A Input TAP Controller User interface TDO signal** High

*) If the target technology is Xilinx or Altera the cores JTAG signals TCK, TCKN, TMS, TDI and TDO are not used. 
Instead the dedicated FPGA JTAG pins are used. These pins are implicitly made visible to the core through TAP controller 
instantiation. 

**) User interface signals from the JTAG TAP controller. These signals are used to interface additional user defined JTAG 
data registers such as boundary-scan register. For more information on the JTAG TAP controller user interface see JTAG 
TAP Controller IP-core documentation. If not used tie TAPI_TDO to ground and leave TAPO_* outputs unconnected.

***) see GRLIB IP Library User’s Manual

Table 34. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER JTAG Signals, component Signals and component declaration
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entity ahbjtag_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    -- JTAG signals
    tck  : in std_ulogic; 
    tms  : in std_ulogic;
    tdi  : in std_ulogic;
    tdo  : out std_ulogic
);
end;

architecture rtl of ahbjtag_ex is

  -- AMBA signals
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);
signal gnd : std_ulogic;

constant clkperiod : integer := 100;

begin
  
gnd <= ‘0’;

  -- AMBA Components are instantiated here
  ...

-- AHB JTAG
  ahbjtag0 : ahbjtag generic map(tech => 0, hindex => 1)
 port map(rstn, clkm, tck, tckn, tms, tdi, tdo, ahb mi, ahbmo(1),
               open, open, open, open, open, open, open, gnd);

jtagproc : process
  begin
wait;
    jtagcom(tdo, tck, tms, tdi, 100, 20, 16#4000000 0#, true);
    wait;
   end process;

end;

6.9 Simulation

DSU communication over the JTAG debug link can be simulated using jtagcom procedure. The jtag-
com procedure sends JTAG commands to the AHBJTAG on JTAG signals TCK, TMS, TDI and TDO.
The commands read out and report the device identification code, optionally put the CPU(s) in debug
mode, perform three write operations to the memory and read out the data from the memory. The
JTAG test works if the generic JTAG tap controller is used and will not work with built-in TAP mac-
ros (such as Altera and Xilinx JTAG macros) since these macros don’t have visible JTAG pins. The
jtagcom procedure is part of jtagtst package in gaisler library and has following declaration: 

procedure jtagcom(signal tdo           : in std_ulo gic;
                    signal tck, tms, tdi : out std_ ulogic;
                    cp, start, addr      : in integ er;

 -- cp - TCK clock period in ns
 -- start - time in us when JTAG test is started
 -- addr - read/write operation destination address  

                    haltcpu          : in boolean);
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7 AHBRAM - Single-port RAM with AHB interface

7.1 Overview

AHBRAM implements a 32-bit wide on-chip RAM with an AHB slave interface. Memory size is con-
figurable in binary steps through a VHDL generic. Minimum size is 1kB and maximum size is depen-
dent on target technology and physical resources. Read accesses are zero-waitstate, write access have
one waitstate. The RAM supports byte- and half-word accesses, as well as all types of AHB burst
accesses. Internally, the AHBRAM instantiates four 8-bit wide SYNCRAM blocks.

7.2 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x00E. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

7.3 Configuration options

Table 35 shows the configuration options of the core (VHDL generics).

7.4 Signal descriptions

Table 36 shows the interface signals of the core (VHDL ports).

7.5 Library dependencies

Table 37 shows libraries used when instantiating the core (VHDL libraries).

Table 35. Configuration options

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 most sig-
nificant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the AHB 
area and the start address together with haddr.

0 - 16#FFF# 16#FF0#

tech Technology to implement on-chip RAM 0 - NTECH 0

kbytes RAM size in Kbytes target-dependent 1

Table 36. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AMB slave input signals -

AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User’s Manual

Table 37. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER MISC Component Component declaration
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7.6 Component declaration

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

component ahbram 
generic ( hindex : integer := 0; haddr : integer :=  0; hmask : integer := 16#fff#;
tech : integer := 0; kbytes : integer := 1); 
port ( 
rst : in std_ulogic;
clk : in std_ulogic;
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type
);
end component;

7.7 Instantiation

This example shows how the core can be instantiated. 

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

.

.

ahbram0 : ahbram generic map (hindex => 7, haddr =>  CFG_AHBRADDR, 
tech => CFG_MEMTECH, kbytes => 8)
    port map ( rstn, clkm, ahbsi, ahbso(7));
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8 AHBROM - Single-port ROM with AHB interface

8.1 Overview

The AHBROM core implements a 32-bit wide on-chip ROM with an AHB slave interface. Read
accesses take zero waitstates, or one waitstate if the pipeline option is enabled. The ROM supports
byte- and half-word accesses, as well as all types of AHB burst accesses.

8.2 PROM generation

The AHBPROM is automatically generated by the make utility in GRLIB. The input format is a
sparc-elf binary file, produced by the BCC cross-compiler (sparc-elf-gcc). To create a PROM, first
compile a suitable binary and the run the make utility:

bash$ sparc-elf-gcc prom.S -o prom.exe
bash$ make ahbrom.vhd

Creating ahbrom.vhd : file size 272 bytes, address bits 9

The default binary file for creating a PROM is prom.exe. To use a different file, run make with the
FILE parameter set to the input file:

bash$ make ahbrom.vhd FILE=myfile.exe

The created PROM is realized in synthesizable VHDL code, using a CASE statement. For FPGA tar-
gets, most synthesis tools will map the CASE statement on a block RAM/ROM if available. For ASIC
implementations, the ROM will be synthesized as gates. It is then recommended to use the pipe option
to improve the timing.

8.3 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x01B. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

8.4 Configuration options

Table 38 shows the configuration options of the core (VHDL generics).

Table 38. Configuration options

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 most sig-
nificant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the AHB 
area and the start address together with haddr.

0 - 16#FFF# 16#FF0#

tech Not used

pipe Add a pipeline stage on read data 0 0

kbytes Not used



58

8.5 Signal descriptions

Table 39 shows the interface signals of the core (VHDL ports).

8.6 Library dependencies

Table 40 shows libraries used when instantiating the core (VHDL libraries).

8.7 Component declaration

component ahbrom 
generic ( hindex : integer := 0; haddr : integer :=  0; hmask : integer := 16#fff#;
pipe : integer := 0; tech : integer := 0); 
port ( 
rst : in std_ulogic;
clk : in std_ulogic;
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type
);
end component;

8.8 Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
.
.

brom : entity work.ahbrom
      generic map (hindex => 8, haddr => CFG_AHBROD DR, pipe => CFG_AHBROPIP)
      port map ( rstn, clkm, ahbsi, ahbso(8));

Table 39. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AMB slave input signals -

AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User’s Manual

Table 40. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions
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9 AHBSTAT - AHB Status Registers

9.1 Overview

The status registers store information about AMBA AHB accesses triggering an error response. There
is a status register and a failing address register capturing the control and address signal values of a
failing AMBA bus transaction, or the occurence of a correctable error being signaled from a fault tol-
erant core. 

The status register and the failing address register are accessed from the AMBA APB bus.

9.2 Operation

The registers monitor AMBA AHB bus transactions and store the current HADDR, HWRITE,
HMASTER and HSIZE internally. The monitoring are always active after startup and reset until an
error response (HRESP = “01”) is detected. When the error is detected, the status and address register
contents are frozen and the New Error (NE) bit is set to one. At the same time an interrupt is gener-
ated.

The interrupt is generated on the line selected by the pirq VHDL generic. 

The interrupt is usually connected to the interrupt controller to inform the processor of the error con-
dition. The normal procedure is that an interrupt routine handles the error with the aid of the informa-
tion in the status registers. When it is finished it resets the NE bit and the monitoring becomes active
again. 

Not only error responses on the AHB bus can be detected. Many of the fault tolerant units containing
EDAC have a correctable error signal which is asserted each time a single error is detected. When
such an error is detected, the effect will be the same as for an AHB error response, The only difference
is that the Correctable Error (CE) bit in the status register is set to one when a single error is detected.
When the CE bit is set the interrupt routine can acquire the address containing the single error from
the failing address register and correct it. When it is finished it resets the CE bit and the monitoring
becomes active again.

The correctable error signals from the fault tolerant units should be connected to the stati.cerror input
signal vector of the AHB status register core, which is or-ed internally and if the resulting signal is
asserted, it will have the same effect as an AHB error response. 

9.3 Registers

The core is programmed through registers mapped into APB address space.

Table 41. AHB Status registers

APB address offset Registers

0x0 AHB Status register

0x4 AHB Failing address register

Table 42.  AHB Status register
31 10 9 8 7 6 3 2 0

RESERVED CE NE HWRITE HMASTER HSIZE

31: 10 RESERVED

9 CE: Correctable Error. Set if the detected error was caused by a single error and zero otherwise.

8 NE: New Error. Deasserted at start-up and after reset. Asserted when an error is detected. Reset by 
writing a zero to it.
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9.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x052. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

9.5 Configuration options

Table 44 shows the configuration options of the core (VHDL generics).

9.6 Signal descriptions

Table 45 shows the interface signals of the core (VHDL ports).

9.7 Library dependencies

Table 46 shows libraries used when instantiating the core (VHDL libraries).

7 The HWRITE signal of the AHB transaction that caused the error.

6: 3 The HMASTER signal of the AHB transaction that caused the error.

2: 0 The HSIZE signal of the AHB transaction that caused the error

Table 43.  AHB Failing address register
31 0

AHB FAILING ADDRESS

31: 0 The HADDR signal of the AHB transaction that caused the error.

Table 44. Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAHBSLV-1 0

paddr APB address 0 - 16#FFF# 0

pmask APB address mask 0 - 16#FFF# 16#FFF#

pirq Interrupt line driven by the core 0 - 16#FFF# 0

nftslv Number of FT slaves connected to the cerror vector 1 - NAHBSLV-1 3

Table 45. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB slave input signals -

AHBSI * Input AHB slave output signals -

STATI CERROR Input Correctable Error Signals High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

* see GRLIB IP Library User’s Manual

Table 46. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MISC Component  Component declaration

Table 42.  AHB Status register
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9.8 Instantiation

This example shows how the core can be instantiated. 

The example design contains an AMBA bus with a number of AHB components connected to it
including the status register. There are three Fault Tolerant units with EDAC connected to the status
register cerror vector. The connection of the different memory controllers to external memory is not
shown.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all; 

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;
  --other signals
  ....
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => a hbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo, sdo2: sdctrl_out_type; 

  signal sdi : sdctrl_in_type; 
  
-- correctable error vector
  signal stati : ahbstat_in_type; 
  signal aramo : ahbram_out_type; 
  
begin
  
  -- AMBA Components are defined here ... 
  
-- AHB Status Register
  astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
    nftslv => 3)
    port map(rstn, clkm, ahbmi, ahbsi, stati, apbi,  apbo(13));
    stati.cerror(3 to NAHBSLV-1) <= (others => ‘0’) ;

--FT AHB RAM
  a0 : ftahbram generic map(hindex => 1, haddr => 1 , tech => inferred, 
    kbytes => 64, pindex => 4, paddr => 4, edacen = > 1, autoscrub => 0,
    errcnt => 1, cntbits => 4)
    port map(rst, clk, ahbsi, ahbso, apbi, apbo(4),  aramo);
    stati.cerror(0) <= aramo.ce; 
-- SDRAM controller
  sdc : ftsdctrl generic map (hindex => 3, haddr =>  16#600#, hmask => 16#F00#, 
    ioaddr => 1, fast => 0, pwron => 1, invclk => 0 , edacen => 1, errcnt => 1,
    cntbits => 4)
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    port map (rstn, clk, ahbsi, ahbso(3), sdi, sdo) ;
    stati.cerror(1) <= sdo.ce;    

-- Memory controller
  mctrl0 : ftsrctrl generic map (rmw => 1, pindex = > 10, paddr => 10, 
    edacen => 1, errcnt => 1, cntbits => 4)
    port map (rstn, clk, ahbsi, ahbso(0), apbi, apb o(10), memi, memo, sdo2);
    stati.cerror(2) <= memo.ce; 
end;
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10 AHBTRACE - AHB Trace buffer

10.1 Overview

The trace buffer consists of a circular buffer that stores AMBA AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis.

The trace buffer is 128 bits wide, the information stored is indicated in the table below:

In addition to the AHB signals, a 32-bit counter is also stored in the trace as time tag. 

10.2 Operation

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AMBA
AHB transfer is then stored in the buffer in a circular manner. The address to which the next transfer is
written is held in the trace buffer index register, and is automatically incremented after each transfer.
Tracing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. An interrupt is gener-
ated when a breakpoint is hit.

Note: the LEON3 Debug Support Unit (DSU3) also includes an AHB trace buffer. The trace buffer is
intended to be used in system without the LEON3 processor or when the DSU3 is not present.

The size of the trace buffer is configured by means of the kbytes VHDL generic, defining the size of the
complete buffer in kbytes.

Table 47. AHB Trace buffer data allocation

Bits Name Definition

127:96 Time tag The value of the time tag counter

95 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

94:80 Hirq AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR

Figure 9.  Block diagram

AHB slave interface
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Trace buffer RAMTrace control

AHB Trace Buffer

IRQ
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The size of the trace buffer is TBD kbyte, with the resulting line depth of TBD/16 kbyte.

10.3 Registers

10.3.1 Register address map

The trace buffer occupies 128 kbyte address space in the AHB I/O area. The following register
address are decoded:.

10.3.2 Trace buffer control register

The trace buffer is controlled by the trace buffer control register:

0: Trace enable (EN). Enables the trace buffer.
1: Delay counter mode (DM). Indicates that the trace buffer is in delay counter mode.
31:16 Trace buffer delay counter (DCNT). Note that the number of bits actually implemented depends on the size of the

trace buffer.

10.3.3 Trace buffer index register

The trace buffer index register indicates the address of the next 128-bit line to be written.

31:4 Trace buffer index counter (INDEX). Note that the number of bits actually implemented depends on the size of the
trace buffer.

Table 48. Trace buffer address space

Address Register

0x000000 Trace buffer control register

0x000004 Trace buffer index register

0x000008 Time tag counter

0x000010 AHB break address 1

0x000014 AHB mask 1

0x000018 AHB break address 2

0x00001C AHB mask 2

0x010000 - 0x020000 Trace buffer

..0 Trace bits 127 - 96

...4 Trace bits 95 - 64

...8 Trace bits 63 - 32

...C Trace bits 31 - 0

Figure 10.  Trace buffer control register

0131

DCNT ENRESERVED

16

DM

Figure 11.  Trace buffer index register
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10.3.4 Trace buffer time tag register

The time tag register contains a 32-bit counter that increments each clock when the trace buffer is
enabled. The value of the counter is stored in the trace to provide a time tag.

10.3.5 Trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by clearing the enable bit. Freezing can be delayed by programming the DCNT
field in the trace buffer control register to a non-zero value. In this case, the DCNT value will be dec-
remented for each additional trace until it reaches zero, after which the trace buffer is frozen. A mask
register is associated with each breakpoint, allowing breaking on a block of addresses. Only address
bits with the corresponding mask bit set to ‘1’ are compared during breakpoint detection. To break on
AHB load or store accesses, the LD and/or ST bits should be set.

BADDR : breakpoint address (bits 31:2)
BMASK : Breakpoint mask (see text)
LD : break on data load address
ST : beak on data store address

10.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x017. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

10.5 Configuration options

Table 49 shows the configuration options of the core (VHDL generics).

Table 49. Configuration options

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

ioaddr The MSB address of the I/O area. Sets the 12 most sig-
nificant bits in the 20-bit I/O address.

0 - 16#FFF# 16#000#

iomask The I/O area address mask. Sets the size of the I/O area 
and the start address together with ioaddr.

0 - 16#FFF# 16#E00#

irq Interrupt number 0 - NAHBIRQ-1 0

tech Technology to implement on-chip RAM 0 - NTECH 0

kbytes Trace buffer size in kbytes 1 - 64 1

Figure 12.  Trace buffer time tag counter
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Figure 13.  Trace buffer breakpoint registers

0

1

0



66

10.6 Signal descriptions

Table 50 shows the interface signals of the core (VHDL ports). 

10.7 Library dependencies

Table 51 shows libraries used when instantiating the core (VHDL libraries).

10.8 Component declaration

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

component ahbtrace is
  generic (
    hindex  : integer := 0;
    ioaddr  : integer := 16#000#;
    iomask  : integer := 16#E00#;
    tech    : integer := 0; 
    irq     : integer := 0; 
    kbytes  : integer := 1); 
  port (
    rst    : in  std_ulogic;
    clk    : in  std_ulogic;
    ahbmi  : in  ahb_mst_in_type;
    ahbsi  : in  ahb_slv_in_type;
    ahbso  : out ahb_slv_out_type);
end component;

Table 50. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB master input signals -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User’s Manual

Table 51. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER MISC Component Component declaration
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11 AHBUART- AMBA AHB Serial Debug Interface

11.1 Overview

The interface consists of a UART connected to the AMBA AHB bus as a master. A simple communi-
cation protocol is supported to transmit access parameters and data. Through the communication link,
a read or write transfer can be generated to any address on the AMBA AHB bus.

11.2 Operation

11.2.1 Transmission protocol

The interface supports a simple protocol where commands consist of a control byte, followed by a 32-
bit address, followed by optional write data. Write access does not return any response, while a read
access only returns the read data. Data is sent on 8-bit basis as shown below.

Block transfers can be performed be setting the length field to n-1, where n denotes the number of
transferred words. For write accesses, the control byte and address is sent once, followed by the num-
ber of data words to be written. The address is automatically incremented after each data word. For

Figure 14.  Block diagram

RX TXReceiver shift register Transmitter shift register

AHB master interface AHB data/response

AMBA AHB
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Figure 15.  Data frame

Start D0 StopD6D5D4D3D2D1 D7

Figure 16.  Commands
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read accesses, the control byte and address is sent once and the corresponding number of data words is
returned.

11.2.2 Baud rate generation

The UART contains a 18-bit down-counting scaler to generate the desired baud-rate. The scaler is
clocked by the system clock and generates a UART tick each time it underflows. The scaler is
reloaded with the value of the UART scaler reload register after each underflow. The resulting UART
tick frequency should be 8 times the desired baud-rate. 

If not programmed by software, the baud rate will be automatically discovered. This is done by
searching for the shortest period between two falling edges of the received data (corresponding to two
bit periods). When three identical two-bit periods has been found, the corresponding scaler reload
value is latched into the reload register, and the BL bit is set in the UART control register. If the BL bit
is reset by software, the baud rate discovery process is restarted. The baud-rate discovery is also
restarted when a ‘break’ or framing error is detected by the receiver, allowing to change to baudrate
from the external transmitter. For proper baudrate detection, the value 0x55 should be transmitted to
the receiver after reset or after sending break.

The best scaler value for manually programming the baudrate can be calculated as follows:

scaler = (((system_clk*10)/(baudrate*8))-5)/10

11.3 Registers

The core is programmed through registers mapped into APB address space.

0: Receiver enable (RE) - if set, enables both the transmitter and receiver.
1: Baud rate locked (BL) - is automatically set when the baud rate is locked.

0: Data ready (DR) - indicates that new data has been received by the AMBA AHB master interface.
1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.

Table 52. AHB UART registers

APB address offset Register

0x4 AHB UART status register

0x8 AHB UART control register

0xC AHB UART scaler register

Figure 17.  AHB UART control register
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Figure 19.  AHB UART scaler reload register
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11.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x007. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

11.5 Configuration options

Table 53 shows the configuration options of the core (VHDL generics).

11.6 Signal descriptions

Table 54 shows the interface signals of the core (VHDL ports)..

11.7 Library dependencies

Table 55 shows libraries used when instantiating the core (VHDL libraries).

11.8 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

Table 53. Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

Table 54. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

UARTI RXD Input UART receiver data High

CTSN Input UART clear-to-send High

EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send High

TXD Output UART transmit data High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

Table 55. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER UART Signals, component Signals and component declaration
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library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.uart.all;

entity ahbuart_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;
    
    -- UART signals
    ahbrxd   : in  std_ulogic;
    ahbtxd   : out std_ulogic 
    );
end;

architecture rtl of ahbuart_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);
  
  -- UART signals
  signal ahbuarti : uart_in_type;
  signal ahbuarto : uart_out_type;
  
begin
  
  -- AMBA Components are instantiated here
  ...

  -- AHB UART
  ahbuart0 : ahbuart
  generic map (hindex => 5, pindex => 7, paddr => 7 )
  port map (rstn, clk, ahbuarti, ahbuarto, apbi, ap bo(7), ahbmi, ahbmo(5));

  -- AHB UART input data 
  ahbuarti.rxd <= ahbrxd;  

  -- connect AHB UART output to entity output signa l
  ahbtxd <= ahbuarto.txd;

end;
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12 AMBAMON - AMBA Bus Monitor

12.1 Overview

The AMBA bus monitor checks the AHB and APB buses for violations against a set of rules. When
an error is detected a signal is asserted and error message is (optionally) printed. 

12.2 Rules

This section lists all rules checked by the AMBA monitor. The rules are divided into four different
tables depending on which type of device they apply to.

Some requirements of the AMBA specification are not adopted by the GRLIB implementation (on a
system level). These requirements are listed in the table below.

Table 56. Requirements not checked in GRLIB

Rule 
Number Description References

1 A slave which issues RETRY must only be accessed by one master at a 
time. 

AMBA Spec. Rev 2.0 3-38. 

Table 57. AHB master rules.

Rule 
Number Description References

1 Busy can only occur in the middle of bursts. That is only after a NON-
SEQ, SEQ or BUSY. 

AMBA Spec. Rev 2.0 3-9. 

http://www.arm.com/support/faqip/
492.html

2 Busy can only occur in the middle of bursts. It can be the last access of 
a burst but only for INCR bursts.

AMBA Spec. Rev 2.0 3-9. 

http://www.arm.com/support/faqip/
492.html

3 The address and control signals must reflect the next transfer in the 
burst during busy cycles.

AMBA Spec. Rev 2.0 3-9.

4 The first transfer of a single access or a burst must be NONSEQ (this is 
ensured together with rule 1).

AMBA Spec. Rev 2.0 3-9.

5 HSIZE must never be larger than the bus width. AMBA Spec. Rev 2.0 3-43.

6 HADDR must be aligned to the transfer size. AMBA Spec. Rev 2.0 3-12, 3-25.

http://www.arm.com/support/faqip/
582.html

7 Address and controls signals can only change when hready is low if 
the previous HTRANS value was IDLE, BUSY or if an ERROR, 
SPLIT or RETRY response is given.

http://www.arm.com/support/faqip/
487.html

http://www.arm.com/support/faqip/
579.html

8 Address and control signals cannot change between consecutive 
BUSY cycles.

AMBA Spec. Rev 2.0 3-9. 

9 Address must be related to the previous access according to HBURST 
and HSIZE and control signals must be identical for SEQUENTIAL 
accesses.

AMBA Spec. Rev 2.0 3-9.

10 Master must cancel the following transfer when receiving an RETRY 
response. 

AMBA Spec. Rev 2.0 3-22.

11 Master must cancel the following transfer when receiving an SPLIT 
response.

AMBA Spec. Rev 2.0 3-22.
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12 Master must reattempt the transfer which received a RETRY response. AMBA Spec. Rev 2.0 3-21.

http://www.arm.com/support/faqip/
603.html.

13 Master must reattempt the transfer which received a SPLIT response. AMBA Spec. Rev 2.0 3-21.

http://www.arm.com/support/faqip/
603.html.

14 Master can optionally cancel the following transfer when receiving an 
ERROR response. Only a warning is given if assertions are enabled if 
it does not cancel the following transfer.

AMBA Spec. Rev 2.0 3-23.

15 Master must hold HWDATA stable for the whole data phase when wait 
states are inserted. Only the appropriate byte lanes need to be driven 
for subword transfers.

AMBA Spec. Rev 2.0 3-7. AMBA 
Spec. Rev 2.0 3-25.

16 Bursts must not cross a 1 kB address boundary. AMBA Spec. Rev 2.0 3-11.

17 HMASTLOCK indicates that the current transfer is part of a locked 
sequence. It must have the same timing as address/control.

AMBA Spec. Rev 2.0 3-28.

18 HLOCK must be asserted at least one clock cycle before the address 
phase to which it refers.

AMBA Spec. Rev 2.0 3-28.

19 HLOCK must be asserted for the duration of a burst and can only be 
deasserted so that HMASTLOCK is deasserted after the final address 
phase.

http://www.arm.com/support/faqip/
597.html

20 HLOCK must be deasserted in the last address phase of a burst. http://www.arm.com/support/faqip/
588.html

21 HTRANS must be driven to IDLE during reset. http://www.arm.com/support/faqip/
495.html

22 HTRANS can only change from IDLE to NONSEQ or stay IDLE 
when HREADY is deasserted.

http://www.arm.com/support/faqip/
579.html

Table 58. AHB slave rules.

Rule 
Number Description References

1 AHB slave must respond with a zero wait state OKAY response to 
BUSY cycles in the same way as for IDLE.

AMBA Spec. Rev 2.0 3-9.

2 AHB slave must respond with a zero wait state OKAY response to 
IDLE.

AMBA Spec. Rev 2.0 3-9.

3 HRESP should be set to ERROR, SPLIT or RETRY only one cycle 
before HREADY is driven high. 

AMBA Spec. Rev 2.0 3-22.

4 Two-cycle ERROR response must be given. AMBA Spec. Rev 2.0 3-22.

5 Two-cycle SPLIT response must be given. AMBA Spec. Rev 2.0 3-22.

6 Two-cycle RETRY response must be given. AMBA Spec. Rev 2.0 3-22.

7 SPLIT complete signalled to master which did not have pending 
access.

AMBA Spec. Rev 2.0 3-36.

8 Split complete must not be signalled during same cycle as SPLIT. http://www.arm.com/support/faqip/
616.html

9 It is recommended that slaves drive HREADY high and HRESP to 
OKAY when not selected. A warning will be given if this is not fol-
lowed.

http://www.arm.com/support/faqip/
476.html

10 It is recommended that slaves do not insert more than 16 wait states. If 
this is violated a warning will be given if assertions are enabled.

AMBA Spec. Rev 2.0 3-20.

Table 57. AHB master rules.

Rule 
Number Description References
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Table 59. APB slave rules.

Rule 
Number Description References

1 The bus must move to the SETUP state or remain in the IDLE state 
when in the IDLE state.

AMBA Spec. Rev 2.0 5-4.

2 The bus must move from SETUP to ENABLE in one cycle. AMBA Spec. Rev 2.0 5-4.

3 The bus must move from ENABLE to SETUP or IDLE in one cycle. AMBA Spec. Rev 2.0 5-5.

4 The bus must never be in another state than IDLE, SETUP, ENABLE. AMBA Spec. Rev 2.0 5-4.

5 PADDR must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

6 PWRITE must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

7 PWDATA must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

8 Only one PSEL must be enabled at a time. AMBA Spec. Rev 2.0 5-4.

9 PSEL must be stable during transition from SETUP to ENABLE. AMBA Spec. Rev 2.0 5-5.

Table 60. Arbiter rules

Rule 
Number Description References

1 HreadyIn to slaves and master must be driven by the currently selected 
device.

http://www.arm.com/support/faqip/
482.html

2 A master which received a SPLIT response must not be granted the 
bus until the slave has set the corresponding HSPLIT line.

AMBA Spec. Rev 2.0 3-35.

3 The dummy master must be selected when a SPLIT response is 
received for a locked transfer.

http://www.arm.com/support/faqip/
14307.html
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12.3 Configuration options

Table 61 shows the configuration options of the core (VHDL generics).

12.4 Signal descriptions

Table 62 shows the interface signals of the core (VHDL ports).

12.5 Library dependencies

Table 63 shows libraries used when instantiating the core (VHDL libraries).

Table 61. Configuration options

Generic Function Allowed range Default

asserterr Enable assertions for AMBA requirements. Violations 
are asserted with severity error.

0 - 1 1

assertwarn Enable assertions for AMBA recommendations. Viola-
tions are asserted with severity warning.

0 - 1 1

hmstdisable Disable AHB master rule check. To disable a master rule 
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the 
rule number, e.g 0x80 disables rule 7. 

- 0

hslvdisable Disable AHB slave tests. Values are assigned as for 
hmstdisable.

- 0

pslvdisable Disable APB slave tests. Values are assigned as for hmst-
disable.

- 0

arbdisable Disable Arbiter tests. Values are assigned as for hmstdis-
able.

- 0

nahbm Number of AHB masters in the system. 0 - NAHBMST NAHBMST

nahbs Number of AHB slaves in the system. 0 - NAHBSLV NAHBSLV

napb Number of APB slaves in the system. 0 - NAPBSLV NAPBSLV

Table 62. Signal descriptions

Signal name Field Type Function Active

RST N/A Input AHB reset Low

CLK N/A Input AHB clock -

AHBMI * Input AHB master interface input record -

AHBMO * Input AHB master interface output record array -

AHBSI * Input AHB slave interface input record -

AHBSO * Input AHB slave interface output record array -

APBI * Input APB slave interface input record

APBO * Input APB slave interface output record array

ERR N/A Output Error signal (error detected) High

* see GRLIB IP Library User’s Manual

Table 63. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER SIM Component Component declaration
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12.6 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.sim.all;

entity ambamon_ex is
  port (
    clk : in std_ulogic;
    rst : in std_ulogic 
end;

architecture rtl of ambamon_ex is
-- APB signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);

  -- APB signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);

begin
  -- AMBA Components are instantiated here
   ... 
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.sim.all;

entity ambamon_ex is
  port (
    clk : in  std_ulogic;
    rst : in  std_ulogic;
    err : out std_ulogic 
end;

architecture rtl of ambamon_ex is
  -- AHB signals
  signal ahbmi  : ahb_mst_in_type;
  signal ahbmo  : ahb_mst_out_vector := (others => apb_none);

  -- AHB signals
  signal ahbsi  : ahb_slv_in_type;
  signal ahbso  : ahb_slv_out_vector := (others => apb_none);

  -- APB signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);

begin
  
  mon0 : ambamon
  generic map(
    assert_err => 1,
    assert_war => 0,
    nahbm      => 2,
    nahbs      => 2,
    napb       => 1
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  )
  port map(
    rst        => rst,
    clk        => clk,
    ahbmi      => ahbmi,
    ahbmo      => ahbmo,
    ahbsi      => ahbsi,
    ahbso      => ahbso,
    apbi       => apbi,
    apbo       => apbo,
    err        => err);

end;
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13 APBCTRL - AMBA AHB/APB bridge with plug&play support

13.1 Overview

The AMBA AHB/APB bridge is a APB bus master according the AMBA 2.0 standard. 

The controller supports up to 16 slaves. The actual maximum number of slaves is defined in the
GRLIB.AMBA package, in the VHDL constant NAPBSLV. The number of slaves can also be set
using the nslaves VHDL generic.

Figure 20.  AHB/APB bridge block diagram

13.2 Operation

13.2.1 Decoding

Decoding (generation of PSEL) of APB slaves is done using the plug&play method explained in the
GRLIB IP Library User’s Manual. A slave can occupy any binary aligned address space with a size of
256 bytes - 1 Mbyte. Write to unassingned areas will be ignored, while reads from unassigned areas
will return an arbitrary value. AHB error response will never be generated.

13.2.2 Plug&play information

GRLIB APB slaves contain two plug&play information words which are included in the APB records
they drive on the bus (see the GRLIB IP Library User’s Manual for more information). These records
are combined into an array which is connected to the APB bridge. 

The plug&play information is mapped on a read-only address area at the top 4 kbytes of the bridge
address space. Each plug&play block occupies 8 bytes. The address of the plug&play information for
a certain unit is defined by its bus index. If the bridge is mapped on AHB address 0x80000000, the
address for the plug&play records is thus 0x800FF000 + n*8.

Figure 21.  APB plug&play information
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13.3 APB bus monitor

An APB bus monitor is integrated into the core. It is enabled with the enbusmon generic. It has the
same functionality as the APB parts in the AMBA monitor core (AMBAMON). For more information
on which rules are checked se the AMBAMON documentation.

13.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x006. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

13.5 Configuration options

Table 64 shows the configuration options of the core (VHDL generics).

13.6 Signal descriptions

Table 65 shows the interface signals of the core (VHDL ports). 

Table 64. Configuration options

Generic Function Allowed range Default

hindex AHB slave index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12 most sig-
nificant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the AHB 
area and the start address together with haddr.

0 - 16#FFF# 16#FFF#

nslaves The maximum number of slaves 1 - NAPBSLV NAPBSLV

debug Print debug information during simulation 0 - 2 2

icheck Enable bus index checking (PINDEX) 0 - 1 1

enbusmon Enable APB bus monitor 0 - 1 0

asserterr Enable assertions for AMBA requirements. Violations 
are asserted with severity error.

0 - 1 0

assertwarn Enable assertions for AMBA recommendations. Viola-
tions are asserted with severity warning.

0 - 1 0

pslvdisable Disable APB slave rule check. To disable a slave rule 
check a value is assigned so that the binary representa-
tion contains a one at the position corresponding to the 
rule number, e.g 0x80 disables rule 7.

N/A 0

Table 65. Signal descriptions

Signal name Field Type Function Active

RST N/A Input AHB reset Low

CLK N/A Input AHB clock -

AHBI * Input AHB slave input -

AHBO * Output AHB slave output -

APBI * Output APB slave inputs -

APBO * Input APB slave outputs -

* see GRLIB IP Library User’s Manual
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13.7 Library dependencies

Table 66 shows libraries used when instantiating the core (VHDL libraries).

13.8 Component declaration

library grlib;
use grlib.amba.all;

component apbctrl
  generic (
    hindex  : integer := 0;
    haddr   : integer := 0;
    hmask   : integer := 16#fff#;
    nslaves : integer range 1 to NAPBSLV := NAPBSLV ;
    debug   : integer range 0 to 2 := 2;   -- print  config to console
    icheck  : integer range 0 to 1 := 1
  );
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    ahbi    : in  ahb_slv_in_type;
    ahbo    : out ahb_slv_out_type;
    apbi    : out apb_slv_in_type;
    apbo    : in  apb_slv_out_vector
  );
  end component;

13.9 Instantiation

This example shows how an APB bridge can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use work.debug.all;

.

.

  -- AMBA signals

  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => a hbs_none);

signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb _none);

  
begin

-- APB bridge

apb0 : apbctrl-- AHB/APB bridge
  generic map (hindex => 1, haddr => CFG_APBADDR)
  port map (rstn, clk, ahbsi, ahbso(1), apbi, apbo );

Table 66. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions
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-- APB slaves

uart1 : apbuart
    generic map (pindex => 1, paddr => 1,  pirq => 2)
    port map (rstn, clk, apbi, apbo(1), u1i, u1o);

irqctrl0 : irqmp
    generic map (pindex => 2, paddr => 2)
    port map (rstn, clk, apbi, apbo(2), irqo, irqi) ;

...
end;

13.10 Debug print-out

The APB bridge can print-out the plug-play information from the attached during simulation. This is
enabled by setting the debug VHDL generic to 2. Reporting starts by scanning the array from 0 to
NAPBSLV - 1 (defined in the grlib.amba package). It checks each entry in the array for a valid ven-
dor-id (all nonzero ids are considered valid) and if one is found, it also retrieves the device-id. The
description for these ids are obtained from the GRLIB.DEVICES package, and is printed on standard
out together with the slave number. If the index check is enabled (done with a VHDL generic), the
report module also checks if the pindex number returned in the record matches the array number of
the record currently checked (the array index). If they do not match, the simulation is aborted and an
error message is printed.

The address range and memory type is also checked and printed. The address information includes
type, address and mask. The address ranges currently defined are AHB memory, AHB I/O and APB I/
O. All APB devices are in the APB I/O range so the type does not have to be checked. From this infor-
mation, the report module calculates the start address of the device and the size of the range. The
information finally printed is start address and size. 
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14 APBPS2 - PS/2 keyboard with APB interface

14.1 Introduction

The PS/2 interface is a bidirectional synchronous serial bus primarily used for keyboard and mouse
communications. The APBPS2 core implements the PS2 protocol with a APB back-end. Figure 22
shows a model of APBPS2 and the electrical interface. 

PS/2 data is sent in 11 bits frames. The first bit is a start bit followed by eight data bits, one odd parity
bit and finally one stop bit. Figure 23 shows a typical PS/2 data frame.

14.2 Receiver operation

The receiver of APBPS2 receives the data from the keyboard or mouse, and converts it to 8-bit data
frames to be read out via the APB bus. It is enabled through the receiver enable (RE) bit in the PS/2
control register. If a parity error or framing error occurs, the data frame will be discarded. Correctly
received data will be transferred to a 16 byte FIFO. The data ready (DR) bit in the PS/2 status register
will be set, and retained as long as the FIFO contains at least one data frame. When the FIFO is full,
the receiver buffer full (RF) bit in the status register is set. The keyboard will be inhibited and buffer
data until the FIFO gets read again. Interrupt is sent when a correct stop bit is received then it’s up to
the software to handle any resend operations if the parity bit is wrong. Figure 24 shows a flow chart
for the operations of the receiver state machine.

Figure 22.  APBPS2 electrical interface
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14.3 Transmitter operations

The transmitter part of APBPS2 is enabled for through the transmitter enable (TE) bit in the PS/2 con-
trol register. The PS/2 interface has a 16 byte transmission FIFO that stores commands sent by the
CPU. Commands are used to set the LEDs on the keyboard, and the typematic rate and delay. Type-
matic rate is the repeat rate of a key that is held down, while the delay controls for how long a key has
to be held down before it begins automatically repeating. Typematic repeat rates, delays and possible
other commands are listed in table 74. 

If the TE bit is set and the transmission FIFO is not empty a transmission of the command will start.
The host will pull the clock line low for at least 100 us and then transmit a start bit, the eight bit com-
mand, an odd parity bit, a stop bit and wait for an acknowledgement bit by the device. When this hap-
pens an interrupt is generated. Figure 25 shows the flow chart for the transmission state machine.

14.4 Clock generation

A PS/2 interface should generate a clock of 10.0 - 16.7 KHz. To generate the PS/2 clock, APBPS2
divides the APB clock with either a fixed or programmable division factor. The divider consist of a
14-bit down-counter and can divide the APB clock with a factor of 1 - 16383. If the fixed generic is set
to 1, the division rate is set to the fKHz generic divided by 10 in order to generate a 10 KHz clock. If
fixed is 0, the division rate can be programmed through the timer reload register.

Figure 24.  Flow chart for the receiver state machine
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14.5 Registers

The core is controlled through registers mapped into APB address space.

14.5.1 PS/2 Data Register

[7:0]: Receiver holding FIFO (read access) and Transmitter holding FIFO (write access). If the receiver FIFO is not empty,
read accesses retrieve the next byte from the FIFO. Bytes written to this field are stored in the transmitter holding
FIFO if it is not full.

Table 67. APB PS/2 registers

APB address offset Register

0x00 PS/2 Data register

0x04 PS/2 Status register

0x08 PS/2 Control register

0x0C PS/2 Timer reload register

Waitrequest

Figure 25.  Flow chart for the transmitter state machine
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14.5.2 PS/2 Status Register

0: Data ready (DR) - indicates that new data is available in the receiver holding register (read only).
1: Parity error (PE) - indicates that a parity error was detected.
2: Framing error (FE) - indicates that a framing error was detected.
3: Keyboard inhibit (KI) - indicates that the keyboard is inhibited.
4: Receiver buffer full (RF) - indicates that the output buffer (FIFO) is full (read only).
5:  Transmitter buffer full (TF) - indicates that the input buffer (FIFO) is full (read only).
[26:22]:  Transmit FIFO count (TCNT) - shows the number of data frames in the transmit FIFO (read only).
[31:27]: Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO (read only).

14.5.3 PS/2 Control Register

0: Receiver enable (RE) - if set, enables the receiver.
1: Transmitter enable (TE) - if set, enables the transmitter.
2: Keyboard interrupt enable (RI) - if set, interrupts are generated when a frame is received
3: Host interrupt enable (TI) - if set, interrupts are generated when a frame is transmitted

14.5.4 PS/2 Timer Reload Register

[11:0]: PS/2 timer reload register

14.6 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x061. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Figure 27.  PS/2 status register

0123431

RESERVED DRPEFERFRCNT

27 

KITCNT

26 22 

TF

5

Figure 28.  PS/2 control register
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Figure 29.  PS/2 timer register
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14.7 Configuration options

Table 68 shows the configuration options of the core (VHDL generics).

14.8 Signal descriptions

Table 69 shows the interface signals of the core (VHDL ports). 

14.9 Library dependencies

Table 70 shows libraries used when instantiating the core (VHDL libraries).

14.10 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.gencomp.all;

Table 68. Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

fKHz Frequency of APB clock in KHz. 1 - 163830 50000

fixed Used fixed clock divider to generate PS/2 clock 0 - 1 1

Table 69. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

PS2I PS2_CLK_I Input PS/2 clock input -

PS2_DATA_I Input PS/2 data input -

PS2O PS2_CLK_O Output PS/2 clock output -

PS2_CLK_OE Output PS/2 clock output enable Low

PS2_DATA_O Output PS/2 data output -

PS2_DATA_OE Output PS/2 data output enable Low

* see GRLIB IP Library User’s Manual

Table 70. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER MISC Signals, component PS/2 signal and component declaration
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library gaisler;
use gaisler.misc.all;

entity apbps2_ex is
 port (
    rstn : in std_ulogic;
    clk : in std_ulogic;
    
    -- PS/2 signals
    ps2clk : inout std_ulogic;
    ps2data : inout std_ulogic 
    );
end;

architecture rtl of apbuart_ex is

  -- APB signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);

  -- PS/2 signals
  signal kbdi : ps2_in_type;
  signal kbdo : ps2_out_type;
  
begin

ps20 : apbps2 generic map(pindex => 5, paddr => 5, pirq => 4)
      port map(rstn, clkm, apbi, apbo(5), kbdi, kbd o);

kbdclk_pad : iopad generic map (tech => padtech)
      port map (ps2clk,kbdo.ps2_clk_o, kbdo.ps2_clk _oe, kbdi.ps2_clk_i);

kbdata_pad : iopad generic map (tech => padtech)
        port map (ps2data, kbdo.ps2_data_o, kbdo.ps 2_data_oe, kbdi.ps2_data_i);

end;
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14.11 Keboard scan codes

Table 71. Scan code set 2, 104-key keyboard

KEY MAKE BREAK
-
- KEY MAKE BREAK

-
- KEY MAKE BREAK

A 1C F0,1C 9 46 F0,46 [ 54 FO,54

B 32 F0,32 `0E F0,0E INSERT E0,70 E0,F0,70

C 21 F0,21 - 4E F0,4E HOME E0,6C E0,F0,6C

D 23 F0,23 = 55 FO,55 PG UP E0,7D E0,F0,7D

E 24 F0,24 \ 5D F0,5D DELETE E0,71 E0,F0,71

F 2B F0,2B BKSP 66 F0,66 END E0,69 E0,F0,69

G 34 F0,34 SPACE 29 F0,29 PG DN E0,7A E0,F0,7A

H 33 F0,33 TAB 0D F0,0D U 
ARROW

E0,75 E0,F0,75

I 43 F0,43 CAPS 58 F0,58 L 
ARROW

E0,6B E0,F0,6B

J 3B F0,3B L SHFT 12 FO,12 D 
ARROW

E0,72 E0,F0,72

K 42 F0,42 L CTRL 14 FO,14 R 
ARROW

E0,74 E0,F0,74

L 4B F0,4B L GUI E0,1F E0,F0,1F NUM 77 F0,77

M 3A F0,3A L ALT 11 F0,11 KP / E0,4A E0,F0,4A

N 31 F0,31 R SHFT 59 F0,59 KP * 7C F0,7C

O 44 F0,44 R CTRL E0,14 E0,F0,14 KP - 7B F0,7B

P 4D F0,4D R GUI E0,27 E0,F0,27 KP + 79 F0,79

Q 15 F0,15 R ALT E0,11 E0,F0,11 KP EN E0,5A E0,F0,5A

R 2D F0,2D APPS E0,2F E0,F0,2F KP . 71 F0,71

S 1B F0,1B ENTER 5A F0,5A KP 0 70 F0,70

T 2C F0,2C ESC 76 F0,76 KP 1 69 F0,69

U 3C F0,3C F1 5 F0,05 KP 2 72 F0,72

V 2A F0,2A F2 6 F0,06 KP 3 7A F0,7A

W 1D F0,1D F3 4 F0,04 KP 4 6B F0,6B

X 22 F0,22 F4 0C F0,0C KP 5 73 F0,73

Y 35 F0,35 F5 3 F0,03 KP 6 74 F0,74

Z 1A F0,1A F6 0B F0,0B KP 7 6C F0,6C

0 45 F0,45 F7 83 F0,83 KP 8 75 F0,75

1 16 F0,16 F8 0A F0,0A KP 9 7D F0,7D

2 1E F0,1E F9 1 F0,01 ] 5B F0,5B

3 26 F0,26 F10 9 F0,09 ; 4C F0,4C

4 25 F0,25 F11 78 F0,78 52 F0,52

5 2E F0,2E F12 7 F0,07 , 41 F0,41

6 36 F0,36 PRNT 
SCRN

E0,12, 
E0,7C

E0,F0, 
7C,E0, 
F0,12

. 49 F0,49

7 3D F0,3D SCROLL 7E F0,7E / 4A F0,4A

8 3E F0,3E PAUSE E1,14,77, 
E1,F0,14, 
F0,77

-NONE-
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Table 72. Windows multimedia scan codes

KEY MAKE BREAK

Next Track E0, 4D E0, F0, 4D

Previous Track E0, 15 E0, F0, 15

Stop E0, 3B E0, F0, 3B

Play/Pause E0, 34 E0, F0, 34

Mute E0, 23 E0, F0, 23

Volume Up E0, 32 E0, F0, 32

Volume Down E0, 21 E0, F0, 21

Media Select E0, 50 E0, F0, 50

E-Mail E0, 48 E0, F0, 48

Calculator E0, 2B E0, F0, 2B

My Computer E0, 40 E0, F0, 40

WWW Search E0, 10 E0, F0, 10

WWW Home E0, 3A E0, F0, 3A

WWW Back E0, 38 E0, F0, 38

WWW Forward E0, 30 E0, F0, 30

WWW Stop E0, 28 E0, F0, 28

WWW Refresh E0, 20 E0, F0, 20

WWW Favor-
ites

E0, 18 E0, F0, 18

Table 73. ACPI scan codes (Advanced Configuration and Power Interface)

KEY MAKE BREAK

Power E0, 37 E0, F0, 37

Sleep E0, 3F E0, F0, 3F

Wake E0, 5E E0, F0, 5E
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14.12 Keyboard commands

Table 74. Transmit commands:

Command Description

0xED Set status LED’s - keyboard will reply with ACK (0xFA). The host follows this command with an 
argument byte*

0xEE Echo command - expects an echo response

0xF0 Set scan code set - keyboard will reply with ACK (0xFA) and wait for another byte. 0x01-0x03 
which determines the scan code set to use. 0x00 returns the current set.

0xF2 Read ID - the keyboard responds by sending a two byte device ID of 0xAB 0x83

0xF3 Set typematic repeat rate - keyboard will reply with ACK (0xFA) and wait for another byte which 
determines the typematic rate.

0xF4 Keyboard enable - clears the keyboards output buffer, enables keyboard scanning and returns an 
acknowledgement.

0xF5 Keyboard disable - resets the keyboard, disables keyboard scanning and returns an acknowledge-
ment.

0xF6 Set default - load default typematic rate/delay (10.9cps/500ms) and scan code set 2

0xFE Resend - upon receipt of the resend command the keyboard will retransmit the last byte

0xFF Reset - resets the keyboard

* bit 0 controls the scroll lock, bit 1 the num lock, bit 2 the caps lock, bit 3-7 are ignored

Table 75. Receive commands:

Command Description

0xFA Acknowledge

0xAA Power on self test passed (BAT completed)

0xEE Echo respond

0xFE Resend - upon receipt of the resend command the host should retransmit the last byte

0x00 Error or buffer overflow

0xFF Error of buffer overflow

Table 76. The typematic rate/delay argument byte

MSB LSB

0 DELAY DELAY RATE RATE RATE RATE RATE
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Table 77. Typematic repeat rates

Bits 0-
4

Rate 
(cps)

Bits 0-
4

Rate 
(cps)

Bits 0-
4

Rate 
(cps)

Bits 0-
4

Rate 
(cps)

00h 30 08h 15 10h 7.5 18h 3.7

01h 26.7 09h 13.3 11h 6.7 19h 3.3

02h 24 0Ah 12 12h 6 1Ah 3

03h 21.8 0Bh 10.9 13h 5.5 1Bh 2.7

04h 20.7 0Ch 10 14h 5 1Ch 2.5

05h 18.5 0Dh 9.2 15h 4.6 1Dh 2.3

06h 17.1 0Eh 8.6 16h 4.3 1Eh 2.1

07h 16 0Fh 8 17h 4 1Fh 2

Table 78. Typematic delays

Bits 5-6 Delay (seconds)

00b 0.25

01b 0.5

10b 0.75

11b 1
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15 APBUART - AMBA APB UART Serial Interface

15.1 Overview

The interface is provided for serial communications. The UART supports data frames with 8 data bits,
one optional parity bit and one stop bit. To generate the bit-rate, each UART has a programmable 12-
bit clock divider. Two FIFOs are used for data transfer between the APB bus and UART, when fifosize
VHDL generic > 1. Two holding registers are used data transfer between the APB bus and UART,
when fifosize VHDL generic = 1. Hardware flow-control is supported through the RTSN/CTSN hand-
shake signals, when flow VHDL generic is set. Parity is supported, when parity VHDL generic is set.

15.2 Operation

15.2.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. Data that is to be trans-
ferred is stored in the FIFO/holding register by writing to the data register. This FIFO is configurable
to different sizes via the fifosize VHDL generic. When the size is 1, only a single holding register is
used but in the following discussion both will be referred to as FIFOs. When ready to transmit, data is
transferred from the transmitter FIFO/holding register to the transmitter shift register and converted to
a serial stream on the transmitter serial output pin (TXD). It automatically sends a start bit followed
by eight data bits, an optional parity bit, and one stop bit (figure 31). The least significant bit of the
data is sent first.

Figure 30.  Block diagram

RXD TXD

CTSN

RTSN

Receiver shift register Transmitter shift register

APB

Serial port
Controller8*bitclkBaud-rate

generator

Transmitter FIFO or
holding register

Receiver FIFO or 
holding register
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Following the transmission of the stop bit, if a new character is not available in the transmitter FIFO,
the transmitter serial data output remains high and the transmitter shift register empty bit (TS) will be
set in the UART status register. Transmission resumes and the TS is cleared when a new character is
loaded into the transmitter FIFO. When the FIFO is empty the TE bit is set in the status register. If the
transmitter is disabled, it will immediately stop any active transmissions including the character cur-
rently being shifted out from the transmitter shift register. The transmitter holding register may not be
loaded when the transmitter is disabled or when the FIFO (or holding register) is full. If this is done,
data might be overwritten and one or more frames are lost. 

The discussion above applies to any FIFO configurations including the special case with a holding
register (VHDL generic fifosize = 1). If FIFOs are used (VHDL generic fifosize > 1) some additional
status and control bits are available. The TF status bit (not to be confused with the TF control bit) is
set if the transmitter FIFO is currently full and the TH bit is set as long as the FIFO is less than half-
full (less than half of entries in the FIFO contain data). The TF control bit enables FIFO interrupts
when set. The status register also contains a counter (TCNT) showing the current number of data
entries in the FIFO.

When flow control is enabled, the CTSN input must be low in order for the character to be transmit-
ted. If it is deasserted in the middle of a transmission, the character in the shift register is transmitted
and the transmitter serial output then remains inactive until CTSN is asserted again. If the CTSN is
connected to a receivers RTSN, overrun can effectively be prevented.

15.2.2 Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the UART control
register. The receiver looks for a high to low transition of a start bit on the receiver serial data input
pin. If a transition is detected, the state of the serial input is sampled a half bit clocks later. If the serial
input is sampled high the start bit is invalid and the search for a valid start bit continues. If the serial
input is still low, a valid start bit is assumed and the receiver continues to sample the serial input at
one bit time intervals (at the theoretical centre of the bit) until the proper number of data bits and the
parity bit have been assembled and one stop bit has been detected. The serial input is shifted through
an 8-bit shift register where all bits have to have the same value before the new value is taken into
account, effectively forming a low-pass filter with a cut-off frequency of 1/8 system clock.

The receiver also has a configurable FIFO which is identical to the one in the transmitter. As men-
tioned in the transmitter part, both the holding register and FIFO will be referred to as FIFO. 

During reception, the least significant bit is received first. The data is then transferred to the receiver
FIFO and the data ready (DR) bit is set in the UART status register as soon as the FIFO contains at
least one data frame. The parity, framing and overrun error bits are set at the received byte boundary,
at the same time as the receiver ready bit is set. The data frame is not stored in the FIFO if an error is
detected. Also, the new error status bits are or:ed with the old values before they are stored into the
status register. Thus, they are not cleared until written to with zeros from the AMBA APB bus. If both

Figure 31.  UART data frames

Start D0 StopD6D5D4D3D2D1 D7

Start D0 D6D5D4D3D2D1 D7 StopParity

Data frame, no parity:

Data frame with parity:
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the receiver FIFO and shift registers are full when a new start bit is detected, then the character held in
the receiver shift register will be lost and the overrun bit will be set in the UART status register. 

If flow control is enabled, then the RTSN will be negated (high) when a valid start bit is detected and
the receiver FIFO is full. When the holding register is read, the RTSN will automatically be reasserted
again.

When the VHDL generic fifosize > 1, which means that holding registers are not considered here,
some additional status and control bits are available. The RF status bit (not to be confused with the RF
control bit) is set when the receiver FIFO is full. The RH status bit is set when the receiver FIFO is
half-full (at least half of the entries in the FIFO contain data frames). The RF control bit enables
receiver FIFO interrupts when set. A RCNT field is also available showing the current number of data
frames in the FIFO. 

15.3 Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate. The scaler is
clocked by the system clock and generates a UART tick each time it underflows. It is reloaded with
the value of the UART scaler reload register after each underflow. The resulting UART tick frequency
should be 8 times the desired baud-rate. If the EC bit is set, the scaler will be clocked by the external
clock input rather than the system clock. In this case, the frequency of external clock must be less than
half the frequency of the system clock.

15.4 Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this mode,
the transmitter output is internally connected to the receiver input and the RTSN is connected to the
CTSN. It is then possible to perform loop back tests to verify operation of receiver, transmitter and
associated software routines. In this mode, the outputs remain in the inactive state, in order to avoid
sending out data.

15.5 FIFO debug mode

FIFO debug mode is entered by setting the debug mode bit in the control register. In this mode it is
possible to read the transmitter FIFO and write the receiver FIFO through the FIFO debug register.
The transmitter output is held inactive when in debug mode. A write to the receiver FIFO generates an
interrupt if receiver interrupts are enabled.

15.6 Interrupt generation

Interrupts are generated differently when a holding register is used (VHDL generic fifosize = 1) and
when FIFOs are used (VHDL generic fifosize > 1). When holding registers are used, the UART will
generate an interrupt under the following conditions: when the transmitter is enabled, the transmitter
interrupt is enabled and the transmitter holding register moves from full to empty; when the receiver
is enabled, the receiver interrupt is enabled and the receiver holding register moves from empty to
full; when the receiver is enabled, the receiver interrupt is enabled and a character with either parity,
framing or overrun error is received.

For FIFOs, two different kinds of interrupts are available: normal interrupts and FIFO interrupts. For
the transmitter, normal interrupts are generated when transmitter interrupts are enabled (TI), the trans-
mitter is enabled and the transmitter FIFO goes from containing data to being empty. FIFO interrupts
are generated when the FIFO interrupts are enabled (TF), transmissions are enabled (TE) and the
UART is less than half-full (that is, whenever the TH status bit is set). This is a level interrupt and the
interrupt signal is continuously driven high as long as the condition prevails. The receiver interrupts
work in the same way. Normal interrupts are generated in the same manner as for the holding register.
FIFO interrupts are generated when receiver FIFO interrupts are enabled, the receiver is enabled and
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the FIFO is half-full. The interrupt signal is continuously driven high as long as the receiver FIFO is
half-full (at least half of the entries contain data frames). 

15.7 Registers

The core is controlled through registers mapped into APB address space.

15.7.1 UART Data Register

15.7.2 UART Status Register

Table 79. UART registers

APB address offset Register

0x0 UART Data register

0x4 UART Status register

0x8 UART Control register

0xC UART Scaler register

0x10 UART FIFO debug register

Table 80.  UART data register
31 8 7 0

RESERVED DATA

7: 0 Receiver holding register or FIFO (read access)

7: 0 Transmitter holding register or FIFO (write access)

Table 81.  UART status register
31 26 25 20 19 11 10 9 8 7 6 5 4 3 2 1 0

RCNT TCNT RESERVED RF TF RH TH FE PE OV BR TE TS DR

31: 26 Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO.

25: 20 Transmitter FIFO count (TCNT) - shows the number of data frames in the transmitter FIFO.

10 Receiver FIFO full (RF) - indicates that the Receiver FIFO is full.

9 Transmitter FIFO full (TF) - indicates that the Transmitter FIFO is full.

8 Receiver FIFO half-full (RH) -indicates that at least half of the FIFO is holding data.

7 Transmitter FIFO half-full (TH) - indicates that the FIFO is less than half-full.

6 Framing error (FE) - indicates that a framing error was detected.

5 Parity error (PE) - indicates that a parity error was detected.

4 Overrun (OV) - indicates that one or more character have been lost due to overrun.

3 Break received (BR) - indicates that a BREAK has been received.

2 Transmitter FIFO empty (TE) - indicates that the transmitter FIFO is empty.

1 Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.

0 Data ready (DR) - indicates that new data is available in the receiver holding register
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15.7.3 UART Control Register

15.7.4 UART Scaler Register

15.7.5 UART FIFO Debug Register

15.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x00C. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 82.  UART control register
31 30 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FA RESERVED OE DB RF TF EC LB FL PE PS TI RI TE RE

31 FIFOs available (FA) - Set to 1 when receiver and transmitter FIFOs are available. When 0, only 
holding register are available.

30: 13 RESERVED

12 Output enable (OE) - Transmitter output enable. Driven directly on the txen output.

11 FIFO debug mode enable (DB) - when set, it is possible to read and write the FIFO debug register

10 Receiver FIFO interrupt enable (RF) - when set, Receiver FIFO level interrupts are enabled

9 Transmitter FIFO interrupt enable (TF) - when set, Transmitter FIFO level interrupts are enabled.

8 External Clock (EC) - if set, the UART scaler will be clocked by UARTI.EXTCLK

7 Loop back (LB) - if set, loop back mode will be enabled

6 Flow control (FL) - if set, enables flow control using CTS/RTS (when implemented)

5 Parity enable (PE) - if set, enables parity generation and checking (when implemented)

4 Parity select (PS) - selects parity polarity (0 = even parity, 1 = odd parity) (when implemented)

3 Transmitter interrupt enable (TI) - if set, interrupts are generated when a frame is transmitted

2 Receiver interrupt enable (RI) - if set, interrupts are generated when a frame is received

1 Transmitter enable (TE) - if set, enables the transmitter.

0 Receiver enable (RE) - if set, enables the receiver.

Table 83.  UART scaler reload register
31 12 11 0

RESERVED SCALER RELOAD VALUE

11: 0 Scaler reload value

Table 84.  UART FIFO debug register
31 8 7 0

RESERVED DATA

7: 0 Transmitter holding register or FIFO (read access)

7: 0 Receiver holding register or FIFO (write access)
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15.9 Configuration options

Table 85 shows the configuration options of the core (VHDL generics).

15.10 Signal descriptions

Table 86 shows the interface signals of the core (VHDL ports). 

15.11 Library dependencies

Table 87 shows libraries that should be used when instantiating the core.

Table 85. Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

console Prints output from the UART on console during VHDL 
simulation and speeds up simulation by always returning 
‘1’ for Data Ready bit of UART Status register. Does not 
effect synthesis.

0 - 1 0

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

parity Enables parity 0 - 1 1

flow Enables flow control 0 - 1 1

fifosize Selects the size of the Receiver and Transmitter FIFOs 1, 2, 4, 8, 16, 32 1

abits Select the number of APB address bits used to decode 
the register addresses

3 - 8 8

Table 86. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

UARTI RXD Input UART receiver data -

CTSN Input UART clear-to-send Low

EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send Low

TXD Output UART transmit data -

SCALER Output UART scaler value -

TXEN Output Output enable for transmitter High

FLOW Output Unused -

RXEN Output Receiver enable High

* see GRLIB IP Library User’s Manual

Table 87. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER UART Signals, component Signal and component declaration
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15.12 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.uart.all;

entity apbuart_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;
    
    -- UART signals
    rxd   : in  std_ulogic;
    txd   : out std_ulogic 
    );
end;

architecture rtl of apbuart_ex is

  -- APB signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);

  -- UART signals
  signal uarti : uart_in_type;
  signal uarto : uart_out_type;
  
begin
  
  -- AMBA Components are instantiated here
   ... 

  -- APB UART
  uart0 : apbuart
  generic map (pindex => 1, paddr => 1,  pirq => 2,  
console => 1, fifosize => 1)
  port map (rstn, clk, apbi, apbo(1), uarti, uarto) ;

  -- UART input data 
  uarti.rxd <= rxd;  

  -- APB UART inputs not used in this configuration   
  uarti.ctsn <= ’0’; uarti.extclk <= ’0’;

  -- connect APB UART output to entity output signa l
  txd <= uarto.txd;

end;
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16 APBVGA - VGA controller with APB interface

16.1 Introduction

The APBVGA core is a text-only video controller with a resolution of 640x480 pixels, creating a dis-
play of 80x37 characters. The controller consists of a video signal generator, a 4 Kbyte text buffer, and
a ROM for character pixel information. The video controller is controlled through an APB interface.

A block diagram for the data path is shown in figure 32.

16.2 Operation

The video timing of APBVGA is fixed to generate a 640x480 display with 60 Hz refresh rate. The text
font is encoded using 8x13 pixels. The display is created by scanning a segment of 2960 characters of
the 4 Kbyte text buffer, rasterizing the characters using the character ROM, and sending the pixel data
to an external video DAC using three 8-bit color channels. The required pixel clock is 25.175 MHz,
which should be provided on the VGACLK input.

Writing to the video memory is made through the VGA data register. Bits [7:0] contains the character
to be written, while bits [19:8] defines the text buffer address. Foreground and background colours are
set through the background and foreground registers. These 24 bits corresponds to the three pixel col-
ors, RED, GREEN and BLUE. The eight most significant bits defines the red intensity, the next eight
bits defines the green intensity and the eight least significant bits defines the blue intensity. Maximum
intensity for a color is received when all eight bits are set and minimum intensity when none of the
bits are set. Changing the foreground color results in that all characters change their color, it is not
possible to just change the color of one character. In addition to the color channels, the video control-
ler generates HSYNC, VSYNC, CSYNC and BLANK. Togetherm the signals are suitable to drive an
external video DAC such as ADV7125 or similar.

APBVGA implements hardware scrolling to minimize processor overhead. The controller monitors
maintains a reference pointer containing the buffer address of the first character on the top-most line.
When the text buffer is written with an address larger than the reference pointer + 2960, the pointer is
incremented with 80. The 4 Kbyte text buffer is sufficient to buffer 51 lines of 80 characters. To sim-
plify hardware design, the last 16 bytes (4080 - 4095) should not be written. When address 4079 has
been written, the software driver should wrap to address 0. Sofware scrolling can be implemented by
only using the first 2960 address in the text buffer, thereby never activating the hardware scolling
mechanism.

Figure 32.  APBVGA block diagram

APB
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GeneratorVideo memory

Character ROM

HSYNC
VSYNC
COMP_SYNC
BLANK
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BLUE[7:0]
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16.3 Registers

The APB VGA is controlled through three registers mapped into APB address space.

16.3.1 VGA Data Register

[19:8]: Video memory address (write access)
[7:0]: Video memory data (write access)

16.3.2 VGA Background Color

[23:16]: Video background color red.
[15:8]: Video background color green.
[7:0]: Video background color blue.

16.3.3 VGA Foreground Color

[23:16]: Video foreground color red.
[15:8]: Video foreground color green.
[7:0]: Video foreground color blue.

16.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x060. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 88. APB VGA registers

APB address offset Register

0x0 VGA Data register

0x4 VGA Background color

0x8 VGA Foreground color

Figure 33.  VGA data register
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Figure 34.  VGA Background color
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Figure 35.  VGA Foreground color
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16.5 Configuration options

Table 89 shows the configuration options of the core (VHDL generics).

16.6 Signal descriptions

Table 90 shows the interface signals of the core (VHDL ports).

16.7 Library dependencies

Table 91 shows libraries used when instantiating the core (VHDL libraries).

16.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

Table 89. Configuration options

Generic Function Allowed range Default

memtech Technology to implement on-chip RAM 0 - NTECH 2

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

Table 90. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

VGACLK N/A Input VGA Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

VGAO HSYNC Output Horizontal synchronization High

VSYNC Vertical synchronization High

COMP_SYNC Composite synchronization Low

BLANK Blanking Low

VIDEO_OUT_R[7:0] Video out, color red -

VIDEO_OUT_G[7:0] Video out, color green -

VIDEO_OUT_B[7:0] Video out, color blue -

* see GRLIB IP Library User’s Manual

Table 91. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER MISC Signals, component VGA signal and component declaration
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.

.

architecture rtl of apbuart_ex is

signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
signal vgao  : apbvga_out_type;

begin 
  -- AMBA Components are instantiated here
   ... 

  -- APB VGA
  vga0 : apbvga
  generic map (memtech => 2, pindex => 6, paddr => 6)
  port map (rstn, clk, vgaclk, apbi, apbo(6), vgao) ;
end;
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17 ATACTRL - ATA Controller

17.1 Overview

The ATACTRL core is an ATA/ATAPI-5 host interface based on the OCIDEC-2 and OCIDEC-3 cores
from OpenCores, with an additional AMBA AHB interface. This IP core provides an interface to IDE
(Integrated Drive Electronics) devices, compatible to the ATA/ATAPI-5 standard. The ATACTRL
supports PIO and MWDMA transfers. The MWDMA support is complying with SFF-8038i “Bus
Master Programming Interface for IDE ATA Controllers Rev 1.0”, with the exception that the ATAC-
TRL only have one IDE channel.

Figure 36 shows a block diagram of the ATACTRL core. Register access and PIO data transfer is done
through the AHB slave interface. A write access to the registers in the core is done with no wait states,
while a read access has one wait state. When the ATA data device is accessed, waitstates are inserted
on the AHB bus until the transfer is completed. MWDMA data transfers are done through the AHB
master interface. The DMA insterface has a configurable FIFO size, with a default of 8 32-bit words.

17.2 Operation

17.2.1 Device hardware reset

Bit 0 in the core control register controls the reset signal to the ATA device. When this bit is set to ‘1’
the reset signal is asserted. After system reset, this bit is set to ‘1’. The hardware reset procedure
should follow this protocol:

1: Set the ATA reset bit to ‘1’ and wait for at least 25 us.

2: Set the ATA reset bit to ‘0’ and wait for at least 2 ms.

3: Read the ATA status register until the busy bit is cleared.

4: Execute an Identify device or an Identify packet device command for all connected devices.

17.3 Registers

The core has 32-bit wide registers mapped into the AHB address space, with an offset shown in table
92. The registers in the ATA device are also mapped into the AHB address space starting with an off-
set of 0x40, see table 96. Data bits 7:0 are used for accessing the 8-bit registers in the ATA device and
bits 15:0 are used for accessing the 16-bit data register in the ATA device.

ATACTRL

AHB Slave
ATA Controller

Figure 36.  Block diagram of the internal structure of the ATACTRL.

AHB

ATA signals
IDE 
Device

AHB Master
with DMA
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All the core registers can be read from and written to by any master on the AHB bus.

The Control register has the following bit layout, see table 93.

All bits except bit 0 are set to zero after reset. Bit 0 is set to ‘1’. The timing registers should be loaded
with an appropriate value before any of bit 1, 2, 3, 5, 6, 7 in the control register is set to ‘1’. Bit 31
controls the power signal for CompactFlash cards. When set to ‘1’ the power signal is connected to
Vcc. This signal is used when the power to the CompactFlash card is controlled via a transistor in the
design.

Table 92. Core Registers.

Name Offset

CTRL 0x00 Control register

STAT 0x04 Status register

PCTR 0x08 PIO compatible timing register

PFTR0 0x0c PIO fast timing register device 0

PFTR1 0x10 PIO fast timing register device 1

DTR0 0x14 DMA timing register device 0

DTR1 0x18 DMA timing register device 1

BMCMD 0x1C Bus master IDE command register

BMVD0 0x20 Reserved

BMSTA 0x24 Bus master IDE status register

BMVD1 0x28 Reserved

PRDTB 0x2C Bus master PRD table address

Table 93. Control Register

Bit # Description

31 CompactFlash power on switch

30:16 Reserved 

15 DMA enable

14 Reserved

13 DMA direction

12:10 Reserved

9 Reserved (Big Endian Little Endian conversion device 1)

8 Reserved (Big Endian Little Endian conversion device 0)

7 IDE enable

6 Fast timing device 1 enable

5 Fast timing device 0 enable

4 Reserved (PIO write ping-pong enable)

3 Fast timing device 1 IORDY enable

2 Fast timing device 0 IORDY enable

1 Compatible timing IORDY enable

0 ATA reset
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The Status register has the following bit layout, see table 94.

The PIO timing registers have the following bit layout, see table 95.

All timing values are in ns per clock cycle minus 2, rounded up to the nearest integer value. 

Teoc = (T0 - T1 - T2) or T9 or T2i whichever is greater. For more timing information, read the ATA/
ATAPI-5 standard document and see figure 37.

The PCTR timing register determines the timing for all PIO access, except for access to the data reg-
ister. For data register access, the timing is determined by the PFTR0 or the PFTR1 register.

Table 94. Status Register

Bit # Description

31:28 Device ID (= 0x02)

27:24 Revision Number (= 0)

23:16 Reserved

15 DMA transfer in progress

14:11 Reserved

10 DMA receive buffer empty

9 DMA transmit buffer full

8 DMARQ line status

7 PIO transfer in progress

6 Reserved (PIO write ping-pong full)

5:1 Reserved

0 IDE interrupt status (when set to 1, indicates that a device asserted its interrupt line)

Table 95. PIO Timing Register (PCTR, PFTR0, PFTR1)

Bit # Description

31:24 End of Cycle Time (Teoc)

23:16 DIOW - data hold (T4)

15:8 DIOR/DIOW pulse width (T2)

7:0 Address valid to DIOR/DIOW (T1)

Figure 37.  PIO timing diagram.
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17.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x024. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

17.5 Configuration options

Table 97 shows the configuration options of the core (VHDL generics). 

The default values for PIO_mode0_* are calculated for a 100 MHz clock.

Table 96. ATA Device Registers

Name Offset Width

Data Register 0x40 16

Features/Error Register 0x44 8

Sector Number Register 0x48 8

Sector Count Register 0x4c 8

Cylinder Low Register 0x50 8

Cylinder High Register 0x54 8

Device/Head Register 0x58 8

Command/Status Register 0x5c 8

Alternate Status/Device Control Register 0x78 8

Table 97. Configuration options

Generic Function Allowed range Default

mhindex AHB master interafce bus index. 0 - NAHBMST-1 0

shindex AHB slave interafce bus index. 0 - NAHBSLV-1 0

haddr ADDR field of the AHB BAR0 defining the address space. 0 - 0xFFF 0x000

hmask MASK field of the AHB BAR0 defining the address space. 0 - 0xFFF 0xFF0

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

fdepth DMA FIFO depth in words 2, 4, 8, 16, 32 or 64 8

mwdma Enable MWDMA support 0 - 1 0

TWIDTH Timing counter width 8

PIO_mode0_T1 Reset value for T1 6

PIO_mode0_T2 Reset value for T2 28

PIO_mode0_T4 Reset value for T4 2

PIO_mode0_Teoc Reset value for Teoc 23
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17.6 Signal descriptions

Table 98 shows the interface signals of the core (VHDL ports).

17.7 Library dependencies

Table 99 shows libraries used when instantiating the core (VHDL libraries).

17.8 Software support

The ATA Controller is supported by the linux-2.6 kernel, in the snapgear-p35 version and later. The
snapgear embedded linux distribution can be downloaded from www.gaisler.com. Since the register
set of the ATA controller follows the IDE standard, compatible software drivers from other operating
systems should easily be adaptable.

Table 98. Signal descriptions

Signal name Field Type Function Active

rst Input Synchronous reset signal Low

arst Input Asynchronous reset signal Low

clk Input Clock signal -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

ATAI ddi[15:0] Data Input

iordy IO channel ready

intrq interrupt

dmarq DMA REQ signal

ATAO rstn Output Reset signal to ATA device Low

ddo[15:0] Output Data Output -

oen Output Data output enable High

da[2:0] Output Device address -

cs0 Output Chip Select 0 Low

cs1 Output Chip Select 1 Low

dior Output Device IO read Low

diow Output Device IO write Low

dmack Output DMA ACK signal -

CFO atasel Output Select “True-IDE“ mode for CompactFlash -

csel Output Device Master select signal -

da[10:3] Output Grounded address signals -

power Output Power switch -

we Output Connected to Vcc for True-IDE mode -

* see GRLIB IP Library User’s Manual

Table 99. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER ATA Signals, component ATACTRL component declarations, ATA signals
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17.9 Instantiation

This example shows how the can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.stdlib.all;
library gaisler;
use gaisler.ata.all;
use work.config.all;

signal idei : ata_in_type;
signal ideo : ata_out_type;

atac0 : atactrl
    generic map(tech => 0, fdepth => 8, mhindex => 2, mwdma => 1,

shindex => 3, haddr => 16#A00#, hmask => 16#fff#, p irq  => 6,
      TWIDTH   => 8,         -- counter width
      -- PIO mode 0 settings (@100MHz clock)
      PIO_mode0_T1   => 6,   -- 70ns
      PIO_mode0_T2   => 28,  -- 290ns
      PIO_mode0_T4   => 2,   -- 30ns
      PIO_mode0_Teoc => 23   -- 240ns ==> T0 - T1 -  T2 = 600 - 70 - 290 = 240
    )
    port map( rst => rstn, arst => vcc(0), clk => c lkm, ahbmi => ahbmi,
        ahbmo => ahbmo(2), ahbsi => ahbsi, ahbso =>  ahbso(3),
      atai => idei, atao => ideo);

    ata_rstn_pad : outpad generic map (tech => padt ech)
      port map (ata_rstn, ideo.rst);
    ata_data_pad : iopadv generic map (tech => padt ech, width => 16, oepol => 1)
        port map (ata_data, ideo.ddo, ideo.oen, ide i.ddi);
    ata_da_pad : outpadv generic map (tech => padte ch, width => 3)
        port map (ata_da, ideo.da);
    ata_cs0_pad : outpad generic map (tech => padte ch)
        port map (ata_cs0, ideo.cs0);
    ata_cs1_pad : outpad generic map (tech => padte ch)
        port map (ata_cs1, ideo.cs1);
    ata_dior_pad : outpad generic map (tech => padt ech)
        port map (ata_dior, ideo.dior);
    ata_diow_pad : outpad generic map (tech => padt ech)
        port map (ata_diow, ideo.diow);
    iordy_pad : inpad generic map (tech => padtech)
        port map (ata_iordy, idei.iordy);
    intrq_pad : inpad generic map (tech => padtech)
        port map (ata_intrq, idei.intrq);
    dmarq_pad : inpad generic map (tech => padtech)
        port map (ata_dmarq, idei.dmarq);
    dmack_pad : outpad generic map (tech => padtech )
        port map (ata_dmack, ideo.dmack);
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18 B1553BC - AMBA plug&play interface for Actel Core1553BBC 

18.1 Overview

The interface provides a complete Mil-Std-1553B Bus Controller (BC). The interface connects to the
MIL-STD-1553B bus through external transceivers and transformers. The interface is based on the
Actel Core1553BBC core.

The interface provides a complete, MIL-STD-1553B Bus Controller (BC). The interface reads mes-
sage descriptor blocks from the memory and generates messages that are transmitted on and transmit-
ted on the 1553B bus. Data received is written to the memory. 

The interface consists of five main blocks: the 1553B encoder, the 1553B decoder, a protocol control-
ler block, a CPU interface, and a backend interface. 

A single 1553B encoder takes each word to be transmitted and serializes it using Manchester encod-
ing. The encoder includes independent logic to prevent the BC from transmitting for greater than the
allowed period and to provide loopback fail logic. The loopback logic monitors the received data and
verifies that the interface has correctly received every word that is transmitted. The encoder output is
gated with the bus enable signals to select which buses the encoder should be transmitting. Since the
BC knows which bus is in use at any time, only a single decoder is required. 

The decoder takes the serial Manchester received data from the bus and extracts the received data
words The decoder contains a digital phased lock loop (PLL) that generates a recovery clock used to
sample the incoming serial data. The data is then deserialized and the 16-bit word decoded. The
decoder detects whether a command, status or data word has been received and checks that no
Manchester encoding or parity errors occurred in the word. 

The protocol controller block handles all the message sequencing and error recovery. This is a com-
plex state machine that reads the 1553B message frames from memory and transmits them on the
1553B bus. The AMBA interface allows a system processor to access the control registers. It also
allows the processor to directly access the memory connected to the backend interface, this simplifies
the system design. 

The B1553BC core provides an AMBA interface with GRLIB plug&play for the Actel
Core1553BBC core (MIL-STD-1553B Bus Controller). B1553BC implements two AMBA inter-
faces: one AHB master interface for the memory interface, and one APB slave interface for the CPU
interface and control registers. 

The Actel Core1553BBC core, entity named BC1553B, is configured to use the shared memory inter-
face, and only internal register access is allowed through the APB slave interface. Data is read and
stored via DMA using the AHB master interface.

Figure 38.  Block diagram

AMBA AHB

AMBA APB

Actel Core1553BBC

CPU IF MEM IF

APB slave IF AHB master IFControl
registers

1553 signals

B1553BC

IRQ

GR1553BC



110

18.2 AHB interface

The Core1553BBC operates on a 65536 x 16 bit memory buffer, and therefore a 128 kilobyte aligned
memory area should be allocated. The memory is accessed via the AMBA AHB bus. The
Core1553BBC uses only 16 address bits, and the top 15 address bits of the 32-bit AHB address can be
programmed in the AHB page address register. The 16-bit address provided by the Core1553BBC is
left-shifted one bit, and forms the AHB address together with the AHB page address register. Note
that all pointers given to the Core1553BBC core need to be right-shifted one bit because of this. All
AHB accesses are done as half word single transfers.

The endianness of the interface depends on the endian VHDL generic.

The AMBA AHB protection control signal HPROT is driven permanently with “0011”, i.e a not
cacheable, not bufferable, privileged data access. The AMBA AHB lock signal HLOCK is driven
with ‘0’.

18.3 Operation

To transmit data on the 1553 bus, an instruction list and 1553 messages should be set up in the mem-
ory by the processor. After the bus interface has been activated, it will start to process the instruction
list and read/write data words from/to the specified memory locations. Interrupts are generated when
interrupt instructions are executed, on errors or when the interface has completed the list. 

18.4 Registers

The core is programmed through registers mapped into APB address space. The internal registers of
Core1553BBC are mapped on the eight lowest APB addresses. These addresses are 32-bit word
aligned although only the lowest 16 bits are used. Refer to the Actel Core1553BBC MIL-STD-1553B
Bus Controller data sheet for detailed information.

Table 100.B1553BC registers

APB address offset Register

0x00 Control/Status

0x04 Setup

0x08 List pointer

0x0C Message pointer

0x10 Clock value

0x14 Asynchronous list pointer

0x18 Stack pointer

0x1C Interrupt register

0x20 GR1553 status/control

0x24 AHB page address register

Table 101.  GR1553 status register (read)
31 3 2 1 0

RESERVED extflag memfail busy

31: 3 RESERVED

2 External flag bit. Drives the extflag input of the Core1553BBC. Resets to zero.

1 Memory failure. Shows the value of the memfail output from Core1553BBC.

0 Busy. Shows the value of the busy output from Core1553BBC.
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18.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x070. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

18.6 Configuration options

Table 104 shows the configuration options of the core (VHDL generics).

Table 102.  GR1553 status register (write)
31 1 0

RESERVED extflag

31: 2 RESERVED

0 External flag bit. Drives the extflag input of the Core1553BBC. Resets to zero.

Table 103.  GR1553 status register (write)
31 17 16 0

ahbaddr RESERVED

31: 17 Holds the 15 top most bits of the AHB address of the allocated memory area

16: 0 RESERVED

Table 104.Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Interrupt number 0 - NAHBIRQ -1 0
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18.7 Signal descriptions

Table 105 shows the interface signals of the core (VHDL ports). 

18.8 Library dependencies

Table 106 shows libraries used when instantiating the core (VHDL libraries).

The B1553BC depends on GRLIB, GAISLER, GR1553 and Core1553BBC.

18.9 Component declaration

The core has the following component declaration.

component b1553bc is
    generic (
      hindex  : integer := 0;
      pindex  : integer := 0;
      paddr   : integer := 0;
      pmask   : integer := 16#fff#;
      pirq    : integer := 0
      );
    port (
      rstn    : in  std_ulogic;
      clk     : in  std_ulogic;

Table 105.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

B1553I - Input 1553 bus input signals -

busainp Positive data input from the A receiver High

busainn Negative data input from the A receiver Low

busbinp Positive data to the B receiver High

busbinn Negative data to the B receiver Low

B1553O - Output 1553 bus output signals -

busainen Enable for the A receiver High

busaoutin Inhibit for the A transmitter High

busaoutp Positive data to the A transmitter High

busaoutn Negative data to the A transmitter Low

busbinen Enable for the B receiver High

busboutin Inhibit for the B transmitter High

busboutp Positive output to the B transmitter High

busboutn Negative output to the B transmitter Low

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

Table 106.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals Signal definitions

GAISLER B1553 Signals, component Signal and component declaration
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      b1553i  : in  b1553_in_type;
      b1553o  : out b1553_out_type;
      apbi    : in  apb_slv_in_type;
      apbo    : out apb_slv_out_type;
      ahbi    : in  ahb_mst_in_type;
      ahbo    : out ahb_mst_out_type
      );
  end component;

18.10 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.b1553.all;
...
signal bin : b1553_in_type;
signal bout : b1553_out_type;
...
bc1553_0 : b1553bc
    generic map (hindex => 2, pindex => 12, paddr = > 12, pirq => 2)
    port map (rstn, clkm, bin, bout, apbi, apbo(12) , ahbmi, ahbmo(2));
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19 B1553BRM - AMBA plug&play interface for Actel Core1553BRM 

19.1 Overview

The interface provides a complete Mil-Std-1553B Bus Controller (BC), Remote Terminal (RT) or
Monitor Terminal (MT). The interface connects to the MIL-STD-1553B bus through external trans-
ceivers and transformers. The interface is based on the Actel Core1553BRM core. 

The interface consists of six main blocks: 1553 encoder, 1553B decoders, a protocol controller block,
AMBA bus interface, command word legality interface, and a backend interface. 

The interface can be configured to provide all three functions BC, RT and MT or any combination of
the three. All variations use all six blocks except for the command legalization interface, which is
only required on RT functions that implement RT legalization function externally. 

A single 1553 encoder takes each word to be transmitted and serializes it using Manchester encoding.
The encoder also includes independent logic to prevent the interface from transmitting for greater
than the allowed period as well as loopback fail logic. The loopback logic monitors the received data
and verifies that the interface has correctly received every word that it transmits. The output of the
encoder is gated with the bus enable signals to select which buses the interface should be transmitting
on. Two decoders take the serial Manchester received data from each bus and extract the received data
words. 

The decoder contains a digital phased lock loop (PLL) that generates a recovery clock used to sample
the incoming serial data. The data is then de-serialized and the 16-bit word decoded. The decoder
detects whether a command, status, or data word has been received, and checks that no Manchester
encoding or parity errors occurred in the word. 

The protocol controller block handles all the message sequencing and error recovery for all three
operating modes, Bus Controller, Remote Terminal, and Bus Monitor. This is complex state machine
that processes messages based on the message tables setup in memory, or reacts to incoming com-
mand words. The protocol controller implementation varies depending on which functions are imple-
mented. The AMBA interface allows a system processor to access the control registers. It also allows
the processor to directly access the memory connected to the backend interface, this simplifies the
system design. 

The interface comprises 33 16-bit registers. Of the 33 registers, 17 are used for control function and
16 for RT command legalization.

The B1553BRM core provides an AMBA interface for the Actel Core1553BRM core (MIL-STD-
1553B Bus Controller/Remote Terminal/Bus Monitor). The B1553BRM core implements two AMBA
interfaces: one AHB master interface for the memory interface, and one APB slave interface for the
CPU interface and control registers. 

The Actel Core1553BRM core, entity named BRM, is configured to use the shared memory interface,
and only internal register access is allowed through the APB slave interface. Data is read and stored
via DMA using the AHB master interface.
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19.2 AHB interface

The amount of memory that the Mil-Std-1553B interface can address is 128 (2**abit VHDL generic,
i.e. abit => 128) kbytes. The base address of this memory area must be aligned to a boundary of its
own size and written into the AHB page address register.

The 16 bit address provided by the Core1553BRM core is shifted left one bit, and forms the AHB
address together with the AHB page address register. Note that all pointers given to the
Core1553BRM core needs to be right shifted one bit because of this.

The amount of memory needed for the Core1553BRM core is operation and implementation specific.
Any configuration between 1 to 128 kilobytes is possible although a typical system needs at least 4
kbyte of memory. The allocated memory area needs to be aligned to a boundary of its own size and
the number of bits needed to address this area must be specificed with the abits VHDL generic.

The address bus of the Core1553BRM is 16 bits wide but the amount of bits actually used depends on
the setup of the data structures. The AHB page address register should be programmed with the 32-
abits top bits of the 32-bit AHB address, abit being a VHDL generic. The address provided by the
Core1553BRM core is shifted left one bit, and forms the AHB address together with the AHB page
address register. Note that all pointers given to the Core1553BRM core needs to be right shifted one
bit because of this.

When the Core1553BRM core has been granted access to the bus it expects to be able to do a series of
uninterrupted accesses. To handle this requirement the AHB master locks the bus during these trans-
fers. In the worst case, the Core1553BRM can do up to 7 writes in one such access and each write
takes 2 plus the number of waitstate cycles with 4 idle cycles between each write strobe. This means
care has to be taken if using two simultaneous active Core1553BRM cores on the same AHB bus.All
AHB accesses are done as half word single transfers. 

The endianness of the interface depends on the endian VHDL generic.

The AMBA AHB protection control signal HPROT is driven permanently with "0011" i.e a not
cacheable, not bufferable, privileged data access. During all AHB accesses the AMBA AHB lock sig-
nal HLOCK is driven with `1' and `0' otherwise.

19.3 Operation

The mode of operation can be selected with the mselin VHDL generic or later changed by writing to
the “operation and status” register of the Core1553BRM core. For information about how the core
functions during the different modes of operation see the Actel Core1553BRM MIL-STD-1553 BC,
RT, and MT data sheet.

Figure 39.  Block diagram
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19.4 Registers

The core is programmed through registers mapped into APB address space. The internal registers of
Core1553BRM are mapped on the 33 lowest APB addresses. These addresses are 32-bit word aligned
although only the lowest 16 bits are used. Refer to the Actel Core1553BRM MIL-STD-1553 BC, RT,
and MT data sheet for detailed information.

B1553BRM status/control register

13 Bus reset. If set a bus reset mode code has been received. Generates an irq when set. 
12:5 Bit 12-5 are only available in the b1553brm_async toplevel which allows separate AHB and BRM frequencies.
12 Reset. For asynchronous toplevel only. Software reset. Self clearing.
11:9 Clock select. For asynchronous toplevel only. 0 - AHB clock, 1 - divided AHB clock, 2 - brm_clk1, 3 - brm_clk2.
8:5 Clock divisor. For asynchronous toplevel only. BRM core clocked by AHB clock divided by 2*(clkdiv+1).
4: Address error. Shows the value of the rtaderr output from Core1553BRM.
3: Memory failure. Shows the value of the memfail output from Core1553BRM.
2: Busy. Shows the value of the busy output from Core1553BRM.
1: Active. Show the value of the active output from Core1553BRM.
0: Ssyfn. Connects directly to the ssyfn input of the Core1553BRM core. Resets to 1.

B1553BRM interrupt register

2: Message interrupt acknowledge. Controls the intackm input signal of the Core1553BRM core.
1: Hardware interrupt acknowledge. Controls the intackh input signal of the Core1553BRM core.
0: Interrupt level. Controls the intlevel input signal of the Core1553BRM core.

AHB page address register

[31:17]: Holds the top most bits of the AHB address of the allocated memory area.

Table 107.B1553BRM registers

APB address offset Register

0x00 - 0x84 Core1553BRM registers

0x100 B1553BRM status/control

0x104 B1553BRM interrupt settings

0x108 AHB page address register

Figure 40.  B1553BRM status/control register 
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Figure 41.  B1553RM interrupt register
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19.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x072. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

19.6 Configuration options

Table 108 shows the configuration options of the core (VHDL generics).

The nsync generic is only available for the b1553_async core.

Except for endian, ahbaddr and abits these generics drive the corresponding signal or generic of the
Core1553BRM core. Bcenable, rtenable, mtenable, legregs, enhanced, initfreq and betiming connects
to generics on the Core1553BRM core and therefore are ignored unless the RTL version is used.

Table 108.Configuration options

Generic Function Allowed range Default

hindex AHB master index 0-NAHBMST-1 0

pindex APB slave index 0-NAPBSLV-1 0

paddr ADDR field of the APB BAR 0-16#FFF# 0

pmask MASK field of the APB BAR 0-16#FF0# 16#FF0#

pirq Index of the interrupt line 0-NAHBIRQ-1 0

endian Data endianness of the AHB bus (Big = 0, Little = 1) 0 -1 0

ahbaddr Reset value for address register 16#00000#-16#FFFFF# 16#00000#

abits Number of bits needed to address the memory area 12-17 17

rtaddr RT address 0 - 31 0

rtaddrp RT address parity bit. Set to achieve odd parity. 0 - 1 1

lockn Lock rtaddrin, rtaddrp, mselin and abstdin 0-1 0

mselin Mode select 0-3 0

abstdin Bus standard A/B 0-1 0

bcenable Enable bus controller 0-1 1

rtenable Enable remote terminal 0-1 1

mtenable Enable bus monitor 0-1 1

legregs Enable legalization registers 0-1 1

enhanced Enable enhanced register 0-1 1

initfreq Initial operation frequency 12,16,20,24 20

betiming Backend timing 0-1 1

nsync Number of sync registers 1-2 2



118

19.7 Signal descriptions

Table 109 shows the interface signals of the core (VHDL ports). 

Table 109.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

RSTOUTN N/A Output Reset from BRM core Low

CLK N/A Input System clock (AHB) -

BRM_CLK1 N/A Input BRM clock 1 -

BRM_CLK2 N/A Input BRM clock 1 -

TCLK N/A Input External time base -

B1553I - Input 1553 bus input signals -

busainp Positive data input from the A receiver High

busainn Negative data input from the A receiver Low

busbinp Positive data to the B receiver High

busbinn Negative data to the B receiver Low

B1553O - Output 1553 bus output signals -

busainen Enable for the A receiver High

busaoutin Inhibit for the A transmitter High

busaoutp Positive data to the A transmitter High

busaoutn Negative data to the A transmitter Low

busbinen Enable for the B receiver High

busboutin Inhibit for the B transmitter High

busboutp Positive output to the B transmitter High

busboutn Negative output to the B transmitter Low

BRMI - Input BRM input signals -

cmdok Command word validation alright High

BRMO - Output BRM output signals -

msgstart Message process started High

cmdsync Start of command word on bus High

syncnow Synchronize received High

busreset Reset command received High

opmode Operating mode -

cmdval Active command -

cmdokout Command word validated High

cmdstb Active command value changed High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual
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19.8 Library dependencies

Table 110 shows libraries used when instantiating the core (VHDL libraries).

The B1553BRM depends on VHDL libraries GRLIB, GAISLER, GR1553 and Core1553BRM.

19.9 Component declaration

The core has the following component declaration.

component b1553brm is 
     generic (
       hindex       : integer := 0;
       pindex       : integer := 0;
       paddr        : integer := 0;
       pmask        : integer := 16#ff0#;
       pirq         : integer := 0;
       ahbaddr      : integer range 0 to 16#FFFFF# := 0; 
       abits       : integer range 12 to 17 := 16;
       rtaddr       : integer range 0 to 31 := 0; 
       rtaddrp      : integer range 0 to 1  := 1; 
       lockn        : integer range 0 to 1  := 1; 
       mselin       : integer range 0 to 3  := 1; 
       abstdin      : integer range 0 to 1  := 0; 
    
       bcenable     : integer range 0 to 1  := 1; 
       rtenable     : integer range 0 to 1  := 1; 
       mtenable     : integer range 0 to 1  := 1; 
       legregs      : integer range 0 to 4  := 1;
       enhanced     : integer range 0 to 1  := 1;
       initfreq     : integer range 12 to 24:= 20;
       betiming     : integer range 0 to 1  := 1
       );
     port (
       rstn      : in    std_ulogic;
       rstoutn   : out   std_ulogic;
       clk       : in    std_ulogic;
       tclk      : in    std_ulogic;
       brmi      : in    brm1553_in_type;
       brmo      : out   brm1553_out_type;
       b1553i    : in    b1553_in_type;
       b1553o    : out   b1553_out_type;
       apbi      : in    apb_slv_in_type;
       apbo      : out   apb_slv_out_type;
       ahbi      : in    ahb_mst_in_type;
       ahbo      : out   ahb_mst_out_type
       );
  end component;

19.10 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.b1553.all;

Table 110.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals Signal definitions

GAISLER B1553 Signals, component Signal and component declaration
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...
signal bin : b1553_in_type;
signal bout : b1553_out_type;
signal brmi : brm1553_in_type;
signal brmo : brm1553_out_type;
...

bc1553_0 : b1553brm
    generic map (hindex => 2, pindex => 12, paddr = > 16#10#, pirq => 2, 
abits => 17, mselin => 0)
    port map (rstn, open, clkm, gnd(0), brmi, brmo,  bin, bout, apbi, apbo(12), ahbmi, 
ahbmo(2));
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20 B1553RT - AMBA plug&play interface for Actel Core1553BRT 

20.1 Overview

The interface provides a complete Mil-Std-1553B Remote Terminal (RT). The interface connects to
the MIL-STD-1553B bus through external transceivers and transformers. The interface is based on
the Actel Core1553BRT core.

The interface provides a complete, dual-redundant MIL-STD-1553B remote terminal (RT) apart from
the transceivers required to interface to the bus. At a high level, the interface simply provides a set of
memory mapped sub-addresses that ‘receive data written to’ or ‘transmit data read from.’ The inter-
face requires 2,048 words of memory, which can be shared with a local processor. The interface sup-
ports all 1553B mode codes and allows the user to designate as illegal any mode code or any
particular sub-address for both transmit and receive operations. The command legalization can be
done internally or via a command legalization interface.

The interface consists of six main blocks: 1553B encoders, 1553B decoders, backend interface, com-
mand decoder, RT controller blocks and a command legalization block.

A single 1553B encoder is used for the interface. This takes each word to be transmitted and serializes
it, after which the signal is Manchester encoded. The encoder also includes both logic to prevent the
RT from transmitting for greater than the allowed period and loopback fail logic. The loopback logic
monitors the received data and verifies that the interface has correctly received every word that it
transmits. The output of the encoder is gated with the bus enable signals to select which buses the RT
should use to transmit. 

The interface includes two 1553B decoders. The decoder takes the serial Manchester data received
from the bus and extracts the received data words. The decoder contains a digital phased lock loop
(PLL) that generates a recovery clock used to sample the incoming serial data. The data is then deseri-
alized and the 16-bit word decoded. The decoder detects whether a command or data word is
received, and also performs Manchester encoding and parity error checking.

The command decoder and RT controller blocks decode the incoming command words, verifying the
legality. Then the protocol state machine responds to the command, transmitting or receiving data or
processing a mode code. 

The B1553RT core provides an AMBA interface with GRLIB plug&play for the Actel Core1553BRT
(MIL-STD-1553B Remote Terminal). B1553RT implements two AMBA interfaces: one AHB master
interface for the memory interface, and one APB slave interface for the control registers. 

The Actel Core1553BRT core, entity named RT1553B, is configured to use the shared memory inter-
face. Data is read and stored via DMA using the AHB master interface.

Figure 43.  B1553RT block diagram
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20.2 Operation

The Core1553BRT core operates on a 2048*16 bit memory buffer, and therefore a 4 kilobyte memory
area should be allocated. The memory is accessed via the AMBA AHB bus. The Core1553BRT uses
only 11 address bits, and the top 20 address bits of the 32-bit AHB address can be programmed in the
AHB page address register. The 11-bit address provided by the Core1553BRT core is left-shifted one
bit, and forms the AHB address together with the AHB page address register. All AHB accesses are
done as half word single transfers. 

The used memory area has the following address map. Note that all 1553 data is 16 bit wide and will
occupy two bytes. Every sub-address needs memory to hold up to 32 16 bit words.

At the start of a bus transfer the core writes the 1553B command word (if the wrtcmd bit is set in the
control register) to the address subaddress*2 for receive commands and 0x7C0 + subaddress*2 for
transmit commands. After a bus transfer has completed a transfer status word is written to the same
location as the command word (if wrttsw bit is set in the control register). The command word of the
last transfer can always be read out through the interrupt vector and command value register.

The transfer status word written to memory has the following layout:

All mode codes are legal except the following: dynamic bus control (0), selected transmitter shutdown
(20) and override selected transmitter shutdown (21).

Table 111.Memory map for 1553 data

Address Content 

0x000-0x03F RX transfer status/command words

0x040-0x07F Receive sub-address 1 ... 

0x780-0x7BF Receive sub-address 30 

0x7C0-0x7FF TX transfer status/command words 

0x800-0x83F Not used 

0x840-0x87F Transfer sub-address 1 ... 

0xF80-0xFBF Transfer sub-address 30 

0xFC0-0xFFF Not used

Table 112.Transfer Status Word layout

Bit Name Description

15 USED Always set to 1 at the end of bus transfer

14 OKAY Set to 1 if no errors were detected

13 BUSN Set to 0 if transfer was on bus A, to 1 if bus B

12 BROADCAST Transfer was a broadcast command

11 LPBKERRB The loopback logic detected error on bus B

10 LPBKERRA The loopback logic detected error on bus A

9 ILLCMD Illegal command

8 MEMIFERR DMA access error did not omplete in time

7 MANERR Manchester coding error detected

6 PARERR Parity error detected

5 WCNTERR Wrong number of words was received

4:0 COUNT For sub address 1-30: number of words received/transmitted, 0 means 32

For sub address 0 and 31: received/transmitted mode code
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The transfer BIT word mode code transfers a word as specified in the table below:

The AMBA AHB protection control signal HPROT is driven permanently with “0011”, i.e a not
cacheable, not bufferable, privileged data access. The AMBA AHB lock signal HLOCK is driven
with ‘0’.

20.3 Registers

The core is programmed through registers mapped into APB address space.

Status register (read only)

2: RT address error. Incorrect RT address parity bit..
1: Memory failure. DMA transfer did not complete in time. Cleared using CLRERR bit in control register.
0: Busy. Indicates that the RT is busy with a transfer.

Table 113.Built In Test word

Bit Name Description

15 BUSINUSE Set to 0 if transfer was on bus A, to 1 if bus B

14 LPBKERRB The loopback logic detected error on bus B. Cleared by CLRERR.

13 LPBKERRA The loopback logic detected error on bus A. Cleared by CLRERR.

12 SHUTDOWNB Indicates that bus B has been shutdown

11 SHUTDOWNA Indicates that bus A has been shutdown

10 TFLAGINH Terminal flag inhibit setting

9 WCNTERR Word count error has occured. Cleared by CLRERR.

8 MANERR Manchester coding error detected. Cleared by CLRERR.

7 PARERR Parity error detected. Cleared by CLRERR.

6 RTRTTO RT to RT transfer timeout. Cleared by CLRERR.

5 MEMFAIL DMA transfer not completed in time. Cleared by CLRERR.

4:0 VERSION Core1553RT version

Table 114.B1553RT registers

APB Address offset Register

0x00 Status

0x04 Control

0x08 Vector word

0x0C Interrupt vector and command value

0x10 AHB page address register

Figure 44.  Status register
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Control register

19: Set to ‘1’ to enable internal loopback of subaddress 30. Transmits from sa 30 reads from the receive buffer for sa 30.
18: Set to ‘1’ to enable broadcasts messages. If ‘0’ address 31 is treated as normal RT address.
17: ‘1’ enables interrupts for bad messages. If ‘0’ only good messages generates interrupts.
16: If ‘1’ mode code data is written to / read from memory. If ‘0’ the vword register is used for transmit vector word

mode code and the data for synchronize with data is discarded.
15: If ‘1’ the command word is written to memory at the start of a bus transfer.
14: If ‘1’ the transfer status word is written to memory at the end of a bus transfer.
13: RT address parity bit. Odd parity over rtaddr and rtaddrp must be achieved.
12:8 RT address.
7:6 Clock speed. Should be set to indicate the clock frequency of the core. 0 - 12, 1 - 16, 2 - 20, 3 - 24 MHz
5: Set to ‘1’ and then to ‘0’ to clear internal errors.
4: Clear the interrupt. Should be set to ‘1’ to give a interrupt pulse on each message.
3: Controls the terminal flag bit in the 1553B status word. This can be masked by the "inhibit

terminal flag bit" mode code.
2: Controls the subsystem flag bit in the 1553B status word.
1: Controls the busy bit in the 1553B status word.
0: Controls the service request bit in the 1553B status word.

Vector word register

[15:0] Used for transmit vector word mode code if extmdata bit is ‘0’ in control register.

Interrupt vector and command value register

[18:7] For each message the CMDVAL output of Core1553BRT is latched into this register. 
18 - broadcast
17 - 1 for transmit, 0 for receive
16:12 - subaddress
11:7 - word count / mode code

[6:0] Shows the value of the interrupt vector output of the Core1553BRT.

Figure 45.  Control register
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Figure 46.  Vector word register
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AHB page address register

[31:12]: Holds the 20 top most bits of the AHB address of the allocated memory area. Resets to the value specified with the
ahbaddr VHDL generic.

20.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x071. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

20.5 Configuration options

Table 115 shows the configuration options of the core (VHDL generics).

All VHDL generics except endian are reset values for the corresponding bits in the wrapper control
register.

Table 115.Configuration options

Generic Function Allowed range Default

endian Endianness of the AHB bus (Big = 0) 0 - 1 0

ahbaddr Reset value for address register 16#00000#-16#FFFFF# 16#00000#

clkspd Clock speed 0 - 3 1

rtaddr RT address 0 - 31 0

rtaddrp RT address parity bit. Set to achieve odd parity. 0 - 1 1

wrtcmd Write command word to memory 0 - 1 1

wrttsw Write status word to memory 0 - 1 1

extmdata Read/write mode code data from/to memory 0 - 1 0

intenbbr Generate interrupts for bad messages 0 - 1 0

bcasten Broadcast enable 0 - 1 1

sa30loop Use sub-address 30 as loopback 0 - 1 0

Figure 48.  Address register
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20.6 Signal descriptions

Table 116 shows the interface signals of the core (VHDL ports).

Table 116.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

B1553I - Input 1553 bus input signals -

busainp Positive data input from the A receiver High

busainn Negative data input from the A receiver Low

busbinp Positive data to the B receiver High

busbinn Negative data to the B receiver Low

B1553O - Output 1553 bus output signals -

busainen Enable for the A receiver High

busaoutin Inhibit for the A transmitter High

busaoutp Positive data to the A transmitter High

busaoutn Negative data to the A transmitter Low

busbinen Enable for the B receiver High

busboutin Inhibit for the B transmitter High

busboutp Positive output to the B transmitter High

busboutn Negative output to the B transmitter Low

RTI - Input RT input signals -

cmdok Command word validation alright High

useextok Enable external command word validation High

RTO - Output RT output signals -

msgstart Message process started High

cmdsync Start of command word on bus High

syncnow Synchronize received High

busreset Reset command received High

cmdval Active command -

cmdokout Command word validated High

cmdstb Active command value changed High

addrlat Address latch enable High

intlat Interrupt latch enable High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual
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20.7 Library dependencies

Table 117 shows libraries that should be used when instantiating the core (VHDL libraries).

The B1553RT depends on GRLIB, GAISLER, GR1553 and Core1553BRT.

20.8 Component declaration

The core has the following component declaration.

component b1553rt is
    generic (
        hindex    : integer := 0;
        pindex    : integer := 0;
        paddr     : integer := 0;
        pmask     : integer := 16#fff#;
        pirq      : integer := 0;
        ahbaddr   : integer range 0 to 16#FFFFF# :=  0; 
        clkspd    : integer range 0 to 3 := 1; 
        rtaddr    : integer range 0 to 31 := 0;
        rtaddrp   : integer range 0 to 1 := 1; 
        wrtcmd    : integer range 0 to 1 := 1; 
        wrttsw    : integer range 0 to 1 := 1; 
        extmdata  : integer range 0 to 1 := 0; 
        intenbbr  : integer range 0 to 1 := 0; 
        bcasten   : integer range 0 to 1 := 1; 
        sa30loop  : integer range 0 to 1 := 0);
    port (
      rstn      : in    std_ulogic;
      clk       : in    std_ulogic;
      b1553i    : in    b1553_in_type;
      b1553o    : out   b1553_out_type;
      rti       : in    rt1553_in_type;
      rto       : out   rt1553_out_type;
      apbi      : in    apb_slv_in_type;
      apbo      : out   apb_slv_out_type;
      ahbi      : in    ahb_mst_in_type;
      ahbo      : out   ahb_mst_out_type);
  end component;

20.9 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.b1553.all;
...
signal bin : b1553_in_type;
signal bout : b1553_out_type;
signal rti : rt1553_in_type;
signal rto : rt1553_out_type;
...
rt : b1553rt
    generic map (hindex => 3, pindex => 13, paddr = > 13, pmask => 16#fff#, 
pirq => 3, rtaddr => 1, rtaddrp => 0, sa30loop => 1 )
    port map (rstn, clkm, bin, bout, rti, rto, apbi , apbo(13), ahbmi, ahbmo(3));

Table 117.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals Signal definitions

GAISLER B1553 Signals, component Signal and component declaration
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  rti.useextok <= ’0’;
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21 CAN_OC - GRLIB wrapper for OpenCores CAN Interface core

21.1 Overview

CAN_OC is GRLIB wrapper for the CAN core from Opencores. It provides a bridge between AMBA
AHB and the CAN Core registers. The AHB slave interface is mapped in the AHB I/O space using the
GRLIB plug&play functionality. The CAN core interrupt is routed to the AHB interrupt bus, and the
interrupt number is selected through the irq generic. The FIFO RAM in the CAN core is implemented
using the GRLIB parametrizable SYNCRAM_2P memories, assuring portability to all supported
technologies. 

This CAN interface implements the CAN 20.A and 2.0B protocols. It is based on the Philips SJA1000
and has a compatible register map with a few exceptions.

21.2 Opencores CAN controller overview

This CAN controller is based on the Philips SJA1000 and has a compatible register map with a few
exceptions. It also supports both BasicCAN (PCA82C200 like) and PeliCAN mode. In PeliCAN
mode the extended features of CAN 2.0B is supported. The mode of operation is chosen through the
Clock Divider register.

This document will list the registers and their functionality. The Philips SJA1000 data sheet can be
used as a reference if something needs clarification. See also the Design considerations chapter for
differences between this core and the SJA1000.

The register map and functionality is different between the two modes of operation. First the Basic-
CAN mode will be described followed by PeliCAN. Common registers (clock divisor and bus timing)
are described in a separate chapter. The register map also differs depending on whether the core is in
operating mode or in reset mode. When reset the core starts in reset mode awaiting configuration.
Operating mode is entered by clearing the reset request bit in the command register. To re-enter reset
mode set this bit high again.

21.3 AHB interface

All registers are one byte wide and the addresses specified in this document are byte addresses. Byte
reads and writes should be used when interfacing with this core. The read byte is duplicated on all
byte lanes of the AHB bus. The wrapper is big endian so the core expects the MSB at the lowest
address.

The bit numbering in this document uses bit 7 as MSB and bit 0 as LSB.

Figure 49.  Block diagram

AHB slave interface

AMBA AHB

Syncram_2pCAN Core
CAN_RXI

CAN_TXO

CAN_OC Wrapper

IRQ
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21.4 BasicCAN mode

21.4.1 BasicCAN register map

Table 118.BasicCAN address allocation

Address Operating mode Reset mode

Read Write Read Write

0 Control Control Control Control

1 (0xFF) Command (0xFF) Command

2 Status - Status -

3 Interrupt - Interrupt -

4 (0xFF) - Acceptance code Acceptance code

5 (0xFF) - Acceptance mask Acceptance mask

6 (0xFF) - Bus timing 0 Bus timing 0

7 (0xFF) - Bus timing 1 Bus timing 1

8 (0x00) - (0x00) -

9 (0x00) - (0x00) -

10 TX id1 TX id1 (0xFF) -

11 TX id2, rtr, dlc TX id2, rtr, dlc (0xFF) -

12 TX data byte 1 TX data byte 1 (0xFF) -

13 TX data byte 2 TX data byte 2 (0xFF) -

14 TX data byte 3 TX data byte 3 (0xFF) -

15 TX data byte 4 TX data byte 4 (0xFF) -

16 TX data byte 5 TX data byte 5 (0xFF) -

17 TX data byte 6 TX data byte 6 (0xFF) -

18 TX data byte 7 TX data byte 7 (0xFF) -

19 TX data byte 8 TX data byte 8 (0xFF) -

20 RX id1 - RX id1 -

21 RX id2, rtr, dlc - RX id2, rtr, dlc -

22 RX data byte 1 - RX data byte 1 -

23 RX data byte 2 - RX data byte 2 -

24 RX data byte 3 - RX data byte 3 -

25 RX data byte 4 - RX data byte 4 -

26 RX data byte 5 - RX data byte 5 -

27 RX data byte 6 - RX data byte 6 -

28 RX data byte 7 - RX data byte 7 -

29 RX data byte 8 - RX data byte 8 -

30 (0x00) - (0x00) -

31 Clock divider Clock divider Clock divider Clock divider
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21.4.2 Control register

The control register contains interrupt enable bits as well as the reset request bit.

21.4.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core. 

A transmission is started by writing 1 to CMR.0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. If the transmission has started it will not be aborted when set-
ting CMR.1 but it will not be retransmitted if an error occurs.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

To clear the Data overrun status bit CMR.3 must be written with 1.

Table 119.Bit interpretation of control register (CR) (address 0)

Bit Name Description

CR.7 - reserved

CR.6 - reserved

CR.5 - reserved

CR.4 Overrun Interrupt Enable 1 - enabled, 0 - disabled

CR.3 Error Interrupt Enable 1 - enabled, 0 - disabled

CR.2 Transmit Interrupt Enable 1 - enabled, 0 - disabled

CR.1 Receive Interrupt Enable 1 - enabled, 0 - disabled

CR.0 Reset request Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-
ing 0 returns to operating mode.

Table 120.Bit interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMR.4 - not used (go to sleep in SJA1000 core)

CMR.3 Clear data overrun Clear the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception

CMR.1 Abort transmission Aborts a not yet started transmission.

CMR.0 Transmission request Starts the transfer of the message in the TX buffer
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21.4.4 Status register

The status register is read only and reflects the current status of the core. 

Receive buffer status is cleared when the Release receive buffer command is given and set high if
there are more messages available in the fifo.

The data overrun status signals that a message which was accepted could not be placed in the fifo
because not enough space left. NOTE: This bit differs from the SJA1000 behavior and is set first
when the fifo has been read out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is 0.

The transmission complete bit is set to 0 when a transmission request has been issued and will not be
set to 1 again until a message has successfully been transmitted.

21.4.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the control register. 

This register is reset on read with the exception of IR.0. Note that this differs from the SJA1000
behavior where all bits are reset on read in BasicCAN mode. This core resets the receive interrupt bit
when the release receive buffer command is given (like in PeliCAN mode).

Also note that bit IR.5 through IR.7 reads as 1 but IR.4 is 0.

Table 121.Bit interpretation of status register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the CPU warning 
limit (96). 

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1 if a message was lost because no space in fifo.

SR.0 Receive buffer status 1 if messages available in the receive fifo.

Table 122.Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 - reserved

IR.6 - reserved

IR.5 - reserved

IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt Set when SR.1 goes from 0 to 1.

IR.2 Error interrupt Set when the error status or bus status are changed.

IR.1 Transmit interrupt Set when the transmit buffer is released (status bit 0->1)

IR.0 Receive interrupt This bit is set while there are more messages in the fifo.
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21.4.6 Transmit buffer

The table below shows the layout of the transmit buffer. In BasicCAN only standard frame messages
can be transmitted and received (EFF messages on the bus are ignored).

If the RTR bit is set no data bytes will be sent but DLC is still part of the frame and must be specified
according to the requested frame. Note that it is possible to specify a DLC larger than 8 bytes but
should not be done for compatibility reasons. If DLC > 8 still only 8 bytes can be sent.

21.4.7 Receive buffer

The receive buffer on address 20 through 29 is the visible part of the 64 byte RX FIFO. Its layout is
identical to that of the transmit buffer. 

21.4.8 Acceptance filter

Messages can be filtered based on their identifiers using the acceptance code and acceptance mask
registers. The top 8 bits of the 11 bit identifier are compared with the acceptance code register only
comparing the bits set to zero in the acceptance mask register. If a match is detected the message is
stored to the fifo.

Table 123.Transmit buffer layout

Addr Name Bits

7 6 5 4 3 2 1 0

10 ID byte 1 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3

11 ID byte 2 ID.2 ID.1 ID.0 RTR DLC.3 DLC.2 DLC.1 DLC.0

12 TX data 1 TX byte 1

13 TX data 2 TX byte 2

14 TX data 3 TX byte 3

15 TX data 4 TX byte 4

16 TX data 5 TX byte 5

17 TX data 6 TX byte 6

18 TX data 7 TX byte 7

19 TX data 8 TX byte 8
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21.5 PeliCAN mode

21.5.1 PeliCAN register map

The transmit and receive buffers have different layout depending on if standard frame format (SFF) or
extended frame format (EFF) is to be transmitted/received. See the specific section below. 

Table 124.PeliCAN address allocation

#

Operating mode Reset mode

Read Write Read Write

0 Mode Mode Mode Mode

1 (0x00) Command (0x00) Command

2 Status - Status -

3 Interrupt - Interrupt -

4 Interrupt enable Interrupt enable Interrupt enable Interrupt enable

5 reserved (0x00) - reserved (0x00) -

6 Bus timing 0 - Bus timing 0 Bus timing 0

7 Bus timing 1 - Bus timing 1 Bus timing 1

8 (0x00) - (0x00) -

9 (0x00) - (0x00) -

10 reserved (0x00) - reserved (0x00) -

11 Arbitration lost capture - Arbitration lost capture-

12 Error code capture - Error code capture -

13 Error warning limit - Error warning limit Error warning limit

14 RX error counter - RX error counter RX error counter

15 TX error counter - TX error counter TX error counter

16 RX FI SFF RX FI EFF TX FI SFF TX FI EFF Acceptance code 0 Acceptance code 0

17 RX ID 1 RX ID 1 TX ID 1 TX ID 1 Acceptance code 1 Acceptance code 1

18 RX ID 2 RX ID 2 TX ID 2 TX ID 2 Acceptance code 2 Acceptance code 2

19 RX data 1 RX ID 3 TX data 1 TX ID 3 Acceptance code 3 Acceptance code 3

20 RX data 2 RX ID 4 TX data 2 TX ID 4 Acceptance mask 0 Acceptance mask 0

21 RX data 3 RX data 1 TX data 3 TX data 1 Acceptance mask 1 Acceptance mask 1

22 RX data 4 RX data 2 TX data 4 TX data 2 Acceptance mask 2 Acceptance mask 2

23 RX data 5 RX data 3 TX data 5 TX data 3 Acceptance mask 3 Acceptance mask 3

24 RX data 6 RX data 4 TX data 6 TX data 4 reserved (0x00) -

25 RX data 7 RX data 5 TX data 7 TX data 5 reserved (0x00) -

26 RX data 8 RX data 6 TX data 8 TX data 6 reserved (0x00) -

27 FIFO RX data 7 - TX data 7 reserved (0x00) -

28 FIFO RX data 8 - TX data 8 reserved (0x00) -

29 RX message counter - RX msg counter -

30 (0x00) - (0x00) -

31 Clock divider Clock divider Clock divider Clock divider
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21.5.2 Mode register

Writing to MOD.1-3 can only be done when reset mode has been entered previously. 

In Listen only mode the core will not send any acknowledgements. Note that unlike the SJA1000 the
Opencores core does not become error passive and active error frames are still sent!

When in Self test mode the core can complete a successful transmission without getting an acknowl-
edgement if given the Self reception request command. Note that the core must still be connected to a
real bus, it does not do an internal loopback.

21.5.3 Command register

Writing a one to the corresponding bit in this register initiates an action supported by the core.

A transmission is started by writing 1 to CMR.0. It can only be aborted by writing 1 to CMR.1 and
only if the transfer has not yet started. Setting CMR.0 and CMR.1 simultaneously will result in a so
called single shot transfer, i.e. the core will not try to retransmit the message if not successful the first
time.

Giving the Release receive buffer command should be done after reading the contents of the receive
buffer in order to release this memory. If there is another message waiting in the FIFO a new receive
interrupt will be generated (if enabled) and the receive buffer status bit will be set again.

The Self reception request bit together with the self test mode makes it possible to do a self test of the
core without any other cores on the bus. A message will simultaneously be transmitted and received
and both receive and transmit interrupt will be generated.

Table 125.Bit interpretation of mode register (MOD) (address 0)

Bit Name Description

MOD.7 - reserved

MOD.6 - reserved

MOD.5 - reserved

MOD.4 - not used (sleep mode in SJA1000)

MOD.3 Acceptance filter mode 1 - single filter mode, 0 - dual filter mode

MOD.2 Self test mode If set the controller is in self test mode 

MOD.1 Listen only mode If set the controller is in listen only mode 

MOD.0 Reset mode Writing 1 to this bit aborts any ongoing transfer and enters reset mode. Writ-
ing 0 returns to operating mode

Table 126.Bit interpretation of command register (CMR) (address 1)

Bit Name Description

CMR.7 - reserved

CMR.6 - reserved

CMR.5 - reserved

CMR.4 Self reception request Transmits and simultaneously receives a message

CMR.3 Clear data overrun Clears the data overrun status bit

CMR.2 Release receive buffer Free the current receive buffer for new reception

CMR.1 Abort transmission Aborts a not yet started transmission.

CMR.0 Transmission request Starts the transfer of the message in the TX buffer
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21.5.4 Status register

The status register is read only and reflects the current status of the core.

Receive buffer status is cleared when there are no more messages in the fifo. The data overrun status
signals that a message which was accepted could not be placed in the fifo because not enough space
left. NOTE: This bit differs from the SJA1000 behavior and is set first when the fifo has been read
out.

When the transmit buffer status is high the transmit buffer is available to be written into by the CPU.
During an on-going transmission the buffer is locked and this bit is 0.

The transmission complete bit is set to 0 when a transmission request or self reception request has
been issued and will not be set to 1 again until a message has successfully been transmitted.

21.5.5 Interrupt register

The interrupt register signals to CPU what caused the interrupt. The interrupt bits are only set if the
corresponding interrupt enable bit is set in the interrupt enable register.

This register is reset on read with the exception of IR.0 which is reset when the fifo has been emptied.

Table 127.Bit interpretation of command register (SR) (address 2)

Bit Name Description

SR.7 Bus status 1 when the core is in bus-off and not involved in bus activities

SR.6 Error status At least one of the error counters have reached or exceeded the error warning 
limit. 

SR.5 Transmit status 1 when transmitting a message

SR.4 Receive status 1 when receiving a message

SR.3 Transmission complete 1 indicates the last message was successfully transferred.

SR.2 Transmit buffer status 1 means CPU can write into the transmit buffer

SR.1 Data overrun status 1 if a message was lost because no space in fifo.

SR.0 Receive buffer status 1 if messages available in the receive fifo.

Table 128.Bit interpretation of interrupt register (IR) (address 3)

Bit Name Description

IR.7 Bus error interrupt Set if an error on the bus has been detected

IR.6 Arbitration lost interrupt Set when the core has lost arbitration

IR.5 Error passive interrupt Set when the core goes between error active and error passive

IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt Set when data overrun status bit is set

IR.2 Error warning interrupt Set on every change of the error status or bus status

IR.1 Transmit interrupt Set when the transmit buffer is released

IR.0 Receive interrupt Set while the fifo is not empty.
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21.5.6 Interrupt enable register

In the interrupt enable register the separate interrupt sources can be enabled/disabled. If enabled the
corresponding bit in the interrupt register can be set and an interrupt generated.

21.5.7 Arbitration lost capture register

When the core loses arbitration the bit position of the bit stream processor is captured into arbitration
lost capture register. The register will not change content again until read out.

21.5.8 Error code capture register

When a bus error occurs the error code capture register is set according to what kind of error occurred,
if it was while transmitting or receiving and where in the frame it happened. As with the ALC register
the ECC register will not change value until it has been read out. The table below shows how to inter-
pret bit 7-6 of ECC.

Table 129.Bit interpretation of interrupt enable register (IER) (address 4)

Bit Name Description

IR.7 Bus error interrupt 1 - enabled, 0 - disabled

IR.6 Arbitration lost interrupt 1 - enabled, 0 - disabled

IR.5 Error passive interrupt 1 - enabled, 0 - disabled

IR.4 - not used (wake-up interrupt of SJA1000)

IR.3 Data overrun interrupt 1 - enabled, 0 - disabled

IR.2 Error warning interrupt 1 - enabled, 0 - disabled.

IR.1 Transmit interrupt 1 - enabled, 0 - disabled

IR.0 Receive interrupt 1 - enabled, 0 - disabled

Table 130.Bit interpretation of arbitration lost capture register (ALC) (address 11)

Bit Name Description

ALC.7-5 - reserved

ALC.4-0 Bit number Bit where arbitration is lost

Table 131.Bit interpretation of error code capture register (ECC) (address 12)

Bit Name Description

ECC.7-6 Error code Error code number

ECC.5 Direction 1 - Reception, 0 - transmission error

ECC.4-0 Segment Where in the frame the error occurred

Table 132.Error code interpretation

ECC.7-6 Description

0 Bit error

1 Form error

2 Stuff error

3 Other
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Bit 4 downto 0 of the ECC register is interpreted as below

21.5.9 Error warning limit register

This registers allows for setting the CPU error warning limit. It defaults to 96. Note that this register is
only writable in reset mode.

21.5.10 RX error counter register (address 14)

This register shows the value of the rx error counter. It is writable in reset mode. A bus-off event
resets this counter to 0.

21.5.11 TX error counter register (address 15)

This register shows the value of the tx error counter. It is writable in reset mode. If a bus-off event
occurs this register is initialized as to count down the protocol defined 128 occurrences of the bus-free
signal and the status of the bus-off recovery can be read out from this register. The CPU can force a
bus-off by writing 255 to this register. Note that unlike the SJA1000 this core will signal bus-off
immediately and not first when entering operating mode. The bus-off recovery sequence starts when
entering operating mode after writing 255 to this register in reset mode.

Table 133.Bit interpretation of ECC.4-0

ECC.4-0 Description

0x03 Start of frame

0x02 ID.28 - ID.21

0x06 ID.20 - ID.18

0x04 Bit SRTR

0x05 Bit IDE

0x07 ID.17 - ID.13

0x0F ID.12 - ID.5

0x0E ID.4 - ID.0

0x0C Bit RTR

0x0D Reserved bit 1

0x09 Reserved bit 0

0x0B Data length code

0x0A Data field

0x08 CRC sequence

0x18 CRC delimiter

0x19 Acknowledge slot

0x1B Acknowledge delimiter

0x1A End of frame

0x12 Intermission

0x11 Active error flag

0x16 Passive error flag

0x13 Tolerate dominant bits

0x17 Error delimiter

0x1C Overload flag
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21.5.12 Transmit buffer

The transmit buffer is write-only and mapped on address 16 to 28. Reading of this area is mapped to
the receive buffer described in the next section. The layout of the transmit buffer depends on whether
a standard frame (SFF) or an extended frame (EFF) is to be sent as seen below.

TX frame information (this field has the same layout for both SFF and EFF frames)

Bit 7 -  FF selects the frame format, i.e. whether this is to be interpreted as an extended or standard frame. 1 = EFF, 0 = SFF.
Bit 6 -  RTR should be set to 1 for an remote transmission request frame.
Bit 5:4 -  are don’t care.
Bit 3:0 - DLC specifies the Data Length Code and should be a value between 0 and 8. If a value greater than 8 is used 8 bytes

will be transmitted.

TX identifier 1 (this field is the same for both SFF and EFF frames)

Bit 7:0 -  The top eight bits of the identifier.

TX identifier 2, SFF frame

Bit 7:5 - Bottom three bits of an SFF identifier.
Bit 4:0 -  Don’t care.

Table 134.

# Write (SFF) Write(EFF)

16 TX frame information TX frame information

17 TX ID 1 TX ID 1

18 TX ID 2 TX ID 2

19 TX data 1 TX ID 3

20 TX data 2 TX ID 4

21 TX data 3 TX data 1

22 TX data 4 TX data 2

23 TX data 5 TX data 3

24 TX data 6 TX data 4

25 TX data 7 TX data 5

26 TX data 8 TX data 6

27 - TX data 7

28 - TX data 8

Table 135.TX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FF RTR - - DLC.3 DLC.2 DLC.1 DLC.0

Table 136.TX identifier 1 address 17

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Table 137.TX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 - - - - -
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TX identifier 2, EFF frame

Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.

TX identifier 3, EFF frame

Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.

TX identifier 4, EFF frame

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier
Bit 2:0 -  Don’t care

Data field

For SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28. The data is
transmitted starting from the MSB at the lowest address.

Table 138.TX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Table 139.TX identifier 3 address 19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Table 140.TX identifier 4 address 20

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.4 ID.3 ID.2 ID.1 ID.0 - - -
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21.5.13 Receive buffer

RX frame information (this field has the same layout for both SFF and EFF frames)

Bit 7 -  Frame format of received message. 1 = EFF, 0 = SFF.
Bit 6 - 1 if RTR frame.
Bit 5:4 - Always 0.
Bit 3:0 - DLC specifies the Data Length Code.

RX identifier 1(this field is the same for both SFF and EFF frames)

Bit 7:0 - The top eight bits of the identifier.

RX identifier 2, SFF frame

Bit 7:5 - Bottom three bits of an SFF identifier.
Bit 4 - 1 if RTR frame.
Bit 3:0 - Always 0.

Table 141.

# Read (SFF) Read (EFF)

16 RX frame information RX frame information

17 RX ID 1 RX ID 1

18 RX ID 2 RX ID 2

19 RX data 1 RX ID 3

20 RX data 2 RX ID 4

21 RX data 3 RX data 1

22 RX data 4 RX data 2

23 RX data 5 RX data 3

24 RX data 6 RX data 4

25 RX data 7 RX data 5

26 RX data 8 RX data 6

27 RX FI of next message in fifo RX data 7

28 RX ID1 of next message in fifo RX data 8

Table 142.RX frame information address 16

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

FF RTR 0 0 DLC.3 DLC.2 DLC.1 DLC.0

Table 143.RX identifier 1 address 17

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21

Table 144.RX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 RTR 0 0 0 0
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RX identifier 2, EFF frame

Bit 7:0 - Bit 20 downto 13 of 29 bit EFF identifier.

RX identifier 3, EFF frame

Bit 7:0 - Bit 12 downto 5 of 29 bit EFF identifier.

RX identifier 4, EFF frame

Bit 7:3 - Bit 4 downto 0 of 29 bit EFF identifier
Bit 2- 1 if RTR frame
Bit 1:0 - Don’t care

Data field

For received SFF frames the data field is located at address 19 to 26 and for EFF frames at 21 to 28. 

21.5.14 Acceptance filter

The acceptance filter can be used to filter out messages not meeting certain demands. If a message is
filtered out it will not be put into the receive fifo and the CPU will not have to deal with it.

There are two different filtering modes, single and dual filter. Which one is used is controlled by bit 3
in the mode register. In single filter mode only one 4 byte filter is used. In dual filter two smaller fil-
ters are used and if either of these signals a match the message is accepted. Each filter consists of two
parts the acceptance code and the acceptance mask. The code registers are used for specifying the pat-
tern to match and the mask registers specify don’t care bits. In total eight registers are used for the
acceptance filter as shown in the table below. Note that they are only read/writable in reset mode.

Table 145.RX identifier 2 address 18

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

Table 146.RX identifier 3 address 19

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5

Table 147.RX identifier 4 address 20

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID.4 ID.3 ID.2 ID.1 ID.0 RTR 0 0
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Single filter mode, standard frame

When receiving a standard frame in single filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

ACR0.7-0 & ACR1.7-5 are compared to ID.28-18
ACR1.4 is compared to the RTR bit.
ACR1.3-0 are unused.
ACR2 & ACR3 are compared to data byte 1 & 2.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Single filter mode, extended frame

When receiving an extended frame in single filter mode the registers ACR0-3 are compared against
the incoming message in the following way:

ACR0.7-0 & ACR1.7-0 are compared to ID.28-13
ACR2.7-0 & ACR3.7-3 are compared to ID.12-0
ACR3.2 are compared to the RTR bit
ACR3.1-0 are unused.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Dual filter mode, standard frame

When receiving a standard frame in dual filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

Filter 1
ACR0.7-0 & ACR1.7-5 are compared to ID.28-18
ACR1.4 is compared to the RTR bit.
ACR1.3-0 are compared against upper nibble of data byte 1
ACR3.3-0 are compared against lower nibble of data byte 1

Filter 2
ACR2.7-0 & ACR3.7-5 are compared to ID.28-18
ACR3.4 is compared to the RTR bit.

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

Dual filter mode, extended frame

When receiving a standard frame in dual filter mode the registers ACR0-3 are compared against the
incoming message in the following way:

Table 148.Acceptance filter registers

Address Description

16 Acceptance code 0 (ACR0)

17 Acceptance code 1 (ACR1)

18 Acceptance code 2 (ACR2)

19 Acceptance code 3 (ACR3)

20 Acceptance mask 0 (AMR0)

21 Acceptance mask 1 (AMR1)

22 Acceptance mask 2 (AMR2)

23 Acceptance mask 3 (AMR3)
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Filter 1
ACR0.7-0 & ACR1.7-0 are compared to ID.28-13

Filter 2
ACR2.7-0 & ACR3.7-0 are compared to ID.28-13

The corresponding bits in the AMR registers selects if the results of the comparison doesn’t matter. A
set bit in the mask register means don’t care.

21.5.15 RX message counter

The RX message counter register at address 29 holds the number of messages currently stored in the
receive fifo. The top three bits are always 0.

21.6 Common registers

There are three common registers with the same addresses and the same functionality in both Basi-
CAN and PeliCAN mode. These are the clock divider register and bus timing register 0 and 1.

21.6.1 Clock divider register

The only real function of this register in the GRLIB version of the Opencores CAN is to choose
between PeliCAN and BasiCAN. The clkout output of the Opencore CAN core is not connected and it
is its frequency that can be controlled with this register.

21.6.2 Bus timing 0

The CAN core system clock is calculated as:

tscl = 2*tclk*(BRP+1)
where tclk is the system clock.

The sync jump width defines how many clock cycles (tscl) a bit period may be adjusted with by one
re-synchronization.

Table 149.Bit interpretation of clock divider register (CDR) (address 31)

Bit Name Description

CDR.7 CAN mode 1 - PeliCAN, 0 - BasiCAN

CDR.6 - unused (cbp bit of SJA1000)

CDR.5 - unused (rxinten bit of SJA1000)

CDR.4 - reserved

CDR.3 Clock off Disable the clkout output

CDR.2-0 Clock divisor Frequency selector

Table 150.Bit interpretation of bus timing 0 register (BTR0) (address 6)

Bit Name Description

BTR0.7-6 SJW Synchronization jump width

BTR0.5-0 BRP Baud rate prescaler
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21.6.3 Bus timing 1

The CAN bus bit period is determined by the CAN system clock and time segment 1 and 2 as shown
in the equations below:

ttseg1 = tscl * ( TSEG1+1)
ttseg2 = tscl * ( TSEG2+1)
tbit = ttseg1 + ttseg2 + tscl

The additional tscl term comes from the initial sync segment. Sampling is done between TSEG1 and
TSEG2 in the bit period. 

21.7 Design considerations

This section lists known differences between this CAN controller and SJA1000 on which is it based:

• All bits related to sleep mode are unavailable

• Output control and test registers do not exist (reads 0x00)

• Clock divisor register bit 6 (CBP) and 5 (RXINTEN) are not implemented

• Overrun irq and status not set until fifo is read out

BasicCAN specific differences:

• The receive irq bit is not reset on read, works like in PeliCAN mode

• Bit CR.6 always reads 0 and is not a flip flop with no effect as in SJA1000

PeliCAN specific differences:

• Writing 256 to tx error counter gives immediate bus-off when still in reset mode

• Read Buffer Start Address register does not exist

• Addresses above 31 are not implemented (i.e. the internal RAM/FIFO access)

• The core transmits active error frames in Listen only mode

21.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x019. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 151.Bit interpretation of bus timing 1 register (BTR1) (address 7)

Bit Name Description

BTR1.7 SAM 1 - The bus is sampled three times, 0 - single sample point

BTR1.6-4 TSEG2 Time segment 2

BTR1.3-0 TSEG1 Time segment 1
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21.9 Configuration options

Table 152 shows the configuration options of the core (VHDL generics).

21.10 Signal descriptions

Table 153 shows the interface signals of the core (VHDL ports).

21.11 Library dependencies

Table 154 shows libraries that should be used when instantiating the core.

21.12 Component declaration

library grlib;
use grlib.amba.all;
use gaisler.can.all;

component can_oc                    
   generic (
    slvndx    : integer := 0;
    ioaddr    : integer := 16#000#;
    iomask    : integer := 16#FF0#;
    irq       : integer := 0;
    memtech   : integer := 0);
   port (                          
      resetn  : in  std_logic;        
      clk     : in  std_logic;        

Table 152.Configuration options

Generic Function Allowed range Default

slvndx AHB slave bus index 0 - NAHBSLV-1 0

ioaddr The AHB I/O area base address. Compared with bit 19-8 
of the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O area 
and the start address together with ioaddr.

0 - 16#FFF# 16#FF0#

irq Interrupt number 0 - NAHBIRQ-1 0

memtech Technology to implement on-chip RAM 0 0 - NTECH

Table 153.Signal descriptions

Signal name Field Type Function Active

CLK Input AHB clock

RESETN Input Reset Low

AHBSI * Input AMBA AHB slave inputs -

AHBSO * Input AMBA AHB slave outputs

CAN_RXI Input CAN receiver input High

CAN_TXO Output CAN transmitter output High

*1) see AMBA specification

Table 154.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER CAN Component Component declaration
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      ahbsi   : in  ahb_slv_in_type; 
      ahbso   : out ahb_slv_out_type;
      can_rxi : in  std_logic;      
      can_txo : out std_logic    
);                           
   end component; 
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22 CLKGEN - Clock generation

22.1 Overview

The CLKGEN clock generator implements internal clock generation and buffering.

22.2 Technology specific clock generators

22.2.1 Overview

The core is a wrapper that instantiates technology specific primitives depending on the value of the
tech VHDL generic. Each supported technology has its own subsection below. Table 155 lists the sub-
section applicable for each technology setting. The table is arranged after the technology’s numerical
value in GRLIB. The subsections are ordered in alphabetical order after technology vendor.

Table 155.Overview of technology specific clock generator sections

Technology Numerical value Comment Section

inferred 0 Default when no technology specific generator is available. 22.2.2

virtex 1 22.2.11

virtex2 2 22.2.12

memvirage 3 No technology specific clock generator available. 22.2.2

axcel 4 22.2.3

proasic 5 22.2.3

atc18s 6 No technology specific clock generator available. 22.2.2

altera 7 22.2.6

umc 8 No technology specific clock generator available. 22.2.2

rhumc 9 22.2.9

apa3 10 22.2.4

spartan3 11 22.2.10

ihp25 12 No technology specific clock generator available. 22.2.2

rhlib18t 13 22.2.8

virtex4 14 22.2.12

lattice 15 No technology specific clock generator available. 22.2.2

ut25 16 No technology specific clock generator available. 22.2.2

spartan3e 17 22.2.10

peregrine 18 No technology specific clock generator available. 22.2.2

memartisan 19 No technology specific clock generator available. 22.2.2

virtex5 20 22.2.13

custom1 21 No technology specific clock generator available. 22.2.2

ihp25rh 22 No technology specific clock generator available. 22.2.2

stratix1 23 22.2.6

stratix2 24 22.2.6

eclipse 25 No technology specific clock generator available. 22.2.2

stratix3 26 22.2.7

cyclone3 27 22.2.5

memvirage90 28 No technology specific clock generator available. 22.2.2

tsmc90 29 No technology specific clock generator available. 22.2.2

easic90 30 No technology specific clock generator available. 22.2.2
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22.2.2 Generic technology

This implementation is used when the clock generator does not support instantiation of technology
specific primitives or when the inferred technology has been selected.

This implementation connects the input clock, CLKIN or PCICLKIN depending on the pcien and pci-
sysclk VHDL generic, to the SDCLK, CLK1XU, and CLK outputs. The CLKN output is driven by the
inverted input clock. The PCICLK output is directly driven by PCICLKIN. Both clock lock signals
are always driven to ‘1’ and the CLK2X output is always driven to ‘0’.

In simulation, CLK, CLKN and CLK1XU transitions are skewed 1 ns relative to the SDRAM clock
output.

22.2.3 Actel Axcellerator/ProASIC

This technology selection does not instantiate any technology specific primitives. The core’s clock
output, CLK, is driven by the CLKIN or PCICLKIN input depending on the value of VHDL generics
pcien and pcisysclk.

The PCICLK is always directly connected to PCICLKIN. Outputs SDCLK, CLKN and CLK2X, are
driven to ground. Both clock lock signals, CGO.CLKLOCK and CGO.PCILOCK, are always driven
high.

22.2.4 Actel ProASIC3

This technology instantiates a PLL and a PLLINT to generate the main clock. The instantiation of a
PLLINT macro allows the PLL reference clock to be driven from an I/O that is routed through the
regular FPGA routing fabric. Figure 50 shows the instantiated primitives, the PLL EXTFB input is
not shown and the EXTFB port on the instantiated component is always tied to ground. The figure
shows which of the core’s output ports that are driven by the PLL. The PCICLOCK will directly con-
nected to PCICLKIN if VHDL generic pcien is non-zero, while CGO.PCILOCK is always driven
high. The VHDL generics pcien and pcisysclk are used to select the reference clock. The values
driven on the PLL inputs are listed in tables 156 and 157. 

Generics used in this technology: pcisysclk

Instantiated technology primitives: None

Signals not driven in this technology: clk4x, clk1xu, clk2xu

Generics used in this technology: clk_mul, clk_div, clk_odiv, pcisysclk, pcien, freq

Instantiated technology primitives: PLLINT, PLL

Signals not driven in this technology: sdclk, clk2x, clk4x, clk1xu, clk2xu

Figure 50.  Actel ProASIC3 clock generation
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The PLL primitive has one parameter, VCOFREQUENCY, which is calculated with:

The calculations are performed with integer precision. This value is also used to determine the value
driven on PLL input VCOSEL[2:0]. Table 157 lists the signal value depending on the value of VCOF-
REQUENCY.

Table 156.Constant input signals on Actel ProASIC3 PLL

Signal name Value Comment

OADIV[4:0] VHDL generic clk_odiv - 1 Output divider

OAMUX[2:0] 0b100 Post-PLL MUXA

DLYGLA[4:0] 0 Delay on Global A

OBDIV[4:0] 0 Output divider

OBMUX[2:0] 0 Post-PLL MUXB

DLYYB[4:0] 0 Delay on YB

DLYGLB[4:0] 0 Delay on Global B

OCDIV[4:0] 0 Output divider

OCMUX[2:0] 0 Post-PLL MUXC

DLYYC[4:0] 0 Delay on YC

DLYGLC[4:0] 0 Delay on Global C

FINDIV[6:0] VHDL generic clk_div - 1 Input divider

FBDIV[6:0] VHDL generic clk_mul - 1 Feedback divider

FBDLY[4:0] 0 Feedback delay

FBSEL[1:0] 0b01 2-bit PLL feedback MUX

XDLYSEL 0 1-bit PLL feedback MUX

VCOSEL[2:0] See table 157 below VCO gear control. Selects one of four 
frequency ranges.

Table 157.VCOSEL[2:0] on Actel ProASIC3 PLL

Value of VCOFREQUENCY Value driven on VCOSEL[2:0]

< 44 0b000

< 88 0b010

< 175 0b100

>= 175 0b110

VCOFREQUENCY
freq clkmul⋅

clkdiv
--------------------------------- 1000⁄=
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22.2.5 Altera Cyclone III

This technology instantiates an ALTPLL primitive to generate the required clocks, see figure 51. The
ALTPLL attributes are listed in table 158. As can be seen in this table the attributes
OPERATION_MODE and COMPENSATE_CLOCK depend on the VHDL generic sdramen.

The value driven on the ALTPLL clock enable signal is dependent on the VHDL generics clk2xen and
sdramen, table 159 lists the effect of these generics.

Generics used in this technology: clk_mul, clk_div, sdramen, pcien, pcisysclk, freq, clk2xen

Instantiated technology primitives: ALTPLL

Signals not driven in this technology: clk4x, clk1xu, clk2xu

Table 158.Altera Cyclone III ALTPLL attributes

Attribute name* Value with sdramen = 1 Value with sdramen = 0

INTENDED_DEVICE_FAMILY “Cyclone III” “Cyclone III”

OPERATION_MODE “ZERO_DELAY_BUFFER” “NORMAL”

COMPENSATE_CLOCK “CLK1” “clock0”

INCLK0_INPUT_FREQUENCY 1000000000 / (VHDL generic freq) 1000000000 / (VHDL generic freq)

WIDTH_CLOCK 5 5

CLK0_MULTIPLY_BY VHDL generic clk_mul VHDL generic clk_mul

CLK0_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

CLK1_MULTIPLY_BY VHDL generic clk_mul VHDL generic clk_mul

CLK1_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

CLK2_MULTIPLY_BY VHDL generic clk_mul * 2 VHDL generic clk_mul * 2

CLK2_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

*Any attributes not listed are assumed to have their default value

Table 159.Effect of VHDL generics clk2xen and sdramen on ALTPLL clock enable input

Value of sdramen Value of clk2xen Value of CLKENA[5:0]

0 0 0b000001

0 1 0b000101

1 0 0b000011

1 1 0b000111

Figure 51.  Altera Cyclone III ALTPLL
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Table 160 lists the connections of the core’s input and outputs to the ALTPLL ports.

The clocks can be generated using either the CLKIN input or the PCICLKIN input. This is selected
with the VHDL generics pcien and pcisysclk. If pcien is 0 or pcisysclk is 0 the input clock to the ALT-
PLL will be CLKIN. If pcien is non-zero and pcisysclk is 1 the input to the ALTPLL will be PCI-
CLKIN.

The PCICLK output will connected to the PCICLKIN input if VHDL generic pcien is non-zero. Oth-
erwise the PCICLK output will be driven to ground. The CGO.PCILOCK signal is always driven
high.

22.2.6 Altera Stratix 1/2

This technology instantiates an ALTPLL primitive to generate the required clocks, see figure 52. The
ALTPLL attributes are listed in table 161. As can be seen in this table the OPERATION_MODE
attribute depends on the VHDL generic sdramen.

Table 160.Connections between core ports and ALTPLL ports

Core signal Core direction ALTPLL signal

CLKIN/PCICLKIN* Input INCLK[0]

CLK Output CLK[0]

CLKN Output CLK[0] (CLK[0] through an inverter)

CLK2X Output CLK[2]

SDCLK Output CLK[1]

CGO.CLKLOCK Output LOCKED

* Depending on VHDL generics PCIEN and PCISYSCLK, as described below.

Generics used in this technology: clk_mul, clk_div, sdramen, pcien, pcisysclk, freq, clk2xen

Instantiated technology primitives: ALTPLL

Signals not driven in this technology: clk4x, clk1xu, clk2xu

Table 161.Altera Stratix 1/2 ALTPLL attributes

Attribute name* Value with sdramen = 1 Value with sdramen = 0

OPERATION_MODE “ZERO_DELAY_BUFFER” “NORMAL”

INCLK0_INPUT_FREQUENCY 1000000000 / (VHDL generic freq) 1000000000 / (VHDL generic freq)

WIDTH_CLOCK 6 6

CLK0_MULTIPLY_BY VHDL generic clk_mul VHDL generic clk_mul

CLK0_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

CLK1_MULTIPLY_BY VHDL generic clk_mul * 2 VHDL generic clk_mul * 2

CLK1_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

EXTCLK0_MULTIPLY_BY VHDL generic clk_mul VHDL generic clk_mul

EXTCLK0_DIVIDE_BY VHDL generic clk_div VHDL generic clk_div

*Any attributes not listed are assumed to have their default value

Figure 52.  Altera Stratix 1/2 ALTPLL
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The values driven on the ALTPLL clock enable signals are dependent on the VHDL generic clk2xen,
table 162 lists the effect of clk2xen.

Table 163 lists the connections of the core’s input and outputs to the ALTPLL ports.

The clocks can be generated using either the CLKIN input or the PCICLKIN input. This is selected
with the VHDL generics pcien and pcisysclk. If pcien is 0 or pcisysclk is 0 the input clock to the ALT-
PLL will be CLKIN. If pcien is non-zero and pcisysclk is 1 the input to the ALTPLL will be PCI-
CLKIN.

The PCICLK output will connected to the PCICLKIN input if VHDL generic pcien is non-zero. Oth-
erwise the PCICLK output will be driven to ground. The CGO.PCILOCK signal is always driven
high.

22.2.7 Altera Stratix 3

This technology is not fully supported at this time.

22.2.8 RHLIB18t

Please contact Gaisler Research for information concerning the use of this clock generator.

22.2.9 RHUMC

Please contact Gaisler Research for information concerning the use of this clock generator.

Table 162.Effect of VHDL generic clk2xen on ALTPLL clock enable inputs

Signal Value with clk2xen = 0 Value with clk2xen /= 0

CLKENA[5:0] 0b000001 0b000011

EXTCLKENA[3:0] 0b0001 0b0011

Table 163.Connections between core ports and ALTPLL ports

Core signal Core direction ALTPLL signal

CLKIN/PCICLKIN* Input INCLK[0]

CLK Output CLK[0]

CLKN Output CLK[0] (CLK[0] through an inverter)

CLK2X Output CLK[1]

SDCLK Output EXTCLK[0]

CGO.CLKLOCK Output LOCKED

* Depending on VHDL generics PCIEN and PCISYSCLK, as described below.

Generics used in this technology: clk_mul, clk_div

Instantiated technology primitives: lfdll_top

Signals not driven in this technology: -

Generics used in this technology: None

Instantiated technology primitives: pll_ip

Signals not driven in this technology: -
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22.2.10 Xilinx Spartan3/e

The main clock is generated with a DCM which is instantiated with the attributes listed in table 164.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-
CLKIN input. This is selected with the VHDL generics pcien and pcisysclk. The main DCM’s con-
nections is shown in figure 53.

If the VHDL generic clk2xen is non-zero the DCM shown in figure 54 is instantiated. The attributes of
this DCM are the same as in table 164, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE
attributes are both set to 2 and the CLK_FEEDBACK attribute is set to “1X”. The dll0lock signal is
connected to the LOCKED output of the main clock DCM. When this signal is low all the bits in the

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel

Instantiated technology primitives: BUFG, BUFMUX, DCM, BUFGDLL

Signals not driven in this technology: clk4x

Table 164.Spartan 3/e DCM attributes

Attribute name* Value

CLKDV_DIVIDE 2.0

CLKFX_DIVIDE Determined by core’s VHDL generic clk_mul

CLKFX_MULTIPLY Determined by core’s VHDL generic clk_div

CLKIN_DIVIDE_BY_2 false

CLKIN_PERIOD 10.0

CLKOUT_PHASE_SHIFT “NONE”

CLK_FEEDBACK “2X”

DESKEW_ADJUST “SYSTEM_SYNCHRONOUS”

DFS_FREQUENCY_MODE “LOW”

DLL_FREQUENCY_MODE “LOW”

DSS_MODE “NONE”

DUTY_CYCLE_CORRECTION true

FACTORY_JF X”C080” 

PHASE_SHIFT 0

STARTUP_WAIT false

*Any attributes not listed are assumed to have their default value

Figure 53.  Spartan 3/e generation of main clock
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shift register connected to the CLK2X DCM’s RST input are set to ‘1’. When the dll0lock signal is
asserted it will take four main clock cycles until the RST input is deasserted. Depending on the value
of the clksel VHDL generic the core’s CLK2X output is either driven by a BUFG or a BUFGMUX.
Figure 55 shows the two alternatives and how the CGI.CLKSEL(0) input is used to selected between
the CLK0 and CLK2X output of the CLK2X DCM.

The value of the clk2xen VHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. The core’s CLKN output is driven by the selected signal through an inverter. Figure 56
illustrates the connections.

If the VHDL generic clk2xen is zero the dll0lock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven by the main
clock DCM’s CLK2X output via a BUFG, please see figure 57.

Figure 54.  Spartan 3/e generation of CLK2X clock when VHDL generic clk2xen is non-zero
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Figure 55.  Spartan 3/e selection of CLK2X clock when VHDL generic clk2xen is non-zero
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If the SDRAM clock is enabled, via the sdramen VHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 58 is instantiated. This DCM has the same
attributes as the CLK2X DCM. The input to the SDRAM DCM input clock is determined via the
clk2xen VHDL generic. If the VHDL generic is set to 0 the input is the main CLK, if the generic is set
to 1 the input is the clk_p out of the CLK2X DCM shown in figure 55. If the clk2xen VHDL generic
is set to 2 the clock input to the SDRAM DCM depends on the clksel VHDL generic. The input in this
last case is the CLK2X output shown in figure 57.

If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is
utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

If the SDRAM clock is disabled (sdramen VHDL generic set to 0) or the core has been configured not
to use clock feedback (noclockfb VHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of the clk2xen VHDL generic. If the clk2xen VHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 55, in other words it also
depends on the clksel VHDL generic. If the clk2xen VHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.

When the sdramen VHDL generic is set to 0 the core’s CGO.CLKLOCK output is connected to the
CLK2X DCM’s LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM’s LOCKED output.

If PCI clock generation is enabled via the pcien VHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 59 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

Figure 57.  Spartan 3/e generation of CLK2X clock when VHDL generic clk2xen is zero
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22.2.11 Xilinx Virtex

The main clock is generated with the help of a CLKDLL. Figure 60 below shows how the CLKDLL
primitive is connected. The input clock source is either the core’s CLKIN input or the PCICLKIN
input. This is selected with the VHDL generics pcien and pcisysclk. The figure shows three potential
drivers of the BUFG driving the output clock CLK, the driver is selected via the VHDL generics
clk_mul and clk_div. If clk_mul/clk_div is equal to 2 the CLK2X output is selected, if clk_div/clk_mul
equals 2 the CLKDV output is selected, otherwise the CLK0 output drives the BUFG. The inverted
main clock output, CLKN, is the BUFG output connected via an inverter.

The figure shows a dashed line connecting the CLKDLL’s LOCKED output to the core output
CGO.CLKLOCK. The driver of the CGO.CLKLOCK output depends on the instantiation of a
CLKDLL for the SDRAM clock. See description of the SDRAM clock below.

If the SDRAM clock is enabled, via the sdramen VHDL generic, and the clock generator is config-
ured to use clock feedback, VHDL generic noclkfb set to 0, a CLKDLL is instantiated as depicted in
figure 61. Note how the CLKDLL’s RST input is connected via a shift register clocked by the main
clock. The shift register is loaded with all ‘1’ when the LOCKED signal of the main clock CLKDLL
is low. When the LOCKED signal from the main clock CLKDLL is asserted the SDRAM CLKDLL’s
RST input will be deasserted after four main clock cycles.

For all other configurations the SDRAM clock is driven by the main clock and the CGO.CLKLOCK
signal is driven by the main clock CLKDLL’s LOCKED output. The SDRAM CLKDLL must be
present if the core’s CLK2X output shall be driven.

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk

Instantiated technology primitives: BUFG, BUFGDLL, CLKDLL

Signals not driven in this technology: clk4x, clk1xu, clk2xu

Figure 59.  Spartan 3/e PCI clock generation
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If PCI clock generation is enabled via the pcien VHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 62 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

22.2.12 Xilinx Virtex 2/4

The main clock is generated with a DCM which is instantiated with the attributes listed in table 165.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-
CLKIN input. This is selected with the VHDL generics pcien and pcisysclk. The main DCM’s con-
nections is shown in figure 63.

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel

Instantiated technology primitives: BUFG, BUFMUX, DCM, BUFGDLL

Signals not driven in this technology: clk4x

Figure 61.  Virtex generation of SDRAM clock with feedback clock enabled
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If the VHDL generic clk2xen is non-zero the DCM shown in figure 64 is instantiated. The attributes of
this DCM are the same as in table 165, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE
attributes are both set to 2. The dll0lock signal is connected to the LOCKED output of the main clock
DCM. When this signal is low all the bits in the shift register connected to the CLK2X DCM’s RST
input are set to ‘1’. When the dll0lock signal is asserted it will take four main clock cycles until the
RST input is deasserted. Depending on the value of the clksel VHDL generic the core’s CLK2X out-
put is either driven by a BUFG or a BUFGMUX. Figure 65 shows the two alternatives and how the
CGI.CLKSEL(0) input is used to selected between the CLK0 and CLK2X output of the CLK2X
DCM.

Table 165.Virtex 2/4 DCM attributes

Attribute name* Value

CLKDV_DIVIDE 2.0

CLKFX_DIVIDE Determined by core’s VHDL generic clk_mul

CLKFX_MULTIPLY Determined by core’s VHDL generic clk_div

CLKIN_DIVIDE_BY_2 false

CLKIN_PERIOD 10.0

CLKOUT_PHASE_SHIFT “NONE”

CLK_FEEDBACK “1X”

DESKEW_ADJUST “SYSTEM_SYNCHRONOUS”

DFS_FREQUENCY_MODE “LOW”

DLL_FREQUENCY_MODE “LOW”

DSS_MODE “NONE”

DUTY_CYCLE_CORRECTION true

FACTORY_JF X”C080” 

PHASE_SHIFT 0

STARTUP_WAIT false

*Any attributes not listed are assumed to have their default value

Figure 63.  Virtex 2/4 generation of main clock
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The value of the clk2xen VHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. Note that the CLKN output always originates from the main clock DCM, as shown in
figure 63.

If the VHDL generic clk2xen is zero the dll0lock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven by the main
clock DCM’s CLK2X output via a BUFG, please see figure 66.

If the SDRAM clock is enabled, via the sdramen VHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 67. The input to the SDRAM DCM input clock
is determined via the clk2xen VHDL generic. If the VHDL generic is set to 0 the input is the main
CLK, if the generic is set to 1 the input is the clk_p out of the CLK2X DCM shown in figure 64. If the
clk2xen VHDL generic is set to 2 the clock input to the SDRAM DCM depends on the clksel VHDL
generic. The input in this last case is the CLK2X output shown in figure 65.

If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is

Figure 64.  Virtex 2/4 generation of CLK2X clock when VHDL generic clk2xen is non-zero
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Figure 65.  Virtex 2/4 selection of CLK2X clock when VHDL generic clk2xen is non-zero
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utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

If the SDRAM clock is disabled (sdramen VHDL generic set to 0) or the core has been configured not
to use clock feedback (noclockfb VHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of the clk2xen VHDL generic. If the clk2xen VHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 65, in other words it also
depends on the clksel VHDL generic. If the clk2xen VHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.

When the sdramen VHDL generic is set to 0 the core’s CGO.CLKLOCK output is connected to the
CLK2X DCM’s LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM’s LOCKED output.

If PCI clock generation is enabled via the pcien VHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 68 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

22.2.13 Xilinx Virtex 5

The main clock is generated with a DCM which is instantiated with the attributes listed in table 166.
The input clock source connected to the CLKIN input is either the core’s CLKIN input or the PCI-

Generics used in this technology: clk_mul, clk_div, sdramen, noclkfb, pcien, pcidll, pcisysclk, freq, clk2xen, clksel

Instantiated technology primitives: BUFG, BUFMUX, DCM, BUFGDLL

Signals not driven in this technology: clk4x

Figure 67.  Virtex 2/4 generation of SDRAM clock
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CLKIN input. This is selected with the VHDL generics pcien and pcisysclk. The main DCM’s con-
nections is shown in figure 69.

If the VHDL generic clk2xen is non-zero the DCM shown in figure 70 is instantiated. The attributes of
this DCM are the same as in table 166, except that the CLKFX_MULTIPLY and CLKFX_DIVIDE
attributes are both set to 2. The dll0lock signal is connected to the LOCKED output of the main clock
DCM. When this signal is low all the bits in the shift register connected to the CLK2X DCM’s RST
input are set to ‘1’. When the dll0lock signal is asserted it will take four main clock cycles until the
RST input is deasserted. Depending on the value of the clksel VHDL generic the core’s CLK2X out-
put is either driven by a BUFG or a BUFGMUX. Figure 71 shows the two alternatives and how the
CGI.CLKSEL(0) input is used to selected between the CLK0 and CLK2X output of the CLK2X
DCM.

Table 166.Virtex 5 DCM attributes

Attribute name* Value

CLKDV_DIVIDE 2.0

CLKFX_DIVIDE Determined by core’s VHDL generic clk_mul

CLKFX_MULTIPLY Determined by core’s VHDL generic clk_div

CLKIN_DIVIDE_BY_2 false

CLKIN_PERIOD 10.0

CLKOUT_PHASE_SHIFT “NONE”

CLK_FEEDBACK “1X”

DESKEW_ADJUST “SYSTEM_SYNCHRONOUS”

DFS_FREQUENCY_MODE “LOW”

DLL_FREQUENCY_MODE “LOW”

DSS_MODE “NONE”

DUTY_CYCLE_CORRECTION true

FACTORY_JF X”C080” 

PHASE_SHIFT 0

STARTUP_WAIT false

*Any attributes not listed are assumed to have their default value

Figure 69.  Virtex 5 generation of main clock
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The value of the clk2xen VHDL generic also decides which output that drives the core’s CLK output.
If the VHDL generic is non-zero the CLK output is driven by the clk_p signal originating from the
CLK2X DCM. Otherwise the CLK output is connected to the clk_i signal originating from the main
clock DCM. Note that the CLKN output always originates from the main clock DCM, as shown in
figure 69.

If the VHDL generic clk2xen is zero the dll0lock signal from the main clock DCM is either connected
to the SDRAM DCM, described below, or if the SDRAM DCM is non-existent, to the core’s
CGO.CLKLOCK output. This setting also leads to the core’s CLK2X output being driven directly by
the main clock DCM’s CLK2X output.

If the SDRAM clock is enabled, via the sdramen VHDL generic, and the clock generator is config-
ured to use clock feedback the DCM shown in figure 72. This DCM has the same attributes as the
main clock DCM described in table 166, with the exceptions that CLKFX_MULTIPLY and
CLKFX_DIVIDE are both set to 2 and DESKEW_ADJUST is set to “SOURCE_SYNCHRONOUS”. 

The input to the SDRAM DCM input clock is determined via the clk2xen VHDL generic. If the
VHDL generic is set to 0 the input is the main CLK, if the generic is set to 1 the input is the clk_p out
of the CLK2X DCM shown in figure 64. If the clk2xen VHDL generic is set to 2 the clock input to the
SDRAM DCM depends on the clksel VHDL generic. The input in this last case is the CLK2X output
shown in figure 71.

If the CLK2X DCM has been instantiated the SDRAM DCM RST input depends on the LOCKED
output of the CLK2X DCM. If the CLK2X DCM has not been instantiated the SDRAM DCM RST
input depends on the LOCKED output from the main clock DCM. The applicable LOCKED signal is
utilized to keep the SDRAM DCM in reset until its input clock has been stabilized. This is done with
a shift register with the same method used for the CLK2X DCM RST.

Figure 70.  Virtex 5 generation of CLK2X clock when VHDL generic clk2xen is non-zero
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Figure 71.  Virtex 5 selection of CLK2X clock when VHDL generic clk2xen is non-zero
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If the SDRAM clock is disabled (sdramen VHDL generic set to 0) or the core has been configured not
to use clock feedback (noclockfb VHDL generic set to 1) the driver of the core’s SDCLK output is
determined by the value of the clk2xen VHDL generic. If the clk2xen VHDL generic is set to 2, the
SDRAM clock output is the same as the CLK2X output shown in figure 71, in other words it also
depends on the clksel VHDL generic. If the clk2xen VHDL generic has any other value the SDCLK
output is the same as the core’s CLK output.

When the sdramen VHDL generic is set to 0 the core’s CGO.CLKLOCK output is connected to the
CLK2X DCM’s LOCKED output, if the DCM exists, otherwise the CGO.CLKLOCK output is con-
nected to the main clock DCM’s LOCKED output.

If PCI clock generation is enabled via the pcien VHDL generic the core instantiates either a BUFG or
a BUFGDLL as depicted in figure 73 below. Note that the PCI clock must be enabled if the main
clock is to be driven by the PCICLKIN input. If the PCI clock is disabled the PCICLK output is
driven to zero. The CGO.PCILOCK output is always driven high in all configurations.

Figure 72.  Virtex 5 generation of SDRAM clock
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22.3 Configuration options

Table 167 shows the configuration options of the core (VHDL generics).

Table 167.Configuration options

Generic name Function Allowed range Default

tech Target technology 0 - NTECH inferred

clk_mul Clock multiplier, used in clock scaling. Not all techbolo-
gies support clock scaling.

1

clk_div Clock divisor, used in clock scaling. Not all technologies 
support clock scaling.

1

sdramen When this generic is set to 1 the core will generate a 
clock on the SDCLK. Not supported by all technologies. 
See technology specific description.

0

noclkfb When this generic is set to 0 the core will use the 
CGI.PLLREF input as feedback clock for some technol-
ogies. See technology specific description.

1

pcien When this generic is set to 1 the PCI clock is activated. 
Otherwise the PCICLKIN input is typically unused. See 
technology specific descriptions.

0

pcidll When this generic is set to 1, a DLL will be instantiated 
for the PCI input clock for some technologies. See the 
technology specific descriptions.

0

pcisysclk When this generic is set to 1 the clock generator will use 
the pciclkin input as the main clock reference. This also 
requires generic pcien to be set to 1.

0

freq Clock frequency in kHz 25000

clk2xen Enables 2x clock output. Not available in all technolgies 
and may have additional options. See technology spe-
cific description.

0

clksel Enable clock select. Not available in all technologies. 0

clk_odiv ProASIC3 output divider. Only used in ProASIC3 tech-
nology.

0
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22.4 Signal descriptions

Table 168 shows the interface signals of the core (VHDL ports).

22.5 Library dependencies

Table 169 shows the libraries used when instantiating the core (VHDL libraries).

22.6 Instantiation

This example shows how the core can be instantiated together with the GRLIB reset generator.

library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
library gaisler;
use gaisler.misc.all;

entity clkgen_ex is
  port (
    resetn  : in  std_ulogic;
    clk  : in  std_ulogic; -- 50 MHz main clock
    pllref   : in  std_ulogic
  );
end;

architecture example of clkgen_ex is

signal lclk, clkm, rstn, rstraw, sdclkl, clk50: std _ulogic;
signal cgi   : clkgen_in_type;
signal cgo   : clkgen_out_type;

Table 168.Signal descriptions

Signal name Field Type Function Active

CLKIN N/A Input Reference clock input -

PCICLKIN N/A Input PCI clock input

CLK N/A Output Main clock -

CLKN N/A Output Inverted main clock -

CLK2X N/A Output 2x clock -

SDCLK N/A Output SDRAM clock -

PCICLK N/A Output PCI clock -

CGI PLLREF Input Optional reference for PLL -

PLLRST Input Optional reset for PLL

PLLCTRL Input Optional control for PLL

CLKSEL Input Optional clock select

CGO CLKLOCK Output Lock signal for main clock

PCILOCK Output Lock signal for PCI clock

CLK4X N/A Output 4x clock

CLK1XU N/A Output Unscaled 1x clock

CLK2XU N/A Output Unscaled 2x clock

Table 169.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Component, signals Core signal definitions

TECHMAP ALLCLKGEN Component Technology specific CLKGEN components
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begin
  cgi.pllctrl <= "00"; cgi.pllrst <= rstraw;

  pllref_pad : clkpad generic map (tech => padtech)  port map (pllref, cgi.pllref); 

  clk_pad : clkpad generic map (tech => padtech) po rt map (clk, lclk); 
  
  clkgen0 : clkgen  -- clock generator
    generic map (clktech, CFG_CLKMUL, CFG_CLKDIV, C FG_MCTRL_SDEN,
                 CFG_CLK_NOFB, 0, 0, 0, BOARD_FREQ)
    port map (lclk, lclk, clkm, open, open, sdclkl,  open, cgi, cgo, open, clk50);

  sdclk_pad : outpad generic map (tech => padtech, slew => 1, strength => 24) 
    port map (sdclk, sdclkl);

  resetn_pad : inpad generic map (tech => padtech) port map (resetn, rst); 
  
  rst0 : rstgen  -- reset generator
    port map (rst, clkm, cgo.clklock, rstn, rstraw) ;

end;
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23 CMP7GRLIB - Actel CoreMP7/GRLIB bridge

23.1 Overview

The core instantiates an Actel CoreMP7 processor together with Actel’s CoreMP7Bridge and the
GRLIB Core MP7 wrapper CMP7WRAP.

23.2 Operation

23.2.1 Overview

The core instantiates an Actel CoreMP7 processor together with a CoreMP7Bridge. The
CoreMP7Bridge is connected to the CoreMP7/GRLIB wrapper (CMP7WRAP) from Gaisler
Research. The CoreMP7Bridge and the CoreMP7/GRLIB wrapper allows the CoreMP7 processor to
be used with any GRLIB cores. 

For detailed information on VHDL generics and signal descriptions please see the documentation for
the instantiated cores.

23.2.2 Dependencies

The core instantiates components that are available in the CoreConsole IP library from Actel. Devel-
opment has been done with CoreConsole version 1.4. GRLIB includes functionality for copying the
required files from a CoreConsole repository into the GRLIB tree. Please see the CoreMP7 template
design documentation for further information.

23.3 Registers

The core instantiates the CoreMP7 GRLIB wrapper (CMP7WRAP) which has registers that can be
accessed via AMBA APB.

23.4 Vendor and device identifier

See documentation for the CoreMP7 GRLIB wrapper (CMP7WRAP).

23.5 Implementation

23.5.1 Technology mapping

The core instantiates an Actel CoreMP7 processor block as a black box.

Figure 74.  Block diagram
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23.5.2 RAM usage

The core does not use any RAM components.

23.6 Configuration options

Table 170 shows the configuration options of the core (VHDL generics).

23.7 Signal descriptions

Table 171 shows the interface signals of the core (VHDL ports).

Table 170.Configuration options

Generic name Function Allowed range Default

debug CoreMP7Bridge generic, debug options N/A 2

syncfiq CoreMP7Bridge generic, synchronize nFIQ N/A 0

syncirq CoreMP7Bridge generic, synchronize nIRQ N/A 0

hindex CMP7WRAP GRLIB wrapper generic N/A 0

pindex CMP7WRAP GRLIB wrapper generic N/A 0

pmask CMP7WRAP GRLIB wrapper generic N/A 16#FFF#

Table 171.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

IRQI IRL[3:0] Input Interrupt level High

RST Input Unused -

RUN Input Unused -

IRQO INTACK Output Interrupt acknowledge High

IRL[3:0] Output Processor interrupt level High

PWD Output Unused -

WDOGRES N/A Input Watchdog signal to MP7Bridge -

WDOGRESN N/A Output Watchdog signal from MP7Bridge -

ICE_NTRST N/A Input RealView ICE JTAG Reset -

ICE_TCK N/A Input RealView ICE JTAG Clock Enable -

ICE_TDI N/A Input RealView ICE JTAG Data In -

ICE_TMS N/A Inpuit RealView ICE JTAG Mode Select -

ICE_VTREF N/A Output RealView ICE Target Reference Voltage -

ICE_TDO N/A Output RealView ICE JTAG Data Out -

ICE_RTCK N/A Output RealView ICE JTAG RTSCK (Used for adaptive 
clocking)

-

ICE_NSRST N/A Input/
Output

RealView ICE JTAG System Reset -

ICE_DBGACK N/A Output RealView ICE JTAG Debug Acknowledge -

ICE_DBGRQ N/A Output RealView ICE JTAG Debug Request -
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23.8 Library dependencies

Table 172 shows the libraries used when instantiating the core (VHDL libraries).

23.9 Component declaration

The core’s component declaration is shown below.

  component cmp7grlib
    generic(
      DEBUG   : integer := 2;
      SYNCFIQ : integer := 0;

ICE_TDOUT N/A Output RealView ICE JTAG -

ICE_NTDOEN N/A Output RealView ICE JTAG -

UJTAG_TCK N/A Input JTAG interface to MP7Bridge -

UJTAG_TDI N/A Input JTAG interface to MP7Bridge -

UJTAG_TMS N/A Input JTAG interface to MP7Bridge -

UJTAG_TRSTB N/A Input JTAG interface to MP7Bridge -

UJTAG_TDO N/A Output JTAG interface to MP7Bridge -

CPA N/A Input Co-processor interface signal -

CPB N/A Input Co-processor interface signal -

CPSEQ N/A Output Co-processor interface signal -

CPTBIT N/A Output Co-processor interface signal -

CPNI N/A Output Co-processor interface signal -

CPNMREQ N/A Output Co-processor interface signal -

CPNOPC N/A Output Co-processor interface signal -

CPNTRANS N/A Output Co-processor interface signal -

DBGBREAK N/A Input ETM interface signal -

DBGEXT[1:0] N/A Input ETM interface signal -

DBGRQ N/A Input ETM interface signal -

DBGACK N/A Output ETM interface signal -

DBGCOMMRX N/A Output ETM interface signal -

DBGCOMMTX N/A Output ETM interface signal -

DBGINSTR-
VALID

N/A Output ETM interface signal -

DBGRNG[1:0] N/A Output ETM interface signal -

DBGNEXEC N/A Output ETM interface signal -

CFGBIGEND N/A Input Controls the core’s endianess setting High

DMORE N/A Output Asserted during LDM and STM instructions. High

DBGEN N/A Input Should always be asserted. High

* see GRLIB IP Library User’s Manual

Table 172.Library dependencies

Library Package Imported unit(s) Description

GAISLER LEON3 Signals Signal definitions

GRLIB AMBA Signals AMBA signal definitions

Table 171.Signal descriptions

Signal name Field Type Function Active
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      SYNCIRQ : integer := 0;
      hindex  : integer := 0;
      pindex  : integer := 0;
      paddr   : integer := 16#000#;
      pmask   : integer := 16#fff#
      );
    port (
      rst             : in  std_ulogic;
      clk             : in  std_ulogic;
      ahbmi           : in  ahb_mst_in_type;
      ahbmo           : out ahb_mst_out_type;
      apbi            : in apb_slv_in_type;
      apbo            : out apb_slv_out_type;
      irqi            : in  l3_irq_in_type;
      irqo            : out l3_irq_out_type;
      WDOGRES         : in std_logic;
      WDOGRESn        : out std_logic;
      ICE_nTRST       : in  std_logic;
      ICE_TCK         : in  std_logic;
      ICE_TDI         : in  std_logic;
      ICE_TMS         : in  std_logic;
      ICE_VTref       : out std_logic;
      ICE_TDO         : out std_logic;
      ICE_RTCK        : out std_logic;
      ICE_nSRST       : inout std_logic;
      ICE_DBGACK      : out std_logic;
      ICE_DBGRQ       : out std_logic;
      ICE_TDOUT       : out std_logic;
      ICE_nTDOEN      : out std_logic;
      UJTAG_TCK       : in std_logic;
      UJTAG_TDI       : in std_logic;
      UJTAG_TMS       : in std_logic;
      UJTAG_TRSTB     : in std_logic;
      UJTAG_TDO       : out std_logic;
      CPA             : in std_logic;
      CPB             : in std_logic;
      CPSEQ           : out std_logic;
      CPTBIT          : out std_logic;
      CPnI            : out std_logic;
      CPnMREQ         : out std_logic;
      CPnOPC          : out std_logic;
      CPnTRANS        : out std_logic;
      DBGBREAK        : in std_logic;
      DBGEXT          : in std_logic_vector(1 downt o 0);
      DBGRQ           : in std_logic;
      DBGACK          : out std_logic;
      DBGCOMMRX       : out std_logic;
      DBGCOMMTX       : out std_logic;
      DBGINSTRVALID   : out std_logic;
      DBGRNG          : out std_logic_vector(1 down to 0);
      DBGnEXEC        : out std_logic;)
      CFGBIGEND       : in std_logic;
      DMORE           : out std_logic;
      DBGEN           : in std_logic
      );
  end component;
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24 CMP7WRAP - Actel CoreMP7 GRLIB wrapper

24.1 Overview

The core allows using Actel’s CoreMP7 processor within GRLIB. The CoreMP7, paired with the
CoreMP7Bridge, already provides an AMBA interface and the core provides GRLIB plug’n’play
information, handles interrupt steering and performs endianness adaption.

24.2 Operation

24.2.1 Overview

The core is typically instantiated via the CMP7GRLIB CoreMP7/GRLIB bridge. 

24.2.2 Bus interface

Since the CoreMP7 paired with the CoreMP7Bridge (supplied by Actel) already has an AMBA inter-
face, the core does not provide any rapping of the actual bus interface. The core provides the GRLIB
plug’n’play side band signals. On the CoreMP7 side the core has inputs and outputs for all AMBA
related signals going to and from the CoreMP7Bridge. On the GRLIB side the wrapper has the same
inputs and outputs with the addition of the plug’n’play signals.

24.2.3 Interrupt wrapping

The CoreMP7 and the Leon3 handle interrupts differently. To make the CoreMP7 compatible with the
GRLIB interrupt controller (IRQMP), the core provides an interface between the two. When an inter-
rupt occurs the wrapper will assert either the IRQ or FIQ signal connected to the CoreMP7Bridge.
Which signal that is asserted is determined by a configurable mask register in the core. Using this reg-
ister the designer can decide which of the 15 available interrupts that should be forwarded as regular
interrupts and which that should be forwarded as fast interrupts.

When an interrupt has been handled by the processor, software must write to an acknowledge register
in the core. When this is done the wrapper asserts the acknowledge signal to the interrupt controller to
signal that the interrupt has been handled. The core also automatically provides the interrupt level of
the handled interrupt. This is required by IRQMP to clear the correct interrupt. The core’s acknowl-
edge register automatically resets itself after one cycle.

The interrupt level register that is used when an interrupt is acknowledged can also be accessed by the
processor. This feature can be used to establish the source of an interrupt.

The block diagram in figure 75 provides a simplified view of the core in a system, leaving out the
APB connection used for accessing the core’s internal registers.

Figure 75.  Block diagram
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24.2.4 Endianness

The CoreMP7 is a bi-endian processor (little- or big-endian), while the LEON3 and GRLIB is big-
endian. This poses a problem when operating in little endian mode and making byte and half-word
accesses. While big-endian mode works correctly without any changes, Actel’s software tools are
intended for use with the processor in little-endian mode. The core provides means of making the
CoreMP7 compatible with GRLIB in this mode as well.

The core has an input named BIGEND which should be connected to the same source as the CFG-
BIGEND input signal on the CoreMP7. Any changes made to this signal will then be propagated both
to the processor and the core.

24.3 Registers

The core is programmed through registers mapped into APB address space.

Table 173.GRSLINK registers

APB address offset Register

0x00 Fast interrupt request mask register

0x04 Interrupt level register

0x08 Interrupt acknowledge register

Table 174. CMP7WRAP Fast interrupt request mask register
31 16 15 1 0

RESERVED FIQ_MASK R

31 :16 RESERVED

15:1 Read instruction (FIQ_MASK) - Fast interrupt request mask, read/write.

0 RESERVED

Table 175. CMP7WRAP Interrupt level register
31 4 3 0

RESERVED IRL

31 :4 RESERVED

3:0 Interrupt Level (IRL) - Interrupt level, read only.

Table 176. CM7WRAP Interrupt acknowledge register
31 1 0

RESERVED ACK

31:1 RESERVED

0 Acknowledge (ACK) - Interrupt acknowledge, write only.
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24.4 Vendor and device identifier

The core’s AHB master interface has vendor identifier 0xAC (Actel Corporation) and device identi-
fier 0x001. The core’s APB slave interface has vendor identifier 0x01 (Gaisler Research) and device
identifier 0x065. For description of vendor and device identifiers see GRLIB IP Library User’s Man-
ual.

24.5 Implementation

24.5.1 Technology mapping

The core does not instantiate any technology specific primitives.

24.5.2 RAM usage

The core does not use any RAM components.

24.6 Configuration options

Table 177 shows the configuration options of the core (VHDL generics).

24.7 Signal descriptions

Table 178 shows the interface signals of the core (VHDL ports).

Table 177.Configuration options

Generic name Function Allowed range Default

hindex AHB master index 0 - (NAHBMST-1) 0

pindex APB slave index 0 - (NAPBMAX-1) 0

paddr 12-bit MSB APB address 0 - 16#FFF# 16#000#

pmask APB address address mask. 0 - 16#FFF# 16#FFF#

Table 178.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

IRQI IRL[3:0] Input Interrupt level High

RST Input Unused -

RUN Input Unused -

IRQO INTACK Output Interrupt acknowledge High

IRL[3:0] Output Processor interrupt level High

PWD Output Unused -

BIGEND N/A Input Controls the core’s endianess setting -

NIRQ N/A Output CoreMP7Bridge interrupt input Low

NFIQ N/A Output CoreMP7Bridge fast interrupt input Low

HGRANT N/A Output CoreMP7Bridge AHB HGRANT input High

HRDATA[31:0] N/A Output CoreMP7Bridge AHB HRDATA input -
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24.8 Library dependencies

Table 179 shows the libraries used when instantiating the core (VHDL libraries).

24.9 Component declaration

The core’s component declaration is shown below.

component cmp7wrap
    generic (
      hindex  : integer := 0;
      pindex  : integer := 0;
      paddr   : integer := 16#000#;
      pmask   : integer := 16#fff#
      );     
    port (
      rst     : in  std_ulogic;
      clk     : in  std_ulogic;
      ahbmi   : in  ahb_mst_in_type;
      ahbmo   : out ahb_mst_out_type;
      apbi    : in  apb_slv_in_type;
      apbo    : out apb_slv_out_type;
      irqi    : in  l3_irq_in_type;
      irqo    : out l3_irq_out_type;
      nirq    : out std_ulogic;
      nfiq    : out std_ulogic;
      bigend  : in  std_ulogic;
      -- From wrapper to MP7Bridge
      HGRANT  : out std_logic;
      HRDATA  : out std_logic_vector(31 downto 0);
      HREADY  : out std_logic;
      HRESP   : out std_logic_vector(1 downto 0);
      -- To wrapper from MP7Bridge
      HADDR   : in std_logic_vector(31 downto 0);
      HBURST  : in std_logic_vector(2 downto 0);
      HBUSREQ : in std_logic;
      HLOCK   : in std_logic;

HREADY N/A Output CoreMP7Bridge AHB HREADY input High

HRESP[1:0] N/A Output CoreMP7Bridge AHB HRESP input -

HADDR[31:0] N/A Input CoreMP7Bridge AHB HADDR output -

HBURST N/A Input CoreMP7Bridge AHB HBURST output -

HBUSREQ N/A Input CoreMP7Bridge AHB HBUSREQ output -

HLOCK N/A Input CoreMP7Bridge AHB HLOCK output -

HPROT N/A Input CoreMP7Bridge AHB HPROT output -

HRESETN N/A Input CoreMP7Bridge AHB HRESETn output Low

HSIZE N/A Input CoreMP7Bridge AHB HSIZE output -

HTRANS N/A Input CoreMP7Bridge AHB HTRANS output -

HWDATA[31:0] N/A Input CoreMP7Bridge AHB HWDATA output -

HWRITE N/A Input CoreMP7Bridge AHBHWRITE output High

* see GRLIB IP Library User’s Manual

Table 179.Library dependencies

Library Package Imported unit(s) Description

GAISLER LEON3 Signals Signal definitions

GRLIB AMBA Signals AMBA signal definitions

Table 178.Signal descriptions

Signal name Field Type Function Active
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      HPROT   : in std_logic_vector(3 downto 0);
      HRESETn : in std_logic;
      HSIZE   : in std_logic_vector(2 downto 0);
      HTRANS  : in std_logic_vector(1 downto 0);
      HWDATA  : in std_logic_vector(31 downto 0);
      HWRITE  : in std_logic
      );
  end component;
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25 DDRSPA - 16-, 32- and 64-bit DDR266 Controller

25.1 Overview

DDRSPA is a DDR266 SDRAM controller with AMBA AHB back-end. The controller can interface
two 16-, 32- or 64-bit DDR266 memory banks to a 32-bit AHB bus. The controller acts as a slave on
the AHB bus where it occupies a configurable amount of address space for DDR SDRAM access. The
DDR controller is programmed by writing to a configuration register mapped located in AHB I/O
address space. Internally, DDRSPA consists of a ABH/DDR controller and a technology specific
DDR PHY. Currently supported technologies for the PHY is Xilinx Virtex2/Virtex4 and Altera
Startix-II. The modular design of DDRSPA allows to add support for other target technologies in a
simple manner. The DDRSPA is used in the following GRLIB template designs: leon3-avnet-ml401,
leon3-avnet-eval-xc4v, leon3-digilent-xup, leon3-digilent-xc3s1600e, leon3-altera-ep2s60-ddr and
leon3-altera-ep3c25.

25.2 Operation

25.2.1 General

Double data-rate SDRAM (DDR RAM) access is supported to two banks of 16-, 32- or 64-bit
DDR266 compatible memory devices. The controller supports 64M, 128M, 256M, 512M and 1G
devices with 9- 12 column-address bits, up to 14 row-address bits, and 4 internal banks. The size of
each of each chip select can be programmed in binary steps between 8 Mbyte and 1024 Mbyte. The
DDR data width is set by the ddrbits  VHDL generic, and will affect the width of DM, DQS and DQ
signals. The DDR data width does not change the behavior of the AHB interface, except for data
latency. When the VHDL generic mobile is set to a value not equal to 0, the controller supports
mobile DDR SDRAM (LPDDR).

25.2.2 Read cycles

An AHB read access to the controller will cause a corresponding access to the external DDR RAM.
The read cycle is started by performing an ACTIVATE command to the desired bank and row, fol-
lowed by a READ command. CAS latency of 2 (CL=2) or 3 (CL=3) can be used. Byte, half-word (16-
bit) and word (32-bit) AHB accesses are supported. Incremental AHB burst access are supported for
32-bit words only. The read cycle(s) are always terminated with a PRE-CHARGE command, no
banks are left open between two accesses. DDR read cycles are always performed in (aligned) 8-word

Figure 76.  DDRSPA Memory controller conected to AMBA bus and DDR SDRAM
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bursts, which are stored in a FIFO. After an initial latency, the data is then read out on the AHB bus
with zero waitstates.

25.2.3 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. An AHB write burst will store up to 8 words in a FIFO, before writing the data
to the DDR memory. As in the read case, only word bursts are supported

25.2.4 Initialization

If the pwron VHDL generic is 1, then the DDR controller will automatically perform the DDR initial-
ization sequence as described in the JEDEC DDR266 standard: PRE-CHARGE, LOAD-EXTMODE-
REG, LOAD-MODE-REG, PRE-CHARGE, 2xREFRESH and LOAD-MODE-REG; or as described
in the JEDEC LPDDR standard when mobile DDR is enabled: PRE-CHARGE, 2xREFRESH,
LOAD-MODE-REG and LOAD-EXTMODE-REG. The VHDL generics col and Mbyte can be used
to also set the correct address decoding after reset. In this case, no further software initialization is
needed. The DDR initialization can be performed at a later stage by setting bit 15 in the DDR control
register.

25.2.5 Configurable DDR SDRAM timing parameters

To provide optimum access cycles for different DDR devices (and at different frequencies), three tim-
ing parameters can be programmed through the memory configuration register (SDCFG): TRCD,
TRP and TRFCD. The value of these field affects the SDRAM timing as described in table 180.

If the TCD, TRP and TRFC are programmed such that the DDR200/266 specifications are fulfilled,
the remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

When the DDRSPA controller uses CAS latency (CL) of two cycles a DDR SDRAM speed grade of -
75Z or better is needed to meet 133 MHz timing.

When mobile DDR support is enabled, two additional timing parameters can be programmed though
the Power-Saving configuration register. 

Table 180.DDR SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to read/write (tRCD) TRCD + 1

Activate to Activate (tRC) TRP + TRFC + 4

Table 181.DDR SDRAM example programming

DDR SDRAM settings tRCD tRC tRP tRFC tRAS

100 MHz: CL=2, TRP=0, TRFC=4, TRCD=0 20 80 20 70 50

133 MHz: CL=2, TRP=1, TRFC=6, TRCD=1 20 82 22 67 52

Table 182.Mobile DDR SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

Exit Power-down mode to first valid command (tXP) tXP + 1

Exit Self Refresh mode to first valid command (tXSR) tXSR
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25.2.6 Refresh

The DDRSPA controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 us (corresponding to 780 at 100 MHz). The generated refresh period is
calculated as (reload value+1)/sysclk. The refresh function is enabled by bit 31 in SDCTRL register.

25.2.7 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking and
refresh are handled internally. The memory array that is refreshed during the self refresh operation is
defined in the extended mode register. These settings can be changed by setting the PASR bits in the
Power-Saving configuration register. The extended mode register is automatically updated when the
PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half, Quarter,
Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile DDR func-
tionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-Saving config-
uration register to “010” (Self Refresh). The controller will enter self refresh mode after every
memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits are
cleared. When exiting this mode and mobile DDR is disabled, the controller introduce a delay of 200
clock cycles and a AUTO REFRESH command before any other memory access is allowed. When
mobile DDR is enabled the delay before the AUTO REFRESH command is defined by tXSR in the
Power-Saving configuration register. The minimum duration of this mode is defined by tRFC. This
mode is only available then the VHDL generic mobile >= 1.

25.2.8 Clock Stop

In the clock stop mode, the external clock to the SDRAM is stop at a low level (DDR_CLK is low and
DDR_CLKB is high). This reduce the power consumption of the SDRAM while retaining the data. To
enable the clock stop mode, set the PMODE bits in the Power-Saving configuration register to “100”
(Clock Stop). The controller will enter clock stop mode after every memory access (when the control-
ler has been idle for 16 clock cycles), until the PMODE bits are cleared. The REFRESH command
will still be issued by the controller in this mode. This mode is only available then the VHDL generic
mobile >= 1 and mobile DDR functionality is enabled.

25.2.9 Power-Down

When entering the power-down mode all input and output buffers, including DDR_CLK and
DDR_CLKB and excluding DDR_CKE, are deactivated. This is a more efficient power saving mode
then clock stop mode, with a grater reduction of the SDRAM’s power consumption. All data in the
SDRAM is retained during this operation. To enable the power-down mode, set the PMODE bits in
the Power-Saving configuration register to “001” (Power-Down). The controller will enter power-
down mode after every memory access (when the controller has been idle for 16 clock cycles), until
the PMODE bits is cleared. The REFRESH command will still be issued by the controller in this
mode. When exiting this mode a delay of one or two (when tXP in the Power-Saving configuration
register is ‘1’) clock cycles are added before issue any command to the memory. This mode is only
available then the VHDL generic mobile >= 1.

25.2.10 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared followed by the mobile SDRAM initialization
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sequence. The mobile SDRAM initialization sequence can be performed by setting bit 15 in the DDR
control register. This mode is only available then the VHDL generic mobile >= 1 and mobile DDR
functionality is enabled.

25.2.11 Status Read Register

The status read register (SRR) is used to read the manufacturer ID, revision ID, refresh multiplier,
width type, and density of the SDRAM. To Read the SSR a LOAD MODE REGISTER command
with BA0 = 1 and BA1 = 0 must be issued followed by a READ command with the address set to 0.
This command sequence is executed then the Status Read Register is read. This register is only avail-
able then the VHDL generic mobile >= 1 and mobile DDR functionality is enabled. Only
DDR_CSB[0] is enabled during this operation.

25.2.12 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting
the TCSR bits in the Power-Saving configuration register. The extended mode register is automati-
cally updated when the TCSR bits are changed. Note that some vendors implements a Internal Tem-
perature-Compensated Self Refresh feature, which makes the memory to ignore the TCSR bits. This
functionality is only available then the VHDL generic mobile >= 1 and mobile DDR functionality is
enabled.

25.2.13 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available then the VHDL generic mobile >= 1 and mobile DDR functionality is
enabled.

25.2.14 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
SDCFG: PRE-CHARGE, LOAD-EXTMODE-REG, LOAD-MODE-REG and REFRESH. If the
LEMR command is issued, the PLL Reset bit as programmed in SDCFG will be used, when mobile
DDR support is enabled the DS, TCSR and PASR as programmed in Power-Saving configuration reg-
ister will be used. If the LMR command is issued, the CAS latency as programmed in the Power-Sav-
ing configuration register will be used and remaining fields are fixed: 8 word sequential burst. The
command field will be cleared after a command has been executed.

25.2.15 Clocking

The DDR controller is designed to operate with two clock domains, one for the DDR memory clock
and one for the AHB clock. The two clock domains do not have to be the same or be phase-aligned.
The DDR input clock (CLK_DDR) can be multiplied and divided by the DDR PHY to form the final
DDR clock frequency. The final DDR clock is driven on one output (CLKDDRO), which should
always be connected to the CLKDDRI input. If the AHB clock and DDR clock area generated from
the same clock source, a timing-ignore constraint should be placed between the CLK_AHB and
CLKDDRI to avoid optimization of false-paths during synthesis and place&route. 

The Xilinx version of the PHY generates the internal DDR read clock using an external clock feed-
back. The feed-back should have the same delay as DDR signals to and from the DDR memories. The
feed-back should be driven by DDR_CLK_FB_OUT, and returned on DDR_CLK_FB. Most Xilinx
FPGA boards with DDR provides clock feed-backs of this sort. The supported frequencies for the Xil-
inx PHY depends on the clock-to-output delay of the DDR output registers, and the internal delay
from the DDR input registers to the read data FIFO. Virtex2 and Virtex4 can typically run at 120
MHz, while Spartan3e can run at 100 MHz.
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The read data clock in the Xilinx version of the PHY is generated using a DCM to offset internal
delay of the DDR clock feed back. If the automatic DCM phase adjustment does not work due to
unsuitable pin selection, extra delay can be added through the RSKEW VHDL generic. The VHDL
generic can be between -255 and 255, and is passed directly to the PHASE_SHIFT generic of the
DCM.

The Altera version of the PHY use the DQS signals and an internal PLL to generate the DDR read
clock. No external clock feed-back is needed and the DDR_CLK_FB_OUT/DDR_CLK_FB signals
are not used. The supported frequencies for the Altera PHY are 100, 110, 120 and 130 MHz. For
Altera CycloneIII, the read data clock is generated by the PLL. The phase shift of the read data clock
is set be the VHDL generic RSKEW in ps (e.g. a value of 2500 equals 90’ phase for a 100MHz sys-
tem).

25.2.16 Pads

The DDRSPA core has technology-specific pads inside the core. The external DDR signals should
therefore be connected directly the top-level ports, without any logic in between.

25.2.17 Registers

The DDRSPA core implements two control registers. The registers are mapped into AHB I/O address
space defined by the AHB BAR1 of the core.

Table 183.DDR controller registers

Address offset - AHB I/O - BAR1 Register

0x00 SDRAM control register

0x04 SDRAM configuration register (read-only)

0x08 SDRAM Power-Saving configuration register

0x0C Reserved

0x10 Status Read Register (Only available when mobile DDR support is 
enabled)

0x14 PHY configuration register 0 (Only available when VHDL generic 
confapi = 1, TCI RTL_PHY)

0x18 PHY configuration register 1 (Only available when VHDL generic 
confapi = 1, TCI TRL_PHY)

Table 184.  SDRAM control register (SDCTRL)
31 30 29 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh tRP tRFC tCD SDRAM 
bank size

SRAM 
col. size

SDRAM
commnad

PR IN CE SDRAM refresh load value

31 SDRAM refresh. If set, the SDRAM refresh will be enabled. This register bit is read only when 
Power-Saving mode is other then none.

30 SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1). When mobile DDR support is 
enabled, this bit also represent the MSB in the tRFC timing.

29: 27 SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks. When mobile DDR sup-
port is enabled, this field is extended with the bit 30.

26 SDRAM tRCD delay. Sets tRCD to 2 + field value clocks.

25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000”= 8 
Mbyte, “001”= 16 Mbyte, “010”= 32 Mbyte .... “111”= 1024 Mbyte.

22: 21 SDRAM column size. “00”=512, “01”=1024, “10”=2048, “11”=4096

20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010”=PRE-
CHARGE, “100”=AUTO-REFRESH, “110”=LOAD-COMMAND-REGISTER, “111”=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 PLL Reset. This bit is used to set the PLL RESET bit during LOAD-CONFIG-REG commands.
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16 Initialize (IN). Set to ‘1’ to perform power-on DDR RAM initialisation. Is automatically cleared 
when initialisation is completed. This register bit is read only when Power-Saving mode is other then 
none.

15 Clock enable (CE). This value is driven on the CKE inputs of the DDR RAM. Should be set to ‘1’ 
for correct operation. This register bit is read only when Power-Saving mode is other then none.

14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH = 
((reload value) + 1) / SYSCLK

Table 185.  SDRAM configuration register (SDCFG)
31 20 19 16 15 14 12 11 0

Reserved CONFAPI MD Data width DDR Clock frequency

31: 20 Reserved

19: 16 Register API configuration. 
0 = Standard register API.
1 = TCI TSMC90 PHY register API.

15 Mobile DDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)

14: 12 DDR data width: “001” = 16 bits, “010” = 32 bits, “011” = 64 bits (read-only)

11: 0 Frequency of the (external) DDR clock (read-only)

Table 186. SDRAM Power-Saving configuration register
31 30 29 25 24 23 20 19 18 16 15 8 7 5 4 3 2 0

ME CL Reserved tC tXSR tXP PMODE Reserved DS TCSR PASR

31 Mobile DDR functionality enabled. ‘1’ = Enabled (support for Mobile DDR SDRAM), ‘0’ = disa-
bled (support for standard DDR SDRAM)

30 CAS latency; ‘0’ => CL = 2, ‘1’ => CL = 3

29: 25 Reserved

24 SDRAM tCKE timing, tCKE will be equal to 1 or 2 clocks (0/1). (Read only when Mobile DDR 
support is disabled).

23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile 
DDR support is disabled).

19 SDRAM tXP timing. tXP will be equal to 2 or 3 system clocks (0/1). (Read only when Mobile DDR 
support is disabled).

18: 16 Power-Saving mode (Read only when Mobile DDR support is disabled).
“000”: none
“001”: Power-Down (PD)
“010”: Self-Refresh (SR)
“100”: Clock-Stop (CKS)
“101”: Deep Power-Down (DPD)

15: 8 Reserved

7: 5 Selectable output drive strength (Read only when Mobile DDR support is disabled).
“000”: Full
“001”: One-half
“010”: One-quarter
“011”: Three-quarter

Table 184.  SDRAM control register (SDCTRL)
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25.3 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x025. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

4: 3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile DDR support is dis-
abled).
“00”: 70ªC
“01”: 45ªC
“10”: 15ªC
“11”: 85ªC

2: 0 Partial Array Self Refresh (Read only when Mobile DDR support is disabled).
“000”: Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010”: Quarter array (Bank 0)
“101”: One-eighth array (Bank 0 with row MSB = 0)
“110”: One-sixteenth array (Bank 0 with row MSB = 00)

Table 187.  Status Read Register
31 16 15 0

SRR_16 SRR

31: 16 Status Read Register when 16-bit DDR memory is used (read only)

15: 0 Status Read Register when 32/64-bit DDR memory is used (read only)

Table 188.  PHY configuration register 0 (TCI RTL_PHY only)
31 30 29 28 27 22 21 16 15 8 7 0

R1 R0 P1 P0 TSTCTRL1 TSTCTRL0 MDAJ_DLL1 MDAJ_DLL0

31 Reset DLL 1 (active high)

30 Reset DLL 1 (active high)

29 Power Down DLL 1 (active high)

28 Power Down DLL 1 (active high)

27: 22 Test control DLL 1
tstclkin(1) is connected to SIGI_1 on DDL 1 when bit 26:25 is NOT equal to “00“.
tstclkin(0) is connected to SIGI_0 on DDL 1 when bit 23:22 is NOT equal to “00“.

21: 16 Test control DLL 0

15: 8 Master delay adjustment input DLL 1

7: 0 Master delay adjustment input DLL 0

Table 189.  PHY configuration register 1 (TCI RTL_PHY only)
31 24 23 16 15 8 7 0

ADJ_RSYNC ADJ_90 ADJ_DQS1 ADJ_DQS0

31: 24 Slave delay adjustment input for resync clock (Slave 1 DLL 1)

23: 16 Slave delay adjustment input for 90’ clock (Slave 0 DLL 1)

15: 8 Slave delay adjustment input for DQS 1 (Slave 1 DLL 0)

7: 0 Slave delay adjustment input for DQS 0 (Slave 0 DLL 0)

Table 186. SDRAM Power-Saving configuration register
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25.4 Configuration options

Table 190 shows the configuration options of the core (VHDL generics).

Table 190.Configuration options

Generic Function Allowed range Default

fabtech PHY technology selection virtex2, virtex4, 
spartan3e, altera

virtex2

memtech Technology selection for DDR FIFOs infered, virtex2, virtex4, 
spartan3e, altera

infered

hindex AHB slave index 0 - NAHBSLV-1 0

haddr ADDR field of the AHB BAR0 defining SDRAM area. 
Default is 0xF0000000 - 0xFFFFFFFF.

0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#

ioaddr ADDR field of the AHB BAR1 defining I/O address 
space where DDR control register is mapped. 

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address 
space

0 - 16#FFF# 16#FFF#

ddrbits Data bus width of external DDR memory 16, 32, 64 16

MHz DDR clock input frequency in MHz. 10 - 200 100

clkmul, clkdiv The DDR input clock is multiplied with the clkmul 
generic and divided with clkdiv to create the final DDR 
clock

2 - 32 2

rstdel Clock reset delay in micro-seconds. 1 - 1023 200

col Default number of column address bits 9 - 12 9

Mbyte Default memory chip select bank size in Mbyte 8 - 1024 16

pwron Enable SDRAM at power-on initialization 0 - 1 0

oepol Polarity of bdrive and vbdrive signals. 0=active low, 
1=active high

0 - 1 0

ahbfreq Frequency in MHz of the AHB clock domain 1 - 1023 50

rskew Additional read data clock skew
Read data clock phase for Altera CycloneIII

-255 - 255.
0 - 9999

0

mobile Enable Mobile DDR support
0: Mobile DDR support disabled
1: Mobile DDR support enabled but not default
2: Mobile DDR support enabled by default
3: Mobile DDR support only (no regular DDR support)

0 - 3 0

confapi Set the PHY configuration register API:
0 = standard register API (conf0 and conf1 disabled).
1 = TCI RTL_PHY register API.

conf0 Reset value for PHY register 0, conf[31:0] 0 - 16#FFFFFFFF# 0

conf1 Reset value for PHY register1, conf[63:32] 0 - 16#FFFFFFFF# 0

regoutput Enables registers on signal going from controller to PHY 0 - 1 0



187

25.5 Signal descriptions

Table 191 shows the interface signals of the core (VHDL ports).

25.6 Library dependencies

Table 192 shows libraries used when instantiating the core (VHDL libraries).

Table 191.Signal descriptions

Signal name Type Function Active

RST_DDR Input Reset input for DDR clock domain Low

RST_AHB Input Reset input for AHB clock domain Low

CLK_DDR Input DDR input Clock -

CLK_AHB Input AHB clock -

LOCK Output DDR clock generator locked High

CLKDDRO Internal DDR clock output after clock multiplication

CLKDDRI Clock input for the internal DDR clock domain. 
Must be connected to CLKDDRO.

AHBSI Input AHB slave input signals -

AHBSO Output AHB slave output signals -

DDR_CLK[2:0] Output DDR memory clocks (positive) High

DDR_CLKB[2:0] Output DDR memory clocks (negative) Low

DDR_CLK_FB_OUT Output Same a DDR_CLK, but used to drive an external 
clock feedback.

-

DDR_CLK_FB Input Clock input for the DDR clock feed-back -

DDR_CKE[1:0] Output DDR memory clock enable High

DDR_CSB[1:0] Output DDR memory chip select Low

DDR_WEB Output DDR memory write enable Low

DDR_RASB Output DDR memory row address strobe Low

DDR_CASB Output DDR memory column address strobe Low

DDR_DM[DDRBITS/8-1:0] Output DDR memory data mask Low

DDR_DQS[DDRBITS/8-1:0] Bidir DDR memory data strobe Low

DDR_AD[13:0] Output DDR memory address bus Low

DDR_BA[1:0] Output DDR memory bank address Low

DDR_DQ[DDRBITS-1:0] BiDir DDR memory data bus -

1) see GRLIB IP Library User’s Manual 2) Polarity selected with the oepol generic

Table 192.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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25.7 Component declaration

component ddrspa
  generic (
    fabtech : integer := 0;
    memtech : integer := 0;
    hindex  : integer := 0;
    haddr   : integer := 0;
    hmask   : integer := 16#f00#;
    ioaddr  : integer := 16#000#;
    iomask  : integer := 16#fff#;
    MHz     : integer := 100;
    clkmul  : integer := 2; 
    clkdiv  : integer := 2; 
    col     : integer := 9; 
    Mbyte   : integer := 16; 
    rstdel  : integer := 200; 
    pwron   : integer := 0;
    oepol   : integer := 0;
    ddrbits : integer := 16;
    ahbfreq : integer := 50
  );
  port (
    rst_ddr : in  std_ulogic;
    rst_ahb : in  std_ulogic;
    clk_ddr : in  std_ulogic;
    clk_ahb : in  std_ulogic;
    lock    : out std_ulogic;-- DCM locked
    clkddro : out std_ulogic;-- DCM locked
    clkddri : in  std_ulogic;
    ahbsi   : in  ahb_slv_in_type;
    ahbso   : out ahb_slv_out_type;
    ddr_clk : out std_logic_vector(2 downto 0);
    ddr_clkb: out std_logic_vector(2 downto 0);
    ddr_clk_fb_out  : out std_logic;
    ddr_clk_fb  : in std_logic;
    ddr_cke  : out std_logic_vector(1 downto 0);
    ddr_csb  : out std_logic_vector(1 downto 0);
    ddr_web  : out std_ulogic;                       -- ddr write enable
    ddr_rasb  : out std_ulogic;                       -- ddr ras
    ddr_casb  : out std_ulogic;                       -- ddr cas
    ddr_dm   : out std_logic_vector (ddrbits/8-1 do wnto 0);    -- ddr dm
    ddr_dqs  : inout std_logic_vector (ddrbits/8-1 downto 0);    -- ddr dqs
    ddr_ad      : out std_logic_vector (13 downto 0 );   -- ddr address
    ddr_ba      : out std_logic_vector (1 downto 0) ;    -- ddr bank address
    ddr_dq    : inout  std_logic_vector (ddrbits-1 downto 0) -- ddr data

  );
  end component; 
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25.8 Instantiation

This examples shows how the core can be instantiated. 

The DDR SDRAM controller decodes SDRAM area at 0x40000000 - 0x7FFFFFFF. The SDRAM
registers are mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;

entity ddr_Interface is
  port ( ddr_clk  : out std_logic_vector(2 downto 0 );
    ddr_clkb  : out std_logic_vector(2 downto 0);
    ddr_clk_fb  : in std_logic;
    ddr_clk_fb_out  : out std_logic;
    ddr_cke  : out std_logic_vector(1 downto 0);
    ddr_csb  : out std_logic_vector(1 downto 0);
    ddr_web  : out std_ulogic;                       -- ddr write enable
    ddr_rasb  : out std_ulogic;                       -- ddr ras
    ddr_casb  : out std_ulogic;                       -- ddr cas
    ddr_dm   : out std_logic_vector (7 downto 0);    -- ddr dm
    ddr_dqs  : inout std_logic_vector (7 downto 0);     -- ddr dqs
    ddr_ad      : out std_logic_vector (13 downto 0 );   -- ddr address
    ddr_ba      : out std_logic_vector (1 downto 0) ;    -- ddr bank address
    ddr_dq  : inout std_logic_vector (63 downto 0);  -- ddr data

);
end;

architecture rtl of mctrl_ex is

  -- AMBA bus
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahb s_none);
signal clkml, lock : std_ulogic;

begin

-- DDR controller

ddrc : ddrspa generic map ( fabtech => virtex4, ddr bits => 64, memtech => memtech, 
hindex => 4, haddr => 16#400#, hmask => 16#F00#, io addr => 1, 
pwron => 1, MHz => 100, col => 9, Mbyte => 32, ahbf req => 50, ddrbits => 64)
port map (
rstneg, rstn, lclk, clkm, lock, clkml, clkml,  ahbs i, ahbso(4),
ddr_clk, ddr_clkb, ddr_clk_fb_out, ddr_clk_fb,
ddr_cke, ddr_csb, ddr_web, ddr_rasb, ddr_casb, 
ddr_dm, ddr_dqs, ddr_adl, ddr_ba, ddr_dq);
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26 DDR2SPA - 16-, 32- and 64-bit DDR2 Controller

26.1 Overview

DDR2SPA is a DDR2 SDRAM controller with AMBA AHB back-end. The controller can interface
two 16-, 32- or 64-bit DDR2 memory banks to a 32-bit AHB bus. The controller acts as a slave on the
AHB bus where it occupies a configurable amount of address space for DDR2 SDRAM access. The
DDR2 controller is programmed by writing to two configuration register mapped located in AHB I/O
address space. Internally, DDR2SPA consists of a ABH/DDR2 controller and a technology specific
DDR2 PHY. Currently supported technologies for the PHY is Xilinx Virtex4 and Virtex5 and Altera
StratixIII. The modular design of DDR2SPA allows to add support for other target technologies in a
simple manner. The DDR2SPA is used in the following GRLIB template design: leon3-xilinx-ml505,
leon3-altera-ep3sl150.

26.2 Operation

26.2.1 General

Double data-rate SDRAM (DDR2 RAM) access is supported to two banks of 16-, 32- or 64-bit
DDR2-400 compatible memory devices. The controller supports 64M, 128M, 256M, 512M and 1G
devices with 9- 12 column-address bits, up to 14 row-address bits, and 4 internal banks. The size of
each chip select can be programmed in binary steps between 8 Mbyte and 1024 Mbyte. The DDR data
width is set by the DDRBITS generic, and will affect the width of DM, DQS and DQ signals. The
DDR data width does not change the behavior of the AHB interface, except for data latency.

26.2.2 Read cycles

An AHB read access to the controller will cause a corresponding access to the external DDR2 RAM.
The read cycle is started by performing an ACTIVATE command to the desired bank and row, fol-
lowed by a READ command. CAS latency of 3(CL=3) is always used. Byte, half-word (16-bit) and
word (32-bit) AHB accesses are supported. Incremental AHB burst access are supported for 32-bit
words only. The read cycle(s) are always terminated with a PRE-CHARGE command, no banks are
left open between two accesses. DDR2 read cycles are always performed in (aligned) 8-word bursts,
which are stored in a FIFO. After an initial latency, the data is then read out on the AHB bus with zero
waitstates.

Figure 77.  DDR2SPA Memory controller connected to AMBA bus and DDR2 SDRAM
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26.2.3 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. An AHB write burst will store up to 8 words in a FIFO, before writing the data
to the DDR2 memory. As in the read case, only word bursts are supported

26.2.4 Initialization

If the pwron VHDL generic is 1, then the DDR2 controller will automatically perform the DDR2 ini-
tialization sequence as described in the JEDEC DDR2 standard: PRE-CHARGE, LOAD-EXT-
MODE-REG2, LOAD-EXTMODE-REG3, LOAD-EXTMODE-REG1, LOAD-MODE-REG, PRE-
CHARGE, 2xREFRESH, LOAD-MODE-REG, LOAD-EXTMODE-REG1(ODC default), and
LOAD-EXTMODE-REG1(ODC exit). The VHDL generics col and Mbyte can be used to also set the
correct address decoding after reset. In this case, no further software initialization is needed. The
DDR2 initialization can be performed at a later stage by setting bit 16 in the DDR2 control register
DDR2CFG1.

26.2.5 Configurable DDR2 SDRAM timing parameters

To provide optimum access cycles for different DDR2 devices (and at different frequencies), four tim-
ing parameters can be programmed through the memory configuration registers (DDR2CFG1, and
DDR2CFG3): TRCD, TRP, TRFCD and TWR. The value of these field affects the DDR2RAM timing
as described in table 193.

If the TCD, TRP, TRFC and TWR are programmed such that the DDR2 specifications are full filled,
the remaining SDRAM timing parameters will also be met. The table below shows typical settings for
130 and 200 MHz operation and the resulting DDR2 SDRAM timing (in ns):

The timing values shown in table 194 is the minimum value and is valid for 64-bit DDR2 interface.
The DDR2SPA controller always uses CAS latency (CL) of three cycles.

26.2.6 Refresh

The DDR2SPA controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the DDR2CFG1 register. Depending on SDRAM type,
the required period is typically 7.8 us (corresponding to 780 at 100 MHz). The generated refresh
period is calculated as (reload value+1)/sysclk. The refresh function is enabled by bit 31 in
DDR2CFG1 register.

Table 193.DDR2 SDRAM programmable minimum timing parameters

DDR2 SDRAM timing parameter Minimum timing (clocks)

Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to read/write (tRCD) TRCD + 2

Write recovery time (tWR) TWR-3

Table 194.DDR SDRAM example programming

DDR2 SDRAM settings tRCD tRC tRP tRFC tRAS

130 MHz: TRP=0, TRFC=7, TRCD=0 15 76 15 76 61

200 MHz: TRP=1, TRFC=13, TRCD=1 15 65 15 80 50
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26.2.7 DDR2 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
SDCFG1: PRE-CHARGE, LOAD-EXTMODE-REG, LOAD-MODE-REG and REFRESH. If the
LMR command is issued, the PLL Reset bit as programmed in SDCFG1 will be used, remaining
fields are fixed: 4 word sequential burst, CL=3. If the LEMR command is issued, the OCD bits will be
used as programmed in the DDR2CFG1 register. All other bits are set to zero. The command field will
be cleared after a command has been executed.

26.2.8 Clocking

The DDR2 controller is designed to operate with two clock domains, one for the DDR2 memory
clock and one for the AHB clock. The two clock domains do not have to be the same or be phase-
aligned. The DDR2 input clock (CLK_DDR) can be multiplied and divided by the DDR PHY to form
the final DDR2 clock frequency. The final DDR2 clock is driven on one output (CLKDDRO), which
should always be connected to the CLKDDRI input. If the AHB clock and DDR clock area generated
from the same clock source, a timing-ignore constraint should be placed between the CLK_AHB and
CLKDDRI to avoid optimization of false-paths during synthesis and place&route. 

The PHY generates the internal DDR read clock from the DDR2 clock (CLKDDRO). This means that
the controller do not use a feed-back clock from the DDR memory to generate the read clock. To com-
pensate for the board delay, the input pad-delay can be calibrated using the DDR2CFG2 control regis-
ter. The supported frequencies for the Xilinx PHY depends on the clock-to-output delay of the DDR
output registers, and the internal delay from the DDR input registers to the read data FIFO. Virtex5
can typically run at 200 MHz.

26.2.9 Read calibration

The input pad-delay for the data signals (DDR_DQ) can be calibrated to compensate for the board
delay between the memory and the FPGA. This can be done in two ways: by setting the VHDL gener-
ics ddelayb[7:0] to the desired delay value (only in Xilinx), or by writing to the DDR2CFG3 register
to increase/decrease the delay value. The input delay can be set to between 0 and 63 tap delays for
Virtex4/5 and between 0 and 15 for StratixIII, each with an delay of 78 ps (see FPGA data sheet for
more information). The delay for each byte can be calibrated independently. There is two bits in the
control register for each byte. One bit determine if the delay should be increased or decreased. The
other bit determine if the delay for this byte should be updated. Bit 31 in the DDR2CFG3 register is a
reset bit for the delays. If set to ‘1’, the delay will be set to the default value (set by the VHDL generic
ddelay[7:0]). To increase the calibration range, the controller can add additional read latency cycles.
The number of additional read latency cycles is set by the RD bits in the DDR2CFG3 register. For
Altera StratixIII the data sampling clock can be skewed to increase the calibration range. This is done
writing the PLL_SKEW bits in the DDR2CFG3 register. For Altera StratixIII, additional input delay
can be added by setting the D2 and D3 delay for the DDR_DQ signals in the .qsf constrains file, see
Altera StratixIII documentation on input delays for more information. For Altera StratixIII the phase
of the data sampling clock can be set by the VHDL generic rskew.

For Xilinx Sparatan-3 a clock loop is utilized for sampling of incoming data. The
DDR_CLK_FB_OUT port should therefore be connected to a signal path of equal length as the
DDR_CLK + DDR_DQS signal path. The other end of the signal path is to be connected to the
DDR_CLK_FB port. The fed back clock can then be skewed for alignment with incoming data using
the rskew generic. The rskew generic can be set between +/-255 resulting in a linear +/-360 degree
change of the clock skew. Bits 29 and 30 in the DDR2CFG3 register can be used for altering the skew
at runtime.

26.2.10 Pads

The DDR2SPA core has technology-specific pads inside the core. The external DDR2 signals should
therefore be connected directly the top-level ports, without any logic in between.
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26.2.11 Registers

The DDR2SPA core implements three control registers. The registers are mapped into AHB I/O
address space defined by the AHB BAR1 of the core.

.

Table 195.DDR2 controller registers

Address offset - AHB I/O - BAR1 Register

0x00 DDR2 SDRAM control register (DDR2CFG1)

0x04 DDR2 SDRAM control register (read-only) (DDR2CFG2)

0x08 DDR2 SDRAM control register (DDR2CFG3)

Table 196.  DDR2 SRAM control register 1 (DDR2CFG1)
31 30 29 28 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh OCD EMR RES tCD SDRAM bank 
size

SRAM col. 
size

SDRAM
command

PR IN CE SDRAM refresh load value

31 SDRAM refresh. If set, the SDRAM refresh will be enabled.

30 OCD operation

29: 28 Selects Extended mode register (1,2,3)

27 RESERVED

26 SDRAM tRCD delay. Sets tRCD to 2 + field value clocks.

25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000”= 8 
Mbyte, “001”= 16 Mbyte, “010”= 32 Mbyte .... “111”= 1024 Mbyte.

22: 21 SDRAM column size. “00”=512, “01”=1024, “10”=2048, “11”=4096

20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010”=PRE-
CHARGE, “100”=AUTO-REFRESH, “110”=LOAD-COMMAND-REGISTER, “111”=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 PLL Reset. This bit is used to set the PLL RESET bit during LOAD-CONFIG-REG commands.

16 Initialize (IN). Set to ‘1’ to perform power-on DDR RAM initialisation. Is automatically cleared 
when initialisation is completed.

15 Clock enable (CE). This value is driven on the CKE inputs of the DDR RAM. Should be set to ‘1’ 
for correct operation.

14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH = 
((reload value) + 1) / SYSCLK

Table 197.  DDR2 SDRAM configuration register 2 (DDR2CFG2)
31 15 14 12 11 0

reserved Data width DDR Clock frequency

14: 12 DDR data width: “001” = 16 bits, “010” = 32 bits, “011” = 64 bits (read-only)

11: 0 Frequency of the (external) DDR clock (read-only)

Table 198. DDR2 SDRAM configuration register 3 (DDR2CFG3)
31 30 29 28 27 23 22 18 17 16 15 8 7 0

PLL tRP tWR tRFC RD inc/dec delay Update delay

31 Reset byte delay
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26.3 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x02E. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

30: 29 PLL_SKEW
Bit 29: Update clock phase
Bit 30: 1 = Inc / 0 = Dec clock phase

28 SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1).

27 23 SDRAM write recovery time. tWR will be equal to field value - 3 system clock

22: 18 SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks.

17: 16 Number of added read delay cycles, default = 1

15: 8 Set to ‘1’ to increment byte delay, set to ‘0’ to decrement delay

7: 0 Set to ‘1’ to update byte delay

Table 198. DDR2 SDRAM configuration register 3 (DDR2CFG3)
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26.4 Configuration options

Table 199 shows the configuration options of the core (VHDL generics).

* only available in Virtex4/5 implementation. ** only available in StratixIII implementation.

Table 199.Configuration options

Generic Function Allowed range Default

fabtech PHY technology selection virtex4, virtex5, stratix3 virtex4

memtech Technology selection for DDR FIFOs inferred, virtex2, virtex4, 
spartan3e, altera

inferred

hindex AHB slave index 0 - NAHBSLV-1 0

haddr ADDR field of the AHB BAR0 defining SDRAM area. 
Default is 0xF0000000 - 0xFFFFFFFF.

0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#

ioaddr ADDR field of the AHB BAR1 defining I/O address 
space where DDR control register is mapped. 

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address 
space

0 - 16#FFF# 16#FFF#

ddrbits Data bus width of external DDR memory 16, 32, 64 16

MHz DDR clock input frequency in MHz. 10 - 200 100

clkmul, clkdiv The DDR input clock is multiplied with the clkmul 
generic and divided with clkdiv to create the final DDR 
clock

2 - 32 2

rstdel Clock reset delay in micro-seconds. 1 - 1023 200

col Default number of column address bits 9 - 12 9

Mbyte Default memory chip select bank size in Mbyte 8 - 1024 16

pwron Enable SDRAM at power-on initialization 0 - 1 0

oepol Polarity of bdrive and vbdrive signals. 0=active low, 
1=active high

0 - 1 0

ahbfreq Frequency in MHz of the AHB clock domain 1 - 1023 50

readdly Additional read latency cycles (used to increase calibra-
tion range)

0-3 1

TRFC Reset value for the tRFC timing parameter in ns. 75-155 130

ddelayb0* Input data delay for bit[7:0] 0-63 0

ddelayb1* Input data delay for bit[15:8] 0-63 0

ddelayb2* Input data delay for bit[23:16] 0-63 0

ddelayb3* Input data delay for bit[31:24] 0-63 0

ddelayb4* Input data delay for bit[39:32] 0-63 0

ddelayb5* Input data delay for bit[47:40] 0-63 0

ddelayb6* Input data delay for bit[55:48] 0-63 0

ddelayb7* Input data delay for bit[63:56] 0-63 0

numidelctrl* Number of IDELAYCTRL the core will instantiate - 4

norefclk* Set to 1 if no 200 MHz reference clock is connected to 
clkref200 input.

0-1 0

odten Enable odt: 0 = Disabled, 1 = 75Ohm, 2 =150Ohm, 3 = 
50Ohm

0-3 0

rskew** Set the phase relationship between the DDR controller 
clock and the input data sampling clock. Sets the phase 
in ps.

0 - 9999 0
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26.5 Implementation

26.5.1 Technology mapping

The core has two technology mapping VHDL generics: memtech and padtech. The VHDL generic
memtech controls the technology used for memory cell implementation. The VHDL generic padtech
controls the technology used in the PHY implementation. See the GRLIB Users’s Manual for avail-
able settings.

26.5.2 RAM usage

The FIFOs in the core are implemented with the syncram_2p (with separate clock for each port) com-
ponent found in the technology mapping library (TECHMAP). The number of RAMs used for the
FIFO implementation depends om the DDR data width, set by the ddrbits VHDL generic.

Table 200.RAM usage

RAM dimension 
(depth x width)

Number of RAMs 
(DDR data width 64)

Number of RAMs
(DDR data width 32)

Number of RAMs
(DDR data width 16)

4 x 128 1

4 x 32 4

5 x 64 1

5 x 32 2

6 x 32 2
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26.6 Signal descriptions

Table 201 shows the interface signals of the core (VHDL ports).

26.7 Library dependencies

Table 202 shows libraries used when instantiating the core (VHDL libraries).

Table 201.Signal descriptions

Signal name Type Function Active

RST_DDR Input Reset input for the DDR PHY Low

RST_AHB Input Reset input for AHB clock domain Low

CLK_DDR Input DDR input Clock -

CLK_AHB Input AHB clock -

CLKREF200 Input 200 MHz reference clock -

LOCK Output DDR clock generator locked High

CLKDDRO Internal DDR clock output after clock multiplication

CLKDDRI Clock input for the internal DDR clock domain. 
Must be connected to CLKDDRO.

AHBSI Input AHB slave input signals -

AHBSO Output AHB slave output signals -

DDR_CLK[2:0] Output DDR memory clocks (positive) High

DDR_CLKB[2:0] Output DDR memory clocks (negative) Low

DDR_CLK_FB_OUT Output DDR data synchronization clock, connect this to a 
signal path with equal length of the DDR_CLK trace 
+ DDR_DQS trace

-

DDR_CLK_FB Input DDR data synchronization clock, connect this to the 
other end of the signal path connected to 
DDR_CLK_FB_OUT

-

DDR_CKE[1:0] Output DDR memory clock enable High

DDR_CSB[1:0] Output DDR memory chip select Low

DDR_WEB Output DDR memory write enable Low

DDR_RASB Output DDR memory row address strobe Low

DDR_CASB Output DDR memory column address strobe Low

DDR_DM[DDRBITS/8-1:0] Output DDR memory data mask Low

DDR_DQS[DDRBITS/8-1:0] Bidir DDR memory data strobe Low

DDR_DQSN[DDRBITS/8-1:0] Bidir DDR memory data strobe (inverted) High

DDR_AD[13:0] Output DDR memory address bus Low

DDR_BA[1:0] Output DDR memory bank address Low

DDR_DQ[DDRBITS-1:0] BiDir DDR memory data bus -

DDR_ODT[1:0] Output DDR memory odt Low

1) see GRLIB IP Library User’s Manual 2) Polarity selected with the oepol generic

Table 202.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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26.8 Component declaration

component ddr2spa
  generic (
    fabtech : integer := 0;
    memtech : integer := 0;
    hindex  : integer := 0;
    haddr   : integer := 0;
    hmask   : integer := 16#f00#;
    ioaddr  : integer := 16#000#;
    iomask  : integer := 16#fff#;
    MHz     : integer := 100;
    clkmul  : integer := 2; 
    clkdiv  : integer := 2; 
    col     : integer := 9; 
    Mbyte   : integer := 16; 
    rstdel  : integer := 200; 
    pwron   : integer := 0;
    oepol   : integer := 0;
    ddrbits : integer := 16;
    ahbfreq : integer := 50;

readdly : integer := 1;
ddelayb0: integer := 0;
ddelayb1: integer := 0;
ddelayb2: integer := 0;
ddelayb3: integer := 0;
ddelayb4: integer := 0;
ddelayb5: integer := 0;
ddelayb6: integer := 0;
ddelayb7: integer := 0

  );
  port (
    rst_ddr : in  std_ulogic;
    rst_ahb : in  std_ulogic;
    clk_ddr : in  std_ulogic;
    clk_ahb : in  std_ulogic;

clkref200 : in std_ulogic;
    lock    : out std_ulogic;-- DCM locked
    clkddro : out std_ulogic;-- DCM locked
    clkddri : in  std_ulogic;
    ahbsi   : in  ahb_slv_in_type;
    ahbso   : out ahb_slv_out_type;
    ddr_clk : out std_logic_vector(2 downto 0);
    ddr_clkb : out std_logic_vector(2 downto 0);
    ddr_cke  : out std_logic_vector(1 downto 0);
    ddr_csb  : out std_logic_vector(1 downto 0);
    ddr_web  : out std_ulogic;                       -- ddr write enable
    ddr_rasb  : out std_ulogic;                       -- ddr ras
    ddr_casb  : out std_ulogic;                       -- ddr cas
    ddr_dm   : out std_logic_vector (ddrbits/8-1 do wnto 0);    -- ddr dm

ddr_dqs  : inout std_logic_vector (ddrbits/8-1 down to 0);    -- ddr dqs
ddr_dqsn : inout std_logic_vector (ddrbits/8-1 down to 0);    -- ddr dqs

    ddr_ad : out std_logic_vector (13 downto 0);   -- ddr address
    ddr_ba : out std_logic_vector (1 downto 0);    -- ddr bank address
    ddr_dq    : inout  std_logic_vector (ddrbits-1 downto 0); -- ddr data

ddr_odt : out std_logic_vector(1 downto 0) -- odt
  );
  end component; 
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26.9 Instantiation

This example shows how the core can be instantiated. 

The DDR SDRAM controller decodes SDRAM area at 0x40000000 - 0x7FFFFFFF. The DDR2
SDRAM registers are mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;

entity ddr_Interface is
  port ( 

ddr_clk  : out std_logic_vector(2 downto 0);
    ddr_clkb : out std_logic_vector(2 downto 0);

ddr_cke  : out std_logic_vector(1 downto 0);
    ddr_csb  : out std_logic_vector(1 downto 0);
    ddr_web  : out std_ulogic;                       -- ddr write enable
    ddr_rasb : out std_ulogic;                       -- ddr ras
    ddr_casb : out std_ulogic;                       -- ddr cas
    ddr_dm   : out std_logic_vector (7 downto 0);    -- ddr dm

ddr_dqs  : inout std_logic_vector (7 downto 0);    -- ddr dqs
ddr_dqsn : inout std_logic_vector (7 downto 0);    -- ddr dqsn

    ddr_ad : out std_logic_vector (13 downto 0);   - - ddr address
    ddr_ba : out std_logic_vector (1 downto 0);    - - ddr bank address
    ddr_dq  : inout std_logic_vector (63 downto 0);  -- ddr data

ddr_odt : out std_logic_vector (1 downto 0) -- ddr o dt
);
end;

architecture rtl of mctrl_ex is

  -- AMBA bus
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahb s_none);
signal clkml, lock, clk_200, 
signal clk_200 : std_ulogic; -- 200 MHz reference c lock
signal ddrclkin, ahbclk : std_ulogic; -- DDR input clock and AMBA sys clock
signal rstn : std_ulogic; -- Synchronous reset sign al
signal reset : std_ulogic; -- Asynchronous reset si gnal

begin

-- DDR controller

ddrc : ddr2spa generic map ( fabtech => virtex4, dd rbits => 64, memtech => memtech, 
hindex => 4, haddr => 16#400#, hmask => 16#F00#, io addr => 1, 
pwron => 1, MHz => 100, col => 9, Mbyte => 32, ahbf req => 50, ddrbits => 64,
readdly => 1, ddelayb0 => 0, ddelayb1 => 0, ddelayb 2 => 0, ddelayb3 => 0,
ddelayb4 => 0, ddelayb5 => 0, ddelayb6 => 0, ddelay b7 => 0)
port map (
reset, rstn, ddrclkin, ahbclk, clk_200, lock, clkml , clkml,  ahbsi, ahbso(4),
ddr_clk, ddr_clkb,
ddr_cke, ddr_csb, ddr_web, ddr_rasb, ddr_casb, 
ddr_dm, ddr_dqs, ddr_adl, ddr_ba, ddr_dq, ddr_odt);
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27 DIV32 - Signed/unsigned 64/32 divider module

27.1 Overview

The divider module performs signed/unsigned 64-bit by 32-bit division. It implements the radix-2
non-restoring iterative division algorithm. The division operation takes 36 clock cycles. The divider
leaves no remainder. The result is rounded towards zero. Negative result, zero result and overflow
(according to the overflow detection method B of SPARC V8 Architecture manual) are detected.

27.2 Operation

The division is started when ‘1’ is samples on DIVI.START on positive clock edge. Operands are
latched externally and provided on inputs DIVI.Y, DIVI.OP1 and DIVI.OP2 during the whole opera-
tion. The result appears on the outputs during the clock cycle following the clock cycle after the
DIVO.READY was asserted. Asserting the HOLD input at any time will freeze the operation, until
HOLDN is de-asserted.

27.3 Signal descriptions

Table 203 shows the interface signals of the core (VHDL ports). 

Table 203.Signal declarations

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

HOLDN N/A Input Hold Low

DIVI Y[32:0] Input Dividend - MSB part

Y[32] - Sign bit

Y[31:0] - Dividend MSB part in 2’s complement 
format

High

OP1[32:0] Dividend - LSB part

OP1[32] - Sign bit

OP1[31:0] - Dividend LSB part in 2’s comple-
ment format

High

FLUSH Flush current operation High

SIGNED Signed division High

START Start division High

DIVO READY Output The result is available one clock after the ready 
signal is asserted.

High

NREADY Not used -

ICC[3:0] Condition codes

ICC[3] - Negative result

ICC[2] - Zero result

ICC[1] - Overflow

ICC[0] - Not used. Always ‘0’.

High

RESULT[31:0] Result High
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27.4 Library dependencies

Table 204 shows libraries used when instantiating the core (VHDL libraries).

27.5 Component declaration

The core has the following component declaration.

component div32 
port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    holdn   : in  std_ulogic;
    divi    : in  div32_in_type;
    divo    : out div32_out_type
);
end component;

27.6 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use gaisler.arith.all;

.

.

.

signal divi  : div32_in_type;
signal divo  : div32_out_type;

begin

div0 : div32 port map (rst, clk, holdn, divi, divo) ;

end;

Table 204.Library dependencies

Library Package Imported unit(s) Description

GAISLER ARITH Signals, component Divider module signals, component declaration
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28 DSU3 - LEON3 Hardware Debug Support Unit

28.1 Overview

To simplify debugging on target hardware, the LEON3 processor implements a debug mode during
which the pipeline is idle and the processor is controlled through a special debug interface. The
LEON3 Debug Support Unit (DSU) is used to control the processor during debug mode. The DSU
acts as an AHB slave and can be accessed by any AHB master. An external debug host can therefore
access the DSU through several different interfaces. Such an interface can be a serial UART (RS232),
JTAG, PCI, USB or ethernet. The DSU supports multi-processor systems and can handle up to 16 pro-
cessors.

28.2 Operation

Through the DSU AHB slave interface, any AHB master can access the processor registers and the
contents of the instruction trace buffer. The DSU control registers can be accessed at any time, while
the processor registers, caches and trace buffer can only be accessed when the processor has entered
debug mode. In debug mode, the processor pipeline is held and the processor state can be accessed by
the DSU. Entering the debug mode can occur on the following events:

• executing a breakpoint instruction (ta 1)

• integer unit hardware breakpoint/watchpoint hit (trap 0xb)

• rising edge of the external break signal (DSUBRE)

• setting the break-now (BN) bit in the DSU control register

• a trap that would cause the processor to enter error mode

• occurrence of any, or a selection of traps as defined in the DSU control register

• after a single-step operation

• one of the processors in a multiprocessor system has entered the debug mode

DSU AHB breakpoint hit

Processor(s)
LEON3Processor(s)

LEON3
Unit

AMBA AHB BUS

Debug Support

AHB Slave I/F

Debug I/F

AHB Master I/F

Figure 78.  LEON3/DSU Connection

Ethernet

DEBUG HOST

Processor
LEON3Processor(s)

LEON3

JTAGPCIRS232 USB
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The debug mode can only be entered when the debug support unit is enabled through an external sig-
nal (DSUEN). When the debug mode is entered, the following actions are taken:

• PC and nPC are saved in temporary registers (accessible by the debug unit)

• an output signal (DSUACT) is asserted to indicate the debug state

• the timer unit is (optionally) stopped to freeze the LEON timers and watchdog

The instruction that caused the processor to enter debug mode is not executed, and the processor state
is kept unmodified. Execution is resumed by clearing the BN bit in the DSU control register or by de-
asserting DSUEN. The timer unit will be re-enabled and execution will continue from the saved PC
and nPC. Debug mode can also be entered after the processor has entered error mode, for instance
when an application has terminated and halted the processor. The error mode can be reset and the pro-
cessor restarted at any address.

When a processor is in the debug mode, an access to ASI diagnostic area is forwarded to the IU which
performs access with ASI equal to value in the DSU ASI register and address consisting of 20 LSB
bits of the original address.

28.3 AHB Trace Buffer

The AHB trace buffer consists of a circular buffer that stores AHB data transfers. The address, data
and various control signals of the AHB bus are stored and can be read out for later analysis. The trace
buffer is 128 bits wide, the information stored is indicated in the table below:

In addition to the AHB signals, the DSU time tag counter is also stored in the trace. 

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AHB
transfer is then stored in the buffer in a circular manner. The address to which the next transfer is writ-
ten is held in the trace buffer index register, and is automatically incremented after each transfer. Trac-
ing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. Tracing is temporarily
suspended when the processor enters debug mode. Note that neither the trace buffer memory nor the
breakpoint registers (see below) can be read/written by software when the trace buffer is enabled.

Table 205.AHB Trace buffer data allocation

Bits Name Definition

127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

126 - Not used

125:96 Time tag DSU time tag counter

95 - Not used

94:80 Hirq AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR
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28.4 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The instruc-
tion trace buffer is located in the processor, and read out via the DSU. The trace buffer is 128 bits
wide, the information stored is indicated in the table below:

During tracing, one instruction is stored per line in the trace buffer with the exception of multi-cycle
instructions. Multi-cycle instructions are entered two or three times in the trace buffer. For store
instructions, bits [63:32] correspond to the store address on the first entry and to the stored data on the
second entry (and third in case of STD). Bit 126 is set on the second and third entry to indicate this. A
double load (LDD) is entered twice in the trace buffer, with bits [63:32] containing the loaded data.
Multiply and divide instructions are entered twice, but only the last entry contains the result. Bit 126
is set for the second entry. For FPU operation producing a double-precision result, the first entry puts
the MSB 32 bits of the results in bit [63:32] while the second entry puts the LSB 32 bits in this field.

When the processor enters debug mode, tracing is suspended. The trace buffer and the trace buffer
control register can be read and written while the processor is in the debug mode. During the instruc-
tion tracing (processor in normal mode) the trace buffer and the trace buffer control register can not be
accessed.

Table 206.Instruction trace buffer data allocation

Bits Name Definition

127 - Unused

126 Multi-cycle instruction Set to ‘1’ on the second and third instance of a multi-cycle instruc-
tion (LDD, ST or FPOP)

125:96 Time tag The value of the DSU time tag counter

95:64 Load/Store parameters Instruction result, Store address or Store data

63:34 Program counter Program counter (2 lsb bits removed since they are always zero)

33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode

31:0 Opcode Instruction opcode
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28.5 DSU memory map

The DSU memory map can be seen in table 207 below. In a multiprocessor systems, the register map
is duplicated and address bits 27 - 24 are used to index the processor.

The addresses of the IU registers depends on how many register windows has been implemented:

• %on : 0x300000 + (((psr.cwp * 64) + 32 + n*4) mod (NWINDOWS*64))

• %ln : 0x300000 + (((psr.cwp * 64) + 64 + n*4) mod (NWINDOWS*64))

• %in : 0x300000 + (((psr.cwp * 64) + 96 + n*4) mod (NWINDOWS*64))

• %gn : 0x300000 + (NWINDOWS*64)

• %fn : 0x301000 + n*4

Table 207.DSU memory map

Address offset Register

0x000000 DSU control register

0x000008 Time tag counter

0x000020 Break and Single Step register

0x000024 Debug Mode Mask register

0x000040 AHB trace buffer control register

0x000044 AHB trace buffer index register

0x000050 AHB breakpoint address 1

0x000054 AHB mask register 1

0x000058 AHB breakpoint address 2

0x00005c AHB mask register 2

0x100000 - 0x10FFFF Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64, 

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x110000 Instruction Trace buffer control register

0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64, 

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x300000 - 0x3007FC IU register file

0x300800 - 0x300FFC IU register file check bits (LEON3FT only)

0x301000 - 0x30107C FPU register file

0x400000 - 0x4FFFFC IU special purpose registers

0x400000 Y register

0x400004 PSR register

0x400008 WIM register

0x40000C TBR register

0x400010 PC register

0x400014 NPC register

0x400018 FSR register

0x40001C CPSR register

0x400020 DSU trap register

0x400024 DSU ASI register

0x400040 - 0x40007C ASR16 - ASR31 (when implemented)

0x700000 - 0x7FFFFC ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])
ASI = 0x9 : Local instruction RAM
ASI = 0xB : Local data RAM
ASI = 0xC : Instruction cache tags
ASI = 0xD : Instruction cache data
ASI = 0xE : Data cache tags
ASI = 0xF : Data cache data
ASI = 0x1E : Separate snoop tags
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28.6 DSU registers

28.6.1 DSU control register

The DSU is controlled by the DSU control register:

.

[0]: Trace enable (TE). Enables instruction tracing. If set the instructions will be stored in the trace buffer. Remains set
when then processor enters debug or error mode.

[1]: Break on error (BE) - if set, will force the processor to debug mode when the processor would have entered error
condition (trap in trap).

[2]: Break on IU watchpoint (BW)- if set, debug mode will be forced on a IU watchpoint (trap 0xb).
[3]: Break on S/W breakpoint (BS) - if set, debug mode will be forced when an breakpoint instruction (ta 1) is executed.
[4]: Break on trap (BX) - if set, will force the processor into debug mode when any trap occurs.
[5]: Break on error traps (BZ) - if set, will force the processor into debug mode on all except the following traps:

priviledged_instruction, fpu_disabled, window_overflow, window_underflow, asynchronous_interrupt, ticc_trap.
[6]: Debug mode (DM). Indicates when the processor has entered debug mode (read-only).
[7]: EE - value of the external DSUEN signal (read-only)
[8]: EB - value of the external DSUBRE signal (read-only)
[9]: Processor error mode (PE) - returns ‘1’ on read when processor is in error mode, else ‘0’. If written with ‘1’, it will

clear the error and halt mode.
[10]: Processor halt (HL). Returns ‘1’ on read when processor is halted. If the processor is in debug mode, setting this bit

will put the processor in halt mode.
[11]: Power down (PW). Returns ‘1’ when processor in in power-down mode.

28.6.2 DSU Break and Single Step register

This register is used to break or single step the processor(s). This register controls all processors in a
multi-processor system, and is only accessible in the DSU memory map of processor 0.

[15:0] : Break now (BNx) -Force processor x into debug mode if the Break on watchpoint (BW) bit in the processors DSU
control register is set. If cleared, the processor x will resume execution.

[31:16] : Single step (SSx) - if set, the processor x will execute one instruction and return to debug mode. The bit remains set
after the processor goes into the debug mode.

28.6.3 DSU Debug Mode Mask Register

When one of the processors in a multiprocessor LEON3 system enters the debug mode the value of
the DSU Debug Mode Mask register determines if the other processors are forced in the debug mode.
This register controls all processors in a multi-processor system, and is only accessible in the DSU
memory map of processor 0.

Figure 79.  DSU control register
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[15:0] : Enter debug mode (EDx) - Force processor x into debug mode if any of processors in a multiprocessor system enters
the debug mode. If 0, the processor x will not enter the debug mode.

[31:16]: Debug mode mask. If set, the corresponding processor will not be able to force running processors into debug mode
even if it enters debug mode.

28.6.4 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that caused the
processor to enter debug mode. When debug mode is force by setting the BN bit in the DSU control
register, the trap type will be 0xb (hardware watchpoint trap).

[11:4]: 8-bit SPARC trap type
[12]: Error mode (EM). Set if the trap would have cause the processor to enter error mode.

28.6.5 Trace buffer time tag counter

The trace buffer time tag counter is incremented each clock as long as the processor is running. The
counter is stopped when the processor enters debug mode, and restarted when execution is resumed.

The value is used as time tag in the instruction and AHB trace buffer.

The width of the timer (up to 30 bits) is configurable through the DSU generic port.

28.6.6 DSU ASI register

The DSU can perform diagnostic accesses to different ASI areas. The value in the ASI diagnostic
access register is used as ASI while the address is supplied from the DSU.

[7:0]: ASI to be used on diagnostic ASI access

28.6.7 AHB Trace buffer control register

The AHB trace buffer is controlled by the AHB trace buffer control register:

[0]: Trace enable (EN). Enables the trace buffer.
[1]: Delay counter mode (DM). Indicates that the trace buffer is in delay counter mode.
[2]: Break (BR). If set, the processor will be put in debug mode when AHB trace buffer stops due to AHB breakpoint hit.
[31:16] Trace buffer delay counter (DCNT). Note that the number of bits actually implemented depends on the size of the

trace buffer.

Figure 82.  DSU trap register
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28.6.8 AHB trace buffer index register

The AHB trace buffer index register contains the address of the next trace line to be written.

31:4 Trace buffer index counter (INDEX). Note that the number of bits actually implemented depends on the size of the
trace buffer.

28.6.9 AHB trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used to
freeze the trace buffer by automatically clearing the enable bit. Freezing can be delayed by program-
ming the DCNT field in the trace buffer control register to a non-zero value. In this case, the DCNT
value will be decremented for each additional trace until it reaches zero, after which the trace buffer is
frozen. A mask register is associated with each breakpoint, allowing breaking on a block of addresses.
Only address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint detec-
tion. To break on AHB load or store accesses, the LD and/or ST bits should be set.

[31:2]: Breakpoint address (bits 31:2)
[31:2]: Breakpoint mask (see text)
[1]: LD - break on data load address
[0]: ST - beak on data store address

28.6.10 Instruction trace control register

The instruction trace control register contains a pointer that indicates the next line of the instruction
trace buffer to be written.

[15:0] Instruction trace pointer. Note that the number of bits actually implemented depends on the size of the trace buffer.

28.7 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x017. For a description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

Figure 86.  AHB trace buffer index register
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28.8 Technology mapping

DSU3 has one technology mapping generic, tech. This generic controls the implementation of which
tehcnology will be used to implement the trace buffer memories. The AHB trace buffer will use four
identical syncram block to implement the buffer memory. The all syncrams will be 32-bit wide. The
depth will depend on the KBYTES generic, which indicates the total size of trace buffer in Kbytes. If
KBYTES = 1 (1 Kbyte), then four RAM blocks of 64x32 will be used. If KBYTES = 2, then the
RAM blocks will be 128x32 and so on.

28.9 Configuration options

Table 208 shows the configuration options of the core (VHDL generics). 

28.10 Signal descriptions

Table 209 shows the interface signals of the core (VHDL ports).

Table 208.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 0 - AHBSLVMAX-1 0

haddr AHB slave address (AHB[31:20]) 0 - 16#FFF# 16#900#

hmask AHB slave address mask 0 - 16#FFF# 16#F00#

ncpu Number of attached processors 1 - 16 1

tbits Number of bits in the time tag counter 2 - 30 30

tech Memory technology for trace buffer RAM 0 - TECHMAX-1 0 (inferred)

kbytes Size of trace buffer memory in Kbytes. A value of 0 
will disable the trace buffer function.

0 - 64 0 (disabled)

Table 209.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB master input signals -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

DBGI - Input Debug signals from LEON3 -

DBGO - Output Debug signals to LEON3 -

DSUI ENABLE Input DSU enable High

BREAK Input DSU break High

DSUO ACTIVE Output Debug mode High

PWD[n-1 : 0] Output Clock gating enable for processor [n] High

* see GRLIB IP Library User’s Manual
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28.11 Library dependencies

Table 210 shows libraries used when instantiating the core (VHDL libraries). 

28.12 Component declaration

The core has the following component declaration.

component dsu3 
  generic (
    hindex : integer := 0;
    haddr : integer := 16#900#;
    hmask : integer := 16#f00#;
    ncpu    : integer := 1;
    tbits   : integer := 30; 
    tech    : integer := 0; 
    irq     : integer := 0; 
    kbytes  : integer := 0
  );
  port (
    rst    : in  std_ulogic;
    clk    : in  std_ulogic;
    ahbmi  : in  ahb_mst_in_type;
    ahbsi  : in  ahb_slv_in_type;
    ahbso  : out ahb_slv_out_type;
    dbgi   : in l3_debug_out_vector(0 to NCPU-1);
    dbgo   : out l3_debug_in_vector(0 to NCPU-1);
    dsui   : in dsu_in_type;
    dsuo   : out dsu_out_type
  );
  end component;

28.13 Instantiation

This example shows how the core can be instantiated. 

The DSU is always instantiated with at least one LEON3 processor. It is suitable to use a generate
loop for the instantiation of the processors and DSU and showed below.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

constant NCPU : integer := 1; -- select number of p rocessors

signal leon3i : l3_in_vector(0 to NCPU-1);
signal leon3o : l3_out_vector(0 to NCPU-1);
signal irqi   : irq_in_vector(0 to NCPU-1);
signal irqo   : irq_out_vector(0 to NCPU-1);

signal dbgi : l3_debug_in_vector(0 to NCPU-1);
signal dbgo : l3_debug_out_vector(0 to NCPU-1);

signal dsui   : dsu_in_type;

Table 210.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER LEON3 Component, signals Component declaration, signals declaration
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signal dsuo   : dsu_out_type; 

.
begin

cpu : for i in 0 to NCPU-1 generate
    u0 : leon3s-- LEON3 processor
    generic map (ahbndx => i, fabtech => FABTECH, m emtech => MEMTECH)
    port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, a hbsi, ahbso,
 irqi(i), irqo(i), dbgi(i), dbgo(i));
    irqi(i) <= leon3o(i).irq; leon3i(i).irq <= irqo (i);
end generate;

dsu0 : dsu3-- LEON3 Debug Support Unit
    generic map (ahbndx => 2, ncpu => NCPU, tech =>  memtech, kbytes => 2)
    port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), d bgo, dbgi, dsui, dsuo);
dsui.enable <= dsuen; dsui.break <= dsubre; dsuact <= dsuo.active;
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29 FTAHBRAM - On-chip SRAM with EDAC and AHB interface 

29.1 Overview

The FTAHBRAM core is a version of the AHBRAM core with added Error Detection And Correction
(EDAC). The on-chip memory is accessed via an AMBA AHB slave interface. The memory imple-
ments 2 kbytes of data (configured via the kbytes VHDL generics). Registers are accessed via an
AMB APB interface.

The on-chip memory implements volatile memory that is protected by means of Error Detection And
Correction (EDAC). One error can be corrected and two errors can be detected, which is performed
by using a (32, 7) BCH code. Some of the optional features available are single error counter, diag-
nostic reads and writes and autoscrubbing (automatic correction of single errors during reads). Con-
figuration is performed via a configuration register.

Figure 89 shows a block diagram of the internals of the memory.

29.2 Operation

The on-chip fault tolerant memory is accessed through an AMBA AHB slave interface.

The memory address range is configurable with VHDL generics. As for the standard AHB RAM, the
memory technology and size is configurable through the tech and kbytes VHDL generics. The mini-
mum size is 1 kb and the maximum is technology dependent but the values can only be increased in
binary steps. 

Run-time configuration is done by writing to a configuration register accessed through an AMBA
APB interface.

The address of the interface and the available options are configured with VHDL generics. The
EDAC functionality can be completely removed by setting the edacen VHDL generic to zero during
synthesis. The APB interface is also removed since it is redundant without EDAC.

The following can be configured during run-time: EDAC can be enabled and disabled. When it is dis-
abled, reads and writes will behave as the standard memory. Read and write diagnostics can be con-
trolled through separate bits. The single error counter can be reset.
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Figure 89.  Block diagram
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If EDAC is disabled (EN bit in configuration register set to 0) write data is passed directly to the
memory area and read data will appear on the AHB bus immediately after it arrives from memory. If
EDAC is enabled write data is passed to an encoder which outputs a 7-bit checksum. The checksum is
stored together with the data in memory and the whole operation is performed without any added
waitstates. This applies to word stores (32-bit). If a byte or halfword store is performed, the whole
word to which the byte or halfword belongs must first be read from memory (read - modify - write). A
new checksum is calculated when the new data is placed in the word and both data and checksum are
stored in memory. This is done with 1 - 2 additional waitstates compared to the non EDAC case. 

Reads with EDAC disabled are performed with 0 or 1 waitstates while there could also be 2 waitstates
when EDAC is enabled. There is no difference between word and subword reads. Table 211 shows a
summary of the number of waitstates for the different operations with and without EDAC.

If the ahbpipe VHDL generic is set to 1, pipeline registers are enabled for the AHB input signals. If
the pipeline registers are enabled, one extra waitstate should be added to the read and subword write
cases in Table 211.

When EDAC is used, the data is decoded the first cycle after it arrives from the memory and appears
on the bus the next cycle if no uncorrectable error is detected. The decoding is done by comparing the
stored checksum with a new one which is calculated from the stored data. This decoding is also done
during the read phase for a subword write. A so-called syndrome is generated from the comparison
between the checksum and it determines the number of errors that occured. One error is automatically
corrected and this situation is not visible on the bus. Two or more detected errors cannot be corrected
so the operation is aborted and the required two cycle error response is given on the AHB bus (see the
AMBA manual for more details). If no errors are detected data is passed through the decoder unal-
tered.

As mentioned earlier the memory provides read and write diagnostics when EDAC is enabled. When
write diagnostics are enabled, the calculated checksum is not stored in memory during the write
phase. Instead, the TCB field from the configuration register is used. In the same manner, if read diag-
nostics are enabled, the stored checksum from memory is stored in the TCB field during a read (and
also during a subword write). This way, the EDAC functionality can be tested during run-time. Note
that checkbits are stored in TCB during reads and subword writes even if a multiple error is detected.

An additional feature is the single error counter which can be enabled with the errcnten VHDL
generic. A single error counter (SEC) field is present in the configuration register, and is incremented
each time a single databit error is encountered (reads or subword writes). The number of bits of this
counter is 8, set with the cntbits VHDL generic. It is accessed through the configuration register. Each
counter bit can be reset to zero by writing a one to it. The counter saturates at the value 28 - 1 (2cntbits

- 1). Each time a single error is detected the aramo.ce signal will be driven high for one cycle. This
signal should be connected to an AHB status register which stores information and generates inter-
rupts (see the AHB Status register documentation for more information).

Autoscrubbing is an error handling feature which is enabled with the autoscrub VHDL generic and
cannot be controlled through the configuration register. If enabled, every single error encountered dur-
ing a read results in the word being written back with the error corrected and new checkbits generated.
It is not visible externally except for that it can generate an extra waitstate. This happens if the read is
followed by an odd numbered read in a burst sequence of reads or if a subword write follows. These
situations are very rare during normal operation so the total timing impact is negligible. The aramo.ce
signal is normally used to generate interrupts which starts an interrupt routine that corrects errors.

Table 211.Summary of the number of waitstates for the different operations for the memory.

Operation Waitstates with EDAC Disabled Waitstates with EDAC Enabled

Read 0 - 1 0 - 2

Word write 0 0

Subword write 0 1 - 2
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Since this is not necessary when autoscrubbing is enabled, aramo.ce should not be connected to an
AHB status register or the interrupt should be disabled in the interrupt controller.

29.3 Registers

The core is programmed through registers mapped into APB address space.

29.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x050. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 212.FTAHBRAM registers

APB Address offset Register

0x0 Configuration Register

Table 213.  Configuration Register
31 13+8 12+8 13 12 10 9 8 7 6 0

SEC MEMSIZE WB RB EN TCB

12+8: 13 Single error counter (SEC): Incremented each time a single error is corrected (includes errors on 
checkbits). Each bit can be set to zero by writing a one to it. This feature is only available if the errc-
nten VHDL generic is set.

12: 10 Log2 of the current memory size

9 Write Bypass (WB): When set, the TCB field is stored as check bits when a write is performed to the 
memory.

8 Read Bypass (RB) : When set during a read or subword write, the check bits loaded from memory 
are stored in the TCB field.

7 EDAC Enable (EB): When set, the EDAC is used otherwise it is bypassed during read and write 
operations.

6: 0 Test Check Bits (TCB) : Used as checkbits when the WB bit is set during writes and loaded with the 
check bits during a read operation when the RB bit is set.

Any unused most significant bits are reserved. Always read as ‘000...0’.

All fields except TCB are initialised at reset. The EDAC is initally disabled (EN = 0), which also applies to diagnos-
tics fiels (RB and WB are zero).

When available, the single error counter (SEC) field is cleared to zero.
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29.5 Configuration options

Table 214 shows the configuration options of the core (VHDL generics).

29.6 Signal descriptions

Table 215 shows the interface signals of the core (VHDL ports).

29.7 Library dependencies

Tabel 216 shows libraries used when instantiating the core (VHDL libraries).

Table 214.Configuration options

Generic Function Allowed range Default

hindex Selects which AHB select signal (HSEL) will be used to 
access the memory.

0 to NAHBMAX-1 0

haddr ADDR field of the AHB BAR 0 to 16#FFF# 0

hmask MASK field of the AHB BAR 0 to 16#FFF# 16#FFF#

tech Memory technology 0 to NTECH 0

kbytes SRAM size in kbytes 1 to targetdep. 1

pindex Selects which APB select signal (PSEL) will be used to 
access the memory configuration registers

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0

pmask The APB address mask 0 to 16#FFF# 16#FFF#

edacen Enable (1)/Disable (0) on-chip EDAC 0 to 1 0

autoscrub Automatically store back corrected data with new check-
bits during a read when a single error is detected. Is 
ignored when edacen is deasserted. 

0 to 1 0

errcnten Enables a single error counter 0 to 1 0

cntbits number of bits in the single error counter 1 to 8 1

ahbpipe Enable pipeline register on AHB input signals 0 to 1 0

Table 215.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

ARAMO CE Output Single error detected High

* see GRLIB IP Library User’s Manual

Table 216.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Signals and component declaration
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29.8 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
library gaisler;

use grlib.amba.all;
use gaisler.misc.all;

entity ftram_ex is
  port(
    rst : std_ulogic;
    clk : std_ulogic;
    
    .... --others signals
  );
end;

architecture rtl of ftram_ex is

--AMBA signals
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_type;
signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector;

--other needed signals here
signal stati   : ahbstat_in_type;
signal aramo   : ahbram_out_type;

begin

--other component instantiations here
...

-- AHB Status Register
  astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
    nftslv => 3)
    port map(rstn, clkm, ahbmi, ahbso, stati, apbi,  apbo(13));
    stati.cerror(1 to NAHBSLV-1) <= (others => ‘0’) ;

--FT AHB RAM
a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred, 
  kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
  errcnt => 1, cntbits => 4)
  port map(rst, clk, ahbsi, ahbso(1), apbi, apbo(4) , aramo);
  stati.cerror(0) <= aramo.ce;

end architecture;
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30 FTMCTRL - 8/16/32-bit Memory Controller with EDAC

30.1 Overview

The FTMCTRL combined 8/16/32-bit memory controller provides a bridge between external memory
and the AHB bus. The memory controller can handle four types of devices: PROM, asynchronous
static ram (SRAM), synchronous dynamic ram (SDRAM) and memory mapped I/O devices (IO). The
PROM, SRAM and SDRAM areas can be EDAC-protected using a (39,7) BCH code. The EDAC pro-
vides single-error correction and double-error detection for each 32-bit memory word.

The memory controller is configured through three configuration registers accessible via an APB bus
interface. The external data bus can be configured in 8-, 16-, or 32-bit mode, depending on application
requirements. The controller decodes three address spaces on the AHB bus (PROM, IO, and SRAM/
SDRAM). The addresses are determined through VHDL generics.

External chip-selects are provided for up to four PROM banks, one IO bank, five SRAM banks and
two SDRAM banks. Figure 90 below shows how the connection to the different device types is made.

30.2 PROM access

Up to four PROM chip-select signals are provided for the PROM area, ROMSN[3:0]. There are two
modes: one with two chip-select signals and one with four. The size of the banks can be set in binary
steps from 16 kB to 256 MB. 

A read access to PROM consists of two data cycles and between 0 and 30 waitstates. The read data
(and optional EDAC check-bits) are latched on the rising edge of the clock on the last data cycle. On
non-consecutive accesses, a lead-out cycle is added after a read cycle to prevent bus contention due to
slow turn-off time of PROM devices. Figure 91 shows the basic read cycle waveform (zero waitstate)
for non-consecutive PROM reads. Note that the address is undefined in the lead-out cycle. Figure 92
shows the timing for consecutive cycles (zero waitstate). Waitstates are added by extending the data2
phase. This is shown in figure 93 and applies to both consecutive and non-consecutive cycles. Only an
even number of waitstates can be assigned to the PROM area.

Figure 90.  FTMCTRL connected to different types of memory devices

CS
OE
WE

A
DPROM

CS
OE
WE

I/O

CS
OE
WE

SRAM
RAMSN[4:0]

RAMOEN[4:0]
RWEN[3:0]

ROMSN[3 :0]
OEN

WRITEN

IOSN

A D

FTMCTRL

A[27:0]

D[31:0]

RAS
CAS
WE

SDRAMSDRASN
SDCASN
SDWEN

DQMSDDQM[3:0]

CSNSDCSN[1:0]

AHBAPB

MBENMBEN[3:0]

APB

AHB

CB

CB

A
D

A
D
CB

A
D

CB

CB[7:0]



219

Figure 91.  Prom non-consecutive read cyclecs.

data1 data2

address

romsn

data

oen

cb

data1 data2lead-out lead-out

clk

D1 D2

CB2CB1

A1 A2
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30.3 Memory mapped IO

Accesses to IO have similar timing as PROM accesses. The IO select (IOSN) and output enable
(OEN) signals are delayed one clock to provide stable address before IOSN is asserted. All accesses
are performed as non-consecutive accesses as shown in figure 96. The data2 phase is extended when
waitstates are added. 

Figure 94.  Prom write cycle (0-waitstates)
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data

address

romsn

data

rwen

cb

lead-out

clk

A1

D1

CB1

lead-in datadata



221

30.4 SRAM access

The SRAM area is divided on up to five RAM banks. The size of banks 1-4 (RAMSN[3:0]) is pro-
grammed in the RAM bank-size field (MCFG2[12:9]) and can be set in binary steps from 8 Kbyte to
256 Mbyte. The fifth bank (RAMSN[4]) decodes the upper 512 Mbyte and cannot be used simulta-
neously with SDRAM memory. A read access to SRAM consists of two data cycles and between zero
and three waitstates. The read data (and optional EDAC check-bits) are latched on the rising edge of
the clock on the last data cycle. Accesses to RAMSN[4] can further be stretched by de-asserting
BRDYN until the data is available. On non-consecutive accesses, a lead-out cycle is added after a

Figure 96.  I/O read cycle (0-waitstates)
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read cycle to prevent bus contention due to slow turn-off time of memories. Figure 98 shows the basic
read cycle waveform (zero waitstate). Waitstates are added in the same way as for PROM in figure 93.

For read accesses to RAMSN[4:0], a separate output enable signal (RAMOEN[n]) is provided for
each RAM bank and only asserted when that bank is selected. A write access is similar to the read
access but takes a minimum of three cycles. Waitstates are added in the same way as for PROM.

Each byte lane has an individual write strobe to allow efficient byte and half-word writes. If the mem-
ory uses a common write strobe for the full 16- or 32-bit data, the read-modify-write bit MCFG2
should be set to enable read-modify-write cycles for sub-word writes.

30.5 8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, the SRAM and
PROM areas can be individually configured for 8- or 16-bit operation by programming the ROM and
RAM width fields in the memory configuration registers. Since reads to memory are always done on
32-bit word basis, read access to 8-bit memory will be transformed in a burst of four read cycles while
access to 16-bit memory will generate a burst of two 16-bit reads. During writes, only the necessary
bytes will be written. Figure 100 shows an interface example with 8-bit PROM and 8-bit SRAM. Fig-
ure 101 shows an example of a 16-bit memory interface.

EDAC is not supported for 16-bit wide memories and therefore the EDAC enable bit corresponding to
a 16-bit wide area must not be set.

Figure 98.  Sram non-consecutive read cyclecs.
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Figure 99.  Sram write cycle (0-waitstates)
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It is not allowed to set the ROM or RAM width fields to 8-bit width if ram8 is not set and also not to
16-bit width if ram16 is not set. 

The RMW bit must not be set if RAM EDAC is not enabled when RAM width is set to 8-bit. 

In 8-bit mode, the PROM/SRAM devices should be connected to the MSB byte of the data bus
(D[31:24]). The LSB address bus should be used for addressing (A[25:0]). In 16-bit mode, D[31:16]
should be used as data bus, and A[26:1] as address bus. EDAC protection is not available in 16-bit
mode.

30.6 8- and 16-bit I/O access

Similar to the PROM/SRAM areas, the IO area can also be configured to 8- or 16-bits mode. How-
ever, the I/O device will NOT be accessed by multiple 8/16 bits accesses as the memory areas, but

Figure 100.  8-bit memory interface example
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Figure 101.  16-bit memory interface example
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only with one single access just as in 32-bit mode. To access an IO device on an 8-bit bus, only byte
accesses should be used (LDUB/STB instructions for the CPU). To accesses an IO device on a 16-bit
bus, only halfword accesses should be used (LDUH/STH instructions for the CPU). To access the I/O-
area in 8- or 16-bit mode, ram8 or ram16 must be set respectively.

30.7 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills, double loads and double stores. The timing
of a burst cycle is identical to the programmed basic cycle with the exception that during read cycles,
the lead-out cycle will only occurs after the last transfer. Burst cycles will not be generated to the IO
area.

Only word (HSIZE = “010”) bursts of incremental type (HBURST=INCR, INCR4, INCR8 or
INCR16) are supported.

30.8 SDRAM access

30.8.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. This is implemented by a special version of the SDCTRL SDRAM controller core from
Gaisler Research, which is optionally instantiated as a sub-block. The SDRAM controller supports
64M, 256M and 512M devices with 8 - 12 column-address bits, and up to 13 row-address bits. The
size of the two banks can be programmed in binary steps between 4 Mbyte and 512 Mbyte. The oper-
ation of the SDRAM controller is controlled through MCFG2 and MCFG3 (see below). Both 32- and
64-bit data bus width is supported, allowing the interface of 64-bit DIMM modules. The memory con-
troller can be configured to use either a shared or separate bus connecting the controller and SDRAM
devices.

30.8.2 Address mapping

The two SDRAM chip-select signals are decoded. SDRAM area is mapped into the upper half of the
RAM area defined by BAR2 register, and cannot be used simultaneously with fifth SRAM bank
(RAMSN[4]). When the SDRAM enable bit is set in MCFG2, the controller is enabled and mapped
into upper half of the RAM area as long as the SRAM disable bit is not set. If the SRAM disable bit is
set, all access to SRAM is disabled and the SDRAM banks are mapped into the lower half of the
RAM area.

30.8.3 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. The controller programs the SDRAM to use single location access on write. The controller
programs the SDRAM to use line burst of length 8 when pageburst VHDL generic is 0. The controller
programs the SDRAM to use page burst when pageburst VHDL generic is 1. The controller programs
the SDRAM to use page burst or line burst of length 8, selectable via the MCFG2 register, when page-
burst VHDL generic is 2.

30.8.4 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), three
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2): TCAS,
TRP and TRFCD. The value of these field affects the SDRAM timing as described in table 217.
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If the TCAS, TRP and TRFC are programmed such that the PC100/133 specifications are fulfilled,
the remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

30.9 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the MCFG3 register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6 µs (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in MCFG2.

30.9.1 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field in
MCFG2: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR command
is issued, the CAS delay as programmed in MCFG2 will be used. Line burst of length 8 will be set for
read when pageburst VHDL generic is 0. Page burst will be set for read when pageburst VHDL
generic is 1. Page burst or line burst of length 8, selectable via the MCFG2 register will be set, when
pageburst VHDL generic is 2. Remaining fields are fixed: single location write, sequential burst. The
command field will be cleared after a command has been executed. When changing the value of the
CAS delay, a LOAD-MODE-REGISTER command should be generated at the same time. NOTE:
when issuing SDRAM commands, the SDRAM refresh must be disabled.

30.9.2 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses.

Table 217.SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

CAS latency, RAS/CAS delay (tCAS, tRCD) TCAS + 2

Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to precharge (tRAS) TRFC + 1

Activate to Activate (tRC) TRP + TRFC + 4

Table 218.SDRAM example programming

SDRAM settings tCAS tRC tRP tRFC tRAS

100 MHz, CL=2; TRP=0, TCAS=0, TRFC=4 20 80 20 70 50

100 MHz, CL=3; TRP=0, TCAS=1, TRFC=4 30 80 20 70 50

133 MHz, CL=2; TRP=1, TCAS=0, TRFC=6 15 82 22 67 52

133 MHz, CL=3; TRP=1, TCAS=1, TRFC=6 22 82 22 67 52
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30.9.3 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between.

30.9.4 Address bus

The memory controller can be configured to either share the address and data buses with the SRAM,
or to use separate address and data buses. When the buses are shared, the address bus of the SDRAMs
should be connected to A[14:2], the bank address to A[16:15]. The MSB part of A[14:2] can be left
unconnected if not used. When separate buses are used, the SDRAM address bus should be connected
to SA[12:0] and the bank address to SA[14:13].

30.9.5 Data bus

SDRAM can be connected to the memory controller through the common or separate data bus. If the
separate bus is used the width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit
SDRAM devices to be connected using the full data capacity of the devices. 64-bit SDRAM devices
can be connected to 32-bit data bus if 64-bit data bus is not available but in this case only half the full
data capacity will be used. There is a drive signal vector and separate data vector available for
SDRAM. The drive vector has one drive signal for each data bit. These signals can be used to remove
timing problems with the output delay when a separate SDRAM bus is used.

30.9.6 Clocking

The SDRAM controller is designed for an external SDRAM clock that is in phase or slightly earlier
than the internal AHB clock. This provides the maximum margin for setup and hold on the external
signals, and allows highest possible frequency. For Xilinx and Altera device, the GRLIB Clock Gen-
erator (CLKGEN) can be configured to produce a properly synchronized SDRAM clock. For other
FPGA targets, the custom clock synchronization must be designed. For ASIC targets, the SDRAM
clock can be derived from the AHB clock with proper delay adjustments during place&route.

30.9.7 Initialisation

Each time the SDRAM is enabled (bit 14 in MCFG2), an SDRAM initialisation sequence will be sent
to both SDRAM banks. The sequence consists of one PRECHARGE, eight AUTO-REFRESH and
one LOAD-COMMAND-REGISTER command.

30.10 Memory EDAC

The FTMCTRL is provided with an EDAC that can correct one error and detect two errors in a 32-bit
word. For each word, a 7-bit checksum is generated according to the equations below. A correctable
error will be handled transparently by the memory controller, but adding one waitstate to the access. If
an un-correctable error (double-error) is detected, the current AHB cycle will end with an error
response. The EDAC can be used during access to PROM, SRAM and SDRAM areas by setting the
corresponding EDAC enable bits in the MCFG3 register. The equations below show how the EDAC
checkbits are generated:

CB0 = D0 ^  D4 ^  D6 ^  D7 ^  D8 ^  D9 ^  D11 ^  D14 ^  D17 ^  D18 ^  D19 ^  D21 ^  D26 ^  D28 ^  D29 ^  D31
CB1 = D0 ^  D1 ^  D2 ^  D4 ^  D6 ^  D8 ^  D10 ^  D12 ^  D16 ^  D17 ^  D18 ^  D20 ^  D22 ^  D24 ^  D26 ^  D28
CB2 = D0 ^  D3 ^  D4 ^  D7 ^  D9 ^  D10 ^  D13 ^  D15 ^  D16 ^  D19 ^  D20 ^  D23 ^  D25 ^  D26 ^  D29 ^  D31
CB3 = D0 ^  D1 ^  D5 ^  D6 ^  D7 ^  D11 ^  D12 ^  D13 ^  D16 ^  D17 ^  D21 ^  D22 ^  D23 ^  D27 ^  D28 ^  D29
CB4 = D2 ^  D3 ^  D4 ^  D5 ^  D6 ^  D7 ^  D14 ^  D15 ^  D18 ^  D19 ^  D20 ^  D21 ^  D22 ^  D23 ^  D30 ^  D31
CB5 = D8 ^  D9 ^  D10 ^  D11 ^  D12 ^  D13 ^  D14 ^  D15 ^  D24 ^  D25 ^  D26 ^  D27 ^  D28 ^  D29 ^  D30 ^  D31
CB6 = D0 ^  D1 ^  D2 ^  D3 ^  D4 ^  D5 ^  D6 ^  D7 ^  D24 ^  D25 ^  D26 ^  D27 ^  D28 ^  D29 ^  D30 ^  D31
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If the SRAM is configured in 8-bit mode, the EDAC checkbit bus (CB[7:0]) is not used but it is still
possible to use EDAC protection. Data is always accessed as words (4 bytes at a time) and the corre-
sponding checkbits are located at the address acquired by inverting the word address (bits 2 to 27) and
using it as a byte address. The same chip-select is kept active. A word written as four bytes to
addresses 0, 1, 2, 3 will have its checkbits at address 0xFFFFFFF, addresses 4, 5, 6, 7 at 0xFFFFFFE
and so on. All the bits up to the maximum bank size will be inverted while the same chip-select is
always asserted. This way all the bank sizes can be supported and no memory will be unused (except
for a maximum of 4 byte in the gap between the data and checkbit area). A read access will automati-
cally read the four data bytes individually from the nominal addresses and the EDAC checkbit byte
from the top part of the bank. A write cycle is performed the same way. Byte or half-word write
accesses will result in an automatic read-modify-write access where 4 data bytes and the checkbit byte
are firstly read, and then 4 data bytes and the newly calculated checkbit byte are writen back to the
memory. This 8-bit mode applies to SRAM while SDRAM always uses 32-bit accesses. The size of
the memory bank is determined from the settings in MCFG2. The EDAC cannot be used on memory
areas configured in 16-bit mode.

If the ROM is configured in 8-bit mode, EDAC protection is provided in a similar way as for the
SRAM memory described above. The difference is that write accesses are not being handled automat-
ically. Instead, write accesses must only be performed as individual byte accesses by the software,
writing one byte at a time, and the corresponding checkbit byte must be calculated and be written to
the correct location by the software.

The operation of the EDAC can be tested trough the MCFG3 register. If the WB (write bypass) bit is
set, the value in the TCB field will replace the normal checkbits during memory write cycles. If the
RB (read bypass) is set, the memory checkbits of the loaded data will be stored in the TCB field dur-
ing memory read cycles. NOTE: when the EDAC is enabled, the RMW bit in memory configuration
register 2 must be set.

EDAC is not supported for 64-bit wide SDRAM data busses.

30.11 Bus Ready signalling

The BRDYN signal can be used to stretch all types of access cycles to the PROM, I/O area and the
SRAM area decoded by RAMSN[4]. This covers read and write accesses in general, and additionally
read-modify-write accesses to the SRAM area. The accesses will always have at least the pre-pro-
grammed number of waitstates as defined in memory configuration registers 1 & 2, but will be further
stretched until BRDYN is asserted. BRDYN should be asserted in the cycle preceding the last one. If
bit 29 in MCFG1 is set, BRDYN can be asserted asynchronously with the system clock. In this case,
the read data must be kept stable until the de-assertion of OEN/RAMOEN and BRDYN must be
asserted for at least 1.5 clock cycle. The use of BRDYN can be enabled separately for the PROM, I/O
and RAMSN[4] areas. It is recommended that BRDYN is asserted until the corresponding chip select
signal is de-asserted, to ensure that the access has been properly completed and avoiding the system to
stall.
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Figure 103 shows the use of BRDYN with asynchronous sampling. BRDYN is kept asserted for more
than 1.5 clock-cycle. Two synchronization registers are used so it will take at least one additional
cycle from when BRDYN is first asserted until it is visible internally. In figure 103 one cycle is added
to the data2 phase.

Figure 102.  READ cycle with one extra data2 cycle added with BRDYN (synchronous sampling). Lead-out cycle is only 
applicable for I/O accesses.
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Figure 103.  BRDYN (asynchronous) sampling and BEXCN timing. Lead-out cycle is only applicable for I/O-accesses.
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30.12 Access errors

An access error can be signalled by asserting the BEXCN signal for read and write accesses. For reads
it is sampled together with the read data. For writes it is sampled on the last rising edge before chip
select is de-asserted, which is controlled by means of waitstates or bus ready signalling. If the usage
of BEXCN is enabled in memory configuration register 1, an error response will be generated on the
internal AHB bus. BEXCN can be enabled or disabled through memory configuration register 1, and
is active for all areas (PROM, IO and RAM). BEXCN is only sampled in the last access for 8- and 16-
bit mode for RAM and PROM. That is, when four bytes are written for a word access to 8-bit wide
memory BEXCN is only sampled in the last access with the same timing as a single access in 32-bit
mode.

Figure 104.  Read cycle with one waitstate (configured) and one BRDYN generated waitstate (synchronous sampling).
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Figure 105.  Read cycle with BEXCN.
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30.13 Attaching an external DRAM controller

To attach an external DRAM controller, RAMSN[4] should be used since it allows the cycle time to
vary through the use of BRDYN. In this way, delays can be inserted as required for opening of banks
and refresh.

30.14 Output enable timing

A drive signal vector for the data I/O-pads is provided which has one drive signal for each data bit. It
can be used if the synthesis tool does not generate separate registers automatically for the current
technology. This can remove timing problems with output delay. An additional vector is used for the
separate SDRAM bus.

30.15 Registers

The core is programmed through registers mapped into APB address space.

30.15.1 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and IO accesses.

Table 219.FTMCTRL memory controller registers

APB Address offset Register

0x0 Memory configuration register 1 (MCFG1)

0x4 Memory configuration register 2 (MCFG2)

0x8 Memory configuration register 3 (MCFG3)

Table 220. Memory configuration register 1.
31 30 29 28 27 26 25 24 23 20 19 18 17

PBRDY ABRDY IOBUSW IBRDY BEXCN IO WAITSTATES IOEN ROMBANKSZ

14 13 12 11 10 9 8 7 4 3 0

RESERVED PWEN PROM WIDTH PROM WRITE WS PROM READ WS

31 RESERVED

30 PROM area bus ready enable (PBRDY) - Enables bus ready (BRDYN) signalling for the PROM 
area. Reset to ‘0’.

29 Asynchronous bus ready (ABRDY) - Enables asynchronous bus ready. 

Figure 106.  Write cycle with BEXCN. Chip-select (iosn) is not asserted in lead-in cycle for io-accesses.
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During reset, the prom width (bits [9:8]) are set with value on BWIDTH inputs. The prom waitstates
fields are set to 15 (maximum). External bus error and bus ready are disabled. All other fields are
undefined.

30.15.2 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM and SDRAM. 

28 : 27 I/O bus width (IOBUSW) - Sets the data width of the I/O area (“00”=8, “01”=16, “10” =32).

26 I/O bus ready enable (IBRDY) - Enables bus ready (BRDYN) signalling for the I/O area. Reset to 
‘0’.

25 Bus error enable (BEXCN) - Enables bus error signalling for all areas. Reset to ‘0’.

24 RESERVED

23 : 20 I/O waitstates (IO WAITSTATES) - Sets the number of waitstates during I/O accesses (“0000”=0, 
“0001”=1, “0010”=2,..., “1111”=15).

19 I/O enable (IOEN) - Enables accesses to the memory bus I/O area. 

18 RESERVED

17: 14 PROM bank size (ROMBANKSZ) - Returns current PROM bank size when read. “0000” is a spe-
cial case and corresponds to a bank size of 256 MB. All other values give the bank size in binary 
steps: “0001”=16kB, “0010”=32kB, ... , “1111”=256 MB. For value “0000” or “1111” only two chip 
selects are available. For other values, two chip select signals are available for fixed bank sizes. For 
other values, four chip select signals are available for programmable bank sizes.

Programmable bank sizes can be changed by writing to this register field. The written values corre-
spond to the bank sizes and number of chip-selects as above. Reset to “0000” when programmable.

Programmable ROMBANKSZ is only available when romasel VHDL generic is 0. For other values 
this is a read-only register field containing the fixed bank size value.

13:12 RESERVED

11 PROM write enable (PWEN) - Enables write cycles to the PROM area.

10 RESERVED

9 : 8 PROM width (PROM WIDTH) - Sets the data width of the PROM area (“00”=8, “01”=16, 
“10”=32).

7 : 4 PROM write waitstates (PROM WRITE WS) - Sets the number of wait states for PROM write 
cycles (“0000”=0, “0001”=2, “0010”=4,..., “1111”=30).

3 : 0 PROM read waitstates (PROM READ WS) - Sets the number of wait states for PROM read cycles 
(“0000”=0, “0001”=2, “0010”=4,...,”1111”=30). Reset to “1111”.

Table 221. Memory configuration register 2.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SDRF TRP SDRAM TRFC TCAS SDRAM BANKSZ SDRAM COLSZ SDRAM CMD D64 SDPB

15 14 13 12 9 8 7 6 5 4 3 2 1 0

SE SI RAM BANK SIZE RBRDY RMW RAM WIDTH RAM WRITE WS RAM READ WS

31 SDRAM refresh (SDRF) - Enables SDRAM refresh.

30 SRAM TRP parameter (TRP) - tRP will be equal to 2 or 3 system clocks (0/1). 

29 : 27 SDRAM TRFC parameter (SDRAM TRFC) - tRFC will be equal to 3+field-value system clocks.

26 SDRAM TCAS parameter (TCAS) - Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-
COMMAND-REGISTER command must be issued at the same time. Also sets RAS/CAS delay 
(tRCD).

25 : 23 SDRAM bank size (SDRAM BANKSZ) - Sets the bank size for SDRAM chip selects (“000”=4 
Mbyte, “001”=8 Mbyte, “010”=16 Mbyte.... “111”=512 Mbyte).

22 : 21 SDRAM column size (SDRAM COLSZ) - “00”=256, “01”=512, “10”=1024, “11”=4096 when bit 
25:23=”111” 2048 otherwise.

Table 220. Memory configuration register 1.
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30.15.3 Memory configuration register 3 (MCFG3)

MCFG3 contains the reload value for the SDRAM refresh counter and to control and monitor the
memory EDAC. It also contains the configuration of the register file EDAC.

The period between each AUTO-REFRESH command is calculated as follows:

tREFRESH = ((reload value) + 1) / SYSCLK

30.16 Vendor and device identifiers

The core has vendor identifier 0x01 (GAISLER) and device identifier 0x05F. For description of ven-
dor and device identifiers, see GRLIB IP Library User’s Manual.

20 : 19 SDRAM command (SDRAM CMD) - Writing a non-zero value will generate a SDRAM command. 
“01”=PRECHARGE, “10”=AUTO-REFRESH, “11”=LOAD-COMMAND-REGISTER. The field is 
reset after the command has been executed.

18 64-bit SDRAM data bus (D64) - Reads ‘1’ if the memory controller is configured for 64-bit SDRAM 
data bus width, ‘0’ otherwise. Read-only.

17 SDRAM Page Burst (SDPB) - SDRAM programmed for page bursts on read when set, else pro-
grammed for line burst lengths of 8 on read. Programmable when pageburst VHDL generic is 2, else 
read-only.

16 : 15 RESERVED

14 SDRAM enable (SE) - Enables the SDRAM controller and disables fifth SRAM bank (RAMSN[4]).

13 SRAM disable (SI) - Disables accesses to SRAM bank if bit 14 (SE) is set to ‘1’.

12 : 9 RAM bank size (RAM BANK SIZE) - Sets the size of each RAM bank (“0000”=8 kbyte, “0001”=16 
kbyte, ..., “1111”=256 Mbyte).

8 RESERVED

7 RAM bus ready enable (RBRDY) - Enables bus ready signalling for the RAM area.

6 Read-modify-write enable (RMW) - Enables read-modify-write cycles for sub-word writes to 16- bit 
32-bit areas with common write strobe (no byte write strobe).

5 : 4 RAM width (RAM WIDTH) - Sets the data width of the RAM area (“00”=8, “01”=16, “1X”=32).

3 : 2 RAM write waitstates (RAM WRITE WS) - Sets the number of wait states for RAM write cycles 
(“00”=0, “01”=1, “10”=2, “11”=3).

1 : 0 RAM read waitstates (RAM READ WS) - Sets the number of wait states for RAM read cycles 
(“00”=0, “01”=1, “10”=2, “11”=3).

Table 222. Memory configuration register 3.
31 28 27 26

RESERVED ME SDRAM REFRESH COUNTER

12 11 10 9 8 7 0

WB RB RE PE TCB

31 : 28 RESERVED

27 Memory EDAC (ME) - Indicates if memory EDAC is present.

26 : 12 SDRAM refresh counter reload value (SDRAM REFRESH COUNTER)

11 EDAC diagnostic write bypass (WB) - Enables EDAC write bypass. 

10 EDAC diagnostic read bypass (RB) - Enables EDAC read bypass.

9 RAM EDAC enable (RE) - Enable EDAC checking of the RAM area (including SDRAM).

8 PROM EDAC enable (PE) - Enable EDAC checking of the PROM area. Ar reset, this bit is initial-
ized with the value of MEMI.EDAC.

7 : 0 Test checkbits (TCB) - This field replaces the normal checkbits during write cycles when WB is set. 
It is also loaded with the memory checkbits during read cycles when RB is set.

Table 221. Memory configuration register 2.
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30.17 Configuration options

Table 223 shows the configuration options of the core (VHDL generics).

Table 223.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

pindex APB slave index 0 - NAPBSLV-1 0

romaddr ADDR field of the AHB BAR0 defining PROM address space. 
Default PROM area is 0x0 - 0x1FFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#E00#

ioaddr ADDR field of the AHB BAR1 defining I/O address space. 
Default I/O area is 0x20000000 - 0x2FFFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#E00#

ramaddr ADDR field of the AHB BAR2 defining RAM address space. 
Default RAM area is 0x40000000-0x7FFFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR2 defining RAM address space. 0 -16#FFF# 16#C00#

paddr ADDR field of the APB BAR configuration registers address 
space.

0 - 16#FFF# 0

pmask MASK field of the APB BAR configuration registers address 
space.

0 - 16#FFF# 16#FFF#

wprot RAM write protection. 0 - 1 0

invclk unused N/A 0

fast Enable fast SDRAM address decoding. 0 - 1 0

romasel Sets the PROM bank size. 0 selects a programmable mode where 
the rombanksz field in the MCFG1 register sets the bank size. 
See the description of the MCFG1 register for more details. 

Values 1 - 14 sets the size in binary steps (1 = 16 kB, 2 = 32 kB, 
...., 14=128 MB). Four chip-selects are available for these val-
ues. 15 sets the bank size to 256 MB with two chip-selects. 

Values 16 - 28 sets the bank size in binary steps (16 = 64 kB, 17 
= 128 kB, 28 = 256 MB). Two chip-selects are available for this 
range. The selected bank size is readable from the rombanksz 
field in the MCFG1 register for the non-programmable modes. 

0 - 28 28

sdrasel log2(RAM address space size) - 1. E.g if size of the RAM 
address space is 0x40000000 sdrasel is log2(2^30)-1= 29.

0 - 31 29

srbanks Number of SRAM banks. 0 - 5 4

ram8 Enable 8-bit PROM, SRAM and I/O access. 0 - 1 0

ram16 Enable 16-bit PROM, SRAM and I/O access. 0 - 1 0

sden Enable SDRAM controller. 0 - 1 0

sepbus SDRAM is located on separate bus. 0 - 1 1

sdbits 32 or 64 -bit SDRAM data bus. 32, 64 32

oepol Select polarity of drive signals for data pads. 0 = active low, 1 = 
active high.

0 - 1 0

edac Enable EDAC 0 - 1 0

sdlsb Select least significant bit of the address bus that is connected to 
SDRAM. 

- 2

syncrst Choose between synchronous and asynchronous reset for chip-
select, oen and drive signals.

0 - 1 0

pageburst Line burst read of length 8 when 0, page burst read when 1, pro-
grammable read burst type when 2.

0-2 0

scantest Enable scan test support 0 - 1 0
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30.18 Scan support

Scan support is enabled by setting the SCANTEST generic to 1. When enabled, the asynchronous
reset of any flip-flop will be connected to AHBI.testrst during when AHBI.testen = ‘1’.

30.19 Signal descriptions

Table 224 shows the interface signals of the core (VHDL ports).

Table 224.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

MEMI DATA[31:0] Input Memory data High

BRDYN Input Bus ready strobe Low

BEXCN Input Bus exception Low

CBI[7:0] Input EDAC checkbits High

WRN[3:0] Input SRAM write enable feedback signal Low

BWIDTH[1:0] Input Sets the reset value of the PROM data bus width 
field in the MCFG1 register

High

EDAC Input The reset value for the PROM EDAC enable bit High

SD[31:0] Input SDRAM separate data bus High
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MEMO ADDRESS[27:0] Output Memory address High

CBO[7:0] Output EDAC Checkbit

DATA[31:0] Output Memory data -

SDDATA[63:0] Output Sdram memory data -

RAMSN[4:0] Output SRAM chip-select Low

RAMOEN[4:0] Output SRAM output enable Low

IOSN Output Local I/O select Low

ROMSN[3:0] Output PROM chip-select Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable:

WRN[0] corresponds to DATA[31:24],

WRN[1] corresponds to DATA[23:16],

WRN[2] corresponds to DATA[15:8],

WRN[3] corresponds to DATA[7:0].

Any WRN[ ] signal can be used for CB[ ].

Low

MBEN[3:0] Output Byte enable:

MBEN[0] corresponds to DATA[31:24],

MBEN[1] corresponds to DATA[23:16],

MBEN[2] corresponds to DATA[15:8],

MBEN[3] corresponds to DATA[7:0].

Any MBEN[ ] signal can be used for CB[ ].

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory 
bus:

BDRIVE[0] corresponds to DATA[31:24],

BDRIVE[1] corresponds to DATA[23:16],

BDRIVE[2] corresponds to DATA[15:8],

BDRIVE[3] corresponds to DATA[7:0].

Any BDRIVE[ ] signal can be used for CB[ ].

Low/High

VBDRIVE[31:0] Output Vectored I/O-pad drive signals. Low/High

SVBDRIVE[63:0] Output Vectored I/O-pad drive signals for separate 
sdram bus. 

Low/High

READ Output Read strobe High

SA[14:0] Output SDRAM separate address bus High

CE Output Single error detected High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

WPROT WPROTHIT Input Unused -

Table 224.Signal descriptions

Signal name Field Type Function Active
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30.20 Library dependencies

Table 225 shows libraries used when instantiating the core (VHDL libraries).

30.21 Instantiation

This example shows how the core can be instantiated. 

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator. 

Memory controller decodes default memory areas: PROM area is 0x0 - 0x1FFFFFFF, I/O-area is
0x20000000-0x3FFFFFFF and RAM area is 0x40000000 - 0x7FFFFFFF. SDRAM controller is
enabled. SDRAM clock is synchronized with system clock by clock generator.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads

entity mctrl_ex is
  port (
    clk : in std_ulogic;

SDO SDCASN Output SDRAM column address strobe Low

SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDDQM[7:0] Output SDRAM data mask:

SDDQM[7] corresponds to SD[63:56],

SDDQM[6] corresponds to SD[55:48],

SDDQM[5] corresponds to SD[47:40],

SDDQM[4] corresponds to SD[39:32],

SDDQM[3] corresponds to SD[31:24],

SDDQM[2] corresponds to SD[23:16],

SDDQM[1] corresponds to SD[15:8],

SDDQM[0] corresponds to SD[7:0].

Any SDDQM[ ] signal can be used for CB[ ].

Low

SDRASN Output SDRAM row address strobe Low

SDWEN Output SDRAM write enable Low

* see GRLIB IP Library User’s Manual

Table 225.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals

Components

Memory bus signals definitions

FTMCTRL component

Table 224.Signal descriptions

Signal name Field Type Function Active



237

    resetn : in std_ulogic;
    pllref : in  std_ulogic; 
    
    -- memory bus
    address  : out   std_logic_vector(27 downto 0);  -- memory bus
    data     : inout std_logic_vector(31 downto 0);
    ramsn    : out   std_logic_vector(4 downto 0);
    ramoen   : out   std_logic_vector(4 downto 0);
    rwen     : inout std_logic_vector(3 downto 0);
    romsn    : out   std_logic_vector(3 downto 0);
    iosn     : out   std_logic;
    oen      : out   std_logic;
    read     : out   std_logic;
    writen   : inout std_logic;
    brdyn    : in    std_logic;
    bexcn    : in    std_logic;
-- sdram i/f
    sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); - - optional sdram address
    sd       : inout std_logic_vector(63 downto 0) -- optional sdram data
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => a hbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo : sdram_out_type;  

  signal wprot : wprot_out_type;  -- dummy signal, not used
  signal clkm, rstn : std_ulogic; -- system clock a nd reset

-- signals used by clock and reset generators
  signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;

  signal gnd : std_ulogic;
  
begin

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_d iv => 2, sdramen => 1, 
                                tech => virtex2, sd invclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open , cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pl lref <= pllref;
  
  -- Memory controller
  ftmctrl0 : ftmctrl generic map (srbanks => 1, sde n => 1, edac => 1)
    port map (rstn, clkm, memi, memo, ahbsi, ahbso( 0), apbi, apbo(0), wprot, sdo);

  -- memory controller inputs not used in this conf iguration  
  memi.brdyn <= ’1’; memi.bexcn <= ’1’; memi.wrn <=  "1111";
  memi.sd <= sd;
  



238

  -- prom width at reset
  memi.bwidth <= "10";
  
  -- I/O pads driving data memory bus data signals
  datapads : for i in 0 to 3 generate
      data_pad : iopadv generic map (width => 8)
      port map (pad => memi.data(31-i*8 downto 24-i *8),
                o => memi.data(31-i*8 downto 24-i*8 ),
                en => memo.bdrive(i),
                i => memo.data(31-i*8 downto 24-i*8 ));
  end generate;

  -- connect memory controller outputs to entity ou tput signals
  address <= memo.address; ramsn <= memo.ramsn; rom sn <= memo.romsn; 
  oen <= memo.oen; rwen <= memo.wrn; ramoen <= "111 1" & memo.ramoen(0);
  sa <= memo.sa;  
  writen <= memo.writen; read <= memo.read; iosn <=  memo.iosn;  
  sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn; 
  sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;
end;
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31 FTSDCTRL - 32/64-bit PC133 SDRAM Controller with EDAC 

31.1 Overview

The fault tolerant SDRAM memory interface handles PC133 SDRAM compatible memory devices
attached to a 32- or 64-bit wide data bus. The interface acts as a slave on the AHB bus where it occu-
pies configurable amount of address space for SDRAM access. An optional  Error Detection And
Correction Unit (EDAC) logic (only for the 32 - bit bus) corrects one bit error and detects two bit
errors. 

The SDRAM controller function is programmed by means of register(s) mapped into AHB I/O
address space. Chip-select decoding is done for two SDRAM banks. 

31.2 Operation

31.2.1 General

Synchronous Dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. The controller supports 64, 256 and 512 Mbyte devices with 8 - 12 column-address bits,
up to 13 row-address bits, and 4 banks. The size of each of the two banks can be programmed in
binary steps between 4 Mbyte and 512 Mbyte. The operation of the SDRAM controller is controlled
through the configuration register SDCFG. A second register, ECFG, is available for configuring the
EDAC functions. SDRAM banks data bus width is configurable between 32 and 64 bits.

31.2.2 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. The controller programs the SDRAM to use page burst on read and single location access on
write.

Figure 107.  FT SDRAM memory controller connected to AMBA bus and SDRAM
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31.2.3 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), some
SDRAM parameters can be programmed through SDRAM configuration register (SDCFG) The pro-
grammable SDRAM parameters can be seen in table below:

Remaining SDRAM timing parameters are according the PC100/PC133 specification.

31.2.4 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6 µs (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in SDCFG register.

31.2.5 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field in
SDCFG: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR command
is issued, the CAS delay as programmed in SDCFG will be used, remaining fields are fixed: page read
burst, single location write, sequential burst. The command field will be cleared after a command has
been executed. Note that when changing the value of the CAS delay, a LOAD-MODE-REGISTER
command should be generated at the same time.

31.2.6 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses. Note that only word bursts are supported by the
SDRAM controller. The AHB bus supports bursts of different sizes such as bytes and halfwords but
they cannot be used. 

31.2.7 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between. As in the read case, only word bursts are supported.

31.2.8 Address bus connection

The SDRAM address bus should be connected to SA[12:0], the bank address to SA[14:13], and the
data bus to SD[31:0] or SD[63:0] if 64-bit data bus is used.

Table 226.SDRAM programmable timing parameters

Function Parameter range unit

CAS latency, RAS/CAS delay tCAS, tRCD 2 - 3 clocks

Precharge to activate tRP 2 - 3 clocks

Auto-refresh command period tRFC 3 - 11 clocks

Auto-refresh interval 10 - 32768 clocks
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31.2.9 Data bus

Data bus width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit SDRAM devices to
be connected using the full data capacity of the devices. 64-bit SDRAM devices can be connected to
32-bit data bus if 64-bit data bus is not available but in this case only half the full data capacity will be
used.

31.2.10 Clocking

The SDRAM clock typically requires special synchronisation at layout level. For Virtex targets, GR
Clock Generator can be configured to produce a properly synchronised SDRAM clock. For other
FPGA targets, the GR Clock Generator can produce an inverted clock.

31.2.11 EDAC

The controller optionally contains Error Detection And Correction (EDAC) logic, using a BCH(32, 7)
code. It is capable of correcting one bit error and detecting two bit errors. The EDAC logic does not
add any additional waitstates during normal operation. Detected errors will cause additional waitstates
for correction (single errors) or error reporting (multiple errors). Single errors are automatically cor-
rected and generally not visible externally unless explicitly checked. 

This checking is done by monitoring the ce signal and single error counter. This counter holds the
number of detected single errors. The ce signal is asserted one clock cycle when a single error is
detected and should be connected to the AHB status register. This module stores the AHB status of the
instruction causing the single error and generates interrupts (see the AHB status register documenta-
tion for more information). 

The EDAC functionality can be enabled/disabled during run-time from the ECFG register (and the
logic can also be completely removed during synthesis with VHDL generics. The ECFG register also
contains control bits and checkbit fields for diagnostic reads. These diagnostic functions are used for
testing the EDAC functions on-chip and allows one to store arbitrary checkbits with each written
word. Checkbits read from memory can also be controlled.

64-bit bus support is not provided when EDAC is enabled. Thus, the sd64 and edacen VHDL generics
should never be set to one at the same time.

The equations below show how the EDAC checkbits are generated:

CB0 = D0 ^  D4 ^  D6 ^  D7 ^  D8 ^  D9 ^  D11 ^  D14 ^  D17 ^  D18 ^  D19 ^  D21 ^  D26 ^  D28 ^  D29 ^  D31
CB1 = D0 ^  D1 ^  D2 ^  D4 ^  D6 ^  D8 ^  D10 ^  D12 ^  D16 ^  D17 ^  D18 ^  D20 ^  D22 ^  D24 ^  D26 ^  D28
CB2 = D0 ^  D3 ^  D4 ^  D7 ^  D9 ^  D10 ^  D13 ^  D15 ^  D16 ^  D19 ^  D20 ^  D23 ^  D25 ^  D26 ^  D29 ^  D31
CB3 = D0 ^  D1 ^  D5 ^  D6 ^  D7 ^  D11 ^  D12 ^  D13 ^  D16 ^  D17 ^  D21 ^  D22 ^  D23 ^  D27 ^  D28 ^  D29
CB4 = D2 ^  D3 ^  D4 ^  D5 ^  D6 ^  D7 ^  D14 ^  D15 ^  D18 ^  D19 ^  D20 ^  D21 ^  D22 ^  D23 ^  D30 ^  D31
CB5 = D8 ^  D9 ^  D10 ^  D11 ^  D12 ^  D13 ^  D14 ^  D15 ^  D24 ^  D25 ^  D26 ^  D27 ^  D28 ^  D29 ^  D30 ^  D31
CB6 = D0 ^  D1 ^  D2 ^  D3 ^  D4 ^  D5 ^  D6 ^  D7 ^  D24 ^  D25 ^  D26 ^  D27 ^  D28 ^  D29 ^  D30 ^  D31

31.3 Registers

The memory controller is programmed through register(s) mapped into the AHB I/O space defined by
the controllers AHB BAR1. 

If EDAC is enabled through the use of the edacen VHDL generic, an EDAC configuration register
will be available.

Table 227.FT SDRAM controller registers

AHB address offset Register

0x0 SDRAM Configuration register

0x4 EDAC Configuration register
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31.3.1 SDRAM configuration register (SDCFG)

SDRAM configuration register is used to control the timing of the SDRAM.

[14:0]: The period between each AUTO-REFRESH command - Calculated as follows:tREFRESH = ((reload value) + 1) /
SYSCLK

[15]: 64-bit data bus (D64) - Reads ‘1’ if memory controller is configured for 64-bit data bus, otherwise ‘0’. Read-only.
[20:19]: SDRAM command. Writing a non-zero value will generate an SDRAM command: “01”=PRECHARGE,

“10”=AUTO-REFRESH, “11”=LOAD-COMMAND-REGISTER. The field is reset after command has been
executed.

[22:21]: SDRAM column size. “00”=256, “01”=512, “10”=1024, “11”=4096 when bit[25:23]= “111”, 2048 otherwise.
[25:23]: SDRAM banks size. Defines the banks size for SDRAM chip selects: “000”=4 Mbyte, “001”=8 Mbyte, “010”=16

Mbyte .... “111”=512 Mbyte.
[26]: SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-REGISTER

command must be issued at the same time. Also sets RAS/CAS delay (tRCD).
[29:27]: SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks.
[30]: SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1).
[31]: SDRAM refresh. If set, the SDRAM refresh will be enabled.

31.3.2 EDAC Configuration register (ECFG)

The EDAC configuration register controls the EDAC functions of the SDRAM controller during run
time. 

[6:0] TCB : Test checkbits. These bits are written as checkbits into memory during a write operation when the WB bit in
the ECFG register is set. Checkbits read from memory during a read operation are written to this field when the RB
bit is set.

[7] EN : EDAC enable. Run time enable/disable of the EDAC functions. If EDAC is disabled no error detection will
be done during reads and subword writes. Checkbits will still be written to memory during write operations.

[8]  RB : Read bypass. Store the checkbits read from memory during a read operation into the TCB field.
[9] WB : Write bypass. Write the TCB field as checkbits into memory for all write operations.
[cntbits + 9:10] SEC : Single error counter. This field is available when the errcnt VHDL generic is set to one during synthesis.

It increments each time a single error is detected. It saturates when the maximum value is reached. The maximum
value is the largest number representable in the number of bits used, which in turn is determined by the cntbits
VHDL generic. Each bit in the counter can be reset by writing a one to it.

[30:cntbits + 10] Reserved. 
[31] EAV : EDAC available. This bit is always one if the SDRAM controller contains EDAC.

031

Figure 108.  SDRAM configuration register
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31.4 Vendor and device identifiers

The module has vendor identifier 0x01 (Gaisler Research) and device identifier 0x055. For a descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

31.5 Configuration options

Table 228 shows the configuration options of the core (VHDL generics).

Table 228.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

haddr ADDR field of the AHB BAR0 defining SDRAM area. 
Default is 0xF0000000 - 0xFFFFFFFF.

0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#

ioaddr ADDR field of the AHB BAR1 defining I/O address 
space where SDCFG register is mapped. 

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address 
space.

0 - 16#FFF# 16#FFF#

wprot Write protection. 0 - 1 0

invclk Inverted clock is used for the SDRAM. 0 - 1 0

fast Enable fast SDRAM address decoding. 0 - 1 0

pwron Enable SDRAM at power-on. 0 - 1 0

sdbits 32 or 64 -bit data bus width. 32, 64 32

edacen EDAC enable. If set to one, EDAC logic will be included 
in the synthesized design. An EDAC configuration regis-
ter will also be available. 

0 - 1 0

errcnt Include an single error counter which is accessible from 
the EDAC configuration register. 

0 - 1 0

cntbits Number of bits used in the single error counter 1 - 8 1
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31.6 Signal descriptions

Table 229 shows the interface signals of the core (VHDL ports).

31.7 Library dependencies

Table 5 shows libraries used when instantiating the core (VHDL libraries).

31.8 Instantiation

This example shows how the core can be instantiated. 

Table 229.Signals declarations

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

SDI WPROT Input Not used -

DATA[63:0] Input Data -

CB[7:0] Input Checkbits -

SDO SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDWEN Output SDRAM write enable Low

RASN Output SDRAM row address strobe Low

CASN Output SDRAM column address strobe Low

DQM[7:0] Output SDRAM data mask:

DQM[7] corresponds to DATA[63:56],

DQM[6] corresponds to DATA[55:48],

DQM[5] corresponds to DATA[47:40],

DQM[4] corresponds to DATA[39:32],

DQM[3] corresponds to DATA[31:24],

DQM[2] corresponds to DATA[23:16],

DQM[1] corresponds to DATA[15:8],

DQM[0] corresponds to DATA[7:0].

Any DQM[ ] signal can be used for CB[ ].

Low

BDRIVE Output Drive SDRAM data bus Low

ADDRESS[16:2] Output SDRAM address -

DATA[31:0] Output SDRAM data -

CB[7:0] Output Checkbits -

CE N/A Output Correctable Error High

* see GRLIB IP Library User’s Manual

Table 230.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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The example design contains an AMBA bus with a number of AHB components connected to it
including the FT SDRAM controller. The external SDRAM bus is defined in the example designs port
map and connected to the SDRAM controller. System clock and reset are generated by GR Clock
Generator and Reset Generator. It is also shown how the correctable error (CE) signal is connected to
the ahb status register. It is not mandatory to connect this signal. In this example, 3 units can be con-
nected to the status register. 

The SDRAM controller decodes SDRAM area: 0x60000000 - 0x6FFFFFFF. SDRAM Configuration
and EDAC configuration registers are mapped into AHB I/O space on address (AHB I/O base address
+ 0x100).

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
use gaisler.misc.all; 

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic; 
    ... -- other signals 
   
-- sdram memory bus
    sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); - - optional sdram address
    sd       : inout std_logic_vector(63 downto 0);  -- optional sdram data
    cb       : inout std_logic_vector(7 downto 0) - -EDAC checkbits
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => a hbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);

  -- signals used to connect SDRAM controller and S DRAM memory bus
  signal sdi   : sdctrl_in_type;  
  signal sdo   : sdctrl_out_type;  

  signal clkm, rstn : std_ulogic; -- system clock a nd reset
signal ce : std_logic_vector(0 to 2); --correctable  error signal vector

-- signals used by clock and reset generators
  signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;

  signal gnd : std_ulogic;
  
begin
  
  -- AMBA Components are defined here ... 
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  ...

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_d iv => 2, sdramen => 1, 
                                tech => virtex2, sd invclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open , cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pl lref <= pllref;
  
  rst0 : rstgen
  port map (resetn, clkm, cgo.clklock, rstn);  

  -- AHB Status Register
  astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
    nftslv => 3)
    port map(rstn, clkm, ahbmi, ahbsi, ce, apbi, ap bo(13));
  
  -- SDRAM controller
  sdc : ftsdctrl generic map (hindex => 3, haddr =>  16#600#, hmask => 16#F00#, 
    ioaddr => 1, fast => 0, pwron => 1, invclk => 0 , edacen => 1, errcnt => 1,
    cntbits => 4)
    port map (rstn, clkm, ahbsi, ahbso(3), sdi, sdo , ce(0));

  -- input signals
  sdi.data(31 downto 0) <= sd(31 downto 0);
  
  -- connect SDRAM controller outputs to entity out put signals
  sa <= sdo.address; sdcke <= sdo.sdcke; sdwen <= s do.sdwen;
  sdcsn <= sdo.sdcsn; sdrasn <= sdo.rasn; sdcasn <=  sdo.casn;
  sddqm <= sdo.dqm;

  -- I/O pads driving data bus signals
  sd_pad : iopadv generic map (width => 32) 
      port map (sd(31 downto 0), sdo.data, sdo.bdri ve, sdi.data(31 downto 0));

  -- I/O pads driving checkbit signals
  cb_pad : iopadv generic map (width => 8) 
      port map (cb, sdo.cb, sdo.bdrive, sdi.cb);

end;
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32 FTSRCTRL - Fault Tolerant 32-bit PROM/SRAM/IO Controller

32.1 Overview

The fault tolerant 32-bit PROM/SRAM memory interface uses a common 32-bit memory bus to inter-
face PROM, SRAM and I/O devices. Support for 8-bit PROM banks can also be separately enabled.
In addition it also provides an Error Detection And Correction Unit (EDAC), correcting one and
detecting two errors. Configuration of the memory controller functions is performed through the APB
bus interface.

32.2 Operation

The controller is configured through VHDL generics to decode three address ranges: PROM, SRAM
and I/O area. By default the PROM area is mapped into address range 0x0 - 0x00FFFFFF, the SRAM
area is mapped into address range 0x40000000 - 0x40FFFFFF, and the I/O area is mapped to
0x20000000 - 0x20FFFFFF.

One chip select is decoded for the I/O area, while SRAM and PROM can have up to 8 chip select sig-
nals. The controller generates both a common write-enable signal (WRITEN) as well as four byte-
write enable signals (WREN). If the SRAM uses a common write enable signal the controller can be
configured to perform read-modify-write cycles for byte and half-word write accesses. Number of
waitstates is separately configurable for the three address ranges.

The EDAC function is optional, and can be enabled with the edacen VHDL generic. The configura-
tion of the EDAC is done through a configuration register accessed from the APB bus. During nomi-
nal operation, the EDAC checksum is generated and checked automatically. Single errors are
corrected without generating any indication of this condition in the bus response. If a multiple error is
detected, a two cycle error response is given on the AHB bus. 

Figure 110.  32-bit FT PROM/SRAM/IO controller
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Single errors can be monitored in two ways: 

• by monitoring the CE signal which is asserted for one cycle each time a single error is detected. 

• by checking the single error counter which is accessed from the MCFG3 configuration register. 

The CE signal can be connected to the AHB status register which stores information of the AHB
instruction causing the error and also generates interrupts. See the AHB status register documentation
for more information. When EDAC is enabled, one extra latency cycle is generated during reads and
subword writes.

The EDAC function can be enabled for SRAM and PROM area accesses, but not for I/O area
accesses. For the SRAM area, the EDAC functionality is only supported for accessing 32-bit wide
SRAM banks. For the PROM area, the EDAC functionality is supported for accessing 32-bit wide
PROM banks, as well as for read accesses to 8-bit wide PROM banks.

The equations below show how the EDAC checkbits are generated:

CB0 = D0 ^  D4 ^  D6 ^  D7 ^  D8 ^  D9 ^  D11 ^  D14 ^  D17 ^  D18 ^  D19 ^  D21 ^  D26 ^  D28 ^  D29 ^  D31
CB1 = D0 ^  D1 ^  D2 ^  D4 ^  D6 ^  D8 ^  D10 ^  D12 ^  D16 ^  D17 ^  D18 ^  D20 ^  D22 ^  D24 ^  D26 ^  D28
CB2 = D0 ^  D3 ^  D4 ^  D7 ^  D9 ^  D10 ^  D13 ^  D15 ^  D16 ^  D19 ^  D20 ^  D23 ^  D25 ^  D26 ^  D29 ^  D31
CB3 = D0 ^  D1 ^  D5 ^  D6 ^  D7 ^  D11 ^  D12 ^  D13 ^  D16 ^  D17 ^  D21 ^  D22 ^  D23 ^  D27 ^  D28 ^  D29
CB4 = D2 ^  D3 ^  D4 ^  D5 ^  D6 ^  D7 ^  D14 ^  D15 ^  D18 ^  D19 ^  D20 ^  D21 ^  D22 ^  D23 ^  D30 ^  D31
CB5 = D8 ^  D9 ^  D10 ^  D11 ^  D12 ^  D13 ^  D14 ^  D15 ^  D24 ^  D25 ^  D26 ^  D27 ^  D28 ^  D29 ^  D30 ^  D31
CB6 = D0 ^  D1 ^  D2 ^  D3 ^  D4 ^  D5 ^  D6 ^  D7 ^  D24 ^  D25 ^  D26 ^  D27 ^  D28 ^  D29 ^  D30 ^  D31

32.2.1 8-bit PROM access

The FTSRCTRL controller can be configured to access an 8-bit wide PROM. The data bus of the
external PROM should be connected to the upper byte of the 32-bit data bus, i.e. D[31:24]. The 8-bit
mode is enabled with the prom8en VHDL generic. When enabled, read accesses to the PROM area
will be done in four-byte bursts for all 32-, 16- and 8-bit AMBA AHB accesses. The whole 32-bit
word is then output on the AHB data bus, allowing the master to chose the bytes needed (big-endian).

Writes should be done one byte at a time. For correct word aligned 32-bit word write accesses, the
byte should always be driven on bits 31 to 24 on the AHB data bus. For non-aligned 32-bit word write
accesses, the byte should be driven on the bits of the AHB data bus that correspond to the byte address
(big-endian). For correct half-word aligned 16-bit half-word write accesses, the byte should always be
driven on bits 31 to 24, or 15 to 8, on the AHB data bus. For non-aligned 16-bit half-word write
accesses, the byte should be driven on the bits of the AHB data bus that correspond to the byte address
(big-endian). For 8-bit word write accesses the byte should always be driven on the AHB data bus bits
that corresponds to the byte address (big-endian). To summarize, all legal AMBA AHB write accesses
are supported according to the AMBA standard, additional illegal accesses are supported as described
above, and it is always the addressed byte that is output.

It is possible to dynamically switch between 8- and 32-bit PROM mode by writing to the RBW field
of the MCFG1 register. The BWIDTH[1:0] input signal determines the reset value of this RBW regis-
ter field. When RBW is “00” then 8-bit mode is selected. If RBW is “10” then 32-bit mode is selected.
Other RBW values are reserved for future use. SRAM access is not affected by the 8-bit PROM mode. 

It is also possible to use the EDAC in the 8-bit PROM mode, configured by the edacen VHDL
generic, and enabled via the MCFG3 register. Read accesses to the 8-bit PROM area will be done in
five-byte bursts for all 32-, 16- and 8-bit AMBA AHB accesses. After a potential correction, the
whole 32-bit word is output on the AHB data bus, allowing the master to chose the bytes needed (big-
endian). EDAC support is not provided for write accesses, they are instead performed in the same way
as without the EDAC enabled. The checksum byte must be written by the user into the correct byte
address location.

The fifth byte corresponds to the EDAC checksum and is located in the upper part of the effective
memory area, as explained in detail in the definition of the MCFG1 memory configuration register.
The EDAC checksums are located in the upper quarter of what is defined as available EDAC area by
means of the EBSZ field and the ROMBSZ field or rombanksz VHDL generic. When set to 0, the size
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of the available EDAC area is defined as the PROM bank size. When set to 1, as twice the PROM
bank size. When set to 2, as four times the PROM bank size. And when set to 3, as eight times the
PROM bank size. For any other value than 0, the use of multiple PROM banks is required.

Example, if ROMBSZ=10 and EBSZ=1, the EDAC area is 8kB*2^ROMBSZ*2^EBSZ=
16MB=0x01000000. The checksum byte for the first word located at address 0x00000000 to
0x00000003 is located at 0x00C00000. The checksum byte for the second word located at address
0x00000004 to 0x00000007 is located at 0x00C00001, and so on. Since EBSZ=1, two PROM banks
are required for implementing the EDAC area, each bank with size 8MB=0x00800000.

32.2.2 Access errors

The active low Bus Exception signal (BEXCN) can be used to signal access errors. It is enabled by
setting the BEXCEN bit in MCFG1 and is active for all types of accesses to all areas (PROM, SRAM
and I/O). The BEXCN signal is sampled on the same cycle as read data is sampled. For writes it is
sampled on the last rising edge before writen/rwen is de-asserted (writen and rwen are clocked on the
falling edge). When a bus exception is detected an error response will be generated for the access.

32.2.3 Using bus ready signalling 

The Bus Ready (BRDYN) signal can be used to add waitstates to I/O-area accesses, covering the
complete memory area and both read and write accesses. It is enabled by setting the Bus Ready

Figure 111.  Read cycle with BEXCN.
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Figure 112.  Write cycle with BEXCN. 
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Enable (BRDYEN) bit in the MCFG1 register. An access will have at least the amount of waitstates
set with the VHDL generic or through the register, but will be further stretched until BRDYN is
asserted. Additional waitstates can thus be inserted after the pre-set number of waitstates by de-assert-
ing the BRDYN signal. BRDYN should be asserted in the cycle preceding the last one. It is recom-
mended that BRDYN remains asserted until the IOSN signal is de-asserted, to ensure that the access
has been properly completed and avoiding the system to stall. Read accesses will have the same tim-
ing as when EDAC is enabled while write accesses will have the timing as for single accesses even if
bursts are performed.

32.3 PROM/SRAM/IO waveforms

The internal and external waveforms of the interface are presented in the figures hereafter.

Figure 113.  I/O READ cycle, programmed with 1 wait state, and with an extra data cycle added with BRDYN.
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Figure 114.  PROM/SRAM non-consecutive read cyclecs.
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Figure 115.  32-bit PROM/SRAM sequential read access with 0 wait-states and EDAC disabled.
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Figure 116.  32-bit PROM/SRAM non-sequential read access with 0 wait-states and EDAC enabled.
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Figure 117.  32-bit PROM/SRAM sequential read access with 0 wait-states and EDAC enabled..
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Figure 118.  32-bit PROM/SRAM non-sequential write access with 0 wait-states and EDAC disabled.
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If waitstates are configured through the VHDL generics or registers, one extra data cycle will be
inserted for each waitstate in both read and write cycles. The timing for write accesses is not affected
when EDAC is enabled while one extra latency cycle is introduced for single access reads and at the
beginning of read bursts. 

Figure 119.  32-bit PROM/SRAM sequential write access with 0 wait-states and EDAC disabled.
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Read-Modify-Write (RMW) accesses will have an additional waitstate inserted to accommodate
decoding when EDAC is enabled.

I/O accesses are similar to PROM and SRAM accesses but a lead-in and lead-out cycle is always
present.

Figure 120.  32-bit PROM/SRAM rmw access with 0 wait-states and EDAC disabled.
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Figure 121.  I/O write access with 0 wait-states.
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32.4 Registers

The core is programmed through registers mapped into APB address space.

Table 231.FT PROM/SRAM/IO controller registers

APB Address offset Register

0x0 Memory configuration register 1

0x4 Memory configuration register 2

0x8 Memory configuration register 3

Table 232. Memory configuration register 1.
31 27 26 25 24 23 20 19 18 17 14 13 12 11 10 9 8 7 4 3 0

RESERVED BR BE IOWS ROMBSZ EBSZ RW RBW RESERVED ROMWS

31: 27 RESERVED

26 Bus ready enable (BR) - Enables the bus ready signal (BRDYN) for I/O-area.

25 Bus exception enable (BE) - Enables the bus exception signal (BEXCEN) for PROM, SRAM and I/
O areas

24 RESERVED

23: 20 I/O wait states (IOWS) - Sets the number of waitstates for accesses to the I/O-area. Only available if 
the wsreg VHDL generic is set to one.

19: 18 RESERVED

17: 14 ROM bank size (ROMBSZ) - Sets the PROM bank size. Only available if the rombanksz VHDL 
generic is set to zero. Otherwise, the rombanksz VHDL generic sets the bank size and the value can 
be read from this field. 0 = 8 kB, 1 = 16 kB, ..., 15=256 MB

13: 12 EDAC bank size (EBSZ) - Sets the EDAC bank size for 8-bit PROM support. Only available if the 
rombanksz VHDL generic is zero, and edacen and prom8en VHDL generics are one. Otherwise, the 
value is fixed to 0. The resulting EDAC bank size is 2^EBSZ * 2^ROMBSZ * 8kB. Note that only 
the three lower quarters of the bank can be used for user data. The EDAC checksums are placed in 
the upper quarter of the bank.

Figure 122.  I/O read access with 0 wait-states
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All the fields in MCFG3 register are available if the edacen VHDL generic is set to one except SEC
field which also requires that the errcnt VHDL generic is set to one. The exact breakpoint between the
SEC and RESERVED field depends on the cntbits generic. The breakpoint is 11+cntbits. The values
shown in the table is for maximum cntbits value 8.

32.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x051. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

11 ROM write enable (RW) - Enables writes to the PROM memory area. When disabled, writes to the 
PROM area will generate an ERROR response on the AHB bus.

10 RESERVED

9: 8 ROM data bus width (RBW) - Sets the PROM data bus width. “00” = 8-bit, “10” = 32-bit, others 
reserved.

7: 4 RESERVED

3: 0 ROM waitstates (ROMWS) - Sets the number of waitstates for accesses to the PROM area. Only 
available if the wsreg generic is set to one.

Table 233. Memory configuration register 2.
31 13 12 9 8 7 6 5 4 3 2 1 0

RESERVED RAMBSZ RW RESERVED RAMW

31: 13 RESERVED

12: 9 RAM bank size (RAMBSZ) - Sets the number of waitstates for accesses to the RAM area. Only 
available if the banksz VHDL generic is set to zero. Otherwise, the banksz VHDL generic sets the 
bank size and the value can be read from this field. 0 = 8 kB, 1 = 16 kB, ..., 15=256 MB

8: 7 RESERVED

6 Read-modify-write enable (RW) - Enables read-modify-write cycles for write accesses. Only availa-
ble if the rmw VHDL generic is set to one.

5: 2 RESERVED

1: 0 RAM waitstates (RAMW) - Sets the number of waitstates for accesses to the RAM area. Only avail-
able if the wsreg VHDL generic is set to one.

Table 234. Memory configuration register 3.
31 20 19 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED SEC WB RB SE PE TCB

31: 20 RESERVED

19: 12 Single error counter.(SEC) - This field increments each time a single error is detected until the max-
imum value that can be stored in the field is reached. Each bit can be reset by writing a one to it.

11 Write bypass (WB) - Enables EDAC write bypass. When enabled the TCB field will be used as 
checkbits in all write operations.

10 Read bypass (RB) - Enables EDAC read bypass. When enabled checkbits read from memory in all 
read operations will be stored in the TCB field. 

9 SRAM EDAC enable (SE) - Enables EDAC for the SRAM area.

8 PROM EDAC enable (PE) - Enables EDAC for the PROM area. Reset value is taken from the input 
signal sri.edac.

7: 0 Test checkbits (TCB) - Used as checkbits in write operations when WB is activated and checkbits 
from read operations are stored here when RB is activated.

Table 232. Memory configuration register 1.
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32.6 Configuration options

Table 231 shows the configuration options of the core (VHDL generics).

32.7 Signal descriptions

Table 236 shows the interface signals of the core (VHDL ports). 

Table 235. Controller configuration options

Generic Function Allowed range Default

hindex AHB slave index. 1 - NAHBSLV-1 0

romaddr ADDR field of the AHB BAR0 defining PROM address space. 
Default PROM area is 0x0 - 0xFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#FF0#

ramaddr ADDR field of the AHB BAR1 defining RAM address space. 
Default RAM area is 0x40000000-0x40FFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining RAM address space. 0 -16#FFF# 16#FF0#

ioaddr ADDR field of the AHB BAR2 defining IO address space. 
Default RAM area is 0x20000000-0x20FFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 - 16#FFF# 16#FF0#

ramws Number of waitstates during access to SRAM area. 0 - 15 0

romws Number of waitstates during access to PROM area. 0 - 15 2

iows Number of waitstates during access to IO area. 0 - 15 2

rmw Enable read-modify-write cycles. 0 - 1 0

srbanks Set the number of RAM banks. 1 - 8 1

banksz Set the size of bank 1 - 4. 1 = 16 kB, ... , 15 = 256 MB. If set to 
zero, the bank size is set with the rambsz field in the MCFG2 
register.

0 - 15 15

rombanks Sets the number of PROM banks available. 1 - 8 1

rombanksz Sets the size of one PROM bank. 1 = 16 kB, 2 = 32 kB, ..., 15 = 
256 MB. If set to zero, the bank size is set with the rombsz field 
in the MCFG1 register. 

0 - 15 15

rombankszdef Sets the reset value of the rombsz register field in MCFG1 if 
available. 

0 - 15 15

pindex APB slave index. 1 - NAPBSLV-1 0

paddr APB address. 1 - 16#FFF# 0

pmask APB address mask. 1 - 16#FFF# 16#FFF#

edacen EDAC enable. If set to one, EDAC logic is synthesized. 0 - 1 0

errcnt If one, a single error counter is added. 0 - 1 0

cntbits Number of bits in the single error counter. 1 - 8 1

wsreg Enable programmable waitstate generation. 0 - 1 0

prom8en Enable 8-bit PROM mode. 0 - 1 0

oepol Select polarity of output enable signals. 0 = active low, 1 = 
active high. 

0 - 1 0

Table 236.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low
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SRI DATA[31:0] Input Memory data High

BRDYN Input Bus ready strobe Low

BEXCN Input Bus exception Low

WRN[3:0] Input Not used -

BWIDTH[1:0] Input Sets the reset value of the PROM data bus width 
field in the MCFG1 register

-

SD[31:0] Input Not used -

CB[7:0] Input Checkbits -

PROMDATA[31:0] Input Not used -

EDAC Input The reset value for the PROM EDAC enable bit High

Table 236.Signal descriptions

Signal name Field Type Function Active
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SRO ADDRESS[31:0] Output Memory address High

DATA[31:0] Output Memory data High

RAMSN[7:0] Output SRAM chip-select Low

RAMOEN[7:0] Output SRAM output enable Low

IOSN Output IO area chip select Low

ROMSN[7:0] Output PROM chip-select Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable:

WRN[0] corresponds to DATA[31:24],

WRN[1] corresponds to DATA[23:16],

WRN[2] corresponds to DATA[15:8],

WRN[3] corresponds to DATA[7:0].

Any WRN[ ] signal can be used for CB[ ].

Low

MBEN[3:0] Output Byte enable:

MBEN[0] corresponds to DATA[31:24],

MBEN[1] corresponds to DATA[23:16],

MBEN[2] corresponds to DATA[15:8],

MBEN[3] corresponds to DATA[7:0].

Any MBEN[ ] signal can be used for CB[ ].

BDRIVE[3:0] Output Drive byte lanes on external memory bus.Con-
trols I/O-pads connected to external memory 
bus:

BDRIVE[0] corresponds to DATA[31:24],

BDRIVE[1] corresponds to DATA[23:16],

BDRIVE[2] corresponds to DATA[15:8],

BDRIVE[3] corresponds to DATA[7:0].

Any BDRIVE[ ] signal can be used for CB[ ].

Low

READ Output Read strobe High

RAMN Output Common SRAM Chip Select. Always asserted 
when one of the 8 RAMSN signals is asserted.

Low

ROMN Output Common PROM Chip Select. Always asserted 
when one of the 8 ROMSN signals is asserted.

Low

SA[14:0] Output Not used -

CB[7:0] Output Checkbits -

PSEL Output Not used -

CE Output Single error detected. High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

SDO SDCASN Output Not used. All signals are drive to inactive state. Low

* see GRLIB IP Library User’s Manual

Table 236.Signal descriptions

Signal name Field Type Function Active
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32.8 Library dependencies

Table 237 shows libraries used when instantiating the core (VHDL libraries).

32.9 Component declaration

The core has the following component declaration.

component ftsrctrl is
  generic (
    hindex       : integer := 0;
    romaddr      : integer := 0;
    rommask      : integer := 16#ff0#;
    ramaddr      : integer := 16#400#;
    rammask      : integer := 16#ff0#;
    ioaddr       : integer := 16#200#;
    iomask       : integer := 16#ff0#;
    ramws        : integer := 0;
    romws        : integer := 2;
    iows         : integer := 2;
    rmw          : integer := 0;
    srbanks      : integer range 1 to 8  := 1;
    banksz       : integer range 0 to 15 := 15;
    rombanks     : integer range 1 to 8  := 1;
    rombanksz    : integer range 0 to 15 := 15;
    rombankszdef : integer range 0 to 15 := 15;
    pindex       : integer := 0;
    paddr        : integer := 0;
    pmask        : integer := 16#fff#;
    edacen       : integer range 0 to 1 := 1;
    errcnt       : integer range 0 to 1 := 0;   
    cntbits      : integer range 1 to 8 := 1;
    wsreg        : integer := 0;
    oepol        : integer := 0;
    prom8en      : integer := 0
  );
  port (
    rst          : in  std_ulogic;
    clk          : in  std_ulogic;
    ahbsi        : in  ahb_slv_in_type;
    ahbso        : out ahb_slv_out_type;
    apbi         : in  apb_slv_in_type;
    apbo         : out apb_slv_out_type;
    sri          : in  memory_in_type;
    sro          : out memory_out_type;
    sdo          : out sdctrl_out_type
  );
end component;

32.10 Instantiation

This example shows how the core can be instantiated. 

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined in the example design’s port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator. The CE signal of the memory controller is also connected to the AHB sta-
tus register.

Table 237.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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Memory controller decodes default memory areas: PROM area is 0x0 - 0xFFFFFF and RAM area is
0x40000000 - 0x40FFFFF. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
use gaisler.misc.all; 

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic; 
    
    -- memory bus
    address  : out   std_logic_vector(27 downto 0);  -- memory bus
    data     : inout std_logic_vector(31 downto 0);
    ramsn    : out   std_logic_vector(4 downto 0);
    ramoen   : out   std_logic_vector(4 downto 0);
    rwen     : inout std_logic_vector(3 downto 0);
    romsn    : out   std_logic_vector(1 downto 0);
    iosn     : out   std_logic;
    oen      : out   std_logic;
    read     : out   std_logic;
    writen   : inout std_logic;
    brdyn    : in    std_logic;
    bexcn    : in    std_logic;
-- sdram i/f
    sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); - - optional sdram address
    sd       : inout std_logic_vector(63 downto 0);  -- optional sdram data
    cb       : inout std_logic_vector(7 downto 0); --checkbits
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => a hbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo : sdctrl_out_type;  

  signal wprot : wprot_out_type;  -- dummy signal, not used
  signal clkm, rstn : std_ulogic; -- system clock a nd reset

-- signals used by clock and reset generators
  signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;
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  signal gnd : std_ulogic;

  signal stati : ahbstat_in_type; --correctable err or vector
  
begin
  
  -- AMBA Components are defined here ... 

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_d iv => 2, sdramen => 1, 
                                tech => virtex2, sd invclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open , cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pl lref <= pllref;
  
  rst0 : rstgen
  port map (resetn, clkm, cgo.clklock, rstn);

  -- AHB Status Register
  astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
    nftslv => 1)
    port map(rstn, clkm, ahbmi, ahbsi, stati, apbi,  apbo(13));
  
  stati.cerror(0) <= memo.ce; 
  
  -- Memory controller
  mctrl0 : ftsrctrl generic map (rmw => 1, pindex = > 10, paddr => 10, 
    edacen => 1, errcnt => 1, cntbits => 4)
    port map (rstn, clkm, ahbsi, ahbso(0), apbi, ap bo(10), memi, memo,                        
  sdo);

  -- I/O pads driving data memory bus data signals
  datapads : for i in 0 to 3 generate
      data_pad : iopadv generic map (width => 8)
      port map (pad => data(31-i*8 downto 24-i*8),
                o => memi.data(31-i*8 downto 24-i*8 ),
                en => memo.bdrive(i),
                i => memo.data(31-i*8 downto 24-i*8 ));
  end generate;
  
  --I/O pads driving checkbit signals
  cb_pad : iopadv generic map (width => 8)
      port map (pad => cb,
                o => memi.cb,
                en => memo.bdrive(0),
                i => memo.cb;

  -- connect memory controller outputs to entity ou tput signals
  address <= memo.address; ramsn <= memo.ramsn; rom sn <= memo.romsn; 
  oen <= memo.oen; rwen <= memo.wrn; ramoen <= memo .ramoen; 
  writen <= memo.writen; read <= memo.read; iosn <=  memo.iosn;  
  sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn; 
  sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;

end;
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33 FTSRCTRL8 - 8-bit SRAM/16-bit IO Memory Controller with EDAC 

33.1 Overview

The fault tolerant 8-bit SRAM/16-bit I/O memory interface uses a common 16-bit data bus to inter-
face 8-bit SRAM and 16-bit I/O devices. It provides an Error Detection And Correction unit (EDAC),
correcting up to two errors and detecting up to four errors in a data byte. The EDAC eight checkbits
are stored in parallel with the 8-bit data in SRAM memory. Configuration of the memory controller
functions is performed through the APB bus interface.

33.2 Operation

The controller is configured through VHDL generics to decode two address ranges: SRAM and I/O
area. By default the SRAM area is mapped into address range 0x40000000 - 0x40FFFFFF, and the I/
O area is mapped to 0x20000000 - 0x20FFFFFF.

One chip select is decoded for the I/O area, while SRAM can have up to 8 chip select signals. The
controller generates a common write-enable signal (WRITEN) for both SRAM and I/O. The number
of waitstates may be separately configured for the two address ranges.

The EDAC function is optional, and can be enabled with the edacen VHDL generic. The configura-
tion of the EDAC is done through a configuration register accessed from the APB bus. During nomi-
nal operation, the EDAC checksum is generated and checked automatically. The 8-bit input to the
EDAC function is split into two 4-bit nibbles. A modified hamming(8,4,4) coding featuring a single
error correction and double error detection is applied to each 4-bit nibble. This makes the EDAC
capable of correcting up to two errors and detecting up to four errors per 8-bit data. Single errors (cor-
rectable errors) are corrected without generating any indication of this condition in the bus response.
If a multiple error (uncorrectable errors) is detected, a two cycle error response is given on the AHB
bus. 

Single errors may be monitored in two ways: 

CS
OE
WE

A

DSRAM
SRO.RAMSN

SRO.OEN
SRO.WRITEN

A D

MEMORY 

SRI.A[27:0]

SRI.D[15:0]

CONTROLLER

AHB

AHB/APB

Bridge

APB

SRO.D[15:0]

CS
OE
WE

A

DIO
SRO.IOSN

Figure 123.  Block diagram



265 GRSPW1553B-UM

Copyright Gaisler Research AB September 2008, Version 1.0.0

• by monitoring the CE signal which is asserted for one cycle each time a correctable error is
detected. 

• by checking the single error counter which is accessed from the MCFG3 configuration register. 

The CE signal can be connected to the AHB status register which stores information of the AHB
instruction causing the error and also generates interrupts. See the AHB status register documentation
for more information.

The EDAC function can only be enabled for SRAM area accesses. If a 16-bit or 32-bit bus access is
performed, the memory controller calculates the EDAC checksum for each byte read from the mem-
ory but the indication of single error is only signaled when the access is done. (I.e. if more than one
byte in a 32-bit access has a single error, only one error is indicated for the hole 32-bit access.)

The equations below show how the EDAC checkbits are generated:

CB7 = Data[15]  ^  Data[14]  ^  Data[13] // i.e. Data[7]
CB6 = Data[15]  ^  Data[14]  ^  Data[12] // i.e. Data[6]
CB5 = Data[15]  ^  Data[13]  ^  Data[12] // i.e. Data[5]
CB4 = Data[14]  ^  Data[13]  ^  Data[12] // i.e. Data[4]
CB3 = Data[11]  ^  Data[10]  ^  Data[ 9] // i.e. Data[3]
CB2 = Data[11]  ^  Data[10]  ^  Data[ 8] // i.e. Data[2]
CB1 = Data[11]  ^  Data[ 9]  ^  Data[ 8] // i.e. Data[1]
CB0 = Data[10]  ^  Data[ 9]  ^  Data[ 8] // i.e. Data[0]

33.2.1 Memory access

The memory controller supports 32/16/8-bit single accesses and 32-bit burst accesses to the SRAM. A
32-bit or a 16-bit access is performed as multiple 8-bit accesses on the 16-bit memory bus, where data
is transferred on data lines 8 to 15 (Data[15:8]). The eight checkbits generated/used by the EDAC are
transferred on the eight first data lines (Data[7:0]). For 32-bit and 16-bit accesses, the bytes read from
the memory are arranged according to the big-endian order (i.e. for a 32-bit read access, the bytes read
from memory address A, A+1, A+2, and A+3 correspond to the bit[31:24], bit[23:16], bit[15:8], and
bit[7:0] in the 32-bit word transferred to the AMBA bus. The table 245 shows the expected latency
from the memory controller.

One extra cycle is added for 16-bit burst accesses when Bus Exception is enabled.

33.2.2 I/O access

The memory controller accepts 32/16/8-bit single accesses to the I/O area, but the access generated
towards the I/O device is always 16-bit. The two least significant bits of the AMBA address (byte
address) determine which half word that should be transferred to the I/O device. (i.e. If the byte

Table 238.FTSCTRL8 access latency

Accesses Single data First data (burst) Middle data (burst) Last data (burst)

32-bit write 10 8 8 10

32-bit read 6 6 4 4

16-bit write 4 (+1) - - -

16-bit read 4 - - -

8-bit write 4 - - -

8-bit read 3 - - -
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address is 0 and it is a 32-bit access, bits 16 to 31 on the AHB bus is transferred on the 16-bit memory
bus. If the byte address is 2 and it is a 16-bit access, bit 0 to 15 on the AHB bus is transferred on the
16-bit memory bus.) If the access is an 8-bit access, the data is transferred on data lines 8 to 15
(Data[15:8]) on the memory bus. In case of a write, data lines 0 to 7 is also written to the I/O device
but these data lines do not transfer any valid data.

33.2.3 Using Bus Exception

The active low Bus Exception signal (BEXCN) can be used to signal access errors. It is enabled by
setting the BEXCEN bit in MCFG1 and is only active for the I/O area. The BEXCN signal is sampled
on the same cycle as data is written to memory or read data is sampled. When a bus exception is
detected an error response will be generated for the access. One additional latency cycle is added to
the AMBA access when the Bus Exception is enable.

33.2.4 Using Bus Ready

The Bus Ready (BRDYN) signal can be used to add waitstates to I/O-area accesses. It is enabled by
setting the Bus Ready Enable (BRDYEN) bit in the MCFG1 register. An access will have at least the
amount of waitstates set with the VHDL generic or through the register, but will be further stretched
until BRDYN is asserted. Additional waitstates can thus be inserted after the pre-set number of wait-
states by deasserting the BRDYN signal. BRDYN should be asserted in the cycle preceding the last
one. It is recommended that BRDY remains asserted until the IOSN signal is de-asserted, to ensure
that the access has been properly completed and avoiding the system to stall.

33.3 SRAM/IO waveforms

The internal and external waveforms of the interface are presented in the figures below. 

Figure 124.  I/O READ cycle, programmed with 1 wait state, and with an extra data cycle added with BRDYN.
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Figure 125.  32-bit SRAM sequential read accesses with 0 
wait-states and EDAC enabled.
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Figure 126.  32-bit SRAM sequential writeaccess with 0 
wait-states and EDAC enabled.
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On a read access, data is sampled one clock cycle before HREADY is asserted.

Figure 127.  8-bit SRAM non-sequential write access with 0 
wait-states and EDAC enabled.
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Figure 128.  8-bit SRAM non-sequential read access with 0 
wait-states and EDAC enabled.
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I/O write accesses are extended with one extra latency cycle if the bus exception is enabled.

If waitstates are configured through the VHDL generics or registers, one extra data cycle will be
inserted for each waitstate in both read and write cycles. 

Figure 129.  16-bit I/O non-sequential write access with 0 
wait-states.
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Figure 130.  16-bit I/O non-sequential read access with 0 
wait-states. 
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33.4 Registers

The core is programmed through registers mapped into APB address space.

Table 239.FT SRAM/IO controller registers

APB Address offset Register

0x0 Memory configuration register 1

0x4 Memory configuration register 2

0x8 Memory configuration register 3

Table 240. MCFG1 register
31 27 26 25 24 23 20 19 0

RESERVED BRDY BEXC IOWS RESERVED

31 : 27 RESERVED

26 BRDYEN: Enables the BRDYN signal.

25 BEXCEN: Enables the BEXCN signal.

24 RESERVED

23 : 20 IOWS: Sets the number of waitstates for accesses to the IO area. Only available if the wsreg VHDL 
generic is set to one.

19 : 0 RESERVED

Table 241. MCFG2 register
31 13 12 9 8 2 1 0

RESERVED RAMBSZ RESERVED RAMWS

31 : 12 RESERVED

12 : 9 RAMBSZ: Sets the SRAM bank size. Only available if the banksz VHDL generic is set to zero. Oth-
erwise the banksz VHDL generic sets the bank size. 0 = 8 kB, 15 = 256 MB.

8 : 2 RESERVED

1 : 0 RAMWS: Sets the number of waitstates for accesses to the RAM area. Only available if the wsreg 
VHDL generic is set to one.

Table 242. MCFG3 register
31 cnt + 13 cnt + 12 12 11 10 9 8 7 0

RESERVED SEC WB RB SEN TCB

31 : 
cnt+13

RESERVED

cnt+12 
: 12

SEC. Single error counter. This field increments each time a single error is detected. It saturates at 
the maximum value that can be stored in this field. Each bit can be reset by writing a one to it. cnt = 
the number of counter bits.

11 WB: Write bypass. If set, the TCB field will be used as checkbits in all write operations.
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All the fields in the MCFG3 register are available if the edacen VHDL generic is set to one except for
the SEC field which also requires that the errcnt VHDL generic is set to one. 

33.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x056. For description of
vendor and device identifiers see the GRLIB IP Library User’s Manual.

33.6 Configuration options

Table 239 shows the configuration options of the core (VHDL generics).

10 RB: Read bypass. If set, checkbits read from memory in all read operations will be stored in the TCB 
field.

9 SEN: SRAM EDAC enable. If set, EDAC will be active for the SRAM area.

8 RESERVED

7 : 0 TCB: Used as checkbits in write operations when WB is one and checkbits from read operations are 
stored here when RB is one.

Table 243. Controller configuration options

Generic Function Allowed range Default

hindex AHB slave index. 1 - NAHBSLV-1 0

ramaddr ADDR field of the AHB BAR1 defining RAM address space. 
Default RAM area is 0x40000000-0x40FFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining RAM address space. 0 -16#FFF# 16#FF0#

ioaddr ADDR field of the AHB BAR2 defining IO address space. 
Default RAM area is 0x20000000-0x20FFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 - 16#FFF# 16#FF0#

ramws Number of waitstates during access to SRAM area. 0 - 15 0

iows Number of waitstates during access to IO area. 0 - 15 2

srbanks Set the number of RAM banks. 1 - 8 1

banksz Set the size of bank 1 - 4. 1 = 16 kB, ... , 15 = 256 MB. If set to 
zero, the bank size is set with the rambsz field in the MCFG2 
register.

0 - 15 15

pindex APB slave index. 1 - NAPBSLV-1 0

paddr APB address. 1 - 16#FFF# 0

pmask APB address mask. 1 - 16#FFF# 16#FFF#

edacen EDAC enable. If set to one, EDAC logic is synthesized. 0 - 1 0

errcnt If one, a single error counter is added. 0 - 1 0

cntbits Number of bits in the single error counter. 1 - 8 1

wsreg Enable programmable waitstate generation. 0 - 1 0

Table 242. MCFG3 register
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33.7 Signal descriptions
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Table 244 shows the interface signals of the core (VHDL ports). 
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Table 244.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low
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SRI DATA[31:0] Input Memory data:

[15:0] used for IO accesses

[7:0] used for checkbits for SRAM accesses

[15:8] use for data for SRAM accesses

High

BRDYN Input Bus ready strobe Low

BEXCN Input Bus exception Low

WRN[3:0] Input Not used -

BWIDTH[1:0] Input Not used -

SD[31:0] Input Not used -

CB[7:0] Input Not used -

PROMDATA[31:0] Input Not used -

EDAC Input Not used -

Table 244.Signal descriptions

Signal name Field Type Function Active
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SRO ADDRESS[31:0] Output Memory address High

DATA[31:0] Output Memory data:

[15:0] used for IO accesses

[7:0] used for checkbits for SRAM accesses

[15:8] use for data for SRAM accesses

High

RAMSN[7:0] Output SRAM chip-select Low

RAMOEN[7:0] Output SRAM output enable Low

IOSN Output IO area chip select Low

ROMSN[7:0] Output Not used Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable:

WRN[0] corresponds to DATA[15:8],

WRN[1] corresponds to DATA[7:0],

WRN[3:2] Not used

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory 
bus:

BDRIVE[0] corresponds to DATA[15:8],

BDRIVE[1] corresponds to DATA[7:0],

BDRIVE[3:2] Not used

Low

VBDRIVE[31:0] Output Vectored I/O-pad drive signal. Low

READ Output Read strobe High

RAMN Output Common SRAM Chip Select. Always asserted 
when one of the 8 RAMSN signals is asserted.

Low

ROMN Output Not used -

SA[14:0] Output Not used -

CB[7:0] Output Not used -

PSEL Output Not used -

CE Output Single error detected. High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

* see GRLIB IP Library User’s Manual

Table 244.Signal descriptions

Signal name Field Type Function Active
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33.8 Library dependencies

Table 245 shows libraries used when instantiating the core (VHDL libraries).

33.9 Component declaration

The core has the following component declaration.
component ftsrctrl8 is
  generic (
    hindex       : integer := 0;
    ramaddr      : integer := 16#400#;
    rammask      : integer := 16#ff0#;
    ioaddr       : integer := 16#200#;
    iomask       : integer := 16#ff0#;
    ramws        : integer := 0;
    iows         : integer := 2;
    srbanks      : integer range 1 to 8  := 1;
    banksz       : integer range 0 to 15 := 15;
    pindex       : integer := 0;
    paddr        : integer := 0;
    pmask        : integer := 16#fff#;
    edacen       : integer range 0 to 1 := 1;
    errcnt       : integer range 0 to 1 := 0;   
    cntbits      : integer range 1 to 8 := 1;
    wsreg        : integer := 0;
    oepol        : integer := 0
  );
  port (
    rst          : in  std_ulogic;
    clk          : in  std_ulogic;
    ahbsi        : in  ahb_slv_in_type;
    ahbso        : out ahb_slv_out_type;
    apbi         : in  apb_slv_in_type;
    apbo         : out apb_slv_out_type;
    sri          : in  memory_in_type;
    sro          : out memory_out_type
  );
end component;

33.10 Instantiation

This example shows how the core can be instantiated. 

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined in the example design’s port
map and connected to the memory controller. The system clock and reset are generated by GR Clock
Generator and Reset Generator. The CE signal of the memory controller is also connected to the AHB
status register.

The memory controller decodes default memory areas: I/O area is 0x20000000 - 0x20FFFFFF and
RAM area is 0x40000000 - 0x40FFFFF. 

library ieee;

Table 245.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library techmap;
use techmap.gencomp.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all;

entity ftsrctrl8_ex is
  port (
    resetn     : in  std_ulogic;
    clk        : in  std_ulogic;
    
    address    : out std_logic_vector(27 downto 0);
    data       : inout std_logic_vector(31 downto 0 );
    ramsn      : out std_logic_vector (3 downto 0);
    ramoen     : out std_logic_vector (3 downto 0);
    rwen       : out std_logic_vector (3 downto 0);
    oen        : out std_ulogic;
    writen     : out std_ulogic;
    read       : out std_ulogic;
    iosn       : out std_ulogic;
    brdyn      : in  std_ulogic; -- Bus ready
    bexcn      : in  std_ulogic  -- Bus exception
   );
end;

architecture rtl of ftsrctrl8_ex is
signal memi  : memory_in_type;
signal memo  : memory_out_type;

signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb _none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahb s_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahb m_none);

signal clkm, rstn, rstraw : std_ulogic;
signal cgi   : clkgen_in_type;
signal cgo   : clkgen_out_type;

signal stati : ahbstat_in_type;

begin

  -- clock and reset
  cgi.pllctrl <= "00"; cgi.pllrst <= rstraw; cgi.pl lref  <= ’0’;
  clk_pad : clkpad port map (clk, clkm);
  rst0 : rstgen               -- reset generator
  port map (resetn, clkm, ’1’, rstn, rstraw);

  -- AHB controller
  ahb0 : ahbctrl              -- AHB arbiter/multip lexer
  generic map (rrobin => 1, ioaddr => 16#fff#, devi d => 16#201#)
  port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso) ;

  -- Memory controller
  sr0 : ftsrctrl8 generic map (hindex => 0, pindex => 0, edacen => 1)
    port map (rstn, clkm, ahbsi, ahbso(0), apbi, ap bo(0), memi, memo);

  brdyn_pad : inpad port map (brdyn, memi.brdyn);
  bexcn_pad : inpad port map (bexcn, memi.bexcn);
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  addr_pad : outpadv generic map (width => 28 )
    port map (address, memo.address(27 downto 0));
  rams_pad : outpadv generic map (width => 4)
    port map (ramsn, memo.ramsn(3 downto 0));
  oen_pad  : outpad 
    port map (oen, memo.oen);
  rwen_pad : outpadv generic map (width => 4)
    port map (rwen, memo.wrn);
  roen_pad : outpadv generic map (width => 4)
    port map (ramoen, memo.ramoen(3 downto 0));
  wri_pad  : outpad 
    port map (writen, memo.writen);
  read_pad : outpad 
    port map (read, memo.read);
  iosn_pad : outpad 
    port map (iosn, memo.iosn);
  data_pad : iopadvv generic map (width => 8) -- SR AM and I/O Data
    port map (data(15 downto 8), memo.data(15 downt o 8),
       memo.vbdrive(15 downto 8), memi.data(15 down to 8));
  cbdata_pad : iopadvv generic map (width => 8) -- SRAM checkbits and I/O Data
    port map (data(7 downto 0), memo.data(7 downto 0),
       memo.vbdrive(7 downto 0), memi.data(7 downto  0));

  -- APB bridge and AHB stat
  apb0 : apbctrl              -- AHB/APB bridge
  generic map (hindex => 1, haddr => 16#800#)
    port map (rstn, clkm, ahbsi, ahbso(1), apbi, ap bo );

  stati.cerror(0) <= memo.ce;
  ahbstat0 : ahbstat generic map (pindex => 15, pad dr => 15, pirq => 1)
    port map (rstn, clkm, ahbmi, ahbsi, stati, apbi , apbo(15));

end;
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34 GPTIMER - General Purpose Timer Unit

34.1 Overview

The General Purpose Timer Unit provides a common prescaler and decrementing timer(s). Number of
timers is configurable through the ntimers VHDL generic in the range 1 to 7. Prescaler width is con-
figured through the sbits VHDL generic. Timer width is configured through the tbits VHDL generic.
The timer unit acts a slave on AMBA APB bus. The unit implements one 16 bit prescaler and 3 decre-
menting 32 bit timer(s). The unit is capable of asserting interrupt on timer(s) underflow. Interrupt is
configurable to be common for the whole unit or separate for each timer. 

34.2 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When the pres-
caler underflows, it is reloaded from the prescaler reload register and a timer tick is generated.

The operation of each timers is controlled through its control register. A timer is enabled by setting the
enable bit in the control register. The timer value is then decremented on each prescaler tick. When a
timer underflows, it will automatically be reloaded with the value of the corresponding timer reload
register if the restart bit in the control register is set, otherwise it will stop at -1 and reset the enable
bit. 

The timer unit can be configured to generate common interrupt through a VHDL-generic. The shared
interrupt will be signalled when any of the timers with interrupt enable bit underflows. The timer unit
will signal an interrupt on appropriate line when a timer underflows (if the interrupt enable bit for the
current timer is set), when configured to signal interrupt for each timer. The interrupt pending bit in
the control register of the underflown timer will be set and remain set until cleared by writing ‘0’.

To minimize complexity, timers share the same decrementer. This means that the minimum allowed
prescaler division factor is ntimers+1 (reload register = ntimers) where ntimers is the number of
implemented timers.

By setting the chain bit in the control register timer n can be chained with preceding timer n-1. Decre-
menting timer n will start when timer n-1 underflows.

Each timer can be reloaded with the value in its reload register at any time by writing a ‘one’ to the
load bit in the control register. The last timer acts as a watchdog, driving a watchdog output signal
when expired, when the wdog VHDL generic is set to a time-out value larger than 0. At reset, the
scaler is set to all ones and the watchdog timer is set to the wdog VHDL generic, 0xFFF.

timer n reload

Figure 131.  General Purpose Timer Unit block diagram
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34.3 Registers

The core is programmed through registers mapped into APB address space. The number of imple-
mented registers depend on number of implemented timers.

Table 246.General Purpose Timer Unit registers

APB address offset Register

0x00 Scaler value

0x04 Scaler reload value

0x08 Configuration register

0x0C Unused

0x10 Timer 1 counter value register

0x14 Timer 1 reload value register

0x18 Timer 1 control register

0x1C Unused

0xn0 Timer n counter value register

0xn4 Timer n reload value register

0xn8 Timer n control register

Table 247. Scaler value
31 16 16-1 0

“000..0” SCALER VALUE

16-1: 0 Scaler value

Any unused most significant bits are reserved. Always reads as ‘000...0’.

Table 248. Scaler reload value
31 16 16-1 0

“000..0” SCALER RELOAD VALUE

16-1: 0 Scaler reload value

Any unused most significant bits are reserved. Always reada as ‘000...0’.

Table 249. General Purpose Timer Unit Configuration Register
31 10 9 8 7 3 2 0

“000..0” DF SI IRQ TIMERS

31: 10 Reserved. Always reads as ‘000...0’.

9 Disable timer freeze (DF). If set the timer unit can not be freezed, otherwise signal GPTI.DHALT 
freezes the timer unit.

8 Separate interrupts (SI). Reads ‘1’ if the timer unit generates separate interrupts for each timer, oth-
erwise ‘0’. Read-only.

7: 3 APB Interrupt: If configured to use common interrupt all timers will drive APB interrupt nr. IRQ, 
otherwise timer nwill drive APB Interrupt IRQ+n (has to be less the MAXIRQ). Read-only.

2: 0 Number of implemented timers. Read-only.

Table 250. Timer counter value register
32-1 0

TIMER COUNTER VALUE
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34.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x011. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

32-1: 0 Timer Counter value. Decremented by 1 for each prescaler tick.

Any unused most significant bits are reserved. Always reads as ‘000...0’.

Table 251. Timer reload value register
32-1 0

TIMER RELOAD VALUE

32-1: 0 Timer Reload value. This value is loaded into the timer counter value register when ‘1’ is written to 
load bit in the timers control register or when the RS bit is set in the control register and the timer 
underflows.

Any unused most significant bits are reserved. Always reads as ‘000...0’.

Table 252. General Purpose Timer Unit Configuration Register
31 7 6 5 4 3 2 1 0

“000..0” DH CH IP IE LD RS EN

31: 7 Reserved. Always reads as ‘000...0’.

6 Debug Halt (DH): Value of GPTI.DHALT signal which is used to freeze counters (e.g. when a sys-
tem is in debug mode). Read-only.

5 Chain (CH): Chain with preceding timer. If set for timer n, decrementing timer n begins when timer 
(n-1) underflows.

4 Interrupt Pending (IP): Sets when an interrupt is signalled. Remains ‘1’ until cleared by writing ‘0’ 
to this bit.

3 Interrupt Enable (IE): If set the timer signals interrupt when it underflows.

2 Load (LD): Load value from the timer reload register to the timer counter value register.

1 Restart (RS): If set, the timer counter value register is reloaded with the value of the reload register 
when the timer underflows

0 Enable (EN): Enable the timer.

Table 250. Timer counter value register
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34.5 Configuration options

Table 253 shows the configuration options of the core (VHDL generics).

34.6 Signal descriptions

Table 254 shows the interface signals of the core (VHDL ports). 

Table 253.Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used to 
access the timer unit

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 4095 0

pmask The APB address mask 0 to 4095 4095

nbits Defines the number of bits in the timers 1 to 32 32

ntimers Defines the number of timers in the unit 1 to 7 1

pirq Defines which APB interrupt the timers will generate 0 to MAXIRQ-1 0

sepirq If set to 1, each timer will drive an individual interrupt 
line, starting with interrupt irq. If set to 0, all timers will 
drive the same interrupt line (irq).

0 to MAXIRQ-1

(note: ntimers + irq must 
be less than MAXIRQ)

0

sbits Defines the number of bits in the scaler 1 to 32 16

wdog Watchdog reset value. When set to a non-zero value, the 
last timer will be enabled and pre-loaded with this value 
at reset. When the timer value reaches 0, the WDOG out-
put is driven active.

0 to 2nbits - 1 0

Table 254.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GPTI DHALT Input Freeze timers High

EXTCLK Input Use as alternative clock -

GPTO TICK[0:7] Output Timer ticks. TICK[0] is high for one clock each 
time the scaler underflows. TICK[1-n] are high 
for one clock each time the corrspondning timer 
underflows.

High

WDOG Output Watchdog output. Equivalent to interrupt pend-
ing bit of last timer.

High

WDOGN Output Watchdog output Equivalent to interrupt pending 
bit of last timer.

Low

* see GRLIB IP Library User’s Manual
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34.7 Library dependencies

Table 255 shows libraries used when instantiating the core (VHDL libraries).

34.8 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

entity gptimer_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ... -- other signals
    );
end;

architecture rtl of gptimer_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);

  -- GP Timer Unit input signals
  signal gpti : gptimer_in_type;  
  
begin
  
  -- AMBA Components are instantiated here
  ...

  -- General Purpose Timer Unit
  timer0 : gptimer 
  generic map (pindex => 3, paddr => 3, pirq => 8, sepirq => 1)
  port map (rstn, clk, apbi, apbo(3), gpti, open);

  gpti.dhalt <= ’0’; gpti.extclk <= ’0’; -- unused inputs

end;

Table 255.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals, component Component declaration
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35 GRAES - Advanced Encryption Standard

35.1 Overview

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm for high throughput
application (like audio or video streams). The GRAES core implements the AES-128 algorithm, sup-
porting the Electronic Codebook (ECB) method. The AES-128 algorithm is specified in the
“Advanced Encryption Standard (AES)” document, Federal Information Processing Standards (FIPS)
Publication 197. The document is established by the National Institute of Standards and Technology
(NIST).

The core provides the following internal AMBA AHB slave interface, with sideband signals as per
[GRLIB] including:

• interrupt bus

• configuration information

• diagnostic information

The core can be partition in the following hierarchical elements:

• Advanced Encryption Standard (AES) core

• AMBA AHB slave

• GRLIB plug&play wrapper

Note that the core can also be used without the GRLIB plug&play information. 

35.2 Operation

The input and output for the AES algorithm each consist of sequences of 128 bits (digits with values
of 0 or 1). These sequences will sometimes be referred to as blocks and the number of bits they con-
tain will be referred to as their length. The cipher key for the AES-128 algorithm is a sequence of 128
bits (can also be 192 or 256 bits for other algorithms).

To transfer a 128 bit key or data block four write operations are necessary since the bus interface is 32
bit wide. After supplying a “key will be input” command to the control register, the key is input via
four registers. After supplying a “data will be input” command to the control register, the input data is
written via four registers. After the last input data register is written, the encryption or decryption is
started. The progress can be observed via the debug register. When the operation is completed, an
interrupt is generated. The output data is then read out via four registers. Note that the above sequence
must be respected. It is not required to write a new key between each data input. There is no command
needed for reading out the result. 

The implementation requires around 89 clock cycles for a 128 bit data block in encryption direction
and around 90 clock cycles for decryption direction. For decryption an initial key calculation is
required. This takes around 10 additional clock cycles per every new key. Typically large amounts of
data are decrypted (and also encrypted) with the same key. The key initialization for the decryption
round does not influence the throughput. 

35.3 Background

The Federal Information Processing Standards (FIPS) Publication Series of the National Institute of
Standards and Technology (NIST) is the official series of publications relating to standards and guide-
lines adopted and promulgated under the provisions of the Information Technology Management
Reform Act. 
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The Advanced Encryption Standard (AES) standard specifies the Rijndael algorithm, a symmetric
block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and
256 bits. Rijndael was designed to handle additional block sizes and key lengths, however they are not
adopted in this standard.

35.4 AES-128 parameters

The GRAES core implements AES-128. An AES algorithm is defined by the following parameters
according to FIPS-197:

• Nk number of 32-bit words comprising the cipher key

• Nr number of rounds

The AES-128 algorithm is specified as Nk=4 and Nr=10.

The GRAES core has been verified against the complete set of Known Answer Test vectors included
in the AES Algorithm Validation Suite (AESAVS) from National Institute of Standards and Technol-
ogy (NIST), Information Technology Laboratory, Computer Security Division.

35.5 Throughput

The data throughput for the GRAES core is around 128/90 bits per clock cycle, i.e. approximately 1.4
Mbits per MHz.

The underlaying AES core has been implemented in a dual crypto chip on 250 nm technology as
depicted in the figure below. The throughput at 33 MHz operating frequency was 42 Mbit/s, the
power consumption was 9,6 mW, and the size was 14,5 kgates.

Figure 132.  Dual Crypto Chip

35.6 Characteristics

The GRAES core has been synthesized for a Xilinx Virtex-2 XC2V6000-4 devices with the following
results:

• LUTs: 5040 (7%)

• 256x1 ROMs (ROM256X1): 128
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• Frequency:125 MHz

35.7 Registers

The core is programmed through registers mapped into AHB I/O address space.

35.7.1 Control Register (W)

31-2: - Unused
1: DEC 0 = “encrypt”, 1 = “decrypt” (only relevant when KEY=1)
0: KEY 0 = “data will be input”, 1 = “key will be input”

Note that the Data Input Registers cannot be written before a command is given to the Control Regis-
ter. Note that the Data Input Registers must then be written in sequence, and all four registers must be
written else the core ends up in an undefined state.

The KEY bit determines whether a key will be input (KEY=1), or data will be input (KEY=0). When
a “key will be input” command is written, the DEC bit determines whether decryption (DEC=1) or
encryption (DEC=0) should be applied to the subsequent data input.

Note that the register cannot be written after a command has been given, until the specific operation
completes. A write access will be terminated with an AMBA AHB error response till the  Data Input
Register 3 has been written, and the with an AMBA AHB retry response till the operation completes.
Any read access to this register results in an AMBA AHB error response.

35.7.2 Debug Register (R)

31-0: FSM Finite State Machine
Any write access to this register results in an AMBA AHB error response.

Table 256.GRAES registers

AHB I/O address offset Register

16#000# Control Register

16#010# Data Input 0 Register

16#014# Data Input 1 Register

16#018# Data Input 2 Register

16#01C# Data Input 3 Register

16#020# Data Output 0 Register

16#024# Data Output 1 Register

16#028# Data Output 2 Register

16#02C# Data Output 3 Register

16#03C# Debug Register

Table 257.Control Register

31  2 1 0

- DE
C

KE
Y

Table 258.Debug Register

31  0

FSM
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35.7.3 Data Input Registers (W)

Note that these registers can only be written with a key after a “key will be input” command has been
written to the control register. Note that the registers must then be written in sequence, and all four
registers must be written else the core ends up in an undefined state.

Note that these registers can only be written with data after a “data will be input” command has been
written to the control register, else an AMBA AHB error response is given. Note that the registers
must then be written in sequence and all four registers must be written else the core ends up in an
undefined state. The encryption or decryption operation is started when the Data Input 3 Register is
written to with data. 

35.7.4 Data Output Registers (R)

Note that these registers can only be read after encryption or decryption has been completed. An
AMBA AHB response is given to read accesses that occur while the encryption or decryption is in
progress. If a read access is attempted before an encryption or decryption has even been initiated, then

Table 259.Data Input 0 Register

31  0

Data/Key(127 downto 96)

Table 260.Data Input 1 Register

31  0

Data/Key(95 downto 64)

Table 261.Data Input 2 Register

31  0

Data/Key(63 downto 32)

Table 262.Data Input 3 Register

31  0

Data/Key(31 downto 0)

Table 263.Data Output 0 Register

31  0

Data(127 downto 96)

Table 264.Data Output 1 Register

31  0

Data(95 downto 64)

Table 265.Data Output 2 Register

31  0

Data(63 downto 32)

Table 266.Data Output 3 Register

31  0

Data(31 downto 0)
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an AMBA AHB erro response is given. Write accesses to these registers result in an AMBA AHB
error response.

35.8 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x073. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

35.9 Configuration options

Table 267 shows the configuration options of the core (VHDL generics).

35.10 Signal descriptions

Table 268 shows the interface signals of the core (VHDL ports). 

Note that the AES core can also be used without the GRLIB plug&play information. The AMBA
AHB signals are then provided as IEEE Std_Logic_1164 compatible scalars and vectors.

35.11 Library dependencies

Table 269 shows libraries used when instantiating the core (VHDL libraries).

35.12 Instantiation

This example shows how the core can be instantiated.

library  ieee;
use      ieee.std_logic_1164.all;

Table 267.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 0 - NAHBSLV-1 0

ioaddr Addr field of the AHB I/O BAR 0 - 16#FFF# 0

iomask Mask field of the AHB I/O BAR 0 - 16#FFF# 16#FFC#

hirq Interrupt line used by the GRAES 0 - NAHBIRQ-1 0

Table 268.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

AHBI * Input AHB slave input signals -

AHBO * Output AHB slave output signals -

DEBUG[0:4] N/A Output Debug information -

* see GRLIB IP Library User’s Manual

Table 269.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER CRYPTO Component GRAES component declarations



290

library  grlib;
use      grlib.amba.all;

library  gaisler;
use      gaisler.crypto.all;
...
...
   signal debug: std_logic_vector(0 to 4);
..
..
   GRAES0: graes
      generic map (
         hindex         => hindex,
         ioaddr         => ioaddr,
         iomask         => iomask,
         hirq           => hirq)
      port map (
         rstn           => rstn,
         clk            => clk,
         ahbi           => ahbsi,
         ahbo           => ahbso(hindex),
         debug          => debug);
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36 GRCAN - CAN 2.0 Controller with DMA

36.1 Overview

The CAN controller is assumed to operate in an AMBA bus system where both the AMBA AHB bus
and the APB bus are present. The AMBA APB bus is used for configuration, control and status han-
dling. The AMBA AHB bus is used for retrieving and storing CAN messages in memory external to
the CAN controller. This memory can be located on-chip, as shown in the block diagram, or external
to the chip.

The CAN controller supports transmission and reception of sets of messages by use of circular buffers
located in memory external to the core. Separate transmit and receive buffers are assumed. Reception
and transmission of sets of messages can be ongoing simultaneously.

After a set of message transfers has been set up via the AMBA APB interface the DMA controller ini-
tiates a burst of read accesses on the AMBA AHB bus to fetch messages from memory, which are per-
formed by the AHB master. The messages are then transmitted by the CAN core. When a
programmable number of messages have been transmitted, the DMA controller issues an interrupt.

After the reception has been set up via the AMBA APB interface, messages are received by the CAN
core. To store messages to memory, the DMA controller initiates a burst of write accesses on the
AMBA AHB bus, which are performed by the AHB master. When a programmable number of mes-
sages have been received, the DMA controller issues an interrupt.

The CAN controller can detect a SYNC message and generate an interrupt, which is also available as
an output signal from the core. The SYNC message identifier is programmable via the AMBA APB
interface. Separate synchronisation message interrupts are provided.

The CAN controller can transmit and receive messages on either of two CAN busses, but only on one
at a time. The selection is programmable via the AMBA APB interface.

Note that it is not possible to receive a CAN message while transmitting one.

36.1.1 Function

The core implements the following functions:

• CAN protocol

• Message transmission

• Message filtering and reception

Figure 133. Block diagram of the internal structure of the GRCAN.

CAN 2.0 Core
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• SYNC message reception

• Status and monitoring

• Interrupt generation

• Redundancy selection

36.1.2 Interfaces

The core provides the following external and internal interfaces:

• CAN interface

• AMBA AHB master interface, with sideband signals as per [GRLIB] including:

• cacheability information

• interrupt bus

• configuration information

• diagnostic information

• AMBA APB slave interface, with sideband signals as per [GRLIB] including:

• interrupt bus

• configuration information

• diagnostic information

36.1.3 Hierarchy

The CAN controller core can be partitioned in the following hierarchical elements:

• CAN 2.0 Core

• Redundancy Multiplexer / De-multiplexer

• Direct Memory Access controller 

• AMBA APB slave

• AMBA AHB master

36.2 Interface

The external interface towards the CAN bus features two redundant pairs of transmit output and
receive input (i.e. 0 and 1).

The active pair (i.e. 0 or 1) is bselectable by means of a configuration register bit. Note that all recep-
tion and transmission is made over the active pair.

For each pair, there is one enable output (i.e. 0 and 1), each being individually programmable. Note
that the enable outputs can be used for enabling an external physical driver. Note that both pairs can
be enabled simultaneously. Note that the polarity for the enable/inhibit inputs on physical interface
drivers differs, thus the meaning of the enable output is undefined.

Redundancy is implemented by means of Selective Bus Access, as specified in [CANWG]. Note that
the active pair selection above provides means to meet this requirement.

36.3 Protocol

The CAN protocol is based on a CAN 2.0 controller VHDL core. The CAN controller complies with
[CANSTD], except for the overload frame generation.

Note that there are three different CAN types generally defined:

• 2.0A, which considers 29 bit ID messages as an error
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• 2.0B Passive, which ignores 29 bit ID messages

• 2.0B Active, which handles 11 and 29 bit ID messages

Only 2.0B Active is implemented.

36.4 Status and monitoring

The CAN interface incorporates status and monitoring functionalities. This includes:

• Transmitter active indicator

• Bus-Off condition indicator

• Error-Passive condition indicator

• Over-run indicator

• 8-bit Transmission error counter

• 8-bit Reception error counter

The status is available via a register and is also stored in a circular buffer for each received message.

36.5 Transmission

The transmit channel is defined by the following parameters: 

• base address

• buffer size 

• write pointer 

• read pointer

The transmit channel can be enabled or disabled.

36.5.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.

Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).

The size of the buffer is defined by the CanTxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.

E.g. CanTxSIZE.SIZE =2 means 8 CAN messages fit in the buffer.

Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.

E.g. CanTxSIZE.SIZE =2 means that 7 CAN messages fit in the buffer at any given time.

36.5.2 Write and read pointers

The write pointer (CanTxWR.WRITE) indicates the position+1 of the last CAN message written to
the buffer. The write pointer operates on number of CAN messages, not on absolute or relative
addresses.

The read pointer (CanTxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.
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The difference between the write and the read pointers is the number of CAN messages available in
the buffer for transmission. The difference is calculated using the buffer size, specified by the CanTx-
SIZE.SIZE field, taking wrap around effects of the circular buffer into account.

Examples:

• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2,
CanTxWR.WRITE=2 and CanTxRD.READ=0.

• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE
=0 and CanTxRD.READ =6.

• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE
=1 and CanTxRD.READ =7.

• There are 2 CAN messages available for transmit when CanTxSIZE.SIZE=2, CanTxWR.WRITE
=5 and CanTxRD.READ =3.

When a CAN message has been successfully transmitted, the read pointer (CanTxRD.READ) is auto-
matically incremented, taking wrap around effects of the circular buffer into account. Whenever the
write pointer CanTxWR.WRITE and read pointer CanTxRD.READ are equal, there are no CAN mes-
sages available for transmission.

36.5.3 Location

The location of the circular buffer is defined by a base address (CanTxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

36.5.4 Transmission procedure

When the channel is enabled (CanTxCTRL.ENABLE=1), as soon as there is a difference between the
write and read pointer, a message transmission will be started. Note that the channel should not be
enabled if a potential difference between the write and read pointers could be created, to avoid the
message transmission to start prematurely.

A message transmission will begin with a fetch of the complete CAN message from the circular buffer
to a local fetch-buffer in the CAN controller. After a successful data fetch, a transmission request will
be forwarded to the CAN core. If there is at least an additional CAN message available in the circular
buffer, a prefetch of this CAN message from the circular buffer to a local prefetch-buffer in the CAN
controller will be performed. The CAN controller can thus hold two CAN messages for transmission:
one in the fetch buffer, which is fed to the CAN core, and one in the prefetch buffer.

After a message has been successfully transmitted, the prefetch-buffer contents are moved to the fetch
buffer (provided that there is message ready). The read pointer (CanTxRD.READ) is automatically
incremented after a successful transmission, i.e. after the fetch-buffer contents have been transmitted,
taking wrap around effects of the circular buffer into account. If there is at least an additional CAN
message available in the circular buffer, a new prefetch will be performed.

If the write and read pointers are equal, no more prefetches and fetches will be performed, and trans-
mission will stop.

If the single shot mode is enabled for the transmit channel (CanTxCTRL.SINGLE=1), any message
for which the arbitration is lost, or failed for some other reason, will lead to the disabling of the chan-
nel (CanTxCTRL.ENABLE=0), and the message will not be put up for re-arbitration.

Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the Tx, TxEmpty and TxIrq which are issued on the successful transmission
of a message, when all messages have been transmitted successfully and when a predefined number of
messages have been transmitted successfully. The TxLoss interrupt is issued whenever transmission
arbitration has been lost, could also be caused by a communications error. The TxSync interrupt is
issued when a message matching the SYNC Code Filter Register.SYNC and SYNC Mask Filter Reg-
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ister.MASK registers is successfully transmitted. Additional interrupts are provided to signal error
conditions on the CAN bus and AMBA bus.

36.5.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanTxADDR.ADDR) field.

While the channel is disabled, the read pointer (CanTxRD.READ) can be changed to an arbitrary
value pointing to the first message to be transmitted, and the write pointer (CanTxWR.WRITE) can
be changed to an arbitrary value.

When the channel is enabled, the transmission will start from the read pointer and continue to the
write pointer.

36.5.6 AMBA AHB error

Definition: 

• a message fetch occurs when no other messages is being transmitted             

• a message prefetch occurs when a previously fetched message is being transmitted

• the local fetch buffer holds the message being fetched            

• the local prefetch buffer holds the message being prefetched             

• the local fetch buffer holds the message being transmitted by the CAN core

• a successfully prefetched message is copied from the local prefetch buffer to the local fetch
buffer when that buffer is freed after a successful transmission.

An AHB error response occurring on the AMBA AHB bus while a CAN message is being fetched
will result in a TxAHBErr interrupt.

If the CanCONF.ABORT bit is set to 0b, the channel causing the AHB error will skip the message
being fetched from memory and will increment the read pointer. No message will be transmitted.

If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (CanTx-
CTRL.ENABLE is cleared automatically to 0 b). The read pointer can be used to determine which
message caused the AHB error. Note that it could be any of the four word accesses required to read a
message that caused the AHB error. 

If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBErr bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBErr.

An AHB error response occurring on the AMBA AHB bus while a CAN message is being prefetched
will not cause an interrupt, but will stop the ongoing prefetch and further prefetch will be prevented
temporarily. The ongoing transmission of a CAN message from the fetch buffer will not be affected.
When the fetch buffer is freed after a successful transmission, a new fetch will be initiated, and if this
fetch results in an AHB error response occurring on the AMBA AHB bus, this will be handled as for
the case above. If no AHB error occurs, prefetch will be allowed again.

36.5.7 Enable and disable

When an enabled transmit channel is disabled (CanTxCTRL.ENABLE=0b), any ongoing CAN mes-
sage transfer request will not be aborted until a CAN bus arbitration is lost or the message has been
sent successfully. If the message is sent successfully, the read pointer (CanTxRD.READ) is automati-
cally incremented. Any associated interrupts will be generated.

The progress of the any ongoing access can be observed via the CanTxCTRL.ONGOING bit. The
CanTxCTRL.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
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address, size or read/write pointers). It is also possible to wait for the Tx and TxLoss interrupts
described hereafter.

The channel can be re-enabled again without the need to re-configure the address, size and pointers.

Priority inversion is handled by disabling the transmitting channel, i.e. setting CanTxC-
TRL.ENABLE=0b as described above, and observing the progress, i.e. reading via the CanTxC-
TRL.ONGOING bit as described above. When the transmit channel is disabled, it can be re-
configured and a higher priority message can be transmitted. Note that the single shot mode does not
require the channel to be disabled, but the progress should still be observed as above.

No message transmission is started while the channel is not enabled.

36.5.8 Interrupts

During transmission several interrupts can be generated:

• TxLoss: Message arbitration lost for transmit (could be caused by
communcations error, as indicated by other interrupts as well)

• TxErrCntr: Error counter incremented for transmit 

• TxSync: Synchronization message transmitted

• Tx: Successful transmission of one message 

• TxEmpty: Successful transmission of all messages in buffer 

• TxIrq: Successful transmission of a predefined number of messages

• TxAHBErr: AHB access error during transmission

• Off: Bus-off condition 

• Pass: Error-passive condition

The Tx, TxEmpty and TxIrq interrupts are only generated as the result of a successful message trans-
mission, after the CanTxRD.READ pointer has been incremented.

36.6 Reception

The receive channel is defined by the following parameters:

• base address

• buffer size 

• write pointer 

• read pointer

The receive channel can be enabled or disabled.

36.6.1 Circular buffer

The receive channel operates on a circular buffer located in memory external to the CAN controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.

Each CAN message occupies 4 consecutive 32-bit words in memory. Each CAN message is aligned to
4 words address boundaries (i.e. the 4 least significant byte address bits are zero for the first word in a
CAN message).

The size of the buffer is defined by the CanRxSIZE.SIZE field, specifying the number of CAN mes-
sages * 4 that fit in the buffer.

E.g. CanRxSIZE.SIZE=2 means 8 CAN messages fit in the buffer.
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Note however that it is not possible to fill the buffer completely, leaving at least one message position
in the buffer empty. This is to simplify wrap-around condition checking.

E.g. CanRxSIZE.SIZE=2 means that 7 CAN messages fit in the buffer at any given time.

36.6.2 Write and read pointers

The write pointer (CanRxWR.WRITE) indicates the position+1 of the last CAN message written to
the buffer. The write pointer operates on number of CAN messages, not on absolute or relative
addresses.

The read pointer (CanRxRD.READ) indicates the position+1 of the last CAN message read from the
buffer. The read pointer operates on number of CAN messages, not on absolute or relative addresses.

The difference between the write and the read pointers is the number of CAN message positions avail-
able in the buffer for reception. The difference is calculated using the buffer size, specified by the
CanRxSIZE.SIZE field, taking wrap around effects of the circular buffer into account.

Examples:

• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE=2 and CanRxRD.READ=0.

• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE =0 and CanRxRD.READ=6.

• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE =1 and CanRxRD.READ=7.

• There are 2 CAN messages available for read-out when CanRxSIZE.SIZE=2, Can-
RxWR.WRITE =5 and CanRxRD.READ=3.

When a CAN message has been successfully received and stored, the write pointer (Can-
RxWR.WRITE) is automatically incremented, taking wrap around effects of the circular buffer into
account. Whenever the read pointer CanRxRD.READ equals (CanRxWR.WRITE+1) modulo (Can-
RxSIZE.SIZE*4), there is no space available for receiving another CAN message.

The error behavior of the CAN core is according to the CAN standard, which applies to the error
counter, buss-off condition and error-passive condition.

36.6.3 Location

The location of the circular buffer is defined by a base address (CanRxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

36.6.4 Reception procedure

When the channel is enabled (CanRxCTRL.ENABLE=1), and there is space available for a message
in the circular buffer (as defined by the write and read pointer), as soon as a message is received by
the CAN core, an AMBA AHB store access will be started. The received message will be temporarily
stored in a local store-buffer in the CAN controller. Note that the channel should not be enabled until
the write and read pointers are configured, to avoid the message reception to start prematurely

After a message has been successfully stored the CAN controller is ready to receive a new message.
The write pointer (CanRxWR.WRITE) is automatically incremented, taking wrap around effects of
the circular buffer into account. 

Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are the Rx, RxFull and RxIrq which are issued on the successful reception of a mes-
sage, when the message buffer has been successfully filled and when a predefined number of mes-
sages have been received successfully. The RxMiss interrupt is issued whenever a message has been
received but does not match a message filtering setting, i.e. neither for the receive channel nor for the
SYNC message described hereafter. 
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The RxSync interrupt is issued when a message matching the SYNC Code Filter Register.SYNC and
SYNC Mask Filter Register.MASK registers has been successfully received. Additional interrupts are
provided to signal error conditions on the CAN bus and AMBA bus.

36.6.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (CanRxADDR.ADDR) field.

While the channel is disabled, the write pointer (CanRxWR.WRITE) can be changed to an arbitrary
value pointing to the first message to be received, and the read pointer (CanRxRD.READ) can be
changed to an arbitrary value.

When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.

36.6.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while a CAN message is being stored will
result in an RxAHBErr interrupt.

If the CanCONF.ABORT bit is set to 0b, the channel causing the AHB error will skip the received
message, not storing it to memory. The write pointer will be incremented.

If the CanCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (CanRx-
CTRL.ENABLE is cleared automatically to 0b). The write pointer can be used to determine which
message caused the AHB error. Note that it could be any of the four word accesses required to writ a
message that caused the AHB error.

If the CanCONF.ABORT bit is set to 1b, all accesses to the AMBA AHB bus will be disabled after an
AMBA AHB error occurs, as indicated by the CanSTAT.AHBErr bit being 1b. The accesses will be
disabled until the CanSTAT register is read, and automatically clearing bit CanSTAT.AHBErr.

36.6.7 Enable and disable

When an enabled receive channel is disabled (CanRxCTRL.ENABLE=0b), any ongoing CAN mes-
sage storage on the AHB bus will not be aborted, and no new message storage will be started. Note
that only complete messages can be received from the CAN core. If the message is stored success-
fully, the write pointer (CanRxWR.WRITE) is automatically incremented. Any associated interrupts
will be generated.

The progress of the any ongoing access can be observed via the CanRxCTRL.ONGOING bit. The
CanRxCTRL.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the Rx and RxMiss interrupts
described hereafter.

The channel can be re-enabled again without the need to re-configure the address, size and pointers. 

No message reception is performed while the channel is not enabled

36.6.8 Interrupts

During reception several interrupts can be generated:

• RxMiss: Message filtered away for receive 

• RxErrCntr: Error counter incremented for receive 

• RxSync: Synchronization message received

• Rx: Successful reception of one message 

• RxFull: Successful reception of all messages possible to store in buffer 
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• RxIrq: Successful reception of a predefined number of messages

• RxAHBErr: AHB access error during reception 

• OR: Over-run during reception 

• OFF: Bus-off condition 

• PASS: Error-passive condition

The Rx, RxFull and RxIrq interrupts are only generated as the result of a successful message recep-
tion, after the CanRxWR.WRITE pointer has been incremented.

The OR interrupt is generated when a message is received while a previously received message is still
being stored. A full circular buffer will lead to OR interrupts for any subsequently received messages.
Note that the last message stored which fills the circular buffer will not generate an OR interrupt. The
overrun is also reported with the CanSTAT.OR bit, which is cleared when reading the register.

The error behavior of the CAN core is according to the CAN standard, which applies to the error
counter, buss-off condition and error-passive condition.

36.7 Global reset and enable

When the CanCTRL.RESET bit is set to 1b, a reset of the core is performed. The reset clears all the
register fields to their default values. Any ongoing CAN message transfer request will be aborted,
potentially violating the CAN protocol.

When the CanCTRL.ENABLE bit is cleared to 0b, the CAN core is reset and the configuration bits
CanCONF.SCALER, CanCONF.PS1, CanCONF.PS2, CanCONF.RSJ and CanCONF.BPR may be
modified. When disabled, the CAN controller will be in sleep mode not affecting the CAN bus by
only sending recessive bits. Note that the CAN core requires that 10 recessive bits are received before
any reception or transmission can be initiated. This can be caused either by no unit sending on the
CAN bus, or by random bits in message transfers.

36.8 Interrupt

Three interrupts are implemented by the CAN interface:

Index: Name: Description:

0 IRQ Common output from interrupt handler

1 TxSYNC Synchronization message transmitted (optional)

2 RxSYNC Synchronization message received (optional)

The interrupts are configured by means of the pirq VHDL generic and the singleirq VHDL generic.
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36.9 Registers

The core is programmed through registers mapped into APB address space.

36.9.1 Configuration Register [CanCONF] R/W

31-24: SCALER Prescaler setting, 8-bit: system clock / (SCALER +1) 
23-20: PS1 Phase Segment 1, 4-bit: (valid range 1 to 15)
19-16: PS2 Phase Segment 2, 4-bit: (valid range 2 to 8)
14-12: RSJ ReSynchronization Jumps, 3-bit: (valid range 1 to 4)
9:8: BPR Baud rate, 2-bit: 

00b = system clock / (SCALER +1) / 1
01b = system clock / (SCALER +1) / 2
10b = system clock / (SCALER +1) / 4

Table 270.GRCAN registers

APB address offset Register

16#000# Configuration Register

16#004# Status Register

16#008# Control Register

16#018# SYNC Mask Filter Register

16#01C# SYNC Code Filter Register

16#100# Pending Interrupt Masked Status Register

16#104# Pending Interrupt Masked Register

16#108# Pending Interrupt Status Register

16#10C# Pending Interrupt Register

16#110# Interrupt Mask Register

16#114# Pending Interrupt Clear Register

16#200# Transmit Channel Control Register

16#204# Transmit Channel Address Register

16#208# Transmit Channel Size Register

16#20C# Transmit Channel Write Register

16#210# Transmit Channel Read Register

16#214# Transmit Channel Interrupt Register

16#300# Receive Channel Control Register

16#304# Receive Channel Address Register

16#308# Receive Channel Size Register

16#30C# Receive Channel Write Register

16#310# Receive Channel Read Register

16#314# Receive Channel Interrupt Register

16#318# Receive Channel Mask Register

16#31C# Receive Channel Code Register

Table 271.Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SCALER PS1 PS2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSJ BPR Sile
nt

Sele
ctio
n

Ena
ble

1

Ena
ble

0

Abo
rt
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11b = system clock / (SCALER +1) / 8
4: SILENT Listen only to the CAN bus, send recessive bits.
3: SELECTIONSelection receiver input and transmitter output:

Select receive input 0 as active when 0b,
Select receive input 1 as active when 1b
Select transmit output 0 as active when 0b,
Select transmit output 1 as active when 1b

2: ENABLE1 Set value of output 1 enable
1: ENABLE0 Set value of output 0 enable
0: ABORT Abort transfer on AHB ERROR

All bits are cleared to 0 at reset.

Note that constraints on PS1, PS2 and RSJ are defined as:

• PS1 +1 >= PS2

• PS1 > PS2

• PS2      >= RSJ

Note that CAN standard TSEG1 is defined by PS1+1. 

Note that CAN standard TSEG2 is defined by PS2.

Note that the SCALER setting defines the CAN time quantum, together with the BPR setting:

system clock / (SCALER+1) / BPR

where SCALER is in range 0 to 255, and the resulting division factor due to BPR is 1, 2, 4 or 8. 

Note that the resulting bit rate is:

system clock / (SCALER+1) / BPR * (1+ PS1+1 + PS2)

where PS1 is in the range 1 to 15, and PS2 is in the range 2 to 8.

Note that RSJ defines the number of allowed re-synchronization jumps according to the CAN stan-
dard, being in the range 1 to 4.

Note that the transmit or receive channel active during the AMBA AHB error is disabled if the
ABORT bit is set to 1b. Note that all accesses to the AMBA AHB bus will be disabled after an AMBA
AHB error occurs while the ABORT bit is set to 1b. The accesses will be disabled until the CanSTAT
register is read.

36.9.2 Status Register [CanSTAT] R

31-28: TxChannelsNumber of TxChannels -1, 4-bit
27-24: RxChannelsNumber of RxChannels -1, 4-bit
23-16: TxErrCntr Transmission error counter, 8-bit
15-8: RxErrCntr Reception error counter, 8-bit
4: ACTIVE Transmission ongoing
3: AHBErr AMBA AHB master interface blocked due to previous AHB error
2: OR Overrun during reception
1: OFF Bus-off condition
0: PASS Error-passive condition

Table 272.Status register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TxChannels RxChannels TxErrCntr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxErrCntr Acti
ve

AH
B 
Err

OR Off Pass
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All bits are cleared to 0 at reset.

The OR bit is set if a message with a matching ID is received and cannot be stored via the AMBA
AHB bus, this can be caused by bandwidth limitations or when the circular buffer for reception is
already full. 

The OR and AHBErr status bits are cleared when the register has been read.

Note that TxErrCntr and RxErrCntr are defined according to CAN protocol.

Note that the AHBErr bit is only set to 1b if an AMBA AHB error occurs while the Can-
CONF.ABORT bit is set to 1b. 

36.9.3 Control Register [CanCTRL] R/W

1: RESET Reset complete core when 1
0: ENABLE Enable CAN controller, when 1. Reset CAN controller, when 0

All bits are cleared to 0 at reset.

Note that RESET is read back as 0b.

Note that ENABLE should be cleared to 0b to while other settings are modified, ensuring that the
CAN core is properly synchronized.

Note that when ENABLE is cleared to 0b, the CAN interface is in sleep mode, only outputting reces-
sive bits.

Note that the CAN core requires that 10 recessive bits be received before receive and transmit opera-
tions can begin.

36.9.4 SYNC Code Filter Register [CanCODE] R/W

28-0: SYNC Message Identifier

All bits are cleared to 0 at reset.

Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

36.9.5 SYNC Mask Filter Register [CanMASK] R/W

28-0: MASK Message Identifier

Table 273.Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rese
t

Ena
ble

Table 274.SYNC Code Filter Register

31 30 29 28 0

SYNC

Table 275.SYNC Mask Filter Register

31 30 29 28 0

MASK
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All bits are set to 1 at reset.

Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

A RxSYNC message ID is matched when:

((Received-ID XOR CanCODE.SYNC) AND CanMASK.MASK) = 0

A TxSYNC message ID is matched when:

((Transmitted-ID XOR CanCODE.SYNC) AND CanMASK.MASK) = 0

36.9.6 Transmit Channel Control Register [CanTxCTRL] R/W

2: SINGLE Single shot mode
1: ONGOINGTransmission ongoing
0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that if the SINGLE bit is 1b, the channel is disabled (i.e. the ENABLE bit is cleared to 0b) if the
arbitration on the CAN bus is lost.

Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENABLE bit will be reset automatically.

At the time the ENABLE is cleared to 0b, any ongoing message transmission is not aborted, unless
the CAN arbitration is lost or communication has failed.

Note that the ONGOING bit being 1b indicates that message transmission is ongoing and that config-
uration of the channel is not safe.

36.9.7 Transmit Channel Address Register [CanTxADDR] R/W

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

36.9.8 Transmit Channel Size Register [CanTxSIZE] R/W

20-6: SIZE The size of the circular buffer is SIZE*4 messages

Table 276.Transmit Channel Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sin-
gle

Ong
oing

Ena
ble

Table 277.Transmit Channel Address Register

31 10 9 0

ADDR

Table 278.Transmit Channel Size Register

31 21 20 6 5 0

SIZE
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All bits are cleared to 0 at reset.

Valid SIZE values are between 0 and 16384.

Note that each message occupies four 32-bit words.

Note that the resulting behavior of invalid SIZE values is undefined.

Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

The width of the SIZE field may be made configurable by means of a VHDL generic. In this case it
should be set to 16-1 bits width.

36.9.9 Transmit Channel Write Register [CanTxWR] R/W

19-4: WRITE Pointer to last written message +1

All bits are cleared to 0 at reset.

The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last mes-
sage to transmit.

Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

36.9.10 Transmit Channel Read Register [CanTxRD] R/W

19-4: READ Pointer to last read message +1

All bits are cleared to 0 at reset.

The READ field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message transmitted.

Note that the READ field can be use to read out the progress of a transfer.

Note that the READ field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.

Note that the READ field can be automatically incremented even if the transmit channel has been dis-
abled, since the last requested transfer is not aborted until CAN bus arbitration is lost.

When the Transmit Channel Read Pointer catches up with the Transmit Channel Write Register, an
interrupt is generated (TxEmpty). Note that this indicates that all messages in the buffer have been
transmitted.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

Table 279.Transmit Channel Write Register

31 20 19 4 3 0

WRITE

Table 280.Transmit Channel Read Register

31 20 19 4 3 0

READ
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36.9.11 Transmit Channel Interrupt Register [CanTxIRQ] R/W

19-4: IRQ Interrupt is generated when CanTxRD.READ=IRQ, as a consequence of a message transmission

All bits are cleared to 0 at reset.

Note that this indicates that a programmed number of messages have been transmitted.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

36.9.12 Receive Channel Control Register [CanRxCTRL] R/W

1: ONGOINGReception ongoing (read-only)
0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that in the case an AHB bus error occurs during an access while fetching transmit data, and the
CanCONF.ABORT bit is 1b, then the ENALBE bit will be reset automatically.

At the time the ENABLE is cleared to 0b, any ongoing message reception is not aborted

Note that the ONGOING bit being 1b indicates that message reception is ongoing and that configura-
tion of the channel is not safe.

36.9.13 Receive Channel Address Register [CanRxADDR] R/W

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

36.9.14 Receive Channel Size Register [CanRxSIZE] R/W

20-6: SIZE The size of the circular buffer is SIZE*4 messages

All bits are cleared to 0 at reset.

Valid SIZE values are between 0 and 16384.

Note that each message occupies four 32-bit words.

Table 281.Transmit Channel Interrupt Register

31 20 19 4 3 0

IRQ

Table 282.Receive Channel Control Register

31 2 1 0

OnG
oing

Ena
ble

Table 283.Receive Channel Address Register

31 10 9 0

ADDR

Table 284.Receive Channel Size Register

31 21 20 6 5 0

SIZE
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Note that the resulting behavior of invalid SIZE values is undefined.

Note that only (SIZE*4)-1 messages can be stored simultaneously in the buffer. This is to simplify
wrap-around condition checking.

The width of the SIZE field may be made configurable by means of a VHDL generic. In this case it
should be set to 16-1 bits width.

36.9.15 Receive Channel Write Register [CanRxWR] R/W

19-4: WRITE Pointer to last written message +1

All bits are cleared to 0 at reset.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

The WRITE field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last message received.

Note that the WRITE field can be use to read out the progress of a transfer.

Note that the WRITE field can be written to in order to set up the starting point of a transfer. This
should only be done while the receive channel is not enabled.

36.9.16 Receive Channel Read Register [CanRxRD] R/W

19-4: READ Pointer to last read message +1

All bits are cleared to 0 at reset.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

The READ field is written to in order to release the receive buffer, indicating the position +1 of the
last message that has been read out.

Note that it is not possible to fill the buffer. There is always one message position in buffer unused.
Software is responsible for not over-reading the buffer on wrap around (i.e. setting WRITE=READ).

36.9.17 Receive Channel Interrupt Register [CanRxIRQ] R/W

19-4: IRQ Interrupt is generated when CanRxWR.WRITE=IRQ, as a consequence of a message reception

All bits are cleared to 0 at reset.

Note that this indicates that a programmed number of messages have been received.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

Table 285.Receive Channel Write Register

31 20 19 4 3 0

WRITE

Table 286.Receive Channel Read Register

31 20 19 4 3 0

READ

Table 287.Receive Channel Interrupt Register

31 20 19 4 3 0

IRQ
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36.9.18 Receive Channel Mask Register [CanRxMASK] R/W

28-0: AM Acceptance Mask, bits set to 1b are taken into account in the comparison between the received message
ID and the CanRxCODE.AC field

All bits are set to 1 at reset.

Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

36.9.19 Receive Channel Code Register [CanRxCODE] R/W

28-0: AC Acceptance Code, used in comparison with the received message

All bits are cleared to 0at reset.

Note that Base ID is bits 28 to 18 and Extended ID is bits 17 to 0.

A message ID is matched when:

((Received-ID XOR CanRxCODE.AC) AND CanRxMASS.AM) = 0

36.9.20 Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.

When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:

• Set up the software interrupt-handler to accept an interrupt from the module.

• Read the Pending Interrupt Register to clear any spurious interrupts.

• Initialise the Interrupt Mask Register, unmasking each bit that should generate the module inter-
rupt.

• When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-
handler to determine the causes of the interrupt. 

• Handle the interrupt, taking into account all causes of the interrupt.

• Clear the handled interrupt using Pending Interrupt Clear Register.

Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.

Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.

Table 288.Receive Channel Mask Register

31 30 29 28 0

AM

Table 289.Receive Channel Code Register

31 30 29 28 0

AC
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Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.

Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.

Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.

The interrupt registers comprise the following:

• Pending Interrupt Masked Status Register [CanPIMSR] R

• Pending Interrupt Masked Register [CanPIMR] R

• Pending Interrupt Status Register [CanPISR] R

• Pending Interrupt Register [CanPIR] R/W

• Interrupt Mask Register [CanIMR] R/W

• Pending Interrupt Clear Register [CanPICR] W

16: TxLoss Message arbitration lost during transmission (could be caused by
communcations error, as indicated by other interrupts as well)

15: RxMiss Message filtered away during reception
14: TxErrCntr Transmission error counter incremented
13: RxErrCntr Reception error counter incremented
12: TxSync Synchronization message transmitted
11: RxSync Synchronization message received
10: Tx Successful transmission of message
9: Rx Successful reception of message
8: TxEmpty Successful transmission of all messages in buffer
7: RxFull Successful reception of all messages possible to store in buffer
6: TxIRQ Successful transmission of a predefined number of messages
5: RxIRQ Successful reception of a predefined number of messages
4: TxAHBErr AHB error during transmission
3: RxAHBErr AHB error during reception
2: OR Over-run during reception
1: OFF Bus-off condition
0: PASS Error-passive condition

All bits in all interrupt registers are reset to 0b after reset.

Table 290.Interrupt registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
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Loss
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Note that the TxAHBErr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.

Note that the RxAHBErr interrupt is generated in such way that the corresponding read and write
pointers are valid for failure analysis. The interrupt generation is independent of the Can-
CONF.ABORT field setting.

36.10 Memory mapping

The CAN message is represented in memory as shown in table 291.

Values: Levels according to CAN standard: 1b is recessive,
0b is dominant

Legend: Naming and number in according to CAN standard
IDE Identifier Extension: 1b for Extended Format,

0b for Standard Format
RTR Remote Transmission Request: 1b for Remote Frame,

0b for Data Frame
bID Base Identifier
eID Extended Identifier
DLC Data Length Code, according to CAN standard:

0000b 0 bytes
0001b 1 byte
0010b 2 bytes
0011b 3 bytes
0100b 4 bytes
0101b 5 bytes
0110b 6 bytes
0111b 7 bytes

Table 291.CAN message representation in memory.

AHB addr

0x0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IDE RT
R

- bID eID

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

eID

0x4 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DLC - - - - TxErrCntr

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxErrCntr - - - - Ahb 
Err

OR Off Pass

0x8 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Byte 0 (first transmitted) Byte 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 2 Byte 3

0xC 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Byte 4 Byte 5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte 6 Byte 7 (last transmitted)
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1000b 8 bytes
OTHERS illegal

TxErrCntr Transmission Error Counter
RxErrCntr Reception Error Counter
AHBErr AHB interface blocked due to AHB Error when 1b
OR Reception Over run when 1b
OFF Bus Off mode when 1b
PASS Error Passive mode when 1b
Byte 00 to 07 Transmit/Receive data, Byte 00 first Byte 07 last

36.11 Vendor and device identifiers

The module has vendor identfier 0x01 (Gaisler Research) and device identfier 0x03D. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

36.12 Configuration options

Table 292 shows the configuration options of the core (VHDL generics).

36.13 Signal descriptions

Table 293 shows the interface signals of the core (VHDL ports).

Table 292.Configuration options

Generic name Function Allowed range Default

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFC#

pirq Interrupt line used by the GRCAN. 0 - NAHBIRQ-1 0

singleirq Implement only one common interrupt 0 - 1 0

txchannels Number of transmit channels 1 - 1 1

rxchannels Number of receive channels 1 - 1 1

ptrwidth Width of message pointers 4 - 16 16

Table 293.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

CANI Rx[1:0] Input Receive lines -

CANO Tx[1:0] Output Transmit lines -

En[1:0] Transmit enables -

* see GRLIB IP Library User’s Manual
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36.14 Library dependencies

Table 294 shows the libraries used when instantiating the core (VHDL libraries).

36.15 Instantiation

This example shows how the core can be instantiated. 

library  ieee;
use      ieee.std_logic_1164.all;

library  gaisler;
use      gaisler.can.all;

entity example is
   generic (                                      
      padtech:       in    integer := 0);
   port (
      -- CAN interface
      cantx:         out   std_logic_vector(1 downt o 0);
      canrx:         in    std_logic_vector(1 downt o 0);
      canen:         out   std_logic_vector(1 downt o 0);

...

   -- Signal declarations
   signal   rstn:          std_ulogic;
   signal   clk:           std_ulogic;   

   signal   ahbmo:         ahb_mst_out_vector := (o thers => ahbm_none);
   signal   ahbmi:         ahb_mst_in_type;

   signal   apbi:          apb_slv_in_type;
   signal   apbo:          apb_slv_out_vector := (o thers => apb_none);

   signal   cani0:         can_in_type;
   signal   cano0:         can_out_type;

...

   -- Component instantiation
   grcan0: grcan
      generic map (
         hindex         => 1,
         pindex         => 1,
         paddr          => 16#00C",
         pmask          => 16#FFC",
         pirq           => 1,
         txchannels     => 1,
         rxchannels     => 1,
         ptrwidth       => 16)
      port map (
         rstn           => rstn,
         clk            => clk,
         apbi           => apbi,
         apbo           => apbo(1),
         ahbi           => ahbmi,
         ahbo           => ahbmo(1),
         cani           => cani0,
         cano           => cano0);

Table 294.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER CAN Signals, component GRCAN component and signal declarations.
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   cantx0_pad : outpad
      generic map (tech => padtech) port map (cantx (0), cani0.tx(0));

   canrx0_pad : inpad
      generic map (tech => padtech) port map (canrx (0), cani0.rx(0));

   canen0_pad : outpad
      generic map (tech => padtech) port map (canen (0), cani0.en(0));

   cantx1_pad : outpad
      generic map (tech => padtech) port map (cantx (1), cani0.tx(1));

   canrx1_pad : inpad
      generic map (tech => padtech) port map (canrx (1), cani0.rx(1));

   canen1_pad : outpad
      generic map (tech => padtech) port map (canen (1), cani0.en(1));
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37 GRECC - Elliptic Curve Cryptography

37.1 Overview

Elliptic Curve Cryptography (ECC) is used as a public key mechanism. The computational burden
that is inhibited by ECC is less than the one of RSA. ECC provides the same level of security as RSA
but with a significantly shorter key length. ECC is well suited for application in mobile communica-
tion. 

The GRECC core implements encryption and decryption for an elliptic curve based on 233-bit key
and point lengths. The implemented curve is denoted as sect233r1 or B-233.

The sect233r1 elliptic curve domain parameters are specified in the “Standards for Efficient Cryptog-
raphy (SEC) - SEC2: Recommended Elliptic Curve Domain Parameters” document. The document is
established by the Standards for Efficient Cryptography Group (SECG).

The B-233 elliptic curve domain parameters are specified in the “Digital Signature Standard (DSS)”
document, Federal Information Processing Standards (FIPS) Publication 186-2. The document is
established by the National Institute of Standards and Technology (NIST).

The GRECC can be used with algorithms such as:

• Elliptic Curve Digital Signature Algorithm DSA (ECDSA), which appears in FIPS 186-2, IEEE
1363-2000 and ISO/IEC 15946-2

• Elliptic Curve El Gamal Method (key exchange protocol)

• Elliptic Curve Diffie-Hellman (ECDH) (key agreement protocol) 

The core provides the following internal AMBA APB slave interface, with sideband signals as per
[GRLIB] including:

• interrupt bus

• configuration information

• diagnostic information

The core can be partition in the following hierarchical elements:

• Elliptic Curve Cryptography (ECC) core

• AMBA APB slave

• GRLIB plug&play wrapper

Note that the core can also be used without the GRLIB plug&play information. 

37.2 Operation

Elliptic Curve Cryptography (ECC) is an asymmetric cryptographic approach (also known as public
key cryptography) that applies different keys for encryption and decryption. The most expensive
operation during both encryption and decryption is the elliptic curve point multiplication. Hereby, a
point on the elliptic curve is multiplied with a long integer (k*P multiplication). The bit sizes of the
coordinates of the point P=(x, y) and the factor k have a length of hundreds of bits.

In this implementation the key and the point lengths are 233 bit, so that for every key there are 8 write
cycles necessary and for every point (consisting of x and y) there are 16 write cycles necessary. After
at least 16700 clock cycles the result can be read out.



314

The key is input via eight registers. The input point Pin=(x, y) is written via eight registers for x and
eight registers for y. After the last y input register is written, the encryption or decryption is started.
The progress can be observed via the status register. When the operation is completed, an interrupt is
generated. The output point Pout=(x, y) is then read out via eight registers for x and eight registers for
y.

37.3 Advantages

The main operation in ECC is the k*P multiplication. One k*P multiplication requires about 1500
field multiplications in the base field, which is the most expensive base operation. The complexity of
a field multiplication can be reduced by applying the Karatsuba method. Normally the Karatsuba
approach is applied recursively. The GRECC core includes an iterative implementation of the Karat-
suba method which allows to realize area efficient hardware accelerators for the k*P multiplication.
Hardware accelerators which are realized applying an iterative approach need up to 60 per cent less
area and  about 30 per cent less energy per multiplication than the recursive variants.

37.4 Background

The Standards for Efficient Cryptography Group (SECG) was initiated by Certicom Corporation to
address the difficulty vendors and users face when building and deploying interoperable security solu-
tions. The SECG is a broad international coalition comprised of leading technology companies and
key industry players in the information security industry. One of the goals is to enable the effective
incorporation of Elliptic Curve Cryptographic (ECC) technology into these various cryptographic
solutions. 

The Standards for Efficient Cryptography Group (SECG) has develop two sets of documents. The
first set, under the name SEC, specifies interoperable cryptographic technologies and solutions. The
second set, Guidelines for Efficient Cryptography (GEC), provides background information on ellip-
tic curve cryptography and recommendations for ECC parameter and curve selection.

The Federal Information Processing Standards Publication Series of the National Institute of Stan-
dards and Technology (NIST) is the official series of publications relating to standards and guidelines
adopted under the provisions of the Information Technology Management Reform Act. 

This Digital Signature Standard (DSS) specifies a suite of algorithms which can be used to generate a
digital signature. Digital signatures are used to detect unauthorized modifications to data and to
authenticate the identity of the signatory. In addition, the recipient of signed data can use a digital sig-
nature in proving to a third party that the signature was in fact generated by the signatory. This is
known as nonrepudiation since the signatory cannot, at a later time, repudiate the signature.

37.5 233-bit elliptic curve domain parameters

The core implements the 233-bit elliptic curve domain parameters sect233r1, or the equivalent B-233,
which are verifiably random parameters. The following specification is established in “Standards for
Efficient Cryptography (SEC) - SEC 2: Recommended Elliptic Curve Domain Parameters”. The veri-
fiably random elliptic curve domain parameters over F2m are specified by the septuple T = (m; f (x); a;
b; G; n; h) where m = 233 and the representation of F2233 is defined by:

f (x) = x233+x74 +1

The curve E: y2+xy = x3+ax2+b over F2m is defined by:

a = 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000001

b = 0066 647EDE6C 332C7F8C 0923BB58 213B333B 20E9CE42 81FE115F 7D8F90AD

The base point G in compressed form is:

G = 0300FA C9DFCBAC 8313BB21 39F1BB75 5FEF65BC 391F8B36 F8F8EB73 71FD558B

and in uncompressed form is:



315

G = 04 00FAC9DF CBAC8313 BB2139F1 BB755FEF 65BC391F 8B36F8F8

   EB7371FD 558B0100 6A08A419 03350678 E58528BE BF8A0BEF F867A7CA

   36716F7E 01F81052

Finally the order n of G and the cofactor are:

n = 0100 00000000 00000000 00000000 0013E974 E72F8A69 22031D26 03CFE0D7

h = 02

37.6 Throughput

The data throughput for the GRECC core is around 233/16700 bits per clock cycle, i.e. approximately
13.9 kbits per MHz.

The underlaying EEC core has been implemented in a dual crypto chip on 250 nm technology as
depicted in the figure below. The throughput at 33 MHz operating frequency was 850 kbit/s, the
power consumption was 56,8 mW, and the size was 27,6 kgates.

Figure 134.  Dual Crypto Chip

37.7 Characteristics

The GRECC core has been synthesized for a Xilinx Virtex-2 XC2V6000-4 devices with the following
results:

• LUTs: 12850 (19%)

• Frequency:93 MHz
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37.8 Registers

The core is programmed through registers mapped into APB address space.

Table 295.GRECC registers

APB address offset Register

16#020# Key 0 Register

16#024# Key 1 Register

16#028# Key 2 Register

16#02C# Key 3 Register

16#030# Key 4 Register

16#034# Key 5 Register

16#038# Key 6 Register

16#03C# Key 7 Register

16#040# Point X Input 0 Register

16#044# Point X Input 1 Register

16#048# Point X Input 2 Register

16#04C# Point X Input 3 Register

16#050# Point X Input 4 Register

16#054# Point X Input 5 Register

16#058# Point X Input 6 Register

16#05C# Point X Input 7 Register

16#060# Point Y Input 0 Register

16#064# Point Y Input 1 Register

16#068# Point Y Input 2 Register

16#06C# Point Y Input 3 Register

16#070# Point Y Input 4 Register

16#074# Point Y Input 5 Register

16#078# Point Y Input 6 Register

16#07C# Point Y Input 7 Register

16#0A0# Point X Output 0 Register

16#0A4# Point X Output 1 Register

16#0A8# Point X Output 2 Register

16#0AC# Point X Output 3 Register

16#0B0# Point X Output 4 Register

16#0B4# Point X Output 5 Register

16#0B8# Point X Output 6 Register

16#0BC# Point X Output 7 Register

16#0C0# Point Y Output 0 Register

16#0C4# Point Y Output 1 Register

16#0C8# Point Y Output 2 Register

16#0CC# Point Y Output 3 Register

16#0D0# Point Y Output 4 Register

16#0D4# Point Y Output 5 Register

16#0D8# Point Y Output 6 Register

16#0DC# Point Y Output 7 Register

16#0FC# Status Register
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37.8.1 Key 0 to 7 Registers (W)

37.8.2 Point X Input 0 to 7 Registers (W)

Table 296.Key 0 Register (least significant)

31  0

KEY(31 downto 0)

Table 297.Key 1 Register

31  0

KEY(63 downto32)

Table 298.Key 2 Register

31  0

KEY(95 downto 64)

Table 299.Key 3 Register

31  0

KEY(127 downto 96)

Table 300.Key 4 Register

31  0

KEY(159 downto 128)

Table 301.Key 5 Register

31  0

KEY(191 downto 160)

Table 302.Key 6 Register

31  0

KEY(223 downto 192)

Table 303.Key 7 Register  (most significant)

31  9 8 0

- KEY(232 downto 224)

Table 304.Point X Input 0 Register (least significant)

31  0

X(31 downto 0)

Table 305.Point X Input 1 Register

31  0

X(63 downto32)

Table 306.Point X Input 2 Register

31  0

X(95 downto 64)
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Table 307.Point X Input 3 Register

31  0

X(127 downto 96)

Table 308.Point X Input 4 Register

31  0

X(159 downto 128)

Table 309.Point X Input 5 Register

31  0

X(191 downto 160)

Table 310.Point X Input 6 Register

31  0

X(223 downto 192)

Table 311.Point X Input 7 Register (most significant)

31  9 8 0

- X(232 downto 224)
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37.8.3 Point Y Input 0 to 7 Registers (W)

The encryption or decryption operation is started when the Point Y Input 7 Register is written.

Table 312.Point Y Input 0 Register (least significant)

31  0

Y(31 downto 0)

Table 313.Point Y Input 1 Register

31  0

Y(63 downto32)

Table 314.Point Y Input 2 Register

31  0

Y(95 downto 64)

Table 315.Point Y Input 3 Register

31  0

Y(127 downto 96)

Table 316.Point Y Input 4 Register

31  0

Y(159 downto 128)

Table 317.Point Y Input 5 Register

31  0

Y(191 downto 160)

Table 318.Point Y Input 6 Register

31  0

Y(223 downto 192)

Table 319.Point Y Input 7 Register (most significant)

31  9 8 0

- Y(232 downto 224)
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37.8.4 Point X Output 0 to 7 Registers (R)

Table 320.Point X Output 0 Register (least significant)

31  0

X(31 downto 0)

Table 321.Point X Output 1 Register

31  0

X(63 downto32)

Table 322.Point X Output 2 Register

31  0

X(95 downto 64)

Table 323.Point X Output 3 Register

31  0

X(127 downto 96)

Table 324.Point X Output 4 Register

31  0

X(159 downto 128)

Table 325.Point X Output 5 Register

31  0

X(191 downto 160)

Table 326.Point X Output 6 Register

31  0

X(223 downto 192)

Table 327.Point X Output 7 Register (most significant)

31  9 8 0

- X(232 downto 224)
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37.8.5 Point Y Output 0 to 7 Registers (R)

37.8.6 Status Register (R)

31-1: - Unused
0: FSM 0 when ongoing, 1 when idle or ready

37.9 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x074. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 328.Point Y Output 0 Register (least significant)

31  0

Y(31 downto 0)

Table 329.Point Y Output 1 Register

31  0

Y(63 downto32)

Table 330.Point Y Output 2 Register

31  0

Y(95 downto 64)

Table 331.Point Y Output 3 Register

31  0

Y(127 downto 96)

Table 332.Point Y Output 4 Register

31  0

Y(159 downto 128)

Table 333.Point Y Output 5 Register

31  0

Y(191 downto 160)

Table 334.Point Y Output 6 Register

31  0

Y(223 downto 192)

Table 335.Point Y Output 7 Register (most significant)

31  9 8 0

- Y(232 downto 224)

Table 336.Status Register

31  1 0

. FS
M
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37.10 Configuration options

Table 337 shows the configuration options of the core (VHDL generics).

37.11 Signal descriptions

Table 338 shows the interface signals of the core (VHDL ports).

Note that the ECC core can also be used without the GRLIB plug&play information. The AMBA
APB signals are then provided as IEEE Std_Logic_1164 compatible scalars and vectors.

37.12 Library dependencies

Table 339 shows libraries used when instantiating the core (VHDL libraries).

37.13 Instantiation

This example shows how the core can be instantiated.

library  ieee;
use      ieee.std_logic_1164.all;

library  grlib;
use      grlib.amba.all;

library  gaisler;
use      gaisler.crypto.all;
...
...
   signal debug: std_logic_vector(10 downto 0);
..

Table 337.Configuration options

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB BAR 0 - 16#FFF# 0

pmask Mask field of the APB BAR 0 - 16#FFF# 16#FFC#

pirq Interrupt line used by the GRECC 0 - NAHBIRQ-1 0

Table 338.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

DEBUG[10:0] N/A Output Debug information -

* see GRLIB IP Library User’s Manual

Table 339.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER CRYPTO Component GRECC component declarations
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..
   grecc0: grecc
      generic map (
         pindex         => pindex,
         paddr          => paddr,
         pmask          => pmask,
         pirq           => pirq)
      port map (
         rstn           => rstn,
         clk            => clk,
         apbi           => apbi,
         apbo           => apbo(pindex),
         debug          => debug);
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38 GRETH - Ethernet Media Access Controller (MAC) with EDCL support

38.1 Overview

Gaisler Research’s Ethernet Media Access Controller (GRETH) provides an interface between an
AMBA-AHB bus and an Ethernet network. It supports 10/100 Mbit speed in both full- and half-
duplex. The AMBA interface consists of an APB interface for configuration and control and an AHB
master interface which handles the dataflow. The dataflow is handled through DMA channels. There
is one DMA engine for the transmitter and one for the receiver. Both share the same AHB master
interface. The ethernet interface supports both the MII and RMII interfaces which should be con-
nected to an external PHY. The GRETH also provides access to the MII Management interface which
is used to configure the PHY. 

Optional hardware support for the Ethernet Debug Communication Link (EDCL) protocol is also pro-
vided. This is an UDP/IP based protocol used for remote debugging.

38.2 Operation

38.2.1 System overview

The GRETH consists of 3 functional units: The DMA channels, MDIO interface and the optional Eth-
ernet Debug Communication Link (EDCL). 

The main functionality consists of the DMA channels which are used to transfer data between an
AHB bus and an Ethernet network. There is one transmitter DMA channel and one Receiver DMA
channel. The operation of the DMA channels is controlled through registers accessible through the
APB interface.

The MDIO interface is used for accessing configuration and status registers in one or more PHYs con-
nected to the MAC. The operation of this interface is also controlled through the APB interface.

The optional EDCL provides read and write access to an AHB bus through Ethernet. It uses the UDP,
IP, ARP protocols together with a custom application layer protocol to accomplish this. The EDCL
contains no user accessible registers and always runs in parallel with the DMA channels.

AHB
APB

Ethernet MAC

Registers MDIO

MDIO_OE
MDIO_O

MDIO_I

MDC

AHB Master
Interface

Transmitter

Receiver 

Transmitter

Receiver

DMA Engine

DMA Engine

FIFO

FIFO

TX_EN
TX_ER
TXD(3:0)
TX_CLK
RX_CRS
RX_COL

RX_DV
RX_ER
RXD(3:0)
RX_CLK

EDCL
 Transmitter

EDCL
 Receiver

Figure 135.  Block diagram of the internal structure of the GRETH.
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The Media Independent Interface (MII) is used for communicating with the PHY. There is an Ethernet
transmitter which sends all data from the AHB domain on the Ethernet using the MII interface. Corre-
spondingly, there is an Ethernet receiver which stores all data from the Ethernet on the AHB bus. Both
of these interfaces use FIFOs when transferring the data streams. The GRETH also supports the RMII
which uses a subset of the MII signals.

The EDCL and the DMA channels share the Ethernet receiver and transmitter.

38.2.2 Protocol support

The GRETH is implemented according to IEEE standard 802.3-2002. There is no support for the
optional control sublayer and no multicast addresses can be assigned to the MAC. This means that
packets with type 0x8808 (the only currently defined ctrl packets) are discarded. 

38.2.3 Clocking

GRETH has three clock domains: The AHB clock, Ethernet receiver clock and the Ethernet transmit-
ter clock. The ethernet transmitter and receiver clocks are generated by the external ethernet PHY, and
are inputs to the core through the MII interface. The three clock domains are unrelated to each other
and all signals crossing the clock regions are fully synchronized inside the core. 

Both full-duplex and half-duplex operating modes are supported and both can be run in either 10 or
100 Mbit. The minimum AHB clock for 10 Mbit operation is 2.5 MHz, while 18 MHz is needed for
100 Mbit. Using a lower AHB clock than specified will lead to excessive packet loss.

38.3 Tx DMA interface

The transmitter DMA interface is used for transmitting data on an Ethernet network. The transmission
is done using descriptors located in memory.

38.3.1 Setting up a descriptor.

A single descriptor is shown in table 340 and 341. The number of bytes to be sent should be set in the
length field and the address field should point to the data. The address must be word-aligned. If the
interrupt enable (IE) bit is set, an interrupt will be generated when the packet has been sent (this
requires that the transmitter interrupt bit in the control register is also set). The interrupt will be gener-
ated regardless of whether the packet was transmitted successfully or not. The Wrap (WR) bit is also a
control bit that should be set before transmission and it will be explained later in this section.

Table 340. GRETH transmit descriptor word 0 (address offset 0x0)
31 16 15 14 13 12 11 10 0

RESERVED AL UE IE WR EN LENGTH

31: 16 RESERVED

15 Attempt Limit Error (AL) - The packet was not transmitted because the maximum number of 
attempts was reached.

14 Underrun Error (UE) - The packet was incorrectly transmitted due to a FIFO underrun error.
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To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the GRETH.

38.3.2 Starting transmissions

Enabling a descriptor is not enough to start a transmission. A pointer to the memory area holding the
descriptors must first be set in the GRETH. This is done in the transmitter descriptor pointer register.
The address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor.The first descriptor should be located at the
base address and when it has been used by the GRETH the pointer field is incremented by 8 to point at
the next descriptor. The pointer will automatically wrap back to zero when the next 1 kB boundary has
been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors can
be set to make the pointer wrap back to zero before the 1 kB boundary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when a transmission is active.

The final step to activate the transmission is to set the transmit enable bit in the control register. This
tells the GRETH that there are more active descriptors in the descriptor table. This bit should always
be set when new descriptors are enabled, even if transmissions are already active. The descriptors
must always be enabled before the transmit enable bit is set. 

38.3.3 Descriptor handling after transmission

When a transmission of a packet has finished, status is written to the first word in the corresponding
descriptor. The Underrun Error bit is set if the FIFO became empty before the packet was completely
transmitted while the Alignment Error bit is set if more collisions occurred than allowed. The packet
was successfully transmitted only if both of these bits are zero. The other bits in the first descriptor
word are set to zero after transmission while the second word is left untouched. 

The enable bit should be used as the indicator when a descriptor can be used again, which is when it
has been cleared by the GRETH. There are three bits in the GRETH status register that hold transmis-
sion status. The Transmitter Error (TE) bit is set each time an transmission ended with an error (when
at least one of the two status bits in the transmit descriptor has been set). The Transmitter Interrupt
(TI) is set each time a transmission ended successfully. 

13 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when the packet from this 
descriptor has been sent provided that the transmitter interrupt enable bit in the control register is set. 
The interrupt is generated regardless if the packet was transmitted successfully or if it terminated 
with an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been 
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero 
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor 
fields.

10: 0 LENGTH - The number of bytes to be transmitted.

Table 341. GRETH transmit descriptor word 1 (address offset 0x4)
31 2 1 0

ADDRESS RES

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.

1: 0 RESERVED

Table 340. GRETH transmit descriptor word 0 (address offset 0x0)
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The transmitter AHB error (TA) bit is set when an AHB error was encountered either when reading a
descriptor or when reading packet data. Any active transmissions were aborted and the transmitter
was disabled. The transmitter can be activated again by setting the transmit enable register.

38.3.4 Setting up the data for transmission

The data to be transmitted should be placed beginning at the address pointed by the descriptor address
field. The GRETH does not add the Ethernet address and type fields so they must also be stored in the
data buffer. The 4 B Ethernet CRC is automatically appended at the end of each packet. Each descrip-
tor will be sent as a single Ethernet packet. If the size field in a descriptor is greater than 1514 B, the
packet will not be sent.

38.4 Rx DMA interface

The receiver DMA interface is used for receiving data from an Ethernet network. The reception is
done using descriptors located in memory.

38.4.1 Setting up descriptors

A single descriptor is shown in table 342 and 343. The address field should point to a word-aligned
buffer where the received data should be stored. The GRETH will never store more than 1514 B to the
buffer. If the interrupt enable (IE) bit is set, an interrupt will be generated when a packet has been
received to this buffer (this requires that the receiver interrupt bit in the control register is also set).
The interrupt will be generated regardless of whether the packet was received successfully or not. The
Wrap (WR) bit is also a control bit that should be set before the descriptor is enabled and it will be
explained later in this section.

Table 342. GRETH receive descriptor word 0 (address offset 0x0)
31 19 18 17 16 15 14 13 12 11 10 0

RESERVED LE OE CE FT AE IE WR EN LENGTH

31: 19 RESERVED

18 Length error (LE) - The length/type field of the packet did not match the actual number of received 
bytes.

17 Overrun error (OE) - The frame was incorrectly received due to a FIFO overrun.

16 CRC error (CE) - A CRC error was detected in this frame.

15 Frame too long (FT) - A frame larger than the maximum size was received. The excessive part 
was truncated.

14 Alignment error (AE) - An odd number of nibbles were received.

13 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when a packet has been 
received to this descriptor provided that the receiver interrupt enable bit in the control register is set. 
The interrupt is generated regardless if the packet was received successfully or if it terminated with 
an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been 
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero 
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor 
fields.

10: 0 LENGTH - The number of bytes received to this descriptor.

Table 343. GRETH receive descriptor word 1 (address offset 0x4)
31 2 1 0

ADDRESS RES

31: 2 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.

1: 0 RESERVED
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38.4.2 Starting reception

Enabling a descriptor is not enough to start reception. A pointer to the memory area holding the
descriptors must first be set in the GRETH. This is done in the receiver descriptor pointer register. The
address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descriptor area
while bits 9 to 3 form a pointer to an individual descriptor. The first descriptor should be located at the
base address and when it has been used by the GRETH the pointer field is incremented by 8 to point at
the next descriptor. The pointer will automatically wrap back to zero when the next 1 kB boundary has
been reached (the descriptor at address offset 0x3F8 has been used). The WR bit in the descriptors can
be set to make the pointer wrap back to zero before the 1 kB boundary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when reception is active.

The final step to activate reception is to set the receiver enable bit in the control register. This will
make the GRETH read the first descriptor and wait for an incoming packet.

38.4.3 Descriptor handling after reception

The GRETH indicates a completed reception by clearing the descriptor enable bit. The other control
bits (WR, IE) are also cleared. The number of received bytes is shown in the length field. The parts of
the Ethernet frame stored are the destination address, source address, type and data fields. Bits 17-14
in the first descriptor word are status bits indicating different receive errors. All four bits are zero after
a reception without errors. The status bits are described in table 342. 

Packets arriving that are smaller than the minimum Ethernet size of 64 B are not considered as a
reception and are discarded. The current receive descriptor will be left untouched an used for the first
packet arriving with an accepted size. The TS bit in the status register is set each time this event
occurs.

If a packet is received with an address not accepted by the MAC, the IA status register bit will be set.

Packets larger than maximum size cause the FT bit in the receive descriptor to be set. The length field
is not guaranteed to hold the correct value of received bytes. The counting stops after the word con-
taining the last byte up to the maximum size limit has been written to memory.

The address word of the descriptor is never touched by the GRETH. 

38.4.4 Reception with AHB errors

If an AHB error occurs during a descriptor read or data store, the Receiver AHB Error (RA) bit in the
status register will be set and the receiver is disabled. The current reception is aborted. The receiver
can be enabled again by setting the Receive Enable bit in the control register.

38.5 MDIO Interface

The MDIO interface provides access to PHY configuration and status registers through a two-wire
interface which is included in the MII interface. The GRETH provided full support for the MDIO
interface. If it is not needed in a design it can be removed with a VHDL generic. 

The MDIO interface can be used to access from 1 to 32 PHY containing 1 to 32 16-bit registers. A
read transfer i set up by writing the PHY and register addresses to the MDIO Control register and set-
ting the read bit. This caused the Busy bit to be set and the operation is finished when the Busy bit is
cleared. If the operation was successful the Linkfail bit is zero and the data field contains the read
data. An unsuccessful operation is indicated by the Linkfail bit being set. The data field is undefined
in this case.

A write operation is started by writing the 16-bit data, PHY address and register address to the MDIO
Control register and setting the write bit. The operation is finished when the busy bit is cleared and it
was successful if the Linkfail bit is zero.
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38.6 Ethernet Debug Communication Link (EDCL)

The EDCL provides access to an on-chip AHB bus through Ethernet. It uses the UDP, IP and ARP
protocols together with a custom application layer protocol. The application layer protocol uses an
ARQ algorithm to provide reliable AHB instruction transfers. Through this link, a read or write trans-
fer can be generated to any address on the AHB bus. The EDCL is optional and must be enabled with
a generic.

38.6.1 Operation 

The EDCL receives packets in parallel with the MAC receive DMA channel. It uses a separate MAC
address which is used for distinguishing EDCL packets from packets destined to the MAC DMA
channel. The EDCL also has an IP address which is set through generics. Since ARP packets use the
Ethernet broadcast address, the IP-address must be used in this case to distinguish between EDCL
ARP packets and those that should go to the DMA-channel. Packets that are determined to be EDCL
packets are not processed by the receive DMA channel.

When the packets are checked to be correct, the AHB operation is performed. The operation is per-
formed with the same AHB master interface that the DMA-engines use. The replies are automatically
sent by the EDCL transmitter when the operation is finished. It shares the Ethernet transmitter with
the transmitter DMA-engine but has higher priority. 

38.6.2 EDCL protocols

The EDCL accepts Ethernet frames containing IP or ARP data. ARP is handled according to the pro-
tocol specification with no exceptions. 

IP packets carry the actual AHB commands. The EDCL expects an Ethernet frame containing IP,
UDP and the EDCL specific application layer parts. Table 344 shows the IP packet required by the
EDCL. The contents of the different protocol headers can be found in TCP/IP literature. 

The following is required for successful communication with the EDCL: A correct destination MAC
address as set by the generics, an Ethernet type field containing 0x0806 (ARP) or 0x0800 (IP). The
IP-address is then compared with the value determined by the generics for a match. The IP-header
checksum and identification fields are not checked. There are a few restrictions on the IP-header
fields. The version must be four and the header size must be 5 B (no options). The protocol field must
always be 0x11 indicating a UDP packet. The length and checksum are the only IP fields changed for
the reply.

The EDCL only provides one service at the moment and it is therefore not required to check the UDP
port number. The reply will have the original source port number in both the source and destination
fields. UDP checksum are not used and the checksum field is set to zero in the replies. 

The UDP data field contains the EDCL application protocol fields. Table 345 shows the application
protocol fields (data field excluded) in packets received by the EDCL. The 16-bit offset is used to
align the rest of the application layer data to word boundaries in memory and can thus be set to any
value. The R/W field determines whether a read (0) or a write(1) should be performed. The length

field contains the number of bytes to be read or written. If R/W is one the data field shown in table
344 contains the data to be written. If R/W is zero the data field is empty in the received packets.
Table 346 shows the application layer fields of the replies from the EDCL. The length field is always

Table 344.The IP packet expected by the EDCL. 

Ethernet

Header

IP

Header

UDP

Header

2 B 

Offset

4 B 

Control word

4 B

Address

Data 0 - 242 

4B Words

Ethernet

CRC

Table 345.The EDCL application layer fields in received frames. 

16-bit Offset 14-bit Sequence number 1-bit R/W 10-bit Length 7-bit Unused
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zero for replies to write requests. For read requests it contains the number of bytes of data contained in
the data field.

The EDCL implements a Go-Back-N algorithm providing reliable transfers. The 14-bit sequence
number in received packets are checked against an internal counter for a match. If they do not match,
no operation is performed and the ACK/NAK field is set to 1 in the reply frame. The reply frame con-
tains the internal counter value in the sequence number field. If the sequence number matches, the
operation is performed, the internal counter is incremented, the internal counter value is stored in the
sequence number field and the ACK/NAK field is set to 0 in the reply. The length field is always set to
0 for ACK/NAK=1 frames. The unused field is not checked and is copied to the reply. It can thus be
set to hold for example some extra identifier bits if needed.

38.6.3 EDCL IP and Ethernet address settings

The default value of the EDCL IP and MAC addresses are set by ipaddrh, ipaddrl, macad-
drh and macaddrl  generics. The IP address can later be changed by software, but the MAC
address is fixed. To allow several EDCL enabled GRETH controllers on the same sub-net, the 4 LSB
bits of the IP and MAC address can optionally be set by an input signal. This is enabled by setting the
edcl  generic = 2, and driving the 4-bit LSB value on ethi.edcladdr.

38.6.4 EDCL limitations

The EDCL is designed to work without software intervention thus requiring automatic configuration
in hardware. To simplify the hardware the EDCL is assumed to be able to handle all operating modes
of the PHY and only reads the auto-negotiated mode and configures the MAC. This prevents it from
working with gigabit capable PHYs since they might be in the gigabit mode and this cannot be han-
dled by the MAC.

38.7 Media Independent Interfaces

There are several interfaces defined between the MAC sublayer and the Physical layer. The GRETH
supports two of them: The Media Independent Interface (MII) and the Reduced Media Independent
Interface (RMII). 

The MII was defined in the 802.3 standard and is most commonly supported. The ethernet interface
have been implemented according to this specification. It uses 16 signals. 

The RMII was developed to meet the need for an interface allowing Ethernet controllers with smaller
pin counts. It uses 6 (7) signals which are a subset of the MII signals. Table 347 shows the mapping
between the RMII signals and the GRLIB MII interface.

Table 346.The EDCL application layer fields in transmitted frames.

16-bit Offset 14-bit sequence number 1-bit ACK/NAK 10-bit Length 7-bit Unused

Table 347.Signal mappings between RMII and the GRLIB MII interface.

RMII MII

txd[1:0] txd[1:0]

tx_en tx_en

crs_dv rx_crs

rxd[1:0] rxd[1:0]

ref_clk rmii_clk

rx_er not used
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38.8 Software drivers

Drivers for the GRETH MAC is provided for the following operating systems: RTEMS, eCos,
uClinux and Linux-2.6. The drivers are freely available in full source code under the GPL license
from Gaisler Research’s web site (http://gaisler.com/).

38.9 Registers

The core is programmed through registers mapped into APB address space.

Table 348.GRETH registers

APB address offset Register

0x0 Control register

0x4 Status/Interrupt-source register

0x8 MAC Address MSB

0xC MAC Address LSB

0x10 MDIO Control/Status

0x14 Transmit descriptor pointer

0x18 Receiver descriptor pointer

0x1C EDCL IP

Table 349. GRETH control register
31 30 28 27 8 7 6 5 4 3 2 1 0

ED BS RESERVED SP RS PM FD RI TI RE TE

31 EDCL available (ED) - Set to one if the EDCL is available.

30: 28 EDCL buffer size (BS) - Shows the amount of memory used for EDCL buffers. 0 = 1 kB, 1 = 2 kB, 
...., 6 = 64 kB.

27: 8 RESERVED

7 Speed (SP) - Sets the current speed mode. 0 = 10 Mbit, 1 = 100 Mbit. Only used in RMII mode (rmii 
= 1). A default value is automatically read from the PHY after reset. Reset value: ‘1’.

6 Reset (RS) - A one written to this bit resets the GRETH core. Self clearing.

5 Promiscuous mode (PM) - If set, the GRETH operates in promiscuous mode which means it will 
receive all packets regardless of the destination address. Reset value: ‘0’.

4 Full duplex (FD) - If set, the GRETH operates in full-duplex mode otherwise it operates in half-
duplex. Reset value: ‘0’.

3 Receiver interrupt (RI) - Enable Receiver Interrupts. An interrupt will be generated each time a 
packet is received when this bit is set. The interrupt is generated regardless if the packet was 
received successfully or if it terminated with an error. Reset value: ‘0’.

2 Transmitter interrupt (TI) - Enable Transmitter Interrupts. An interrupt will be generated each time a 
packet is transmitted when this bit is set. The interrupt is generated regardless if the packet was 
transmitted successfully or if it terminated with an error. Reset value: ‘0’.

1 Receive enable (RE) - Should be written with a one each time new descriptors are enabled. As long 
as this bit is one the GRETH will read new descriptors and as soon as it encounters a disabled 
descriptor it will stop until TE is set again. This bit should be written with a one after the new 
descriptors have been enabled. Reset value: ‘0’.

0 Transmit enable (TE) - Should be written with a one each time new descriptors are enabled. As long 
as this bit is one the GRETH will read new descriptors and as soon as it encounters a disabled 
descriptor it will stop until TE is set again. This bit should be written with a one after the new 
descriptors have been enabled. Reset value: ‘0’.
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Table 350. GRETH status register
31 8 7 6 5 4 3 2 1 0

RESERVED IA TS TA RA TI RI TE RE

7 Invalid address (IA) - A packet with an address not accepted by the MAC was received. Cleared 
when written with a one. Reset value: ‘0’.

6 Too small (TS) - A packet smaller than the minimum size was received. Cleared when written with a 
one. Reset value: ‘0’.

5 Transmitter AHB error (TA) - An AHB error was encountered in transmitter DMA engine. Cleared 
when written with a one. Not Reset.

4 Receiver AHB error (RA) - An AHB error was encountered in receiver DMA engine. Cleared when 
written with a one. Not Reset.

3 Transmitter interrupt (TI) - A packet was transmitted without errors. Cleared when written with a 
one. Not Reset.

2 Receiver interrupt (RI) - A packet was received without errors. Cleared when written with a one. Not 
Reset.

1 Transmitter error (TE) - A packet was transmitted which terminated with an error. Cleared when 
written with a one. Not Reset.

0 Receiver error (RE) - A packet has been received which terminated with an error. Cleared when writ-
ten with a one. Not Reset.

Table 351. GRETH MAC address MSB.
31 16 15 0

RESERVED Bit 47 downto 32 of the MAC address

31: 16 RESERVED

15: 0 The two most significant bytes of the MAC Address. Not Reset.

Table 352. GRETH MAC address LSB.
31 0

Bit 31 downto 0 of the MAC address

31: 0 The four least significant bytes of the MAC Address. Not Reset.

Table 353. GRETH MDIO ctrl/status register.
31 16 15 11 10 6 5 4 3 2 1 0

DATA PHYADDR REGADDR NV BU LF RD WR
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38.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x1D. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31: 16 Data (DATA) - Contains data read during a read operation and data that is transmitted is taken from 
this field. Reset value: 0x0000.

15: 11 PHY address (PHYADDR) - This field contains the address of the PHY that should be accessed dur-
ing a write or read operation. Reset value: “00000”.

10: 6 Register address (REGADDR) - This field contains the address of the register that should be accessed 
during a write or read operation. Reset value: “00000”.

5 RESERVED

4 Not valid (NV) - When an operation is finished (BUSY = 0) this bit indicates whether valid data has 
been received that is, the data field contains correct data. Reset value: ‘0’.

3 Busy (BU) - When an operation is performed this bit is set to one. As soon as the operation is finished 
and the management link is idle this bit is cleared. Reset value: ‘0’.

2 Linkfail (LF) - When an operation completes (BUSY = 0) this bit is set if a functional management 
link was not detected. Reset value: ‘1’.

1 Read (RD) - Start a read operation on the management interface. Data is stored in the data field. Reset 
value: ‘0’.

0 Write (WR) - Start a write operation on the management interface. Data is taken from the Data field. 
Reset value: ‘0’.

Table 354. GRETH transmitter descriptor table base address register.
31 10 9 3 2 0

BASEADDR DESCPNT RES

31: 10 Transmitter descriptor table base address (BASEADDR) - Base address to the transmitter descriptor 
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by 
the Ethernet MAC.

2: 0 RESERVED

Table 355. GRETH receiver descriptor table base address register.
31 10 9 3 2 0

BASEADDR DESCPNT RES

31: 10 Receiver descriptor table base address (BASEADDR) - Base address to the receiver descriptor 
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by 
the Ethernet MAC.

2: 0 RESERVED

Table 356. GRETH EDCL IP register
31 0

EDCL IP ADDRESS

31: 0 EDCL IP address. Reset value is set with the ipaddrh and ipaddrl generics.

Table 353. GRETH MDIO ctrl/status register.
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38.11 Configuration options

Table 357 shows the configuration options of the core (VHDL generics).

*) Not all addresses are allowed and most NICs and protocol implementations will discard frames
with illegal addresses silently. Consult network literature if unsure about the addresses.

Table 357.Configuration options

Generic Function Allowed range Default

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by the GRETH. 0 - NAHBIRQ-1 0

memtech Memory technology used for the FIFOs. 0 - NTECH inferred

ifg_gap Number of ethernet clock cycles used for one interframe 
gap. Default value as required by the standard. Do not 
change unless you know what your doing.

1 - 255 24

attempt_limit Maximum number of transmission attempts for one 
packet. Default value as required by the standard. 

1 - 255 16

backoff_limit Limit on the backoff size of the backoff time. Default 
value as required by the standard. Sets the number of bits 
used for the random value. Do not change unless you 
know what your doing.

1 - 10 10

slot_time Number of ethernet clock cycles used for one slot- time. 
Default value as required by the ethernet standard. Do 
not change unless you know what you are doing.

1 - 255 128

mdcscaler Sets the divisor value use to generate the mdio clock 
(mdc). The mdc frequency will be clk/(2*(mdcs-
caler+1)). 

0 - 255 25

enable_mdio Enable the Management interface, 0 - 1 0

fifosize Sets the size in 32-bit words of the receiver and transmit-
ter FIFOs.

4 - 32 8

nsync Number of synchronization registers used. 1 - 2 2

edcl Enable EDCL. 0 = disabled. 1 = enabled. 2 = enabled 
and 4-bit LSB of IP and ethernet MAC address pro-
grammed by ethi.edcladdr.

0 - 2 0

edclbufsz Select the size of the EDCL buffer in kB. 1 - 64 1

macaddrh Sets the upper 24 bits of the EDCL MAC address.*) 0 - 16#FFFFFF# 16#00005E#

macaddrl Sets the lower 24 bits of the EDCL MAC address. *) 0 - 16#FFFFFF# 16#000000#

ipaddrh Sets the upper 16 bits of the EDCL IP address reset 
value.

0 - 16#FFFF# 16#C0A8#

ipaddrl Sets the lower 16 bits of the EDCL IP address reset 
value.

0 - 16#FFFF# 16#0035#

phyrstadr Sets the reset value of the PHY address field in the 
MDIO register.

0 - 31 0

rmii Selects the desired PHY interface. 0 = MII, 1 = RMII. 0 - 1 0

oepol Selects polarity on output enable (ETHO.MDIO_OE).

0 = active low, 1 = active high

0 - 1 0
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38.12 Signal descriptions

Table 358 shows the interface signals of the core (VHDL ports).

38.13 Library dependencies

Table 359 shows libraries used when instantiating the core (VHDL libraries).

38.14 Instantiation

This example shows how the core can be instantiated.

Table 358.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AMB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

ETHI gtx_clk Input Ethernet gigabit transmit clock. -

rmii_clk Input Ethernet RMII clock. -

tx_clk Input Ethernet transmit clock. -

rx_clk Input Ethernet receive clock. -

rxd Input Ethernet receive data. -

rx_dv Input Ethernet receive data valid. High

rx_er Input Ethernet receive error. High

rx_col Input Ethernet collision detected. (Asynchronous, 
sampled with tx_clk)

High

rx_crs Input Ethernet carrier sense. (Asynchronous, sampled 
with tx_clk)

High

mdio_i Input Ethernet management data input -

phyrstaddr Input Reset address for GRETH PHY address field. -

edcladdr Input Sets the four least significant bits of the EDCL 
MAC address when the edcl generic is set to 2.

-

ETHO reset Output Ethernet reset (asserted when the MAC is reset). Low

txd Output Ethernet transmit data. -

tx_en Output Ethernet transmit enable. High

tx_er Output Ethernet transmit error. High

mdc Output Ethernet management data clock. -

mdio_o Output Ethernet management data output. -

mdio_oe Output Ethernet management data output enable. Set by the 
oepol 
generic.

* see GRLIB IP Library User’s Manual

Table 359.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER NET Signals, components GRETH component declaration
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library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity greth_ex is
  port (
    clk  : in std_ulogic;
    rstn : in std_ulogic;
    
    -- ethernet signals
    ethi :: in  eth_in_type;
    etho :  in  eth_out_type
    );
end;

architecture rtl of greth_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);
  
begin
  
  -- AMBA Components are instantiated here
  ...

  -- GRETH
  e1 : greth 
    generic map(
     hindex       => 0,
     pindex       => 12,
     paddr        => 12,
     pirq         => 12,
     memtech      => inferred,
     mdcscaler    => 50,
     enable_mdio  => 1,
     fifosize     => 32,
     nsync        => 1,
     edcl         => 1,
     edclbufsz    => 8,
     macaddrh     => 16#00005E#,
     macaddrl     => 16#00005D#,
     ipaddrh      => 16#c0a8#,
     ipaddrl      => 16#0035#) 
 port map(
   rst          => rstn,
   clk          => clk,
   ahbmi        => ahbmi,
   ahbmo        => ahbmo(0),
   apbi         => apbi,
   apbo         => apbo(12),
   ethi         => ethi,
   etho         => etho
   );
end;
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39 GRETH_GBIT - Gigabit Ethernet Media Access Controller (MAC) w. EDCL 

39.1 Overview

Gaisler Research’s Gigabit Ethernet Media Access Controller (GRETH_GBIT) provides an interface
between an AMBA-AHB bus and an Ethernet network. It supports 10/100/1000 Mbit speed in both
full- and half-duplex. The AMBA interface consists of an APB interface for configuration and control
and an AHB master interface which handles the dataflow. The dataflow is handled through DMA
channels. There is one DMA engine for the transmitter and one for the receiver. Both share the same
AHB master interface. 

The ethernet interface supports the MII and GMII interfaces which should be connected to an external
PHY. The GRETH also provides access to the MII Management interface which is used to configure
the PHY. Optional hardware support for the Ethernet Debug Communication Link (EDCL) protocol is
also provided. This is an UDP/IP based protocol used for remote debugging.

Some of the supported features for the DMA channels are Scatter Gather I/O and TCP/UDP over IPv4
checksum offloading for both receiver and transmitter. Software Drivers are provided for RTEMS,
eCos, uClinux and Linux 2.6.

39.2 Operation

39.2.1 System overview

The GRETH_GBIT consists of 3 functional units: The DMA channels, MDIO interface and the
optional Ethernet Debug Communication Link (EDCL). 

The main functionality consists of the DMA channels which are used for transferring data between an
AHB bus and an Ethernet network. There is one transmitter DMA channel and one Receiver DMA
channel. The operation of the DMA channels is controlled through registers accessible through the
APB interface.

AHB
APB

Ethernet MAC

Registers MDIO

MDIO_OE
MDIO_O
MDIO_I
MDC

AHB Master
Interface

Transmitter

Receiver 

Transmitter

Receiver

DMA Engine

DMA Engine

RAM

RAM

TX_EN
TX_ER
TXD(7:0)
TX_CLK
RX_CRS
RX_COL

RX_DV
RX_ER
RXD(7:0)
RX_CLK

EDCL
 Transmitter

EDCL
 Receiver

Figure 136.  Block diagram of the internal structure of the GRETH_GBIT.

GTX_CLK
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The MDIO interface is used for accessing configuration and status registers in one or more PHYs con-
nected to the MAC. The operation of this interface is also controlled through the APB interface.

The optional EDCL provides read and write access to an AHB bus through Ethernet. It uses the UDP,
IP and ARP protocols together with a custom application layer protocol to accomplish this. The
EDCL contains no user accessible registers and always runs in parallel with the DMA channels. 

The Media Independent Interface (MII) and Gigabit Media Independent Interface (GMII) are used for
communicating with the PHY. More information can be found in section 39.7.

The EDCL and the DMA channels share the Ethernet receiver and transmitter. More information on
these functional units is provided in sections 39.3 - 39.6.

39.2.2 Protocol support

The GRETH_GBIT is implemented according to IEEE standard 802.3-2002. There is no support for
the optional control sublayer and no multicast addresses can be assigned to the MAC. This means that
packets with type 0x8808 (the only currently defined ctrl packets) are discarded. 

39.2.3 Hardware requirements

The GRETH_GBIT is synthesisable with most Synthesis tools. There are three or four clock domains
depending on if the gigabit mode is used. The three domains always present are the AHB clock, Eth-
ernet Receiver clock (RX_CLK) and the 10/100 Ethernet transmitter clock (TX_CLK). If the gigabit
mode is also used the fourth clock domain is the gigabit transmitter clock (GTX_CLK). Both full-
duplex and half-duplex operating modes are supported and both can be run in either 10/100 or 1000
Mbit. The system frequency requirement (AHB clock) for 10 Mbit operation is 2.5 MHz, 18 MHz for
100 Mbit and 40 MHz for 1000 Mbit mode. The 18 MHz limit was tested on a Xilinx board with a
DCM that did not support lower frequencies so it might be possible to run it on lower frequencies. It
might also be possible to run the 10 Mbit mode on lower frequencies.

RX_CLK and TX_CLK are sourced by the PHY while GTX_CLK is sourced by the MAC according
to the 802.3-2002 standard. The GRETH_GBIT does not contain an internal clock generator so
GTX_CLK should either be generated in the FPGA (with a PLL/DLL) or with an external oscillator. 

39.3 Tx DMA interface

The transmitter DMA interface is used for transmitting data on an Ethernet network. The transmission
is done using descriptors located in memory.

39.3.1 Setting up a descriptor.

A single descriptor is shown in table 360 and 361. The number of bytes to be sent should be set in the
length field and the address field should point to the data. There are no alignment restrictions on the
address field. If the interrupt enable (IE) bit is set, an interrupt will be generated when the packet has
been sent (this requires that the transmitter interrupt bit in the control register is also set). The inter-
rupt will be generated regardless of whether the packet was transmitted successfully or not.

Table 360. GRETH_GBIT transmit descriptor word 0 (address offset 0x0)
31 21 20 19 18 17 16 15 14 13 12 11 10 0

RESERVED UC TC IC MO LC AL UE IE WR EN LENGTH

31: 21 RESERVED

20 UDP checksum (UC) - Calculate and insert the UDP checksum for this packet. The checksum is only 
inserted if an UDP packet is detected.

19 TCP checksum (TC) - Calculate and insert the TCP checksum for this packet. The checksum is only 
inserted if an TCP packet is detected.
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To enable a descriptor the enable (EN) bit should be set and after this is done, the descriptor should
not be touched until the enable bit has been cleared by the GRETH_GBIT. The rest of the fields in the
descriptor are explained later in this section.

39.3.2 Starting transmissions

Enabling a descriptor is not enough to start a transmission. A pointer to the memory area holding the
descriptors must first be set in the GRETH_GBIT. This is done in the transmitter descriptor pointer
register. The address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of
descriptor area while bits 9 to 3 form a pointer to an individual descriptor. The first descriptor should
be located at the base address and when it has been used by the GRETH_GBIT the pointer field is
incremented by 8 to point at the next descriptor. The pointer will automatically wrap back to zero
when the next 1 kB boundary has been reached (the descriptor at address offset 0x3F8 has been used).
The WR bit in the descriptors can be set to make the pointer wrap back to zero before the 1 kB bound-
ary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when a transmission is active.

The final step to activate the transmission is to set the transmit enable bit in the control register. This
tells the GRETH_GBIT that there are more active descriptors in the descriptor table. This bit should
always be set when new descriptors are enabled, even if transmissions are already active. The descrip-
tors must always be enabled before the transmit enable bit is set. 

39.3.3 Descriptor handling after transmission

When a transmission of a packet has finished, status is written to the first word in the corresponding
descriptor. The Underrun Error bit is set if the transmitter RAM was not able to provide data at a suf-
ficient rate. This indicates a synchronization problem most probably caused by a low clock rate on the
AHB clock. The whole packet is buffered in the transmitter RAM before transmission so underruns
cannot be caused by bus congestion. The Alignment Error bit is set if more collisions occurred than

18 IP checksum (IC) - Calculate and insert the IP header checksum for this packet. The checksum is 
only inserted if an IP packet is detected.

17 More (MO) - More descriptors should be fetched for this packet (Scatter Gather I/O).

16 Late collision (LC) - A late collision occurred during the transmission (1000 Mbit mode only).

15 Attempt limit error (AL) - The packet was not transmitted because the maximum number of 
attempts was reached.

14 Underrun error (UE) - The packet was incorrectly transmitted due to a FIFO underrun error.

13 Interrupt enable (IE) - Enable Interrupts. An interrupt will be generated when the packet from this 
descriptor has been sent provided that the transmitter interrupt enable bit in the control register is set. 
The interrupt is generated regardless if the packet was transmitted successfully or if it terminated 
with an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been 
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero 
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor 
fields.

10: 0 LENGTH - The number of bytes to be transmitted.

Table 361. GRETH_GBIT transmit descriptor word 1 (address offset 0x4)
31 0

ADDRESS

31: 0 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.

Table 360. GRETH_GBIT transmit descriptor word 0 (address offset 0x0)
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allowed. When running in 1000 Mbit mode the Late Collision bit indicates that a collision occurred
after the slottime boundary was passed. 

The packet was successfully transmitted only if these three bits are zero. The other bits in the first
descriptor word are set to zero after transmission while the second word is left untouched. 

The enable bit should be used as the indicator when a descriptor can be used again, which is when it
has been cleared by the GRETH_GBIT. There are three bits in the GRETH_GBIT status register that
hold transmission status. The Transmit Error (TE) bit is set each time an transmission ended with an
error (when at least one of the three status bits in the transmit descriptor has been set). The Transmit
Successful (TI) is set each time a transmission ended successfully. 

The Transmit AHB Error (TA) bit is set when an AHB error was encountered either when reading a
descriptor, reading packet data or writing status to the descriptor. Any active transmissions are aborted
and the transmitter is disabled. The transmitter can be activated again by setting the transmit enable
register.

39.3.4 Setting up the data for transmission

The data to be transmitted should be placed beginning at the address pointed by the descriptor address
field. The GRETH_GBIT does not add the Ethernet address and type fields so they must also be
stored in the data buffer. The 4 B Ethernet CRC is automatically appended at the end of each packet.
Each descriptor will be sent as a single Ethernet packet. If the size field in a descriptor is greater than
1514 B, the packet will not be sent.

39.3.5 Scatter Gather I/O

A packet can be generated from data fetched from several descriptors. This is called Scatter Gather I/
O. The More (MO) bit should be set to 1 to indicate that more descriptors should be used to generate
the current packet. When data from the current descriptor has been read to the RAM the next descrip-
tor is fetched and the new data is appended to the previous data. This continues until a descriptor with
the MO bit set to 0 is encountered. The packet will then be transmitted. 

Status is written immediately when data has been read to RAM for descriptors with MO set to 1. The
status bits are always set to 0 since no transmission has occurred. The status bits will be written will
be written to the last descriptor for the packet (which had MO set to 0) when the transmission has fin-
ished. 

No interrupts are generated for descriptors with MO set to 1 so the IE bit is don’t care in this case.

The checksum offload control bits (explained in section 39.3.6) must be set to the same values for all
descriptors used for a single packet.

39.3.6 Checksum offloading

Support is provided for checksum calculations in hardware for TCP and UDP over IPv4. The check-
sum calculations are enabled in each descriptor and applies only to that packet (when the MO bit is set
all descriptors used for a single packet must have the checksum control bits set in the same way).

The IP Checksum bit (IC) enables IP header checksum calculations. If an IPv4 packet is detected
when transmitting the packet associated with the descriptor the header checksum is calculated and
inserted. If TCP Checksum (TC) is set the TCP checksum is calculated and inserted if an TCP/IPv4
packet is detected. Finally, if the UDP Checksum bit is set the UDP checksum is calculated and
inserted if a UDP/IPv4 packet is detected.

39.4 Rx DMA interface

The receiver DMA interface is used for receiving data from an Ethernet network. The reception is
done using descriptors located in memory.
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39.4.1 Setting up descriptors

A single descriptor is shown in table 362 and 363. The address field points at the location where the
received data should be stored. There are no restrictions on alignment. The GRETH_GBIT will never
store more than 1518 B to the buffer (the tagged maximum frame size excluding CRC). The CRC
field (4 B) is never stored to memory so it is not included in this number. If the interrupt enable (IE)
bit is set, an interrupt will be generated when a packet has been received to this buffer (this requires
that the receiver interrupt bit in the control register is also set). The interrupt will be generated regard-
less of whether the packet was received successfully or not.

The enable bit is set to indicate that the descriptor is valid which means it can be used by the to store a
packet. After it is set the descriptor should not be touched until the EN bit has been cleared by the
GRETH_GBIT.

The rest of the fields in the descriptor are explained later in this section..

39.4.2 Starting reception

Enabling a descriptor is not enough to start reception. A pointer to the memory area holding the
descriptors must first be set in the GRETH_GBIT. This is done in the receiver descriptor pointer reg-
ister. The address must be aligned to a 1 kB boundary. Bits 31 to 10 hold the base address of descrip-

Table 362. GRETH_GBIT receive descriptor word 0 (address offset 0x0)
31 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 0

RESERVED TR TD UR UD IR ID LE OE CE FT AE IE WR EN LENGTH

31: 25 RESERVED

24 TCP error (TR) - TCP checksum error detected.

23 TCP detected (TD) - TCP packet detected.

22 UDP error (UR) - UDP checksum error detected.

21 UDP detected (UD) - UDP packet detected.

20 IP error (IR) - IP checksum error detected.

19 IP detected (ID) - IP packet detected.

18 Length error (LE) - The length/type field of the packet did not match the actual number of received 
bytes.

17 Overrun error (OE) - The frame was incorrectly received due to a FIFO overrun.

16 CRC error (CE) - A CRC error was detected in this frame.

15 Frame too long (FT) - A frame larger than the maximum size was received. The excessive part 
was truncated.

14 Alignment error (AE) - An odd number of nibbles were received.

13 Interrupt Enable (IE) - Enable Interrupts. An interrupt will be generated when a packet has been 
received to this descriptor provided that the receiver interrupt enable bit in the control register is set. 
The interrupt is generated regardless if the packet was received successfully or if it terminated with 
an error.

12 Wrap (WR) - Set to one to make the descriptor pointer wrap to zero after this descriptor has been 
used. If this bit is not set the pointer will increment by 8. The pointer automatically wraps to zero 
when the 1 kB boundary of the descriptor table is reached.

11 Enable (EN) - Set to one to enable the descriptor. Should always be set last of all the descriptor 
fields.

10: 0 LENGTH - The number of bytes received to this descriptor.

Table 363. GRETH_GBIT receive descriptor word 1 (address offset 0x4)
31 0

ADDRESS

31: 0 Address (ADDRESS) - Pointer to the buffer area from where the packet data will be loaded.
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tor area while bits 9 to 3 form a pointer to an individual descriptor. The first descriptor should be
located at the base address and when it has been used by the GRETH_GBIT the pointer field is incre-
mented by 8 to point at the next descriptor. The pointer will automatically wrap back to zero when the
next 1 kB boundary has been reached (the descriptor at address offset 0x3F8 has been used). The WR
bit in the descriptors can be set to make the pointer wrap back to zero before the 1 kB boundary.

The pointer field has also been made writable for maximum flexibility but care should be taken when
writing to the descriptor pointer register. It should never be touched when reception is active.

The final step to activate reception is to set the receiver enable bit in the control register. This will
make the GRETH_GBIT read the first descriptor and wait for an incoming packet.

39.4.3 Descriptor handling after reception

The GRETH indicates a completed reception by clearing the descriptor enable bit. The other control
bits (WR, IE) are also cleared. The number of received bytes is shown in the length field. The parts of
the Ethernet frame stored are the destination address, source address, type and data fields. Bits 24-14
in the first descriptor word are status bits indicating different receive errors. Bits 18 - 14 are zero after
a reception without link layer errors. The status bits are described in table 362 (except the checksum
offload bits which are also described in section 39.4.5). 

Packets arriving that are smaller than the minimum Ethernet size of 64 B are not considered as a
reception and are discarded. The current receive descriptor will be left untouched an used for the first
packet arriving with an accepted size. The TS bit in the status register is set each time this event
occurs.

If a packet is received with an address not accepted by the MAC, the IA status register bit will be set.

Packets larger than maximum size cause the FT bit in the receive descriptor to be set. The length field
is not guaranteed to hold the correct value of received bytes. The counting stops after the word con-
taining the last byte up to the maximum size limit has been written to memory.

The address word of the descriptor is never touched by the GRETH. 

39.4.4 Reception with AHB errors

If an AHB error occurs during a descriptor read or data store, the Receiver AHB Error (RA) bit in the
status register will be set and the receiver is disabled. The current reception is aborted. The receiver
can be enabled again by setting the Receive Enable bit in the control register.

39.4.5 Checksum offload

Support is provided for checksum calculations in hardware for TCP/UDP over IPv4. The checksum
logic is always active and detects IPv4 packets with TCP or UDP payloads. If IPv4 is detected the ID
bit is set, UD is set if an UDP payload is detected in the IP packet and TD is set if a TCP payload is
detected in the IP packet (TD and UD are never set if an IPv4 packet is not detected). When one or
more of these packet types is detected its corresponding checksum is calculated and if an error is
detected the checksum error bit for that packet type is set. The error bits are never set if the corre-
sponding packet type is not detected.

39.5 MDIO Interface

The MDIO interface provides access to PHY configuration and status registers through a two-wire
interface which is included in the MII interface. The GRETH_GBIT provides full support for the
MDIO interface. 

The MDIO interface can be used to access from 1 to 32 PHY containing 1 to 32 16-bit registers. A
read transfer i set up by writing the PHY and register addresses to the MDIO Control register and set-
ting the read bit. This caused the Busy bit to be set and the operation is finished when the Busy bit is
cleared. If the operation was successful the Linkfail bit is zero and the data field contains the read
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data. An unsuccessful operation is indicated by the Linkfail bit being set. The data field is undefined
in this case.

A write operation is started by writing the 16-bit data, PHY address and register address to the MDIO
Control register and setting the write bit. The operation is finished when the busy bit is cleared and it
was successful if the Linkfail bit is zero.

39.6 Ethernet Debug Communication Link (EDCL)

The EDCL provides access to an on-chip AHB bus through Ethernet. It uses the UDP, IP and ARP
protocols together with a custom application layer protocol. The application layer protocol uses an
ARQ algorithm to provide reliable AHB instruction transfers. Through this link, a read or write trans-
fer can be generated to any address on the AHB bus. The EDCL is optional and must be enabled with
a generic.

39.6.1 Operation 

The EDCL receives packets in parallel with the MAC receive DMA channel. It uses a separate MAC
address which is used for distinguishing EDCL packets from packets destined to the MAC DMA
channel. The EDCL also has an IP address which is set through generics. Since ARP packets use the
Ethernet broadcast address, the IP-address must be used in this case to distinguish between EDCL
ARP packets and those that should go to the DMA-channel. Packets that are determined to be EDCL
packets are not processed by the receive DMA channel.

When the packets are checked to be correct, the AHB operation is performed. The operation is per-
formed with the same AHB master interface that the DMA-engines use. The replies are automatically
sent by the EDCL transmitter when the operation is finished. It shares the Ethernet transmitter with
the transmitter DMA-engine but has higher priority. 

39.6.2 EDCL protocols

The EDCL accepts Ethernet frames containing IP or ARP data. ARP is handled according to the pro-
tocol specification with no exceptions. 

IP packets carry the actual AHB commands. The EDCL expects an Ethernet frame containing IP,
UDP and the EDCL specific application layer parts. Table 364 shows the IP packet required by the
EDCL. The contents of the different protocol headers can be found in TCP/IP literature. 

The following is required for successful communication with the EDCL: A correct destination MAC
address as set by the generics, an Ethernet type field containing 0x0806 (ARP) or 0x0800 (IP). The
IP-address is then compared with the value determined by the generics for a match. The IP-header
checksum and identification fields are not checked. There are a few restrictions on the IP-header
fields. The version must be four and the header size must be 5 B (no options). The protocol field must
always be 0x11 indicating a UDP packet. The length and checksum are the only IP fields changed for
the reply.

The EDCL only provides one service at the moment and it is therefore not required to check the UDP
port number. The reply will have the original source port number in both the source and destination
fields. UDP checksum are not used and the checksum field is set to zero in the replies. 

The UDP data field contains the EDCL application protocol fields. Table 365 shows the application
protocol fields (data field excluded) in packets received by the EDCL. The 16-bit offset is used to
align the rest of the application layer data to word boundaries in memory and can thus be set to any

Table 364.The IP packet expected by the EDCL. 

Ethernet

Header

IP

Header

UDP

Header

2 B 

Offset

4 B 

Control word

4 B

Address

Data 0 - 242 

4B Words

Ethernet

CRC
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value. The R/W field determines whether a read (0) or a write(1) should be performed. The length

field contains the number of bytes to be read or written. If R/W is one the data field shown in Table
364 contains the data to be written. If R/W is zero the data field is empty in the received packets.
Table 366 shows the application layer fields of the replies from the EDCL. The length field is always
zero for replies to write requests. For read requests it contains the number of bytes of data contained in
the data field. 

The EDCL implements a Go-Back-N algorithm providing reliable transfers. The 14-bit sequence
number in received packets are checked against an internal counter for a match. If they do not match,
no operation is performed and the ACK/NAK field is set to 1 in the reply frame. The reply frame con-
tains the internal counter value in the sequence number field. If the sequence number matches, the
operation is performed, the internal counter is incremented, the internal counter value is stored in the
sequence number field and the ACK/NAK field is set to 0 in the reply. The length field is always set to
0 for ACK/NAK=1 frames. The unused field is not checked and is copied to the reply. It can thus be
set to hold for example some extra id bits if needed. 

39.7 Media Independent Interfaces

There are several interfaces defined between the MAC sublayer and the Physical layer. The
GRETH_GBIT supports the Media Independent Interface (MII) and the Gigabit Media Independent
Interface (GMII). 

The GMII is used in 1000 Mbit mode and the MII in 10 and 100 Mbit. These interfaces are defined
separately in the 802.3-2002 standard but in practice they share most of the signals. The GMII has 9
additional signals compared to the MII. Four data signals are added to the receiver and transmitter
data interfaces respectively and a new transmit clock for the gigabit mode is also introduced.

Table 365.The EDCL application layer fields in received frames. 

16-bit Offset 14-bit Sequence number 1-bit R/W 10-bit Length 7-bit Unused

Table 366.The EDCL application layer fields in transmitted frames.

16-bit Offset 14-bit sequence number 1-bit ACK/NAK 10-bit Length 7-bit Unused

Table 367.Signals in GMII and MII.

MII and GMII GMII Only

txd[3:0] txd[7:4]

tx_en rxd[7:4]

tx_er gtx_clk

rx_col

rx_crs

rxd[3:0]

rx_clk

rx_er

rx_dv
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39.8 Registers

The core is programmed through registers mapped into APB address space.

Table 368.GRETH_GBIT registers

APB address offset Register

0x0 Control register

0x4 Status/Interrupt-source register

0x8 MAC Address MSB

0xC MAC Address LSB

0x10 MDIO Control/Status

0x14 Transmit descriptor pointer

0x18 Receiver descriptor pointer

0x1C EDCL IP

Table 369. GRETH control register
31 30 28 27 26 10 9 8 7 6 5 4 3 2 1 0

ED BS GA RESERVED BM GB SP RS PR FD RI TI RE TE

31 EDCL available (ED) - Set to one if the EDCL is available. 

30: 28 EDCL buffer size (BS) - Shows the amount of memory used for EDCL buffers. 0 = 1 kB, 1 = 2 kB, 
...., 6 = 64 kB.

27 Gigabit MAC available (GA) - This bit always reads as a 1 and indicates that the MAC has 1000 
Mbit capability. 

26: 10 RESERVED

9 Burstmode (BM) - When set to 1, transmissions use burstmode in 1000 Mbit Half-duplex mode 
(GB=1, FD = 0). When 0 in this speed mode normal transmissions are always used with extension 
inserted. Operation is undefined when set to 1 in other speed modes. Reset value: ‘0’.

8 Gigabit (GB) - 1 sets the current speed mode to 1000 Mbit and when set to 0, the speed mode is 
selected with bit 7 (SP). Reset value: ‘0’.

7 Speed (SP) - Sets the current speed mode. 0 = 10 Mbit, 1 = 100 Mbit. Must not be set to 1 at the same 
time as bit 8 (GB). Reset valuie: ‘0’.

6 Reset (RS) - A one written to this bit resets the GRETH_GBIT core. Self clearing.

5 Promiscuous mode (PM) - If set, the GRETH_GBIT operates in promiscuous mode which means it 
will receive all packets regardless of the destination address. Reset value: ‘0’.

4 Full duplex (FD) - If set, the GRETH_GBIT operates in full-duplex mode otherwise it operates in 
half-duplex. Reset value: ‘0’.

3 Receiver interrupt (RI) - Enable Receiver Interrupts. An interrupt will be generated each time a 
packet is received when this bit is set. The interrupt is generated regardless if the packet was 
received successfully or if it terminated with an error. Reset value: ‘0’.

2 Transmitter interrupt (TI) - Enable Transmitter Interrupts. An interrupt will be generated each time a 
packet is transmitted when this bit is set. The interrupt is generated regardless if the packet was 
transmitted successfully or if it terminated with an error. Reset value: ‘0’.

1 Receive enable (RE) - Should be written with a one each time new descriptors are enabled. As long 
as this bit is one the GRETH_GBIT will read new descriptors and as soon as it encounters a disabled 
descriptor it will stop until TE is set again. This bit should be written with a one after the new 
descriptors have been enabled. Reset value: ‘0’.

0 Transmit enable (TE) - Should be written with a one each time new descriptors are enabled. As long 
as this bit is one the GRETH_GBIT will read new descriptors and as soon as it encounters a disabled 
descriptor it will stop until TE is set again. This bit should be written with a one after the new 
descriptors have been enabled. Reset value: ‘0’.
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Table 370. GRETH_GBIT status register.
31 8 7 6 5 4 3 2 1 0

RESERVED IA TS TA RA TI RI TE RE

31: 8 RESERVED

7 Invalid address (IA) - A packet with an address not accepted by the MAC was received. Cleared 
when written with a one. Reset value: ‘0’.

6 Too small (TS) - A packet smaller than the minimum size was received. Cleared when written with a 
one. Reset value: ‘0’.

5 Transmitter AHB error (TA) - An AHB error was encountered in transmitter DMA engine. Cleared 
when written with a one. Not Reset.

4 Receiver AHB error (RA) - An AHB error was encountered in receiver DMA engine. Cleared when 
written with a one. Not Reset.

3 Transmit successful (TI) - A packet was transmitted without errors. Cleared when written with a one. 
Not Reset.

2 Receive successful (RI) - A packet was received without errors. Cleared when written with a one. 
Not Reset.

1 Transmitter error (TE) - A packet was transmitted which terminated with an error. Cleared when 
written with a one. Not Reset.

0 Receiver error (RE) - A packet has been received which terminated with an error. Cleared when writ-
ten with a one. Not Reset.

Table 371. GRETH_GBIT MAC address MSB.
31 16 15 0

RESERVED Bit 47 downto 32 of the MAC Address

31: 16 RESERVED

15: 0 The two most significant bytes of the MAC Address. Not Reset.

Table 372. GRETH_GBIT MAC address LSB.
31 0

Bit 31 downto 0 of the MAC Address

31: 0 The 4 least significant bytes of the MAC Address. Not Reset.

Table 373. GRETH_GBIT MDIO control/status register.
31 16 15 11 10 6 5 4 3 2 1 0

DATA PHYADDR REGADDR NV BU LF RD WR

31: 16 Data (DATA) - Contains data read during a read operation and data that is transmitted is taken from 
this field. Reset value: 0x0000.

15: 11 PHY address (PHYADDR) - This field contains the address of the PHY that should be accessed dur-
ing a write or read operation. Reset value: “00000”.

10: 6 Register address (REGADDR) - This field contains the address of the register that should be 
accessed during a write or read operation. Reset value: ‘”00000”.

5 RESERVED

4 Not valid (NV) - When an operation is finished (BUSY = 0) this bit indicates whether valid data has 
been received that is, the data field contains correct data. Reset value: ‘0’.
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39.9 Software drivers

Drivers for the GRETH_GBIT MAC is provided for the following operating systems: RTEMS, eCos,
uClinux and Linux-2.6. The drivers are freely available in full source code under the GPL license
from Gaisler Research’s web site (http://www.gaisler.com/).

39.10 Vendor and device identifier

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x01D. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

3 Busy (BU) - When an operation is performed this bit is set to one. As soon as the operation is fin-
ished and the management link is idle this bit is cleared. Reset value: ‘0’.

2 Linkfail (LF) - When an operation completes (BUSY = 0) this bit is set if a functional management 
link was not detected. Reset value: ‘1’.

1 Read (RD) - Start a read operation on the management interface. Data is stored in the data field. 
Reset value: ‘0’.

0 Write (WR) - Start a write operation on the management interface. Data is taken from the Data field. 
Reset value: ‘0’.

Table 374. GRETH_GBIT transmitter descriptor table base address register.
31 10 9 3 2 0

BASEADDR DESCPNT RES

31: 10 Transmitter descriptor table base address (BASEADDR) - Base address to the transmitter descriptor 
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by 
the Ethernet MAC.

2: 0 RESERVED

Table 375. GRETH_GBIT receiver descriptor table base address register.
31 10 9 3 2 0

BASEADDR DESCPNT RES

31: 10 Receiver descriptor table base address (BASEADDR) - Base address to the receiver descriptor 
table.Not Reset.

9: 3 Descriptor pointer (DESCPNT) - Pointer to individual descriptors. Automatically incremented by 
the Ethernet MAC.

2: 0 RESERVED

Table 376. GRETH_GBIT EDCL IP register
31 0

EDCL IP ADDRESS

31: 0 EDCL IP address. Reset value is set with the ipaddrh and ipaddrl generics.

Table 373. GRETH_GBIT MDIO control/status register.
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39.11 Configuration options

Table 377 shows the configuration options of the core (VHDL generics).

*) Not all addresses are allowed and most NICs and protocol implementations will discard frames
with illegal addresses silently. Consult network literature if unsure about the addresses.

Table 377.Configuration options

Generic Function Allowed range Default

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by the GRETH. 0 - NAHBIRQ-1 0

memtech Memory technology used for the FIFOs. 0 - NTECH inferred

ifg_gap Number of ethernet clock cycles used for one interframe gap. 
Default value as required by the standard. Do not change unless 
you know what your doing.

1 - 255 24

attempt_limit Maximum number of transmission attempts for one packet. 
Default value as required by the standard. 

1 - 255 16

backoff_limit Limit on the backoff size of the backoff time. Default value as 
required by the standard. Sets the number of bits used for the 
random value. Do not change unless you know what your doing.

1 - 10 10

slot_time Number of ethernet clock cycles used for one slot- time. Default 
value as required by the ethernet standard. Do not change unless 
you know what you are doing.

1 - 255 128

mdcscaler Sets the divisor value use to generate the mdio clock (mdc). The 
mdc frequency will be clk/(2*(mdcscaler+1)). 

0 - 255 25

nsync Number of synchronization registers used. 1 - 2 2

edcl Enable EDCL. 0 - 1 0

edclbufsz Select the size of the EDCL buffer in kB. 1 - 64 1

burstlength Sets the maximum burstlength used during DMA 4 - 128 32

macaddrh Sets the upper 24 bits of the EDCL MAC address.*) 0 - 16#FFFFFF# 16#00005E#

macaddrl Sets the lower 24 bits of the EDCL MAC address. *) 0 - 16#FFFFFF# 16#000000#

ipaddrh Sets the upper 16 bits of the EDCL IP address reset value. 0 - 16#FFFF# 16#C0A8#

ipaddrl Sets the lower 16 bits of the EDCL IP address reset value. 0 - 16#FFFF# 16#0035#

phyrstadr Sets the reset value of the PHY address field in the MDIO regis-
ter. When set to 32, the address is taken from the ethi.phyrstaddr 
signal.

0 - 32 0

sim Set to 1 for simulations and 0 for synthesis. 1 selects a faster mdc 
clock to speed up simulations.

0 - 1 0
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39.12 Signal descriptions

Table 378 shows the interface signals of the core (VHDL ports).

39.13 Library dependencies

Table 379 shows libraries used when instantiating the core (VHDL libraries).

Table 378.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AMB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

ETHI gtx_clk Input Ethernet gigabit transmit clock. -

rmii_clk Input Ethernet RMII clock. -

tx_clk Input Ethernet transmit clock. -

rx_clk Input Ethernet receive clock. -

rxd Input Ethernet receive data. -

rx_dv Input Ethernet receive data valid. High

rx_er Input Ethernet receive error. High

rx_col Input Ethernet collision detected. (Asynchronous, 
sampled with tx_clk)

High

rx_crs Input Ethernet carrier sense. (Asynchronous, sampled 
with tx_clk)

High

mdio_i Input Ethernet management data input -

phyrstaddr Input Reset address for GRETH PHY address field. -

edcladdr Input Sets the four least significant bits of the EDCL 
MAC address when the edcl generic is set to 2.

-

ETHO reset Output Ethernet reset (asserted when the MAC is reset). Low

txd Output Ethernet transmit data. -

tx_en Output Ethernet transmit enable. High

tx_er Output Ethernet transmit error. High

mdc Output Ethernet management data clock. -

mdio_o Output Ethernet management data output. -

mdio_oe Output Ethernet management data output enable. Set by the 
oepol 
generic.

* see GRLIB IP Library User’s Manual

Table 379.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER ETHERNET_MAC Signals, component GRETH_GBIT component declarations, 
GRETH_GBIT signals.

GAISLER NET Signals Ethernet signals
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39.14 Instantiation

This example shows how the core an be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.ethernet_mac.all;

entity greth_ex is
  port (
    clk  : in std_ulogic;
    rstn : in std_ulogic;
    
    -- ethernet signals
    ethi :  in  eth_in_type;
    etho :  in  eth_out_type
    );
end;

architecture rtl of greth_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);
  
begin
  
  -- AMBA Components are instantiated here
  ...

  -- GRETH
  e1 : greth_gbit 
    generic map(
     hindex       => 0,
     pindex       => 12,
     paddr        => 12,
     pirq         => 12,
     memtech      => inferred,
     mdcscaler    => 50,
     burstlength  => 32,
     nsync        => 1,
     edcl         => 1,
     edclbufsz    => 8,
     macaddrh     => 16#00005E#,
     macaddrl     => 16#00005D#,
     ipaddrh      => 16#c0a8#,
     ipaddrl      => 16#0035#) 
 port map(
   rst          => rstn,
   clk          => clk,
   ahbmi        => ahbmi,
   ahbmo        => ahbmo(0),
   apbi         => apbi,
   apbo         => apbo(12),
   ethi         => ethi,
   etho         => etho
   );
end;
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40 GRFIFO - FIFO Interface

40.1 Overview

The FIFO interface is assumed to operate in an AMBA bus system where both the AMBA AHB bus
and the APB bus are present. The AMBA APB bus is used for configuration, control and status han-
dling. The AMBA AHB bus is used for retrieving and storing FIFO data in memory external to the
FIFO interface. This memory can be located on-chip or external to the chip.

The FIFO interface supports transmission and reception of blocks of data by use of circular buffers
located in memory external to the core. Separate transmit and receive buffers are assumed. Reception
and transmission of data can be ongoing simultaneously.

After a data transfer has been set up via the AMBA APB interface, the DMA controller initiates a
burst of read accesses on the AMBA AHB bus to fetch data from memory that are performed by the
AHB master. The data are then written to the external FIFO. When a programmable amount of data
has been transmitted, the DMA controller issues an interrupt.

After reception has been set up via the AMBA APB interface, data are read from the external FIFO.
To store data to memory, the DMA controller initiates a burst of write accesses on the AMBA AHB
bus that are performed by the AHB master. When a programmable amount of data has been received,
the DMA controller issues an interrupt.

The block diagram shows a possible usage of the FIFO interface.

40.1.1 Function

The core implements the following functions:

• data transmission to external FIFO

• circular transmit buffer

• direct memory access for transmitter

• data reception from external FIFO

• circular receive buffer for receiver

• direct memory access

Figure 137.  Block diagram of the GRFIFO environment.
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• automatic 8- and 16-bit data width conversion

• general purpose input output

40.1.2 Transmission

Data to be transferred via the FIFO interface are fetched via the AMBA AHB master interface from
on-chip or off-chip memory. This is performed by means of direct memory access (DMA), imple-
menting a circular transmit buffer in the memory. The transmit channel is programmable via the
AMBA APB slave interface, which is also used for the monitoring of the FIFO and DMA status.

The transmit channel is programmed in terms of a base address and size of the circular transmit buffer.
The outgoing data are stored in the circular transmit buffer by the system. A write address pointer reg-
ister is then set by the system to indicate the last byte written to the circular transmit buffer. An inter-
rupt address pointer register is used by the system to specify a location in the circular transmit buffer
from which a data read should cause an interrupt to be generated.

The FIFO interface automatically indicates with a read address pointer register the location of the last
fetched byte from the circular transmit buffer. Read accesses are performed as incremental bursts,
except when close to the location specified by the interrupt pointer register at which point the last
bytes might be fetched by means of single accesses.

Data transferred via the FIFO interface can be either 8- or 16-bit wide. The handling of the transmit
channel is however the same. All transfers performed by the AMBA AHB master are 32-bit word
based. No byte or half-word transfers are performed. 

To handle the 8- and 16-bit FIFO data width, a 32-bit read access might carry less than four valid
bytes. In such a case, the remaining bytes are ignored. When additional data are available in the circu-
lar transmit buffer, the previously fetched bytes will be re-read together with the newly written bytes
to form the 32-bit data. Only the new bytes will be transmitted to the FIFO, not to transmit the same
byte more than once. The aforementioned write address pointer indicates what bytes are valid.

An interrupt is generated when the circular transmit buffer is empty. The status of the external FIFO is
observed via the AMBA APB slave interface, indicating Full Flag and Half-Full Flag.

40.1.3 Reception

Data received via the FIFO interface are stored via the AMBA AHB master interface to on-chip or
off-chip memory. This is performed by means of direct memory access (DMA), implementing a circu-
lar receive buffer in the memory. The receive channel is programmable via the AMBA APB slave
interface, which is also used for the monitoring of the FIFO and DMA status. 

The receive channel is programmed in terms of a base address and size of the circular receive buffer.
The incoming data are stored in the circular receive buffer. The interface automatically indicates with
a write address pointer register the location of the last stored byte. A read address pointer register is
used by the system to indicate the last byte read from the circular receive buffer. An interrupt address
pointer register is used by the system to specify a location in the circular receive buffer to which a data
write should cause an interrupt to be generated.

Write accesses are performed as incremental bursts, except when close to the location specified by the
interrupt pointer register at which point the last bytes might be stored by means of single accesses.

Data transferred via the FIFO interface can be either 8- or 16-bit wide. The handling of the receive
channel is however the same. All transfers performed by the AMBA AHB master are 32-bit word
based. No byte or half-word transfers are performed. 

To handle the 8- and 16-bit FIFO data width, a 32-bit write access might carry less than four valid
bytes. In such a case, the remaining bytes will all be zero. When additional data are received from the
FIFO interface, the previously stored bytes will be re-written together with the newly received bytes
to form the 32-bit data. In this way, the previously written bytes are never overwritten. The aforemen-
tioned write address pointer indicates what bytes are valid.



354

An interrupt is generated when the circular receive buffer is full. If more FIFO data are available, they
will not be moved to the circular receive buffer. The status of the external FIFO is observed via the
AMBA APB slave interface, indicating Empty Flag and Half-Full Flag.

40.1.4 General purpose input output

Data input and output signals unused by the FIFO interface can be used as general purpose input out-
put, providing 0, 8 or 16 individually programmable channels.

40.1.5 Interfaces

The core provides the following external and internal interfaces:

• FIFO interface

• AMBA AHB master interface, with sideband signals as per [GLRIB] including:

• cachability information

• interrupt bus

• configuration information

• diagnostic information

• AMBA APB slave interface, with sideband signals as per [GLRIB] including:

• interrupt bus

• configuration information

• diagnostic information

The interface is intended to be used with the following FIFO devices from ATMEL:

 Name: Type:

M67204H 4K x 9 FIFO ESA/SCC 9301/049, SMD/5962-89568

 M67206H 16K x 9 FIFO ESA/SCC 9301/048, SMD/5962-93177

 M672061H 16K x 9 FIFO ESA/SCC 9301/048, SMD/5962-93177

40.2 Interface

The external interface supports one or more FIFO devices for data output (transmission) and/or one or
more FIFO devices for data input (reception). The external interface supports FIFO devices with 8-
and 16-bit data width. Note that one device is used when 8-bit and two devices are used when 16-bit
data width is needed. The data width is programmable. Note that this is performed commonly for both
directions.

The external interface supports one parity bit over every 8 data bits. Note that there can be up to two
parity bits in either direction. The parity is programmable in terms of odd or even parity. Note that odd
parity is defined as an odd number of logical ones in the data bits and parity bit. Note that even parity
is defined as an even number of logical ones in the data bits and parity bit. Parity is generated for write
accesses to the external FIFO devices. Parity is checked for read accesses from the external FIFO
devices and a parity failure results in an internal interrupt. 

The external interface provides a Write Enable output signal. The external interface provides a Read
Enable output signal. The timing of the access towards the FIFO devices is programmable in terms of
wait states based on system clock periods. 

The external interface provides an Empty Flag input signal, which is used for flow-control during the
reading of data from the external FIFO, not reading any data while the external FIFO is empty. Note
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that the Empty Flag is sampled at the end of the read access to determine if the FIFO is empty. To
determine when the FIFO is not empty, the Empty Flag is re-synchronized with Clk.

The external interface provides a Full Flag input signal, which is used for flow-control during the
writing of data to the external FIFO, not writing any data while the external FIFO is full. Note that the
Full Flag is sampled at the end of the write access to determine if the FIFO is full. To determine when
the FIFO is not full, the Full Flag is re-synchronized with Clk.

The external interface provides a Half-Full Flag input signal, which is used as status information only. 

The data input and output signals are possible to use as general purpose input output channels. This
need is only realized when the data signals are not used by the FIFO interface. Each general purpose
input output channel is individually programmed as input or output. The default reset configuration
for each general purpose input output channel is as input. The default reset value each general purpose
input output channel is logical zero. Note that protection toward spurious pulse commands during
power up shall be mitigated as far as possible by means of I/O cell selection from the target technol-
ogy.

40.3 Waveforms

The following figures show read and write accesses to the FIFO with 0 and 4 wait states, respectively.
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Figure 138.  FIFO read and write access waveform, 0 wait states (WS)
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Figure 139.  FIFO read and write access waveform, 4 wait states (WS)
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40.4 Transmission

The transmit channel is defined by the following parameters: 

• base address

• buffer size 

• write pointer 

• read pointer

The transmit channel can be enabled or disabled.

40.4.1 Circular buffer

The transmit channel operates on a circular buffer located in memory external to the FIFO controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.

The size of the buffer is defined by the FifoTxSIZE.SIZE field, specifying the number of 64 byte
blocks that fit in the buffer.

E.g. FifoTxSIZE.SIZE = 1 means 64 bytes fit in the buffer.

Note however that it is not possible to fill the buffer completely, leaving at least one word in the buffer
empty. This is to simplify wrap-around condition checking.

E.g. FifoTxSIZE.SIZE = 1 means that 60 bytes fit in the buffer at any given time.

40.4.2 Write and read pointers

The write pointer (FifoTxWR.WRITE) indicates the position+1 of the last byte written to the buffer.
The write pointer operates on number of bytes, not on absolute or relative addresses.

The read pointer (FifoTxRD.READ) indicates the position+1 of the last byte read from the buffer. The
read pointer operates on number of bytes, not on absolute or relative addresses.

The difference between the write and the read pointers is the number of bytes available in the buffer
for transmission. The difference is calculated using the buffer size, specified by the FifoTxSIZE.SIZE
field, taking wrap around effects of the circular buffer into account.

Examples:

• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE=2 and
FifoTxRD.READ=0.

• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =0 and
FifoTxRD.READ =62.

• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =1 and
FifoTxRD.READ =63.

• There are 2 bytes available for transmit when FifoTxSIZE.SIZE=1, FifoTxWR.WRITE =5 and
FifoTxRD.READ =3.

When a byte has been successfully written to the FIFO, the read pointer (FifoTxRD.READ) is auto-
matically incremented, taking wrap around effects of the circular buffer into account. Whenever the
write pointer FifoTxWR.WRITE and read pointer FifoTxRD.READ are equal, there are no bytes
available for transmission.

40.4.3 Location

The location of the circular buffer is defined by a base address (FifoTxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.
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40.4.4 Transmission procedure

When the channel is enabled (FifoTxCTRL.ENABLE=1), as soon as there is a difference between the
write and read pointer, a transmission will be started. Note that the channel should not be enabled if a
potential difference between the write and read pointers could be created, to avoid the data transmis-
sion to start prematurely.

A data transmission will begin with a fetch of the data from the circular buffer to a local buffer in the
FIFO controller. After a successful fetch, a write access will be performed to the FIFO. 

The read pointer (FifoTxRD.READ) is automatically incremented after a successful transmission,
taking wrap around effects of the circular buffer into account. If there is at least one byte available in
the circular buffer, a new fetch will be performed.

If the write and read pointers are equal, no more prefetches and fetches will be performed, and trans-
mission will stop.

Interrupts are provided to aid the user during transmission, as described in detail later in this section.
The main interrupts are the TxError, TxEmpty and TxIrq which are issued on the unsuccessful trans-
mission of a byte due to an error condition on the AMBA bus, when all bytes have been transmitted
successfully and when a predefined number of bytes have been transmitted successfully.

Note that 32-bit wide read accesses past the address of the last byte or halfword available for trans-
mission can be performed as part of a burst operation, although no read accesses are made beyond the
circular buffer size.

All accesses to the AMBA AHB bus are performed as two consecutive 32-bit accesses in a burst, or as
a single 32-bit access in case of an AMBA AHB bus error.

40.4.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (FifoTxADDR.ADDR) field.

While the channel is disabled, the read pointer (FifoTxRD.READ) can be changed to an arbitrary
value pointing to the first byte to be transmitted, and the write pointer (FifoTxWR.WRITE) can be
changed to an arbitrary value.

When the channel is enabled, the transmission will start from the read pointer and continue to the
write pointer.

40.4.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while data is being fetched will result in a
TxError interrupt.

If the FifoCONF.ABORT bit is set to 0b, the channel causing the AHB error will re-try to read the
data being fetched from memory till successful.

If the FifoCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (FifoTx-
CTRL.ENABLE is cleared automatically to 0 b). The read pointer can be used to determine which
data caused the AHB error. The interface will not start any new write accesses to the FIFO. Any ongo-
ing FIFO access will be completed and the FifoTxSTAT.TxOnGoing bit will be cleared. When the
channel is re-enabled, the fetch and transmission of data will resume at the position where it was dis-
abled, without losing any data. 

40.4.7 Enable and disable

When an enabled transmit channel is disabled (FifoTxCTRL.ENABLE=0b), the interface will not
start any new read accesses to the circular buffer by means of DMA over the AMBA AHB bus. No
new write accesses to the FIFO will be started. Any ongoing FIFO access will be completed. If the
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data is written successfully, the read pointer (FifoTxRD.READ) is automatically incremented and the
FifoTxSTAT.TxOnGoing bit will be cleared. Any associated interrupts will be generated. 

Any other fetched or pre-fetched data from the circular buffer which is temporarily stored in the local
buffer will be discarded, and will be fetched again when the transmit channel is re-enabled. 

The progress of the any ongoing access can be observed via the FifoTxSTAT.TxOnGoing bit. The
FifoTxSTAT.TxOnGoing must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers). It is also possible to wait for the TxEmpty interrupt described
hereafter.

The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No data transmission is started while the channel is not enabled.

40.4.8 Interrupts

During transmission several interrupts can be generated:

• TxEmpty: Successful transmission of all data in buffer 

• TxIrq: Successful transmission of a predefined number of data

• TxError: AHB access error during transmission

The TxEmpty and TxIrq interrupts are only generated as the result of a successful data transmission,
after the FifoTxRD.READ pointer has been incremented.

40.5 Reception

The receive channel is defined by the following parameters:

• base address

• buffer size 

• write pointer 

• read pointer

The receive channel can be enabled or disabled.

40.5.1 Circular buffer

The receive channel operates on a circular buffer located in memory external to the FIFO controller.
The circular buffer can also be used as a straight buffer. The buffer memory is accessed via the
AMBA AHB master interface.

The size of the buffer is defined by the FifoRxSIZE.SIZE field, specifying the number 64 byte blocks
that fit in the buffer.

E.g. FifoRxSIZE.SIZE=1 means 64 bytes fit in the buffer.

Note however that it is not possible for the hardware to fill the buffer completely, leaving at least two
words in the buffer empty. This is to simplify wrap-around condition checking.

E.g. FifoRxSIZE.SIZE=1 means that 56 bytes fit in the buffer at any given time.

40.5.2 Write and read pointers

The write pointer (FifoRxWR.WRITE) indicates the position+1 of the last byte written to the buffer.
The write pointer operates on number of bytes, not on absolute or relative addresses.

The read pointer (FifoRxRD.READ) indicates the position+1 of the last byte read from the buffer. The
read pointer operates on number of bytes, not on absolute or relative addresses.
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The difference between the write and the read pointers is the number of bytes available in the buffer
for reception. The difference is calculated using the buffer size, specified by the FifoRxSIZE.SIZE
field, taking wrap around effects of the circular buffer into account.

Examples:

• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =2 and
FifoRxRD.READ=0.

• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =0 and
FifoRxRD.READ=62.

• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =1 and
FifoRxRD.READ=63.

• There are 2 bytes available for read-out when FifoRxSIZE.SIZE=1, FifoRxWR.WRITE =5 and
FifoRxRD.READ=3.

When a byte has been successfully received and stored, the write pointer (FifoRxWR.WRITE) is
automatically incremented, taking wrap around effects of the circular buffer into account.

40.5.3 Location

The location of the circular buffer is defined by a base address (FifoRxADDR.ADDR), which is an
absolute address. The location of a circular buffer is aligned on a 1kbyte address boundary.

40.5.4 Reception procedure

When the channel is enabled (FifoRxCTRL.ENABLE=1), and there is space available for data in the
circular buffer (as defined by the write and read pointer), a read access will be started towards the
FIFO, and then an AMBA AHB store access will be started. The received data will be temporarily
stored in a local store-buffer in the FIFO controller. Note that the channel should not be enabled until
the write and read pointers are configured, to avoid the data reception to start prematurely

After a datum has been successfully stored the FIFO controller is ready to receive new data. The write
pointer (FifoRxWR.WRITE) is automatically incremented, taking wrap around effects of the circular
buffer into account. 

Interrupts are provided to aid the user during reception, as described in detail later in this section. The
main interrupts are the RxError, RxParity, RxFull and RxIrq which are issued on the unsuccessful
reception of data due to an AMBA AHB error or parity error, when the buffer has been successfully
filled and when a predefined number of data have been received successfully. 

All accesses to the AMBA AHB bus are performed as two consecutive 32-bit accesses in a burst, or as
a single 32-bit access in case of an AMBA AHB bus error.

40.5.5 Straight buffer

It is possible to use the circular buffer as a straight buffer, with a higher granularity than the 1kbyte
address boundary limited by the base address (FifoRxADDR.ADDR) field.

While the channel is disabled, the write pointer (FifoRxWR.WRITE) can be changed to an arbitrary
value pointing to the first data to be received, and the read pointer (FifoRxRD.READ) can be changed
to an arbitrary value.

When the channel is enabled, the reception will start from the write pointer and continue to the read
pointer.
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40.5.6 AMBA AHB error

An AHB error response occurring on the AMBA AHB bus while data is being stored will result in an
RxError interrupt.

If the FifoCONF.ABORT bit is set to 0b, the channel causing the AHB error will retry to store the
received data till successful

If the FifoCONF.ABORT bit is set to 1b, the channel causing the AHB error will be disabled (FifoRx-
CTRL.ENABLE is cleared automatically to 0b). The write pointer can be used to determine which
address caused the AHB error. The interface will not start any new read accesses to the FIFO. Any
ongoing FIFO access will be completed and the data will be stored in the local receive buffer. The
FifoRxSTAT.ONGOING bit will be cleared. When the receive channel is re-enabled, the reception
and storage of data will resume at the position where it was disabled, without losing any data. 

40.5.7 Enable and disable

When an enabled receive channel is disabled (FifoRxCTRL.ENABLE=0b), any ongoing data storage
on the AHB bus will not be aborted, and no new storage will be started. If the data is stored success-
fully, the write pointer (FifoRxWR.WRITE) is automatically incremented. Any associated interrupts
will be generated. The interface will not start any new read accesses to the FIFO. Any ongoing FIFO
access will be completed. 

The channel can be re-enabled again without the need to re-configure the address, size and pointers.
No data reception is performed while the channel is not enabled.

The progress of the any ongoing access can be observed via the FifoRxSTAT.ONGOING bit. Note
that the there might be data left in the local store-buffer in the FIFO controller. This can be observed
via the FifoRxSTAT.RxByteCntr field. The data will not be lost if the channel is not reconfigured
before re-enabled. 

To empty this data from the local store-buffer to the external memory, the channel needs to be ren-
abled. By setting the FifoRxIRQ.IRQ field to match the value of the FifoRxWR.WRITE field plus the
value of the FifoRxSTAT.RxByteCntr field, an emptying to the external memory is forced of any data
temporarily stored in the local store-buffer. Note however that additional data could be received in the
local store-buffer when the channel is re-enabled.

The FifoRxSTAT.ONGOING must be 0b before the channel can be re-configured safely (i.e. changing
address, size or read/write pointers).

40.5.8 Interrupts

During reception several interrupts can be generated:

• RxFull: Successful reception of all data possible to store in buffer 

• RxIrq: Successful reception of a predefined number of data

• RxError: AHB access error during reception 

• RxParity: Parity error during reception 

The RxFull and RxIrq interrupts are only generated as the result of a successful data reception, after
the FifoRxWR.WRITE pointer has been incremented.

40.6 Operation

40.6.1 Global reset and enable

When the FifoCTRL.RESET bit is set to 1b, a reset of the core is performed. The reset clears all the
register fields to their default values. Any ongoing data transfers will be aborted.
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40.6.2 Interrupt

Seven interrupts are implemented by the FIFO interface:

Index: Name: Description:

0 TxIrq Successful transmission of block of data

1 TxEmpty Circular transmission buffer empty

2 TxError AMBA AHB access error during transmission

3 RxIrq Successful reception of block of data

4 RxFull Circular reception buffer full

5 RxError AMBA AHB access error during reception

6 RxParity Parity error during reception

The interrupts are configured by means of the pirq VHDL generic. The setting of the singleirq VHDL
generic results in a single interrupt output, instead of multiple, configured by the means of the pirq
VHDL generic, and enables the read and write of the interrupt registers. When multiple interrupts are
implemented, each interrupt is generated as a one system clock period long active high output pulse.
When a single interrupt is implemented, it is generated as an active high level output.

40.6.3 Reset

After a reset the values of the output signals are as follows:

Signal: Value after reset:

FIFOO.WEn de-asserted

FIFOO.REn de-asserted

40.6.4 Asynchronous interfaces

The following input signals are synchronized to Clk:

• FIFOI.EFn

• FIFOI.FFn

• FIFOI.HFn
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40.7 Registers

The core is programmed through registers mapped into APB address space.

40.7.1 Configuration Register [FifoCONF] R/W

Field: Description:
6: ABORT Abort transfer on AHB ERROR
5-4: DW Data width:

00b = none
01b = 8 bitFIFOO.Dout[7:0], 

FIFOI.Din[7:0]
10b = 16 bitFIFOO.Dout[15:0]

FIFOI.Din[15:0]

Table 380.GRFIFO registers

APB address offset Register

0x000 Configuration Register

0x004 Status Register

0x008 Control Register

0x020 Transmit Channel Control Register

0x024 Transmit Channel Status Register

0x028 Transmit Channel Address Register

0x02C Transmit Channel Size Register

0x030 Transmit Channel Write Register

0x034 Transmit Channel Read Register

0x038 Transmit Channel Interrupt Register

0x040 Receive Channel Control Register

0x044 Receive Channel Status Register

0x048 Receive Channel Address Register

0x04C Receive Channel Size Register

0x050 Receive Channel Write Register

0x054 Receive Channel Read Register

0x058 Receive Channel Interrupt Register

0x060 Data Input Register

0x064 Data Output Register

0x068 Data Direction Register

0x100 Pending Interrupt Masked Status Register

0x104 Pending Interrupt Masked Register

0x108 Pending Interrupt Status Register

0x10C Pending Interrupt Register

0x110 Interrupt Mask Register

0x114 Pending Interrupt Clear Register

Table 381.Configuration Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Abo
rt

DW Par-
ity

WS
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11b = spare/none
3: PARITY Parity type:

0b = even
1b = odd

2-0: WS Number of wait states, 0 to 7

All bits are cleared to 0 at reset.

Note that the transmit or receive channel active during the AMBA AHB error is disabled if the
ABORT bit is set to 1b. Note that all accesses on the affected channel will be disabled after an AMBA
AHB error occurs while the ABORT bit is set to 1b. The accesses will be disabled until the affected
channel is re-enabled setting the FifoTxCTRL.ENABLE or FifoRxCTRL.ENABLE bit, respectively.

Note that a wait states corresponds to an additional clock cycle added to the period when the read or
write strobe is asserted. The default asserted width is one clock period for the read or write strobe
when WS=0. Note that an idle gap of one clock cycle is always inserted between read and write
accesses, with neither the read nor the write strobe being asserted. 

Note that an additional gap of one clock cycle with the read or write strobe de-asserted is inserted
between two accesses when WS is equal to or larger than 100b. 

40.7.2 Status Register [FifoSTAT] R

31-28: TxChannels Number of TxChannels -1, 4-bit
27-24: RxChannels Number of RxChannels -1, 4-bit
5: SingleIrq Single interrupt output and interrupt registers when set to 1

40.7.3 Control Register [FifoCTRL] R/W

1: RESET Reset complete FIFO interface, all registers

All bits are cleared to 0 at reset.

Note that RESET is read back as 0b.

Table 382.Status register

31 28 27 24 23 16

TxChannels RxChannels -

15 6 5 4 0

- SingleIrq -

Table 383.Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rese
t
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40.7.4 Transmit Channel Control Register [FifoTxCTRL] R/W

0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that in the case of an AHB bus error during an access while fetching transmit data, and the Fifo-
Conf.ABORT bit is 1b, then the ENABLE bit will be reset automatically.

At the time the ENABLE is cleared to 0b, any ongoing data writes to the FIFO are not aborted.

40.7.5 Transmit Channel Status Register [FifoTxSTAT] R

6: TxOnGoingAccess ongoing
4: TxIrq Successful transmission of block of data
3: TxEmpty Transmission buffer has been emptied
2: TxError AMB AHB access error during transmission
1: FF FIFO Full Flag
0: HF FIFO Half-Full Flag

All bits are cleared to 0 at reset.

The following sticky status bits are cleared when the register has been read:

• TxIrq, TxEmpty and TxError.

40.7.6 Transmit Channel Address Register [FifoTxADDR] R/W

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

Table 384.Transmit Channel Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ena
ble

Table 385.Transmit Channel Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxO
nGo
ing

TxIr
q

TxE
mpt
y

TxE
rror

FF HF

Table 386.Transmit Channel Address Register

31 10 9 0

ADDR



366

40.7.7 Transmit Channel Size Register [FifoTxSIZE] R/W

16-6: SIZE Size of circular buffer, in number of 64 bytes block

All bits are cleared to 0 at reset.

Valid SIZE values are 0, and between 1 and 1024. Note that the resulting behavior of invalid SIZE
values is undefined. 

Note that only SIZE*64-4 bytes can be stored simultaneously in the buffer. This is to simplify wrap-
around condition checking.

The width of the SIZE field is configurable indirectly by means of the VHDL generic (ptrwidth)
which sets the width of the read and write data pointers. In the above example VHDL generic ptr-
width=16, making the SIZE field 11 bits wide.

40.7.8 Transmit Channel Write Register [FifoTxWR] R/W

15-0: WRITE Pointer to last written byte + 1

All bits are cleared to 0 at reset.

The WRITE field is written to in order to initiate a transfer, indicating the position +1 of the last byte
to transmit.

Note that it is not possible to fill the buffer. There is always one word position in buffer unused. Soft-
ware is responsible for not over-writing the buffer on wrap around (i.e. setting WRITE=READ).

Note that the LSB may be ignored for 16-bit wide FIFO devices.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

40.7.9 Transmit Channel Read Register [FifoTxRD] R/W

15-0: READ Pointer to last read byte + 1

All bits are cleared to 0 at reset.

The READ field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last byte transmitted.

Note that the READ field can be used to read out the progress of a transfer.

Note that the READ field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.

Note that the READ field can be automatically incremented even if the transmit channel has been dis-
abled, since the last requested transfer is not aborted until completed.

Note that the LSB may be ignored for 16-bit wide FIFO devices.

Table 387.Transmit Channel Size Register

31 17 16 6 5 0

SIZE

Table 388.Transmit Channel Write Register

31 16 15 0

WRITE

Table 389.Transmit Channel Read Register

31 16 15 0

READ
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The field is implemented as relative to the buffer base address (scaled with the SIZE field).

40.7.10 Transmit Channel Interrupt Register [FifoTxIRQ] R/W

15-0: IRQ Pointer+1 to a byte address from which the read of transmitted data shall result in an interrupt

All bits are cleared to 0 at reset.

Note that this indicates that a programmed amount of data has been sent. Note that the LSB may be
ignored for 16-bit wide FIFO devices.

The field is implemented as relative to the buffer base address (scaled with the SIZE field).

40.7.11 Receive Channel Control Register [FifoRxCTRL] R/W

0: ENABLE Enable channel

All bits are cleared to 0 at reset.

Note that in the case of an AHB bus error during an access while storing receive data, and the Fifo-
Conf.ABORT bit is 1b, then the ENABLE bit will be reset automatically.

At the time the ENABLE is cleared to 0b, any ongoing data reads from the FIFO are not aborted.

40.7.12 Receive Channel Status Register [FifoRxSTAT] R

10-8: RxByteCntrNumber of bytes in local buffer
6: RxOnGoingAccess ongoing
5: RxParity Parity error during reception
4: RxIrq Successful reception of block of data
3: RxFull Reception buffer has been filled
2: RxError AMB AHB access error during reception
1: EF FIFO Empty Flag
0: HF FIFO Half-Full Flag

All bits are cleared to 0 at reset.

The following sticky status bits are cleared when the register has been read:

• RxParity, RxIrq, RxFull and RxError.

The circular buffer is considered as full when there are two words or less left in the buffer.

Table 390.Transmit Channel Interrupt Register

31 16 15 0

IRQ

Table 391.Receive Channel Control Register

31 2 1 0

Ena
ble

Table 392.Receive Channel Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxByteCntr RxO
nGo
ing

RxP
arity

RxIr
q

RxF
ull

RxE
rror

EF HF
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40.7.13 Receive Channel Address Register [FifoRxADDR] R/W

31-10: ADDR Base address for circular buffer

All bits are cleared to 0 at reset.

40.7.14 Receive Channel Size Register [FifoRxSIZE] R/W

16-6: SIZE Size of circular buffer, in number of 64 byte blocks

All bits are cleared to 0 at reset.

Valid SIZE values are 0, and between 1 and 1024. Note that the resulting behavior of invalid SIZE
values is undefined. 

Note that only SIZE*64-8 bytes can be stored simultaneously in the buffer. This is to simplify wrap-
around condition checking.

The width of the SIZE field is configurable indirectly by means of the VHDL generic (ptrwidth)
which sets the width of the read and write data pointers. In the above example VHDL generic ptr-
width=16, making the SIZE field 11 bits wide.

40.7.15 Receive Channel Write Register [FifoRxWR] R/W

15-0: WRITE Pointer to last written byte +1

All bits are cleared to 0 at reset.

The field is implemented as relative to the buffer base address (scaled with SIZE field).

The WRITE field is written to automatically when a transfer has been completed successfully, indicat-
ing the position +1 of the last byte received.

Note that the WRITE field can be used to read out the progress of a transfer.

Note that the WRITE field can be written to in order to set up the starting point of a transfer. This
should only be done while the transmit channel is not enabled.

Note that the LSB may be ignored for 16-bit wide FIFO devices.

Table 393.Receive Channel Address Register

31 10 9 0

ADDR

Table 394.Receive Channel Size Register

31 17 16 6 5 0

SIZE

Table 395.Receive Channel Write Register

31 16 15 0

WRITE
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40.7.16 Receive Channel Read Register [FifoRxRD] R/W

15-0: READ Pointer to last read byte +1

All bits are cleared to 0 at reset.

The field is implemented as relative to the buffer base address (scaled with SIZE field).

The READ field is written to in order to release the receive buffer, indicating the position +1 of the
last byte that has been read out.

Note that it is not possible to fill the buffer. There is always one word position unused in the buffer.
Software is responsible for not over-reading the buffer on wrap around (i.e. setting WRITE=READ).

Note that the LSB may be ignored for 16-bit wide FIFO devices

40.7.17 Receive Channel Interrupt Register [FifoRxIRQ] R/W

15-0: IRQ Pointer+1 to a byte address to which the write of received data shall result in an interrupt

All bits are cleared to 0 at reset.

Note that this indicates that a programmed amount of data has been received.

The field is implemented as relative to the buffer base address (scaled with SIZE field).

Note that the LSB may be ignored for 16-bit wide FIFO devices.

Note that by setting the IRQ field to match the value of the Receive Channel Write Register.WRITE
field plus the value of the Receive Channel Status Register.RxByteCntr field, an emptying to the
external memory is forced of any data temporarily stored in the local buffer.

40.7.18 Data Input Register [FifoDIN] R

15-0: DIN Input data FIFOI.Din[15:0]

All bits are cleared to 0 at reset.

Note that only the part of FIFOI.Din[15:0] not used by the FIFO can be used as general purpose input
output, see FifoCONF.DW.

Note that only bits dwidth-1 to 0 are implemented. 

Table 396.Receive Channel Read Register

31 16 15 0

READ

Table 397.Receive Channel Interrupt Register

31 16 15 0

IRQ

Table 398.Data Input Register

31 16 15 0

DIN
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40.7.19 Data Output Register [FifoDOUT] R/W

15-0: DOUT Output data FIFOO.Dout[15:0]

All bits are cleared to 0 at reset.

Note that only the part of FIFOO.Dout[15:0] not used by the FIFO can be used as general purpose
input output, see FifoCONF.DW.

Note that only bits dwidth-1 to 0 are implemented. 

40.7.20 Data Register [FifoDDIR] R/W

15-0: DDIR Direction: FIFOO.Dout[15:0]
0b = input = high impedance, 
1b = output = driven

All bits are cleared to 0 at reset.

Note that only the part of FIFOO.Dout[15:0] not used by the FIFO can be used as general purpose
input output, see FifoCONF.DW.

Note that only bits dwidth-1 to 0 are implemented.

40.7.21 Interrupt registers

The interrupt registers give complete freedom to the software, by providing means to mask interrupts,
clear interrupts, force interrupts and read interrupt status.

When an interrupt occurs the corresponding bit in the Pending Interrupt Register is set. The normal
sequence to initialize and handle a module interrupt is:

• Set up the software interrupt-handler to accept an interrupt from the module.

• Read the Pending Interrupt Register to clear any spurious interrupts.

• Initialize the Interrupt Mask Register, unmasking each bit that should generate the module inter-
rupt.

• When an interrupt occurs, read the Pending Interrupt Status Register in the software interrupt-
handler to determine the causes of the interrupt. 

• Handle the interrupt, taking into account all causes of the interrupt.

• Clear the handled interrupt using Pending Interrupt Clear Register.

Masking interrupts: After reset, all interrupt bits are masked, since the Interrupt Mask Register is zero.
To enable generation of a module interrupt for an interrupt bit, set the corresponding bit in the Inter-
rupt Mask Register.

Clearing interrupts: All bits of the Pending Interrupt Register are cleared when it is read or when the
Pending Interrupt Masked Register is read. Reading the Pending Interrupt Masked Register yields the
contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask Register.
Selected bits can be cleared by writing ones to the bits that shall be cleared to the Pending Interrupt
Clear Register.

Table 399.Data Output Register

31 16 15 0

DOUT

Table 400.Data Direction Register

31 16 15 0

DDIR
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Forcing interrupts: When the Pending Interrupt Register is written, the resulting value is the original
contents of the register logically OR-ed with the write data. This means that writing the register can
force (set) an interrupt bit, but never clear it.

Reading interrupt status: Reading the Pending Interrupt Status Register yields the same data as a read
of the Pending Interrupt Register, but without clearing the contents.

Reading interrupt status of unmasked bits: Reading the Pending Interrupt Masked Status Register
yields the contents of the Pending Interrupt Register masked with the contents of the Interrupt Mask
Register, but without clearing the contents.

The interrupt registers comprise the following:

• Pending Interrupt Masked Status Register [FifoPIMSR] R

• Pending Interrupt Masked Register [FifoPIMR] R

• Pending Interrupt Status Register [FifoPISR] R

• Pending Interrupt Register [FifoPIR] R/W

• Interrupt Mask Register [FifoIMR] R/W

• Pending Interrupt Clear Register [FifoPICR] W

6: RxParity Parity error during reception
5: RxError AMBA AHB access error during reception
4: RxFull Circular reception buffer full
3: RxIrq Successful reception of block of data
2: TxError AMBA AHB access error during transmission
1: TxEmpty Circular transmission buffer empty
0: TxIrq Successful transmission of block of data

All bits in all interrupt registers are reset to 0b after reset.

40.8 Vendor and device identifiers

The module has vendor identifier 0x01 (Gaisler Research) and device identifier 0x035. For descrip-
tion of vendor and device identifiers see GRLIB IP Library User’s Manual.

Table 401.Interrupt registers

31 7 6 5 4 3 2 1 0

- RxParity RxError RxFull RxIrq TxError TxEmpty TxIrq
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40.9 Configuration options

Table 402 shows the configuration options of the core (VHDL generics).

40.10 Signal descriptions

Table 403 shows the interface signals of the core (VHDL ports).

Table 402.Configuration options

Generic name Function Allowed range Default

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by the GRFIFO. 0 - NAHBIRQ-1 0

dwidth Data width 16 16

ptrwidth Width of data pointers 4 - 16 12

singleirq Single interrupt output. A single interrupt is assigned to 
the AMBA APB interrupt bus instead of multiple sepa-
rate ones. The single interrupt output is controlled by the 
interrupt registers which are also enabled with this 
VHDL generic.

0, 1 0

oepol Output enable polarity 0, 1 1

Table 403.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

FIFOI DIN[31:0] Input Data input -

PIN[3:0] Parity input -

EFN Empty flag Low

FFN Full flag Low

HFN Half flag Low

FIFOO DOUT[31:0] Output Data output -

DEN[31:0] Data output enable -

POUT[3:0] Parity output -

PEN[3:0] Parity output enable -

WEN Write enable Low

REN Read enable Low

* see GRLIB IP Library User’s Manual
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40.11 Library dependencies

Table 404 shows the libraries used when instantiating the core (VHDL libraries).

40.12 Instantiation

This example shows how the core can be instantiated. 

TBD

Table 404.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GRLIB AMBA Signals, component DMA2AHB definitions

GAISLER MISC Signals, component Component declarations, signals.
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41 GRFPU - High-performance IEEE-754 Floating-point unit

41.1 Overview

GRFPU is a high-performance FPU implementing floating-point operations as defined in the IEEE
Standard for Binary Floating-Point Arithmetic (IEEE-754) and the SPARC V8 standard (IEEE-1754).
Supported formats are single and double precision floating-point numbers. The advanced design com-
bines two execution units, a fully pipelined unit for execution of the most common FP operations and
a non-blocking unit for execution of divide and square-root operations. 

The logical view of the GRFPU is shown in figure 140.        

 

Figure 140.  GRFPU Logical View

This document describes GRFPU from functional point of view. Chapter “Functional description”
gives details about GRFPU’s implementation of the IEEE-754 standard including FP formats, opera-
tions, opcodes, operation timing, rounding and exceptions. “Signals and timing” describes the
GRFPU interface and its signals. “GRFPU Control Unit” describes the software aspects of the
GRFPU integration into a LEON processor through the GRFPU Control Unit - GRFPC. For imple-
mentation details refer to the white paper, “GRFPU - High Performance IEEE-754 Floating-Point
Unit” (available at www.gaisler.com).    

41.2 Functional description

41.2.1 Floating-point number formats

GRFPU handles floating-point numbers in single or double precision format as defined in the IEEE-
754 standard with exception for denormalized numbers. See section 41.2.5 for more information on
denormalized numbers. 

41.2.2 FP operations

GRFPU supports four types of floating-point operations: arithmetic, compare, convert and move. The
operations implement all FP instructions specified by SPARC V8 instruction set, and most of the
operations defined in IEEE-754. All operations are summarized in table 405, with their opcodes, oper-
ands, results and exception codes. Throughputs and latencies and are shown in table 405.

operand1

opid

opcode

operand2

start

 9

 6

64

64

round

flushid

 2

 6

flush

result

resid

allow

except

ready

 3

 6

64

 6

cc  2

nonstd

Pipelined execution 
unit

 

Iteration unit 

GRFPU
clk

reset
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Arithmetic operations include addition, subtraction, multiplication, division and square-root. Each
arithmetic operation can be performed in single or double precision formats. Arithmetic operations
have one clock cycle throughput and a latency of four clock cycles, except for divide and square-root
operations, which have a throughput of 16 - 25 clock cycles and latency of 16 - 25 clock cycles (see

Table 405.: GRFPU operations

Operation OpCode[8:0] Op1 Op2 Result Exceptions Description

Arithmetic operations

FADDS
FADDD 

001000001

001000010

SP
DP

SP
 DP

SP
DP 

UNF, NV, 
OF, UF, NX

Addition 

FSUBS
FSUBD

001000101

001000110

SP
DP

SP
DP

SP
DP

UNF, NV, 
OF, UF, NX

Subtraction

FMULS
FMULD
FSMULD

001001001

001001010

001101001

SP
DP
SP

SP
DP
SP

SP
DP
DP

UNF, NV, 
OF, UF, NX 

UNF, NV, 
OF, UF, NX
UNF, NV, 
OF, UF

Multiplication, FSMULD gives 
exact double-precision product of 
two single-precision operands.

FDIVS
FDIVD

001001101

001001110

SP
DP

SP
DP

SP
DP

UNF, NV, 
OF, UF, NX

Division

FSQRTS
FSQRTD

000101001

000101010

-
-

SP
DP

SP
DP

UNF, NV, 
NX

Square-root

Conversion operations

FITOS
FITOD

011000100

011001000

- INT SP
DP

NX
- 

Integer to floating-point conversion

FSTOI
FDTOI

011010001

011010010

- SP
DP

INT  UNF, NV, 
NX

Floating-point to integer conversion. 
The result is rounded in round-to-
zero mode.

FSTOI_RND
FDTOI_RND

111010001

111010010

- SP
DP

INT  UNF, NV, 
NX

Floating-point to integer conversion. 
Rounding according to RND input.

FSTOD
FDTOS

011001001

011000110

- SP
DP

DP
SP

UNF, NV
UNF, NV, 
OF, UF, NX

Conversion between floating-point 
formats

Comparison operations

FCMPS
FCMPD

001010001

001010010

SP
DP

SP
DP

CC NV Floating-point compare. Invalid 
exception is generated if either oper-
and is a signaling NaN.

FCMPES
FCMPED

001010101

001010110

SP
DP

SP
DP

CC NV Floating point compare. Invalid 
exception is generated if either oper-
and is a NaN (quiet or signaling).

Negate, Absolute value and Move

FABSS 000001001 - SP SP - Absolute value.

FNEGS 000000101 - SP SP - Negate.

FMOVS 000000001 SP SP - Move. Copies operand to result out-
put.

SP - single precision floating-point number

DP - double precision floating-point number

INT - 32 bit integer 

CC - condition codes, see table 408

UNF, NV, OF, UF, NX - floating-point exceptions, see section 41.2.3
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table 406). Add, sub and multiply can be started on every clock cycle, providing high throughput for
these common operations. Divide and square-root operations have lower throughput and higher
latency due to complexity of the algorithms, but are executed in parallel with all other FP operations
in a non-blocking iteration unit. Out-of-order execution of operations with different latencies is easily
handled through the GRFPU interface by assigning an id to every operation which appears with the
result on the output once the operation is completed (see section 3.2). 

Conversion operations execute in a pipelined execution unit and have throughput of one clock cycle
and latency of four clock cycles. Conversion operations provide conversion between different float-
ing-point numbers and between floating-point numbers and integers.

Comparison functions offering two different types of quiet Not-a-Numbers (QNaNs) handling are
provided. Move, negate and absolute value are also provided. These operations do not ever generate
unfinished exception (unfinished exception is never signaled since compare, negate, absolute value
and move handle denormalized numbers). 

41.2.3 Exceptions

GRFPU detects all exceptions defined by the IEEE-754 standard. This includes detection of Invalid
Operation (NV), Overflow (OF), Underflow (UF), Division-by-Zero (DZ) and Inexact (NX) excep-
tion conditions. Generation of special results such as NaNs and infinity is also implemented. Over-
flow (OF) and underflow (UF) are detected before rounding. If an operation underflows the result is
flushed to zero (GRFPU does not support denormalized numbers or gradual underflow). A special
Unfinished exception (UNF) is signaled when one of the operands is a denormalized number which is
not handled by the arithmetic and conversion operations.

41.2.4 Rounding

All four rounding modes defined in the IEEE-754 standard are supported: round-to-nearest, round-to-
+inf, round-to--inf and round-to-zero.

41.2.5 Denormalized numbers

Denormalized numbers are not handled by the GRFPU arithmetic and conversion operations. A sys-
tem (microprocessor) with the GRFPU could emulate rare cases of operations on denormals in soft-
ware using non-FPU operations. A special Unfinished exception (UNF) is used to signal an arithmetic
or conversion operation on the denormalized numbers. Compare, move, negate and absolute value
operations can handle denormalized numbers and do not raise the unfinished exception. GRFPU does
not generate any denormalized numbers during arithmetic and conversion operations on normalized
numbers. If the infinitely precise result of an operation is a tiny number (smaller than minimum value
representable in normal format) the result is flushed to zero (with underflow and inexact flags set).

Table 406.: Throughput and latency

Operation Throughput Latency

FADDS, FADDD, FSUBS, FSUBD, FMULS, FMULD, FSMULD 1 4

FITOS, FITOD, FSTOI, FSTOI_RND, FDTOI, FDTOI_RND, FSTOD, 
FDTOS

1 4

FCMPS, FCMPD, FCMPES, FCMPED 1 4

FDIVS 16 16

FDIVD 16.5 (15/18)* 16.5 (15/18)*

FSQRTS 24 24

FSQRTD  24.5 (23/26)* 24.5 (23/26)*

* Throughput and latency are data dependant with two possible cases with equal statistical possibility. 
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41.2.6 Non-standard Mode

GRFPU can operate in a non-standard mode where all denormalized operands to arithmetic and con-
version operations are treated as (correctly signed) zeroes. Calculations are performed on zero oper-
ands instead of the denormalized numbers obeying all rules of the floating-point arithmetics including
rounding of the results and detecting exceptions.

41.2.7 NaNs

GRFPU supports handling of Not-a-Numbers (NaNs) as defined in the IEEE-754 standard. Opera-
tions on signaling NaNs (SNaNs) and invalid operations (e.g. inf/inf) generate the Invalid exception
and deliver QNaN_GEN as result. Operations on Quiet NaNs (QNaNs), except for FCMPES and
FCMPED, do not raise any exceptions and propagate QNaNs through the FP operations by delivering
NaN-results according to table 407. QNaN_GEN is 0x7fffe00000000000 for double precision results
and 0x7fff0000 for single precision results.

Table 407.: Operations on NaNs 

Operand 2

Operand 1

FP QNaN2 SNaN2

none FP QNaN2 QNaN_GEN

FP FP QNaN2 QNaN_GEN

QNaN1 QNaN1 QNaN2 QNaN_GEN

SNaN1 QNaN_GEN QNaN_GEN QNaN_GEN
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41.3 Signal descriptions

Table 408 shows the interface signals of the core (VHDL ports). All signals are active high except for
RST which is active low. 

41.4 Timing

An FP operation is started by providing the operands, opcode, rounding mode and id before rising
edge. The operands need to be provided a small set-up time before a rising edge while all other signals
are latched on rising edge.

Table 408.: Signal descriptions

Signal I/O Description

CLK I Clock

RST I Reset

START I Start an FP operation on the next rising clock edge

NONSTD I Nonstandard mode. Denormalized operands are converted to zero.

OPCODE[8:0] I FP operation. For codes see table 405.

OPID[7:0] I FP operation id. Every operation is associated with an id which will appear on the RESID 
output when the FP operation is completed. This value shall be incremented by 1 (with wrap-
around) for every started FP operation. If flushing is used, FP operation id is 6 -bits wide 
(OPID[5:0] are used for id, OPID[7:6] are tied to “00”). If flushing is not used (input signal 
FLUSH is tied to ‘0’), all 8-bits (OPID[7:0]) are used. 

OPERAND1[63:0]

OPERAND2[63:0]

I FP operation operands are provided on these one or both of these inputs. All 64 bits are used 
for IEEE-754 double precision floating-point numbers, bits [63:32] are used for IEEE-754 
single precision floating-point numbers and 32-bit integers.

ROUND[1:0] I Rounding mode. 00 - rounding-to-nearest, 01 - round-to-zero, 10 - round-to-+inf, 11 - round-
to--inf.

FLUSH I Flush FP operation with FLUSHID.

FLUSHID[5:0] I Id of the FP operation to be flushed.

READY O The result of a FP operation will be available at the end of the next clock cycle.

ALLOW[2:0] O Indicates allowed FP operations during the next clock cycle. 
ALLOW[0] - FDIVS, FDIVD, FSQRTS and FSQRTD allowed

ALLOW[1] - FMULS, FMULD, FSMULD allowed

ALLOW[2] - all other FP operations allowed

RESID[7:0] O Id of the FP operation whose result appears at the end of the next clock cycle.

RESULT[63:0] O Result of an FP operation. If the result is double precision floating-point number all 64 bits 
are used, otherwise single precision or integer result appears on RESULT[63:32].

EXCEPT[5:0] O Floating-point exceptions generated by an FP operation.

EXC[5] - Unfinished FP operation. Generated by an arithmetic or conversion operation with 
denormalized input(s).

EXC[4] - Invalid exception.

EXC[3] - Overflow.

EXC[2] - Underflow.

EXC[1] - Division by zero.

EXC[0] - Inexact.

CC[1:0] O Result (condition code) of an FP compare operation.
00 - equal
01 - operand1 < operand2
10 - operand1 > operand2
11 - unordered
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The FPU is fully pipelined and a new operation can be started every clock cycle. The only exceptions
are divide and square-root operations which require 16 to 26 clock cycles to complete, and which are
not pipelined. Division and square-root are implemented through iterative series expansion algorithm.
Since the algorithms basic step is multiplication the floating-point multiplier is shared between multi-
plication, division and square-root. Division and square-root do not occupy the multiplier during the
whole operation and allow multiplication to be interleaved and executed parallelly with division or
square-root.    

One clock cycle before an operation is completed, the output signal RDY is asserted to indicate that
the result of an FPU operation will appear on the output signals at the end of the next cycle. The id of
the operation to be completed and allowed operations are reported on signals RESID and ALLOW.
During the next clock cycle the result appears on RES, EXCEPT and CC outputs. 

Table 141 shows signal timing during four arithmetic operations on GRFPU.
 

Figure 141.  Signal timing
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In shared FPU configuration, GRFPU uses an 8 bit wide id for each operation. The three high-order
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FPU configuration.

CLK

START

OPID

READY

RESULT

RESID

ALLOW[2]

ALLOW[1]

ALLOW[0]

1

FADDS FDIVS FSUBS

2 3

1 3 2

0

0

OPERAND1,

OPCODE FADDS

OPERAND2



380

42 GRFPC - GRFPU Control Unit 

The GRFPU Control Unit (GRFPC) is used to attach the GRFPU to the LEON integer unit (IU).
GRFPC performs scheduling, decoding and dispatching of the FP operations to the GRFPU as well as
managing the floating-point register file, the floating-point state register (FSR) and the floating-point
deferred-trap queue (FQ). Floating-point operations are executed in parallel with other integer instruc-
tions, the LEON integer pipeline is only stalled in case of operand or resource conflicts. 

In the FT-version, all registers are protected with TMR and the floating-point register file is protected
using parity coding.

42.1 Floating-Point register file

The GRFPU floating-point register file contains 32 32-bit floating-point registers (%f0-%f31). The
register file is accessed by floating-point load and store instructions (LDF, LDDF, STD, STDF) and
floating-point operate instructions (FPop).

42.2 Floating-Point State Register (FSR)

The GRFPC manages the floating-point state register (FSR) containing FPU mode and status infor-
mation. All fields of the FSR register as defined in SPARC V8 specification are implemented and
managed by the GRFPU conforming to the SPARC V8 specification and the IEEE-754 standard.
Implementation-specific parts of the FSR managing are the NS (non-standard) bit and ftt field. 

If the NS (non-standard) bit of the FSR register is set, all floating-point operations will be performed
in non-standard mode as described in section 41.2.6. When the NS bit is cleared all operations are per-
formed in standard IEEE-compliant mode.

Following floating-point trap types never occur and are therefore never set in the ftt field:
- unimplemented_FPop: all FPop operations are implemented

- hardware_error: non-resumable hardware error
- invalid_fp_register: no check that double-precision register is 0 mod 2 is performed

GRFPU implements the qne bit of the FSR register which reads 0 if the floating-point deferred-queue
(FQ) is empty and 1 otherwise.

The FSR is accessed using LDFSR and STFSR instructions.

42.3 Floating-Point Exceptions and Floating-Point Deferred-Queue

GRFPU implements the SPARC deferred trap model for floating-point exceptions (fp_exception). A
floating-point exception is caused by a floating-point instruction performing an operation resulting in
one of following conditions:

• an operation raises IEEE floating-point exception (ftt = IEEE_754_exception) e.g. executing
invalid operation such as 0/0 while the NVM bit of the TEM field id set (invalid exception
enabled).

• an operation on denormalized floating-point numbers (in standard IEEE-mode) raises
unfinished_FPop floating-point exception

• sequence error: abnormal error condition in the FPU due to the erroneous use of the floating-
point instructions in the supervisor software.

The trap is deferred to one of the floating-point instructions (FPop, FP load/store, FP branch) follow-
ing the trap-inducing instruction (note that this may not be next floating-point instruction in the pro-
gram order due to exception-detecting mechanism and out-of-order instruction execution in the
GRFPC). When the trap is taken the floating-point deferred-queue (FQ) contains the trap-inducing
instruction and up to seven FPop instructions that were dispatched in the GRFPC but did not com-
plete.
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After the trap is taken the qne bit of the FSR is set and remains set until the FQ is emptied. The
STDFQ instruction reads a double-word from the floating-point deferred queue, the first word is the
address of the instruction and the second word is the instruction code. All instructions in the FQ are
FPop type instructions. The first access to the FQ gives a double-word with the trap-inducing instruc-
tion, following double-words contain pending floating-point instructions. Supervisor software should
emulate FPops from the FQ in the same order as they were read from the FQ.

Note that instructions in the FQ may not appear in the same order as the program order since GRFPU
executes floating-point instructions out-of-order. A floating-point trap is never deferred past an
instruction specifying source registers, destination registers or condition codes that could be modified
by the trap-inducing instruction. Execution or emulation of instructions in the FQ by the supervisor
software gives therefore the same FPU state as if the instructions were executed in the program order. 
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43 GRFPU Lite - IEEE-754 Floating-Point Unit

43.1 Overview

The GRFPU Lite floating-point unit implements floating-point operations as defined in IEEE Stan-
dard for Binary Floating-Point Arithmetic (IEEE-754) and SPARC V8 standard (IEEE-1754). 

Supported formats are single and double precision floating-point numbers. The floating-point unit is
not pipelined and executes one floating-point operation at a time. 

43.2 Functional Description

43.2.1 Floating-point number formats

The floating-point unit handles floating-point numbers in single or double precision format as defined
in IEEE-754 standard.

operand1

opcode

operand2

round

result

ctrl_out

except

cc

 

Iteration unit

GRFPU 

clk

reset

Lite

ctrl_in

(Add/Sub/Mul/Div) 

Unpack

Control

Pack

 unit



383

43.2.2 FP operations

The floating-point unit supports four types of floating-point operations: arithmetic, compare, convert
and move. The operations implement all FP instructions specified by SPARC V8 instruction set. All
operations are summarized in the table below. 

Table 409.:Floating-point operations

Operation Op1 Op2 Result Exceptions Description

Arithmetic operations

FADDS
FADDD 

SP
DP

SP
 DP

SP
DP 

NV, OF, UF, NX Addition 

FSUBS
FSUBD

SP
DP

SP
DP

SP
DP

NV, OF, UF, NX Subtraction

FMULS
FMULD
FSMULD

SP
DP
SP

SP
DP
SP

SP
DP
DP

NV, OF, UF, NX 

NV, OF, UF, NX
NV,OF, UF

Multiplication

FDIVS
FDIVD

SP
DP

SP
DP

SP
DP

NV, OF, UF, NX Division

FSQRTS
FSQRTD

-
-

SP
DP

SP
DP

NV, NX Square-root

Conversion operations

FITOS
FITOD

- INT SP
DP

NX
- 

Integer to floating-point conversion

FSTOI
FDTOI

- SP
DP

INT  NV, NX Floating-point to integer conversion. The result is 
rounded in round-to-zero mode.

FSTOD
FDTOS

- SP
DP

DP
SP

NV
NV, OF, UF, NX

Conversion between floating-point formats

Comparison operations

FCMPS
FCMPD

SP
DP

SP
DP

CC NV Floating-point compare. Invalid exception is gener-
ated if either operand is a signaling NaN.

FCMPES
FCMPED

SP
DP

SP
DP

CC NV Floating point compare. Invalid exception is gener-
ated if either operand is a NaN (quiet or signaling).

Negate, Absolute value and Move

FABSS - SP SP - Absolute value.

FNEGS - SP SP - Negate.

FMOVS SP SP - Move. Copies operand to result output.

SP - single precision float-
ing-point number

DP - double precision 
floating-point number

INT - 32 bit integer 

CC - condition codes

NV, OF, UF, NX - floating-point exceptions, see section 43.2.3



384

Below is a table of worst-case throughput of the floating point unit.

43.2.3 Exceptions

The floating-point unit detects all exceptions defined by the IEEE-754 standard. This includes detec-
tion of Invalid Operation (NV), Overflow (OF), Underflow (UF), Division-by-Zero (DZ) and Inexact
(NX) exception conditions. Generation of special results such as NaNs and infinity is also imple-
mented. 

43.2.4 Rounding

All four rounding modes defined in the IEEE-754 standard are supported: round-to-nearest, round-to-
+inf, round-to--inf and round-to-zero.

Table 410.Worst-case instruction timing

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, 
FITOD, FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. 
FCMPED

8 8

FDIVS 31 31

FDIVD 57 57

FSQRTS 46 46

FSQRTD 65 65
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44 GRLFPC - GRFPU Lite Floating-point unit Controller

44.1 Overview

The GRFPU Lite Floating-Point Unit Controller (GRLFPC) is used to attach the GRFPU Lite float-
ing-point unit (FPU) to the LEON integer unit (IU). It performs decoding and dispatching of the float-
ing-point (FP) operations to the floating-point unit as well as managing the floating-point register file,
the floating-point state register (FSR) and the floating-point deferred-trap queue (FQ). 

The GRFPU Lite floating-point unit is not pipelined and executes only one instruction at a time. To
improve performance, the controller (GRLFPC) allows the GRFPU Lite floating-point unit to execute
in parallel with the processor pipeline as long as no new floating-point instructions are pending.

44.2 Floating-Point register file

The floating-point register file contains 32 32-bit floating-point registers (%f0-%f31). The register
file is accessed by floating-point load and store instructions (LDF, LDDF, STD, STDF) and floating-
point operate instructions (FPop).

In the FT-version, the floating-point register file is protected using 4-bit parity per 32-bit word. The
controller is capable of detecting and correcting one bit error per byte. Errors are corrected using the
instruction restart function in the IU. 

44.3 Floating-Point State Register (FSR)

The controller manages the floating-point state register (FSR) containing FPU mode and status infor-
mation. All fields of the FSR register as defined in SPARC V8 specification are implemented and
managed by the controller conform to the SPARC V8 specification and IEEE-754 standard.

The non-standard bit of the FSR register is not used, all floating-point operations are performed in
standard IEEE-compliant mode.

Following floating-point trap types never occur and are therefore never set in the ftt field:
- unimplemented_FPop: all FPop operations are implemented

- unfinished_FPop: all FPop operation complete with valid result
- invalid_fp_register: no check that double-precision register is 0 mod 2 is performed

The controller implements the qne bit of the FSR register which reads 0 if the floating-point deferred-
queue (FQ) is empty and 1 otherwise. The FSR is accessed using LDFSR and STFSR instructions.

44.4 Floating-Point Exceptions and Floating-Point Deferred-Queue

The floating-point unit implements the SPARC deferred trap model for floating-point exceptions
(fp_exception). A floating-point exception is caused by a floating-point instruction performing an
operation resulting in one of following conditions:

• an operation raises IEEE floating-point exception (ftt = IEEE_754_exception) e.g. executing
invalid operation such as 0/0 while the NVM bit of the TEM field id set (invalid exception
enabled).

• sequence error: abnormal error condition in the FPU due to the erroneous use of the floating-
point instructions in the supervisor software.

• hardware_error: uncorrectable parity error is detected in the FP register file

The trap is deferred to the next floating-point instruction (FPop, FP load/store, FP branch) following
the trap-inducing instruction. When the trap is taken the floating-point deferred-queue (FQ) contains
the trap-inducing instruction.
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After the trap is taken the qne bit of the FSR is set and remains set until the FQ is emptied. STDFQ
instruction reads a double-word from the floating-point deferred queue, the first word is the address of
the instruction and the second word is the instruction code.
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45 GRGPIO - General Purpose I/O Port

45.1 Overview

The general purpose input output port core is a scalable and provides optional interrupt support. The
port width can be set to 2 - 32 bits through the nbits VHDL generic (i.e. nbits = 16). Interrupt genera-
tion and shaping is only available for those I/O lines where the corresponding bit in the imask VHDL
generic has been set to 1.

Each bit in the general purpose input output port can be individually set to input or output, and can
optionally generate an interrupt. For interrupt generation, the input can be filtered for polarity and
level/edge detection. 

It is possible to share GPIO pins with other signals. The output register can then be bypassed through
the bypass register.

The figure 142 shows a diagram for one I/O line.

45.2 Operation

The I/O ports are implemented as bi-directional buffers with programmable output enable. The input
from each buffer is synchronized by two flip-flops in series to remove potential meta-stability. The
synchronized values can be read-out from the I/O port data register. They are also available on the
GPIOO.VAL signals. The output enable is controlled by the I/O port direction register. A ‘1’ in a bit
position will enable the output buffer for the corresponding I/O line. The output value driven is taken
from the I/O port output register.

Each I/O port can drive a separate interrupt line on the APB interrupt bus. The interrupt number is
equal to the I/O line index (PIO[1] = interrupt 1, etc.). The interrupt generation is controlled by three
registers: interrupt mask, polarity and edge registers. To enable an interrupt, the corresponding bit in
the interrupt mask register must be set. If the edge register is ‘0’, the interrupt is treated as level sensi-
tive. If the polarity register is ‘0’, the interrupt is active low. If the polarity register is ‘1’, the interrupt
is active high. If the edge register is ‘1’, the interrupt is edge-triggered. The polarity register then
selects between rising edge (‘1’) or falling edge (‘0’).

A GPIO pin can be shared with other signals. The ports that should have the capability to be shared
are specified with the bypass generic (the corresponding bit in the generic must be 1). The unfiltered
inputs are available through GPIOO.SIG_OUT and the alternate output value must be provided in
GPIOI.SIG_IN. The bypass register then controls whether the alternate output is chosen. The direc-
tion of the GPIO pin can also be shared, if the correspondig bit is set in the bpdir generic. In such case,
the output buffer is enabled when GPIOI.SIG_EN is active.

Figure 142.  General Purpose I/O Port diagram
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45.3 Registers

The core is programmed through registers mapped into APB address space.

Table 411. General Purpose I/O Port registers

APB address offset Register

0x00 I/O port data register

0x04 I/O port output register

0x08 I/O port direction register

0x0C Interrupt mask register

0x10 Interrupt polarity register

0x14 Interrupt edge register

0x18 Bypass register

Table 412.  I/O port data register
31 16 16-1 0

“000..0” I/O port input value

16-1: 0 I/O port input value

Table 413.  I/O port output register
31 16 16-1 0

“000..0” I/O port output value

16-1: 0 I/O port output value

Table 414.  I/O port direction register
31 16 16-1 0

“000..0” I/O port direction value

16-1: 0 I/O port direction value (0=output disabled, 1=output enabled)

Table 415. Interrupt mask register
31 16 16-1 0

“000..0” Interrupt mask

16-1: 0 Interrupt mask (0=interrupt masked, 1=intrrupt enabled)

Table 416. Interrupt polarity register
31 16 16-1 0

“000..0” Interrupt polarity

16-1: 0 Interrupt polarity (0=low/falling, 1=high/rising)

Table 417. Interrupt edge register
31 16 16-1 0

“000..0” Interrupt edge

16-1: 0 Interrupt edge (0=level, 1=edge)

Table 418. Bypass register
31 16 16-1 0

“000..0” Bypass
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45.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x01A. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

45.5 Configuration options

Table 419 shows the configuration options of the core (VHDL generics).

45.6 Signal descriptions

Table 420 shows the interface signals of the core (VHDL ports).

16-1: 0 Bypass. (0=normal output, 1=alternate output)

Table 419.Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used to 
access the GPIO unit

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0

pmask The APB address mask 0 to 16#FFF# 16#FFF#

nbits Defines the number of bits in the I/O port 1 to 32 8

imask Defines which I/O lines are provided with interrupt gen-
eration and shaping

0 - 16#FFFF# 0

oepol Select polarity of output enable signals. 0 = active low, 1 
= active high. 

0 - 1 0

syncrst Selects between syncronous (1) or asyncronous (0) reset 
during power-up.

0 - 1 0

bypass Defines which I/O lines are provided bypass capabilities 0 - 16#7FFFFFFF# 0

scantest Enable scan support for asyncronous-reset flip-flops 0 - 1 0

bpdir Defines which I/O lines are provided output enable 
bypass capabilities

0 - 16#7FFFFFFF# 0

Table 420.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GPIOO OEN[31:0] Output I/O port output enable see oepol

DOUT[31:0] Output I/O port outputs -

VAL[31:0] Output The current (synchronized) value of the GPIO 
signals

-

SIG_OUT[31:0] Output The current (unsynchronized) value of the GPIO 
signals

GPIOI DIN[31:0] Input I/O port inputs -

SIG_IN[31:0] Input Alternate output -

* see GRLIB IP Library User’s Manual

Table 418. Bypass register
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45.7 Library dependencies

Table 421 shows libraries used when instantiating the core (VHDL libraries).

45.8 Component declaration

The core has the following component declaration.

ibrary gaisler;
use gaisler.misc.all;

entity grgpio is
  generic (
    pindex   : integer := 0;
    paddr    : integer := 0;
    pmask    : integer := 16#fff#;
    imask    : integer := 16#0000#;
    nbits    : integer := 16-- GPIO bits

  );
  port (
    rst    : in  std_ulogic;
    clk    : in  std_ulogic;
    apbi   : in  apb_slv_in_type;
    apbo   : out apb_slv_out_type;
    gpioi  : in  gpio_in_type;
    gpioo  : out gpio_out_type
  );
end; 

45.9 Instantiation

This example shows how the core can be instantiated.

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

signal gpti : gptimer_in_type;  
  
begin

gpio0 : if CFG_GRGPIO_EN /= 0 generate     -- GR GP IO unit
    grgpio0: grgpio
      generic map( pindex => 11, paddr => 11, imask  => CFG_GRGPIO_IMASK, nbits => 8)
      port map( rstn, clkm, apbi, apbo(11), gpioi, gpioo);

      pio_pads : for i in 0 to 7 generate
        pio_pad : iopad generic map (tech => padtec h)
            port map (gpio(i), gpioo.dout(i), gpioo .oen(i), gpioi.din(i));
      end generate;
end generate;

Table 421.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals, component Component declaration



391

46 GRSPW - SpaceWire codec with AHB host Interface and RMAP target

46.1 Overview

The SpaceWire core provides an interface between the AHB bus and a SpaceWire network. It imple-
ments the SpaceWire standard (ECSS-E-50-12A) with the protocol identification extension (ECSS-E-
50-11).The optional Remote Memory Access Protocol (RMAP) target implements the ECSS standard
(ECSS-E-50-11).

The core is configured through a set of registers accessed through an APB interface. Data is trans-
ferred through DMA channels using an AHB master interface.

Currently, there is one DMA channel but the core can easily be extended to use separate DMA chan-
nels for specific protocols. The core can also be configured to have either one or two ports.

There can be up to four clock domains: one for the AHB interface (system clock), one for the trans-
mitter and one or two for the receiver depending on the number of configured ports. The receiver
clock can be twice as fast and the transmitter clock four times as fast as the system clock whose fre-
quency should be at least 10 MHz.

The core only supports byte addressed 32-bit big-endian host systems. 

46.2 Operation

46.2.1 Overview

The main sub-blocks of the core are the link-interface, the RMAP target and the AMBA interface. A
block diagram of the internal structure can be found in figure 143. 

The link interface consists of the receiver, transmitter and the link interface FSM. They handle com-
munication on the SpaceWire network. The AMBA interface consists of the DMA engines, the AHB
master interface and the APB interface. The link interface provides FIFO interfaces to the DMA
engines. These FIFOs are used to transfer N-Chars between the AMBA and SpaceWire domains dur-
ing reception and transmission.

The RMAP target is an optional part of the core which can be enabled with a VHDL generic. The
RMAP target handles incoming packets which are determined to be RMAP commands instead of the
receiver DMA engine. The RMAP command is decoded and if it is valid, the operation is performed

Figure 143.  Block diagram
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on the AHB bus. If a reply was requested it is automatically transmitted back to the source by the
RMAP transmitter. 

The core is controlled by writing to a set of user registers through the APB interface and three signals:
tick-in, rmapen and clkdiv10. The controlled parts are clock-generation, DMA engines, RMAP target
and the link interface.

The link interface, DMA engines, RMAP target and AMBA interface are described in section 46.3,
46.4, 46.6 and 46.7 respectively. 

46.2.2 Protocol support

The core only accepts packets with a destination address corresponding to the one set in the node
address register. Packets with address mismatch will be silently discarded (except in promiscuous
mode which is covered in section 46.4.10). The node address register is initialized to the default
address 254 during reset. It can then be changed to some other value by writing to the register.

The core also requires that the byte following the destination address is a protocol identifier as speci-
fied in part 2 of the SpaceWire standard. It is used to determine to which DMA-channel a packet is
destined. Currently only one channel is available to which all packets (except RMAP commands) are
stored but the core is prepared to be easily expandable with more DMA channels. Figure 144 shows
the packet type expected by the core.

RMAP (Protocol ID = 0x01) commands are handled separately from other packets if the hardware
RMAP target is enabled. When enabled, all RMAP commands are processed, executed and replied in
hardware. All RMAP replies received are still stored to the DMA channel. If the RMAP target is dis-
abled, all packets are stored to the DMA channel. More information on the RMAP protocol support is
found in section 46.6.

All packets arriving with the extended protocol ID (0x00) are stored to the DMA channel. This means
that the hardware RMAP target will not work if the incoming RMAP packets use the extended proto-
col ID. Note also that packets with the reserved extended protocol identifier (ID = 0x000000) are not
ignored by the core. It is up to the client receiving the packets to ignore them.

When transmitting packets, the address and protocol-ID fields must be included in the buffers from
where data is fetched. They are not automatically added by the core. 

Figure 144 shows a packet with a normal protocol identifier. The core also allows reception and trans-
mission with extended protocol identifiers but without support for RMAP CRC calculations and the
RMAP target.

46.3 Link interface

The link interface handles the communication on the SpaceWire network and consists of a transmitter,
receiver, a FSM and FIFO interfaces. An overview of the architecture is found in figure 143.

46.3.1 Link interface FSM

The FSM controls the link interface (a more detailed description is found in the SpaceWire standard).
The low-level protocol handling (the signal and character level of the SpaceWire standard) is handled
by the transmitter and receiver while the FSM in the host domain handles the exchange level.

The link interface FSM is controlled through the control register. The link can be disabled through the
link disable bit, which depending on the current state, either prevents the link interface from reaching

Figure 144.  The SpaceWire packet with protocol ID that is expected by the GRSPW.

Addr ProtID Dn-2..D3D2D1D0 Dn-1 EOP
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the started state or forces it to the error-reset state. When the link is not disabled, the link interface
FSM is allowed to enter the started state when either the link start bit is set or when a NULL character
has been received and the autostart bit is set.

The current state of the link interface determines which type of characters are allowed to be transmit-
ted which together with the requests made from the host interfaces determine what character will be
sent.

Time-codes are sent when the FSM is in the run-state and a request is made through the time-interface
(described in section 46.3.5). 

When the link interface is in the connecting- or run-state it is allowed to send FCTs. FCTs are sent
automatically by the link interface when possible. This is done based on the maximum value of 56 for
the outstanding credit counter and the currently free space in the receiver N-Char FIFO. FCTs are sent
as long as the outstanding counter is less than or equal to 48 and there are at least 8 more empty FIFO
entries than the counter value. 

N-Chars are sent in the run-state when they are available from the transmitter FIFO and there are
credits available. NULLs are sent when no other character transmission is requested or the FSM is in
a state where no other transmissions are allowed.

The credit counter (incoming credits) is automatically increased when FCTs are received and
decreased when N-Chars are transmitted. Received N-Chars are stored to the receiver N-Char FIFO
for further handling by the DMA interface. Received Time-codes are handled by the time-interface.

46.3.2 Transmitter

The state of the FSM, credit counters, requests from the time-interface and requests from the DMA-
interface are used to decide the next character to be transmitted. The type of character and the charac-
ter itself (for N-Chars and Time-codes) to be transmitted are presented to the low-level transmitter
which is located in a separate clock-domain. 

This is done because one usually wants to run the SpaceWire link on a different frequency than the
host system clock. The core has a separate clock input which is used to generate the transmitter clock.
More information on transmitter clock generation is found in section 46.8.1. Since the transmitter
often runs on high frequency clocks (> 100 MHz) as much logic as possible has been placed in the
system clock domain to minimize power consumption and timing issues.

The transmitter logic in the host clock domain decides what character to send next and sets the proper
control signal and presents any needed character to the low-level transmitter as shown in figure 145.
The transmitter sends the requested characters and generates parity and control bits as needed. If no
requests are made from the host domain, NULLs are sent as long as the transmitter is enabled. Most of
the signal and character levels of the SpaceWire standard is handled in the transmitter. External LVDS
drivers are needed for the data and strobe signals. 

A transmission FSM reads N-Chars for transmission from the transmitter FIFO. It is given packet
lengths from the DMA interface and appends EOPs/EEPs and RMAP CRC values if requested. When
it is finished with a packet the DMA interface is notified and a new packet length value is given.

Transmitter Clock Domain Host Clock Domain

Transmitter 

D

S

Send Time-code
Send FCT
Send NChar
Time-code[7:0]
NChar[8:0]

Figure 145.  Schematic of the link interface transmitter.
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46.3.3 Receiver

The receiver detects connections from other nodes and receives characters as a bit stream on the data
and strobe signals. It is also located in a separate clock domain which runs on a clock generated from
the received data and strobe signals. More information on the clock-generation can be found in sec-
tion 46.8.1.

The receiver is activated as soon as the link interface leaves the error reset state. Then after a NULL is
received it can start receiving any characters. It detects parity, escape and credit errors which causes
the link interface to enter the error reset state. Disconnections are handled in the link interface part in
the system clock domain because no receiver clock is available when disconnected.

Received Characters are flagged to the host domain and the data is presented in parallel form. The
interface to the host domain is shown in figure 146. L-Chars are the handled automatically by the host
domain link interface part while all N-Chars are stored in the receiver FIFO for further handling. If
two or more consecutive EOPs/EEPs are received all but the first are discarded.

There are no signals going directly from the transmitter clock domain to the receiver clock domain
and vice versa. All the synchronization is done to the system clock.

46.3.4 Dual port support

The core can be configured to include an additional SpaceWire port. With dual ports the transmitter
drives an additional pair of data/strobe output signals and one extra receiver is added to handle a sec-
ond pair of data/strobe input signals. 

One of the ports is set as active (how the active port is selected is explained below) and the transmitter
drives the data/strobe signals of the active port with the actual output values as explained in section
46.3.2. The inactive port is driven with zero on both data and strobe. 

Both receivers will always be active but only the active port’s interface signals (see figure 146) will be
propagated to the link interface FSM. Each time the active port is changed, the link will be reset so
that the new link is started in a controlled manner. 

When the noportforce register is zero the portsel register bit selects the active link and when set to one
it is determined by the current link activity. In the latter mode the port is changed when no activity is
seen on the currently active link while there is activity on the deselected receive port. Activity is
defined as a detected null. This definition is selected so that glitches (e.g. port unconnected) do not
cause unwanted port switches. 

46.3.5 Time interface

The time interface is used for sending Time-codes over the SpaceWire network and consists of a time-
counter register, time-ctrl register, tick-in signal, tick-out signal, tick-in register field and a tick-out
register field. There are also two control register bits which enable the time receiver and transmitter
respectively. 

Receiver Clock Domain Host Clock Domain

Receiver
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Got Time-code
Got FCT

Got NChar
Time-code[7:0]
NChar[7:0]

Figure 146.  Schematic of the link interface receiver.

Got EEP
Got EOP
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Each Time-code sent from the core is a concatenation of the time-ctrl and the time-counter register.
There is a timetxen bit which is used to enable Time-code transmissions. It is not possible to send
time-codes if this bit is zero. 

Received Time-codes are stored to the same time-ctrl and time-counter registers which are used for
transmission. The timerxen bit in the control register is used for enabling time-code reception. No
time-codes will be received if this bit is zero.

The two enable bits are used for ensuring that a node will not (accidentally) both transmit and receive
time-codes which violates the SpaceWire standard. It also ensures that a the master sending time-
codes on a network will not have its time-counter overwritten if another (faulty) node starts sending
time-codes. 

The time-counter register is set to 0 after reset and is incremented each time the tick-in signal is
asserted for one clock-period and the timetxen bit is set. This also causes the link interface to send the
new value on the network. Tick-in can be generated either by writing a one to the register field or by
asserting the tick-in signal. A Tick-in should not be generated too often since if the time-code after the
previous Tick-in has not been sent the register will not be incremented and no new value will be sent.
The tick-in field is automatically cleared when the value has been sent and thus no new ticks should
be generated until this field is zero. If the tick-in signal is used there should be at least 4 system-clock
and 25 transmit-clock cycles between each assertion.

A tick-out is generated each time a valid time-code is received and the timerxen bit is set. When the
tick-out is generated the tick-out signal will be asserted one clock-cycle and the tick-out register field
is asserted until it is cleared by writing a one to it.

The current time counter value can be read from the time register. It is updated each time a Time-code
is received and the timerxen bit is set. The same register is used for transmissions and can also be
written directly from the APB interface.

The control bits of the Time-code are always stored to the time-ctrl register when a Time-code is
received whose time-count is one more than the nodes current time-counter register. The time-ctrl reg-
ister can be read through the APB interface. The same register is used during time-code transmissions. 

It is possible to have both the time-transmission and reception functions enabled at the same time.

46.4 Receiver DMA engine

The receiver DMA engine handles reception of data from the SpaceWire network to different DMA
channels. Currently there is only one receive DMA channel available but the core has been written so
that additional channels can be easily added if needed. 

46.4.1 Basic functionality

The receiver DMA engine reads N-Chars from the N-Char FIFO and stores them to a DMA channel.
Reception is based on descriptors located in a consecutive area in memory that hold pointers to buff-
ers where packets should be stored. When a packet arrives at the core it reads a descriptor from mem-
ory and stores the packet to the memory area pointed to by the descriptor. Then it stores status to the
same descriptor and increments the descriptor pointer to the next one.

46.4.2 Setting up the core for reception

A few registers need to be initialized before reception can take place. First the link interface need to
be put in the run state before any data can be sent. The DMA channel has a maximum length register
which sets the maximum size of packet that can be received to this channel. Larger packets are trun-
cated and the excessive part is spilled. If this happens an indication will be given in the status field of
the descriptor. The minimum value for the receiver maximum length field is 4 and the value can only
be incremented in steps of four bytes. If the maximum length is set to zero the receiver will not func-
tion correctly.
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The node address register needs to be set to hold the address of this SpaceWire node. Packets received
with the incorrect address are discarded. Finally, the descriptor table and control register must be ini-
tialized. This will be described in the two following sections.

46.4.3 Setting up the descriptor table address

The core reads descriptors from an area in memory pointed to by the receiver descriptor table address
register. The register consists of a base address and a descriptor selector. The base address points to
the beginning of the area and must start on a 1 kbytes aligned address. It is also limited to be 1 kbytes
in size which means the maximum number of descriptors is 128. 

The descriptor selector points to individual descriptors and is increased by 1 when a descriptor has
been used. When the selector reaches the upper limit of the area it wraps to the beginning automati-
cally. It can also be set to wrap automatically by setting a bit in the descriptors. The idea is that the
selector should be initialized to 0 (start of the descriptor area) but it can also be written with another 8
bytes aligned value to start somewhere in the middle of the area. It will still wrap to the beginning of
the area.

If one wants to use a new descriptor table the receiver enable bit has to be cleared first. When the
rxactive bit for the channel is cleared it is safe to update the descriptor table register. When this is fin-
ished and descriptors are enabled the receiver enable bit can be set again.

46.4.4 Enabling descriptors

As mentioned earlier one or more descriptors must be enabled before reception can take place. Each
descriptor is 8 byte in size and the layout can be found in the tables below. The descriptors should be
written to the memory area pointed to by the receiver descriptor table address register. When new
descriptors are added they must always be placed after the previous one written to the area. Otherwise
they will not be noticed.

A descriptor is enabled by setting the address pointer to point at a location where data can be stored
and then setting the enable bit. The WR bit can be set to cause the selector to be set to zero when
reception has finished to this descriptor. IE should be set if an interrupt is wanted when the reception
has finished. The DMA control register interrupt enable bit must also be set for this to happen. 

The descriptor packet address should be word aligned. All accesses on the bus are word accesses so
complete words will always be overwritten regardless of whether all 32-bit contain received data.
Also if the packet does not end on a word boundary the complete word containing the last data byte
will be overwritten. If the rxunaligned or rmap VHDL generic is set to 1 this restriction is removed
and any number of bytes can be received to any packet address without excessive bytes being over-
written.

Table 422. GRSPW receive descriptor word 0 (address offset 0x0)
31 30 29 28 27 26 25 24 0

TR DC HC EP IE WR EN PACKETLENGTH

31 Truncated (TR) - Packet was truncated due to maximum length violation.

30 Data CRC (DC) - 1 if a CRC error was detected for the data and 0 otherwise.

29 Header CRC (HC) - 1 if a CRC error was detected for the header and 0 otherwise.

28 EEP termination (EP) - This packet ended with an Error End of Packet character.

27 Interrupt enable (IE) - If set, an interrupt will be generated when a packet has been received if the 
receive interrupt enable bit in the DMA channel control register is set.

26 Wrap (WR) - If set, the next descriptor used by the GRSPW will be the first one in the descriptor 
table (at the base address). Otherwise the descriptor pointer will be increased with 0x8 to use the 
descriptor at the next higher memory location. The descriptor table is limited to 1 kbytes in size and 
the pointer will be automatically wrap back to the base address when it reaches the 1 kbytes bound-
ary.
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46.4.5 Setting up the DMA control register

The final step to receive packets is to set the control register in the following steps: The receiver must
be enabled by setting the rxen bit in the DMA control register (see section 46.9). This can be done
anytime and before this bit is set nothing will happen. The rxdescav bit in the DMA control register is
then set to indicate that there are new active descriptors. This must always be done after the descrip-
tors have been enabled or the core might not notice the new descriptors. More descriptors can be acti-
vated when reception has already started by enabling the descriptors and writing the rxdescav bit.
When these bits are set reception will start immediately when data is arriving.

46.4.6 The effect to the control bits during reception

When the receiver is disabled all packets going to the DMA-channel are discarded. If the receiver is
enabled the next state is entered where the rxdescav bit is checked. This bit indicates whether there are
active descriptors or not and should be set by the external application using the DMA channel each
time descriptors are enabled as mentioned above. If the rxdescav bit is ‘0’ and the nospill bit is ‘0’ the
packets will be discarded. If nospill is one the core waits until rxdescav is set. 

When rxdescav is set the next descriptor is read and if enabled the packet is received to the buffer. If
the read descriptor is not enabled, rxdescav is set to ‘0’ and the packet is spilled depending on the
value of nospill.

The receiver can be disabled at any time and will cause all packets received afterwards to be dis-
carded. If a packet is currently received when the receiver is disabled the reception will still be fin-
ished. The rxdescav bit can also be cleared at any time. It will not affect any ongoing receptions but
no more descriptors will be read until it is set again. Rxdescav is also cleared by the core when it reads
a disabled descriptor.

46.4.7 Address recognition and packet handling

When the receiver N-Char FIFO is not empty, N-Chars are read by the receiver DMA engine. The
first character is interpreted as the logical address which is compared to the node address register. If it
does not match, the complete packet is discarded (up to and including the next EOP/EEP).

If the address matches the next action taken depends on whether RMAP is enabled or not. If RMAP is
disabled all packets are stored to the DMA channel and depending on the conditions mentioned in the
previous section, the packet will be received or not. If the packet is received complete packet includ-
ing address and protocol ID but excluding EOP/EEP is stored to the address indicated in the descrip-
tor, otherwise the complete packet is discarded.

If RMAP is enabled the protocol ID and 3rd byte in the packet is first checked before any decisions
are made. If incoming packet is an RMAP packet (ID = 0x01) and the command type field is 01b the
packet is processed by the RMAP command handler which is described in section 46.6. Otherwise the
packet is processed by the DMA engine as when RMAP is disabled.

25 Enable (EN) - Set to one to activate this descriptor. This means that the descriptor contains valid con-
trol values and the memory area pointed to by the packet address field can be used to store a packet.

24: 0 Packet length (PACKETLENGTH) - The number of bytes received to this buffer. Only valid after 
EN has been set to 0 by the GRSPW.

Table 423. GRSPW receive descriptor word 1 (address offset 0x4)
31 0

PACKETADDRESS

31: 0 Packet address (PACKETADDRESS) - The address pointing at the buffer which will be used to store 
the received packet. If the rxunaligned and rmap VHDL generics are both set to zero only bit 31 to 2 
are used.

Table 422. GRSPW receive descriptor word 0 (address offset 0x0)
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At least 2 non EOP/EEP N-Chars need to be received for a packet to be stored to the DMA channel. If
it is an RMAP packet 3 N-Chars are needed since the command byte determines where the packet is
processed. Packets smaller than the minimum size are discarded.

46.4.8 Status bits

When the reception of a packet is finished the enable bit in the current descriptor is set to zero. When
enable is zero, the status bits are also valid and the number of received bytes is indicated in the length
field. The DMA control register contains a status bit which is set each time a packet has been
received. The core can also be made to generate an interrupt for this event as mentioned in section
46.4.4. 

RMAP CRC logic is included in the implementation if the rmapcrc or rmap VHDL generic set to 1.
The RMAP CRC calculation is always active for all received packets and all bytes except the EOP/
EEP are included. The packet is always assumed to be a RMAP packet and the length of the header is
determined by checking byte 3 which should be the command field. The calculated CRC value is then
checked when the header has been received (according to the calculated number of bytes) and if it is
non-zero the HC bit is set indicating a header CRC error.

The CRC value is not set to zero after the header has been received, instead the calculation continues
in the same way until the complete packet has been received. Then if the CRC value is non-zero the
DC bit is set indicating a data CRC error. This means that the core can indicate a data CRC error even
if the data field was correct when the header CRC was incorrect. However, the data should not be used
when the header is corrupt and therefore the DC bit is unimportant in this case. When the header is not
corrupted the CRC value will always be zero when the calculation continues with the data field and
the behaviour will be as if the CRC calculation was restarted 

If the received packet is not of RMAP type the header CRC error indication bit cannot be used. It is
still possible to use the DC bit if the complete packet is covered by a CRC calculated using the RMAP
CRC definition. This is because the core does not restart the calculation after the header has been
received but instead calculates a complete CRC over the packet. Thus any packet format with one
CRC at the end of the packet calculated according to RMAP standard can be checked using the DC
bit.

If the packet is neither of RMAP type nor of the type above with RMAP CRC at the end, then both the
HC and DC bits should be ignored.

46.4.9 Error handling

If a packet reception needs to be aborted because of congestion on the network, the suggested solution
is to set link disable to ‘1’. Unfortunately, this will also cause the packet currently being transmitted to
be truncated but this is the only safe solution since packet reception is a passive operation depending
on the transmitter at the other end. A channel reset bit could be provided but is not a satisfactory solu-
tion since the untransmitted characters would still be in the transmitter node. The next character
(somewhere in the middle of the packet) would be interpreted as the node address which would prob-
ably cause the packet to be discarded but not with 100% certainty. Usually this action is performed
when a reception has stuck because of the transmitter not providing more data. The channel reset
would not resolve this congestion.

If an AHB error occurs during reception the current packet is spilled up to and including the next
EEP/EOP and then the currently active channel is disabled and the receiver enters the idle state. A bit
in the channels control/status register is set to indicate this condition.

46.4.10 Promiscuous mode

The core supports a promiscuous mode where all the data received is stored to the DMA channel
regardless of the node address and possible early EOPs/EEPs. This means that all non-eop/eep N-
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Chars received will be stored to the DMA channel. The rxmaxlength register is still checked and
packets exceeding this size will be truncated. 

RMAP commands will still be handled by the RMAP target when promiscuous mode is enabled if the
rmapen bit is set. If it is cleared, RMAP commands will also be stored to the DMA channel.

46.5 Transmitter DMA engine

The transmitter DMA engine handles transmission of data from the DMA channel to the SpaceWire
network. There is one DMA channel available but the core has been written so that additional DMA
channels can be easily added if needed. 

46.5.1 Basic functionality

The transmit DMA engine reads data from the AHB bus and stores them in the transmitter FIFO for
transmission on the SpaceWire network. Transmission is based on the same type of descriptors as for
the receiver and the descriptor table has the same alignment and size restrictions. When there are new
descriptors enabled the core reads them and transfer the amount data indicated.

46.5.2 Setting up the core for transmission

Four steps need to be performed before transmissions can be done with the core. First the link inter-
face must be enabled and started by writing the appropriate value to the ctrl register. Then the address
to the descriptor table needs to be written to the transmitter descriptor table address register and one or
more descriptors must also be enabled in the table. Finally, the txen bit in the DMA control register
should be written with a one which triggers the transmission. These steps will be covered in more
detail in the next sections.

46.5.3 Enabling descriptors

The descriptor table address register works in the same way as the receiver’s corresponding register
which was covered in section 46.4.

To transmit packets one or more descriptors have to be initialized in memory which is done in the fol-
lowing way: The number of bytes to be transmitted and a pointer to the data has to be set. There are
two different length and address fields in the transmit descriptors because there are separate pointers
for header and data. If a length field is zero the corresponding part of a packet is skipped and if both
are zero no packet is sent. The maximum header length is 255 bytes and the maximum data length is
16 Mbyte - 1. When the pointer and length fields have been set the enable bit should be set to enable
the descriptor. This must always be done last. The other control bits must also be set before enabling
the descriptor.

The transmit descriptors are 16 bytes in size so the maximum number in a single table is 64. The dif-
ferent fields of the descriptor together with the memory offsets are shown in the tables below.

The HC bit should be set if RMAP CRC should be calculated and inserted for the header field and
correspondingly the DC bit should be set for the data field. This field is only used by the core when
the CRC logic is available (rmap or rmapcrc VHDL generic set to 1). The header CRC will be calcu-
lated from the data fetched from the header pointer and the data CRC is generated from data fetched
from the data pointer. The CRCs are appended after the corresponding fields. The NON-CRC bytes
field is set to the number of bytes in the beginning of the header field that should not be included in
the CRC calculation. The CRCs are sent even if the corresponding length is zero.

When both header and data length are zero no packet is sent not even an EOP.

46.5.4 Starting transmissions

When the descriptors have been initialized, the transmit enable bit in the DMA control register has to
be set to tell the core to start transmitting. New descriptors can be activated in the table on the fly
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(while transmission is active). Each time a set of descriptors is added the transmit enable register bit
should be set. This has to be done because each time the core encounters a disabled descriptor this
register bit is set to 0.

Table 424. GRSPW transmit descriptor word 0 (address offset 0x0)
31 18 17 16 15 14 13 12 11 8 7 0

RESERVED DC HC LE IE WR EN NONCRCLEN HEADERLEN

31: 18 RESERVED

17 Append data CRC (DC) - Append CRC calculated according to the RMAP specification after the 
data sent from the data pointer. The CRC covers all the bytes from this pointer. A null CRC will 
be sent if the length of the data field is zero.

16 Append header CRC (HC) - Append CRC calculated according to the RMAP specification after the 
data sent from the header pointer. The CRC covers all bytes from this pointer except a number of 
bytes in the beginning specified by the non-crc bytes field. The CRC will not be sent if the header 
length field is zero.

15 Link error (LE) - A Link error occurred during the transmission of this packet.

14 Interrupt enable (IE) - If set, an interrupt will be generated when the packet has been transmitted and 
the transmitter interrupt enable bit in the DMA control register is set.

13 Wrap (WR) - If set, the descriptor pointer will wrap and the next descriptor read will be the first one 
in the table (at the base address). Otherwise the pointer is increased with 0x10 to use the descriptor at 
the next higher memory location.

12 Enable (EN) - Enable transmitter descriptor. When all control fields (address, length, wrap and crc) 
are set, this bit should be set. While the bit is set the descriptor should not be touched since this 
might corrupt the transmission. The GRSPW clears this bit when the transmission has finished.

11: 8 Non-CRC bytes (NONCRCLEN)- Sets the number of bytes in the beginning of the header which 
should not be included in the CRC calculation. This is necessary when using path addressing since 
one or more bytes in the beginning of the packet might be discarded before the packet reaches its 
destination.

7: 0 Header length (HEADERLEN) - Header Length in bytes. If set to zero, the header is skipped.

Table 425. GRSPW transmit descriptor word 1 (address offset 0x4)
31 0

HEADERADDRESS

31: 0 Header address (HEADERADDRESS) - Address from where the packet header is fetched. Does not 
need to be word aligned.

Table 426. GRSPW transmit descriptor word 2 (address offset 0x8)
31 24 23 0

RESERVED DATALEN

31: 24 RESERVED

23: 0 Data length (DATALEN) - Length of data part of packet. If set to zero, no data will be sent. If both 
data- and header-lengths are set to zero no packet will be sent.

Table 427. GRSPW transmit descriptor word 3(address offset 0xC)
31 0

DATAADDRESS
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46.5.5 The transmission process

When the txen bit is set the core starts reading descriptors immediately. The number of bytes indicated
are read and transmitted. When a transmission has finished, status will be written to the first field of
the descriptor and a packet sent bit is set in the DMA control register. If an interrupt was requested it
will also be generated. Then a new descriptor is read and if enabled a new transmission starts, other-
wise the transmit enable bit is cleared and nothing will happen until it is enabled again.

46.5.6 The descriptor table address register

The internal pointer which is used to keep the current position in the descriptor table can be read and
written through the APB interface. This pointer is set to zero during reset and is incremented each
time a descriptor is used. It wraps automatically when the 1 kbytes limit for the descriptor table is
reached or it can be set to wrap earlier by setting a bit in the current descriptor.

The descriptor table register can be updated with a new table anytime when no transmission is active.
No transmission is active if the transmit enable bit is zero and the complete table has been sent or if
the table is aborted (explained below). If the table is aborted one has to wait until the transmit enable
bit is zero before updating the table pointer.

46.5.7 Error handling

Abort Tx

The DMA control register contains a bit called Abort TX which if set causes the current transmission
to be aborted, the packet is truncated and an EEP is inserted. This is only useful if the packet needs to
be aborted because of congestion on the SpaceWire network. If the congestion is on the AHB bus this
will not help (This should not be a problem since AHB slaves should have a maximum of 16 wait-
states). The aborted packet will have its LE bit set in the descriptor. The transmit enable register bit is
also cleared and no new transmissions will be done until the transmitter is enabled again. 

AHB error

When an AHB error is encountered during transmission the currently active DMA channel is disabled
and the transmitter goes to the idle mode. A bit in the DMA channel’s control/status register is set to
indicate this error condition and, if enabled, an interrupt will also be generated. Further error handling
depends on what state the transmitter DMA engine was in when the AHB error occurred. If the
descriptor was being read the packet transmission had not been started yet and no more actions need
to be taken. 

If the AHB error occurs during packet transmission the packet is truncated and an EEP is inserted.
Lastly, if it occurs when status is written to the descriptor the packet has been successfully transmitted
but the descriptor is not written and will continue to be enabled (this also means that no error bits are
set in the descriptor for AHB errors). 

The client using the channel has to correct the AHB error condition and enable the channel again. No
more AHB transfers are done again from the same unit (receiver or transmitter) which was active dur-
ing the AHB error until the error state is cleared and the unit is enabled again. 

Link error

When a link error occurs during the transmission the remaining part of the packet is discarded up to
and including the next EOP/EEP. When this is done status is immediately written (with the LE bit set)
and the descriptor pointer is incremented. The link will be disconnected when the link error occurs but
the core will automatically try to connect again provided that the link-start bit is asserted and the link-
disabled bit is deasserted. If the LE bit in the DMA channel’s control register is not set the transmitter

31: 0 Data address (DATAADDRESS) - Address from where data is read. Does not need to be word 
aligned.

Table 427. GRSPW transmit descriptor word 3(address offset 0xC)
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DMA engine will wait for the link to enter run-state and start a new transmission immediately when
possible if packets are pending. Otherwise the transmitter will be disabled when a link error occurs
during the transmission of the current packet and no more packets will be transmitted until it is
enabled again. 

46.6 RMAP

The Remote Memory Access Protocol (RMAP) is used to implement access to resources in the node
via the SpaceWire Link. Some common operations are reading and writing to memory, registers and
FIFOs. The core has an optional hardware RMAP target which is enabled with a VHDL generic. This
section describes the basics of the RMAP protocol and the target implementation.

46.6.1 Fundamentals of the protocol

RMAP is a protocol which is designed to provide remote access via a SpaceWire network to memory
mapped resources on a SpaceWire node. It has been assigned protocol ID 0x01. It provides three oper-
ations write, read and read-modify-write. These operations are posted operations which means that a
source does not wait for an acknowledge or reply. It also implies that any number of operations can be
outstanding at any time and that no timeout mechanism is implemented in the protocol. Time-outs
must be implemented in the user application which sends the commands. Data payloads of up to 16
Mb - 1 is supported in the protocol. A destination can be requested to send replies and to verify data
before executing an operation. A complete description of the protocol is found in the RMAP standard.

46.6.2 Implementation

The core includes a taget for RMAP commands which processes all incoming packets with protocol
ID = 0x01 and type field (bit 7 and 6 of the 3rd byte in the packet) equal to 01b. When such a packet
is detected it is not stored to the DMA channel, instead it is passed to the RMAP receiver. 

The core implements all three commands defined in the standard with some restrictions. The imple-
mentation is based on draft F of the RMAP standard (the only exception being that error code 12 is
not implemented). Support is only provided for 32-bit big-endian systems. This means that the first
byte received is the msb in a word. The command handler will not receive RMAP packets using the
extended protocol ID which are always dumped to the DMA channel.

The RMAP receiver processes commands. If they are correct and accepted the operation is performed
on the AHB bus and a reply is formatted. If an acknowledge is requested the RMAP transmitter auto-
matically send the reply. RMAP transmissions have priority over DMA channel transmissions.

Packets with a mismatching destination logical address are never passed to the RMAP target. There is
a user accessible destination key register which is compared to destination key field in incoming
packets. If there is a mismatch and a reply has been requested the error code in the reply is set to 3.
Replies are sent if and only if the ack field is set to ‘1’. 
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Detection of all error codes except code 12 is supported. When a failure occurs during a bus access the
error code is set to 1 (General Error). There is predetermined order in which error-codes are set in the
case of multiple errors in the core. It is shown in table 428. 

Read accesses are performed on the fly, that is they are not stored in a temporary buffer before trans-
mission. This means that the error code 1 will never be seen in a read reply since the header has
already been sent when the data is read. If the AHB error occurs the packet will be truncated and
ended with an EEP. 

Errors up to and including Invalid Data CRC (number 8) are checked before verified commands. The
other errors do not prevent verified operations from being performed.

The details of the support for the different commands are now presented. All defined commands
which are received but have an option set which is not supported in this specific implementation will
not be executed and a possible reply is sent with error code 10.

46.6.3 Write commands

The write commands are divided into two subcategories when examining their capabilities: verified
writes and non-verified writes. Verified writes have a length restriction of 4 B and the address must be
aligned to the size. That is 1 B writes can be done to any address, 2 B must be halfword aligned, 3 B
are not allowed and 4 B writes must be word aligned. Since there will always be only one AHB oper-
ation performed for each RMAP verified write command the incrementing address bit can be set to
any value. 

Non-verified writes have no restrictions when the incrementing bit is set to 1. If it is set to 0 the num-
ber of bytes must be a multiple of 4 and the address word aligned. There is no guarantee how many
words will be written when early EOP/EEP is detected for non-verified writes.

46.6.4 Read commands

Read commands are performed on the fly when the reply is sent. Thus if an AHB error occurs the
packet will be truncated and ended with an EEP. There are no restrictions for incrementing reads but
non-incrementing reads have the same alignment restrictions as non-verified writes. Note that the
“Authorization failure” error code will be sent in the reply if a violation was detected even if the
length field was zero. Also note that no data is sent in the reply if an error was detected i.e. if the status
field is non-zero.

Table 428.The order of error detection in case of multiple errors in the GRSPW. The error detected first has number 1.

Detection Order Error Code Error

1 2 Unused RMAP packet type or command code

2 3 Invalid destination key

3 9 Verify buffer overrun

4 11 RMW data length error

5 10 Authorization failure

6* 1 General Error (AHB errors during non-verified writes)

7 5/7 Early EOP / EEP (if early)

8 4 Invalid Data CRC

9 1 General Error (AHB errors during verified writes or RMW)

10 7 EEP

11 6 Cargo Too Large

*The AHB error is not guaranteed to be detected before Early EOP/EEP or Invalid Data CRC. For very long accesses 
the AHB error detection might be delayed causing the other two errors to appear first.
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46.6.5 RMW commands

All read-modify-write sizes are supported except 6 which would have caused 3 B being read and writ-
ten on the bus. The RMW bus accesses have the same restrictions as the verified writes. As in the ver-
ified write case, the incrementing bit can be set to any value since only one AHB bus operation will be
performed for each RMW command. Cargo too large is detected after the bus accesses so this error
will not prevent the operation from being performed. No data is sent in a reply if an error is detected
i.e. the status field is non-zero.

46.6.6 Control

The RMAP command handler mostly runs in the background without any external intervention, but
there are a few control possibilities.

There is an enable bit in the control register of the core which can be used to completely disable the
RMAP command handler. When it is set to ‘0’ no RMAP packets will be handled in hardware, instead
they are all stored to the DMA channel. 

There is a possibility that RMAP commands will not be performed in the order they arrive. This can
happen if a read arrives before one or more writes. Since the command handler stores replies in a
buffer with more than one entry several commands can be processed even if no replies are sent. Data
for read replies is read when the reply is sent and thus writes coming after the read might have been
performed already if there was congestion in the transmitter. To avoid this the RMAP buffer disable
bit can be set to force the command handler to only use one buffer which prevents this situation.

The last control option for the command handler is the possibility to set the destination key which is
found in a separate register.
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Table 429.GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command 
/ Response

Write /
Read

Verify 
data 
before 
write

Acknow-
ledge

Increment 
Address

0 0 - - - - Response Stored to DMA-channel.

0 1 0 0 0 0 Not used Does nothing. No reply is sent.

0 1 0 0 0 1 Not used Does nothing. No reply is sent.

0 1 0 0 1 0 Read single 
address

Executed normally. Address has 
to be word aligned and data size 
a multiple of four. Reply is sent. 
If alignment restrictions are vio-
lated error code is set to 10. 

0 1 0 0 1 1 Read incre-
menting 
address.

Executed normally. No restric-
tions. Reply is sent. 

0 1 0 1 0 0 Not used Does nothing. No reply is sent.

0 1 0 1 0 1 Not used Does nothing. No reply is sent.

0 1 0 1 1 0 Not used Does nothing. Reply is sent with 
error code 2.

0 1 0 1 1 1 Read-Mod-
ify-Write 
increment-
ing address

Executed normally. If length is 
not one of the allowed rmw val-
ues nothing is done and error 
code is set to 11. If the length 
was correct, alignment restric-
tions are checked next. 1 byte 
can be rmw to any address. 2 
bytes must be halfword aligned. 
3 bytes are not allowed. 4 bytes 
must be word aligned. If these 
restrictions are violated nothing 
is done and error code is set to 
10. If an AHB error occurs error 
code is set to 1. Reply is sent.

0 1 1 0 0 0 Write, sin-
gle-address, 
do not verify 
before writ-
ing, no 
acknowledge

Executed normally. Address has 
to be word aligned and data size 
a multiple of four. If alignment is 
violated nothing is done. No 
reply is sent.

0 1 1 0 0 1 Write, incre-
menting 
address, do 
not verify 
before writ-
ing, no 
acknowledge

Executed normally. No restric-
tions. No reply is sent.

0 1 1 0 1 0 Write, sin-
gle-address, 
do not verify 
before writ-
ing, send 
acknowledge

Executed normally. Address has 
to be word aligned and data size 
a multiple of four. If alignment is 
violated nothing is done and 
error code is set to 10. If an AHB 
error occurs error code is set to 1. 
Reply is sent.
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46.7 AMBA interface

The AMBA interface consists of an APB interface, an AHB master interface and DMA FIFOs. The
APB interface provides access to the user registers which are described in section 46.9. The DMA
engines have 32-bit wide FIFOs to the AHB master interface which are used when reading and writ-
ing to the bus.

The transmitter DMA engine reads data from the bus in bursts which are half the FIFO size in length.
A burst is always started when the FIFO is half-empty or if it can hold the last data for the packet. The
burst containing the last data might have shorter length if the packet is not an even number of bursts in
size.

0 1 1 0 1 1 Write, incre-
menting 
address, do 
not verify 
before writ-
ing, send 
acknowledge

Executed normally. No restric-
tions. If AHB error occurs error 
code is set to 1. Reply is sent.

0 1 1 1 0 0 Write, single 
address, ver-
ify before 
writing, no 
acknowledge

Executed normally. Length must 
be 4 or less. Otherwise nothing is 
done. Same alignment restric-
tions apply as for rmw. No reply 
is sent.

0 1 1 1 0 1 Write, incre-
menting 
address, ver-
ify before 
writing, no 
acknowledge

Executed normally. Length must 
be 4 or less. Otherwise nothing is 
done. Same alignment restric-
tions apply as for rmw. If they 
are violated nothing is done. No 
reply is sent.

0 1 1 1 1 0 Write, single 
address, ver-
ify before 
writing, send 
acknowledge

Executed normally. Length must 
be 4 or less. Otherwise nothing is 
done and error code is set to 9. 
Same alignment restrictions 
apply as for rmw. If they are vio-
lated nothing is done and error 
code is set to 10. If an AHB error 
occurs error code is set to 1. 
Reply is sent.

0 1 1 1 1 1 Write, incre-
menting 
address, ver-
ify before 
writing, send 
acknowledge

Executed normally. Length must 
be 4 or less. Otherwise nothing is 
done and error code is set to 9. 
Same alignment restrictions 
apply as for rmw. If they are vio-
lated nothing is done and error 
code is set to 10. If an AHB error 
occurs error code is set to 1. 
Reply is sent.

1 0 - - - - Unused Stored to DMA-channel.

1 1 - - - - Unused Stored to DMA-channel.

Table 429.GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command 
/ Response

Write /
Read

Verify 
data 
before 
write

Acknow-
ledge

Increment 
Address
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The receiver DMA works in the same way except that it checks if the FIFO is half-full and then per-
forms a burst write to the bus which is half the fifo size in length. The last burst might be shorter. If
the rmap or rxunaligned VHDL generics are set to 1 the interface also handles byte accesses. Byte
accesses are used for non word-aligned buffers and/or packet lengths that are not a multiple of four
bytes. There might be 1 to 3 single byte writes when writing the beginning and end of the received
packets. 

46.7.1 APB slave interface

As mentioned above, the APB interface provides access to the user registers which are 32-bits in
width. The accesses to this interface are required to be aligned word accesses. The result is undefined
if this restriction is violated.

46.7.2 AHB master interface

The core contains a single master interface which is used by both the transmitter and receiver DMA
engines. The arbitration algorithm between the channels is done so that if the current owner requests
the interface again it will always acquire it. This will not lead to starvation problems since the DMA
engines always deassert their requests between accesses.

 if rmap and rxunaligned are disabledThe AHB accesses can be of size byte, halfword and word
(HSIZE = 0x000, 0x001, 0x010) otherwise. Byte and halfword accesses are always NONSEQ. 

The burst length will be half the AHB FIFO size except for the last transfer for a packet which might
be smaller. Shorter accesses are also done during descriptor reads and status writes.

The AHB master also supports non-incrementing accesses where the address will be constant for sev-
eral consecutive accesses. HTRANS will always be NONSEQ in this case while for incrementing
accesses it is set to SEQ after the first access. This feature is included to support non-incrementing
reads and writes for RMAP.

If the core does not need the bus after a burst has finished there will be one wasted cycle (HTRANS =
IDLE). 

BUSY transfer types are never requested and the core provides full support for ERROR, RETRY and
SPLIT responses.

46.8 Synthesis and hardware

46.8.1 Clock-generation

Figure 147 shows the clock recovery scheme for the receiver. Data and strobe are coupled directly
from their pads to an xor gate which generates the clock. The output from the xor is then connected to
a clock network. The specific type of clock network depends on the technology used. The xor gate is
actually all that logically belongs to the Rx clock recovery module in figure 147.

The clock output drives all flip-flops in the receiver module found in figure 143. The data signal
which is used for generating the clock is also coupled to the data inputs of several flip-flops clocked
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by the Rx clock as seen in figure 147. Care must be taken so that the delay from the data and strobe
signals through the clock network are longer than the delay to the data input + setup time.

The transmitter clock is generated from the txclk input. A separate clock input is used to allow the
transmitter to be run at much higher frequencies than the system clock. The SpaceWire node contains
a clock-divider which divides the txclk signal to the wanted frequency. The transmitter clock should
be 10 MHz during initialization and any frequency above 2 MHz in the run-state. 

There is an input signal called clkdiv10 which sets the clock divisor value during initialization and the
reset value for the user accessible clock divisor register. The user register value will be used in run-
state. The resulting tx clock frequency will be txclk/(clock divisor value+1). So if no clock division is
wanted, the clock divisor should be set to 0.

Since only integer values are allowed for the clock division and the required init-frequency is 10 Mhz
the frequency of the txclk input must be a multiple of 10 MHz. The clock divisor value is 8-bits wide
so the maximum txclk frequency supported is 2.56 GHz (note that there is also a restriction on the
relation between the system and transmit clock frequencies).

46.8.2 Timers

There are two timers in the core: one for generating the 6.4/12.8 us periods and one for disconnect
timing. The system clock frequency must be at least 10 MHz to guarantee disconnect timing limits. 

There are two user accessible registers which are used to the set the number of clock cycles used for
the timeout periods. These registers are described in section 46.9. 

The reset value for the timer registers can be set in two different ways selected by the usegen VHDL
generic. If usegen is set to 1, the sysfreq VHDL generic is used to generate reset values for the discon-
nect, 6.4 us and 12.8 us timers. Otherwise, the input signals dcrstval and timerrstval will be used as
reset values. If the system clock frequency is 10 MHz or above the disconnect time will be within the
limits specified in the SpaceWire standard. 

46.8.3 Synchronization

The VHDL generic nsync selects how many synchronization registers are used between clock
domains. The default is one and should be used when maximum performance is needed. It allows the
transmitter to be clocked 4 times faster than the system clock and the receiver 2 times faster. These are
theoretical values without consideration for clock skew and jitter. Note also that the receiver clocks
data at both negative and positive edges. Thus, the bitrate is twice as high as the clock-rate.

The synchronization limits the Tx and Rx clocks to be at most 4 and 2 times faster than the system
clock. But it might not be possible to achieve such high clock rates for the Tx and Rx clocks for all
technologies.

The asynchronous reset to the receiver clock domain has to have a maximum delay of one receiver
clock cycle to ensure correct operation. This is needed because the receiver uses has a completely

D
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Figure 147.  The clocking scheme for the receiver. The clock is 
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asynchronous reset. To make sure that nothing bad happens the is a synchronous reset guard which
prevents any signals from being assigned before all registers have their reset signals released.

46.8.4 Fault-tolerance

The core can optionally be implemented with fault-tolerance against SEU errors in the FIFO memo-
ries. The fault-tolerance is enabled through the ft VHDL generic. Possible options are byte parity pro-
tection (ft = 1) or TMR registers (ft = 2). Note: the GPL version of GRLIB does not include fault-
tolerance, and the core will not work unless the ft VHDL generic is 0.

46.8.5 Synthesis

Since the receiver and transmitter may run on very high frequency clocks their clock signals have
been coupled through a clock buffer with a technology wrapper. This clock buffer will utilize a low
skew net available in the selected technology for the clock. 

The clock buffer will also enable most synthesis tools to recognize the clocks and it is thus easier to
find them and place constraints on them. The fact there are three clock domains in the GRSPW of
which all are possibly high frequency clocks makes it necessary to declare all paths between the clock
domains as false paths. 

In Synplify this is most easily done by declaring all the clocks to be in different clockgroups in the sdc
file (if Synplify does not automatically put them in different groups). This will disable any timing
considerations between the clock domains and these constraints will also propagate to the place and
route tool.

The type of clock buffer is selectable with a VHDL generic and the value zero provides a normal feed
through which lets the synthesis tool infer the type of net used.

46.8.6 Technology mapping

The core has three generics for technology mapping: tech, techfifo and memtech. Tech selects the tech-
nology used for the clock buffers and also adds reset to some registers for technologies where they
would otherwise cause problems with gate-level simulations. Techfifo selects whether memtech
should be used to select the technology for the FIFO memories (the RMAP buffer is not affected by
the this generic) or if they should be inferred. Tech and memtech can be set to any value from 0 to
NTECH as defined in the GRLIB.TECH package.

46.8.7 RAM usage

The core maps all RAM memories on the syncram_2p component if the ft generic is 0 and to the
syncram_2pft component for other values. The syncrams are located in the technology mapping
library (TECHMAP). The organization of the different memories are described below. If techfifo and/
or memtech is set to 0 the synthesis tool will infer the memories. Either RAM blocks or flip-flops will
be used depending on the tool and technology. The number of flip-flops used is syncram depth x syn-
cram width for all the different memories. The receiver AHB FIFO with fifosize 32 will for example
use 1024 flips-flops. 

Receiver ahb FIFO

The receiver AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is deter-
mined by the configured FIFO depth. Table 430 shows the syncram organization for the allowed con-
figurations.



410

Transmitter ahb FIFO

The transmitter AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is
determined by the configured FIFO depth. Table 431 shows the syncram organization for the allowed
configurations.

Receiver N-Char FIFO

The receiver N-Char fifo consists of one syncram_2p block with a width of 9-bits. The depth is deter-
mined by the configured FIFO depth. Table 432 shows the syncram organization for the allowed con-
figurations.

RMAP buffer

The RMAP buffer consists of one syncram_2p block with a width of 8-bits. The depth is determined
by the number of configured RMAP buffers. Table 433 shows the syncram organization for the
allowed configurations.

Table 430.syncram_2p sizes for GRSPW receiver AHB FIFO.

Fifosize Syncram_2p organization

4 4x32

8 8x32

16 16x32

32 32x32

Table 431.syncram_2p sizes for transmitter AHB FIFO.

Fifosize Syncram_2p organization

4 4x32

8 8x32

16 16x32

32 32x32

Table 432.syncram_2p sizes for the receiver N-Char FIFO.

Fifosize Syncram_2p organization

16 16x9

32 32x9

64 64x9

Table 433.syncram_2p sizes for RMAP buffer memory.

RMAP buffers Syncram_2p organization

2 64x8

4 128x8

8 256x8
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46.9 Registers

The core is programmed through registers mapped into APB address space.

Table 434.GRSPW registers

APB address offset Register

0x0 Control

0x4 Status/Interrupt-source

0x8 Node address

0xC Clock divisor

0x10 Destination key

0x14 Time

0x18 Timer and Disconnect

0x20 DMA channel 1 control/status

0x24 DMA channel 1 rx maximum length

0x28 DMA channel 1 transmit descriptor table address.

0x2C DMA channel 1 receive descriptor table address.

Table 435. GRSPW control register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RA RX RC RESERVED PS NP RD RE RESERVED TR TT LI TQ RS PM TI IE AS LS LD

31 RMAP available (RA) - Set to one if the RMAP command handler is available. Only readable.

30 RX unaligned access (RX) - Set to one if unaligned writes are available for the receiver. Only read-
able.

29 RMAP CRC available (RC) - Set to one if RMAP CRC is enabled in the core. Only readable.

28: 27 RESERVED

26 Number of ports (PO) - The number of available SpaceWire ports minus one. Only readable.

25: 22 RESERVED

21 Port select (PS) - Selects the active port when the no port force bit is zero. ‘0’ selects the port con-
nected to data and strobe on index 0 while ‘1’ selects index 1. Only available if the ports VHDL 
generic is set to 2. Reset value: ‘0’.

20 No port force (NP) - Disable port force. When disabled the port select bit cannot be used to select the 
active port. Instead, it is automatically selected by checking the activity on the respective receive 
links. Only available if the ports VHDL generic is set to 2. Reset value: ‘0’.
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19: 18 RESERVED

17 RMAP buffer disable (RD) - If set only one RMAP buffer is used. This ensures that all RMAP com-
mands will be executed consecutively. Only available if the rmap VHDL generic is set to 1. Reset 
value: ‘0’.

16 RMAP Enable (RE) - Enable RMAP command handler. Only available if rmap VHDL generic is set 
to 1. Reset value: ‘1’. 

15: 12 RESERVED

11 Time Rx Enable (TR) - Enable time-code receptions. Reset value: ‘0’.

10 Time Tx Enable (TT) - Enable time-code transmissions. Reset value: ‘0’.

9 Link error IRQ (LI) - Generate interrupt when a link error occurs. Not reset.

8 Tick-out IRQ (TQ) - Generate interrupt when a valid time-code is received. Not reset.

7 RESERVED

6 Reset (RS) - Make complete reset of the SpaceWire node. Self clearing. Reset value: ‘0’.

5 Promiscuous Mode (PM) - Enable Promiscuous mode. Reset value: ‘0’.

4 Tick In (TI) - The host can generate a tick by writing a one to this field. This will increment the timer 
counter and the new value is transmitted after the current character is transferred. A tick can also be 
generated by asserting the tick_in signal. Reset value: ‘0’.

3 Interrupt Enable (IE) - If set, an interrupt is generated when one or both of bit 8 to 9 is set and its cor-
responding event occurs. Reset value: ‘0’.

2 Autostart (AS) - Automatically start the link when a NULL has been received. Not reset.

1 Link Start (LS) - Start the link, i.e. allow a transition from ready to started state. Reset value: ‘0’ if 
the RMAP command handler is not available. If available the reset value is set to the value of the 
rmapen input signal.

0 Link Disable (LD) - Disable the SpaceWire codec. Reset value: ‘0’.

Table 436. GRSPW status register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED LS RESERVED AP EE IA WE PE DE ER CE TO

31: 24 RESERVED

23: 21 Link State (LS) - The current state of the start-up sequence. 0 = Error-reset, 1 = Error-wait, 2 = 
Ready, 3 = Started, 4 = Connecting, 5 = Run. Reset value: 0.

20: 10 RESERVED

9 Active port (AP) - Shows the currently active port. ‘0’ = Port 0 and ‘1’ = Port 1 where the port num-
bers refer to the index number of the data and strobe signals. Only available if the ports generic is set 
to 2.

8 Early EOP/EEP (EE) - Set to one when a packet is received with an EOP after the first byte for a 
non-rmap packet and after the second byte for a RMAP packet. Cleared when written with a one. 
Reset value: ‘0’.

7 Invalid Address (IA) - Set to one when a packet is received with an invalid destination address field, 
i.e it does not match the nodeaddr register. Cleared when written with a one. Reset value: ‘0’.

6 Write synchronization Error (WE) - A synchronization problem has occurred when receiving N-
Chars. Cleared when written with a one. Reset value: ‘0’.

5 RESERVED

4 Parity Error (PE) - A parity error has occurred. Cleared when written with a one. Reset value: ‘0’.

3 Disconnect Error (DE) - A disconnection error has occurred. Cleared when written with a one. Reset 
value: ‘0’.

2 Escape Error (ER) - An escape error has occurred. Cleared when written with a one. Reset value: ‘0’.

1 Credit Error (CE) - A credit has occurred. Cleared when written with a one. Reset value: ‘0’.

0 Tick Out (TO) - A new time count value was received and is stored in the time counter field. Cleared 
when written with a one. Reset value: ‘0’.

Table 435. GRSPW control register
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Table 437. GRSPW node address register
31 8 7 0

RESERVED NODEADDR

31: 8 RESERVED

7: 0 Node address (NODEADDR) - 8-bit node address used for node identification on the SpaceWire 
network. Reset value: 254.

Table 438. GRSPW clock divisor register
31 16 15 8 7 0

RESERVED CLKDIVSTART CLKDIVRUN

31: 16 RESERVED

15: 8 Clock divisor startup (CLKDIVSTART) - 8-bit Clock divisor value used for the clock-divider 
during startup (link-interface is in other states than run). The actual divisor value is Clock Divi-
sor register + 1. Reset value: clkdiv10 input signal.

7: 0 Clock divisor run (CLKDIVRUN) - 8-bit Clock divisor value used for the clock-divider when the 
link-interface is in the run-state. The actual divisor value is Clock Divisor register + 1. Reset value: 
clkdiv10 input signal.

Table 439. GRSPW destination key
31 8 7 0

RESERVED DESTKEY

31: 8 RESERVED

7: 0 Destination key (DESTKEY) - RMAP destination key. Only available if the rmap VHDL generic is 
set to 1. Reset value: 0.

Table 440. GRSPW time register
31 8 7 6 5 0

RESERVED TCTRL TIMECNT

31: 8 RESERVED

7: 6 Time control flags (TCTRL) - The current value of the time control flags. Sent with time-code 
resulting from a tick-in. Received control flags are also stored in this register. Reset value: ‘0’.

5: 0 Time counter (TIMECNT) - The current value of the system time counter. It is incremented for each 
tick-in and the incremented value is transmitted. The register can also be written directly but the 
written value will not be transmitted. Received time-counter values are also stored in this register. 
Reset value: ‘0’.

Table 441. GRSPW timer and disconnect register.
31 22 21 12 11 0

RESERVED DISCONNECT TIMER64

31: 22 RESERVED
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21: 12 Disconnect (DISCONNECT) - Used to generate the 850 ns disconnect time period. The disconnect 
period is the number is the number of clock cycles in the disconnect register + 3. So to get a 850 ns 
period, the smallest number of clock cycles that is greater than or equal to 850 ns should be calcu-
lated and this values - 3 should be stored in the register. Reset value is set with VHDL generics or 
with input signals depending on the value of the usegen VHDL generic.

11: 0 6.4 us timer (TIMER64) - Used to generate the 6.4 and 12.8 us time periods. Should be set to the 
smallest number of clock cycles that is greater than or equal to 6.4 us. Reset value is set with VHDL 
generics or with input signals depending on the value of the usegen VHDL generic.

Table 442. GRSPW dma control register
31 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED LE RESERVED NS RD RX AT RA TA PR PS AI RI TI RE TE

31: 17 RESERVED

16 Link error disable (LE) - Disable transmitter when a link error occurs. No more packets will be trans-
mitted until the transmitter is enabled again. Reset value: ‘0’.

15: 13 RESERVED

12 No spill (NS) - If cleared, packets will be discarded when a packet is arriving and there are no active 
descriptors. If set, the GRSPW will wait for a descriptor to be activated.

11 Rx descriptors available (RD) - Set to one, to indicate to the GRSPW that there are enabled descrip-
tors in the descriptor table. Cleared by the GRSPW when it encounters a disabled descriptor: Reset 
value: ‘0’.

10 RX active (RX) - Is set to ‘1’ if a reception to the DMA channel is currently active otherwise it is ‘0’. 
Only readable.

9 Abort TX (AT) - Set to one to abort the currently transmitting packet and disable transmissions. If no 
transmission is active the only effect is to disable transmissions. Self clearing. Reset value: ‘0’.

8 RX AHB error (RA) - An error response was detected on the AHB bus while this receive DMA 
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.

7 TX AHB error (TA) - An error response was detected on the AHB bus while this transmit DMA 
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.

6 Packet received (PR) - This bit is set each time a packet has been received. never cleared by the SW-
node. Cleared when written with a one. Reset value: ‘0’.

5 Packet sent (PS) - This bit is set each time a packet has been sent. Never cleared by the SW-node. 
Cleared when written with a one. Reset value: ‘0’.

4 AHB error interrupt (AI) - If set, an interrupt will be generated each time an AHB error occurs when 
this DMA channel is accessing the bus. Not reset.

3 Receive interrupt (RI) - If set, an interrupt will be generated each time a packet has been received. 
This happens both if the packet is terminated by an EEP or EOP. Not reset.

2 Transmit interrupt (TI) - If set, an interrupt will be generated each time a packet is transmitted. The 
interrupt is generated regardless of whether the transmission was successful or not. Not reset.

1 Receiver enable (RE) - Set to one when packets are allowed to be received to this channel. Reset 
value: ‘0’.

0 Transmitter enable (TE) - Write a one to this bit each time new descriptors are activated in the table. 
Writing a one will cause the SW-node to read a new descriptor and try to transmit the packet it points 
to. This bit is automatically cleared when the SW-node encounters a descriptor which is disabled. 
Reset value: ‘0’.

Table 443. GRSPW RX maximum length register.
31 25 24 0

RESERVED RXMAXLEN

Table 441. GRSPW timer and disconnect register.
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46.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x1F. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31: 25 RESERVED

24: 0 RX maximum length (RXMAXLEN) - Receiver packet maximum length in bytes. Only bits 24 - 2 
are writable. Bits 1 - 0 are always 0. Not reset.

Table 444. GRSPW transmitter descriptor table address register.
31 10 9 4 3 0

DESCBASEADDR DESCSEL RESERVED

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table. 
Not reset.

9: 4 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 16 and 
eventually wrap to zero again. Reset value: 0. 

3: 0 RESERVED

Table 445. GRSPW receiver descriptor table address register.
31 10 9 3 2 0

DESCBASEADDR DESCSEL RESERVED

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table. 
Not reset.

9: 3 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 8 and even-
tually wrap to zero again. Reset value: 0.

2: 0 RESERVED

Table 443. GRSPW RX maximum length register.
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46.11 Configuration options

Table 446 shows the configuration options of the core (VHDL generics).

Table 446.Configuration options

Generic Function Allowed range Default

tech Technology for clock buffers 0 - NTECH inferred

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by GRSPW. 0 - NAHBIRQ-1 0

sysfreq Frequency of clock input “clk” in kHz. - 10000

usegen Use values calculated from sysfreq generic as reset values 
for 6.4 us timer and disconnect timer. 

0 - 1 1

nsync Number of synchronization registers. 1 - 2 1

rmap Include hardware RMAP command handler. RMAP CRC 
logic will also be added.

0 - 1 0

rmapcrc Enable RMAP CRC logic. 0 - 1 0

fifosize1 Sets the number of entries in the 32-bit receiver and trans-
mitter AHB fifos.

4 - 32 32

fifosize2 Sets the number of entries in the 9-bit receiver fifo (N-
Char fifo).

16 - 64 64

rxclkbuftype Select clock buffer type for receiver clock. 0 does not 
select a buffer, instead i connects the input directly to the 
output (synthesis tools may still infer a buffer). 1 selects 
hardwired clock while 2 selects routed clock.

0 - 2 0

rxunaligned Receiver unaligned write support. If set, the receiver can 
write any number of bytes to any start address without 
writing any excessive bytes.

0 - 1 0

rmapbufs Sets the number of buffers to hold RMAP replies. 2 - 8 4

ft Enable fault-tolerance against SEU errors 0 - 2 0

scantest Enable support for scan test 0 - 1 0

techfifo Implement FIFO with RAM cells (1) or flip-flops (0) 0 - 1 1

netlist Use netlist rather then RTL code 0 - 1 0

ports Sets the number of ports 1 - 2 1

memtech Technology for RAM blocks 0 - NTECH inferred
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46.12 Signal descriptions

Table 447 shows the interface signals of the core (VHDL ports). 

46.13 Library dependencies

Table 448 shows libraries used when instantiating the core (VHDL libraries).

46.14 Instantiation

This example shows how the core can be instantiated. 

Normally di, si, do and so should be connected to input and output pads configured with LVDS driv-
ers. How this is done is technology dependent.

The GRSPW in the example is configured with non-ft memories of size 4, 64 and 8 entries for AHB
FIFOs, N-Char FIFO and RMAP buffers respectively. The system frequency (clk) is 40 MHz and the
transmitter frequency (txclk) is 20 MHz. 

The memory technology is inferred which means that the synthesis tool will select the appropriate
components. The rx clk buffer uses a hardwired clock.

Table 447. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

TXCLK N/A Input Transmitter default run-state clock -

AHBMI * Input AMB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

SWNI D Input Data input -

S Input Strobe input -

TICKIN Input Time counter tick input High

CLKDIV10 Input Clock divisor value used during initialization 
and as reset value for the clock divisor register

-

RMAPEN Input Reset value for the rmapen control register bit -

DCRSTVAL Input Reset value for disconnect timer. Used if usegen 
VHDL generic is set to 0.

-

TIMERRSTVAL Input Reset value for 6.4 us timer. Used if usegen 
VHDL generic is set to 0.

-

SWNO D Output Data output -

S Output Strobe output -

TICKOUT Output Time counter tick output High

* see GRLIB IP Library User’s Manual

Table 448.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER SPACEWIRE Signals, component Component and record declarations.
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The hardware RMAP command handler is enabled which also automatically enables rxunaligned and
rmapcrc. The Finally, the DMA channel interrupt line is 2 and the number of synchronization registers
is 1. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.spacewire.all;

entity spacewire_ex is
  port (
    clk  : in std_ulogic;
    rstn : in std_ulogic;
    
    -- spacewire signals
    di :  in  std_logic_vector(1 downto 0);
    si :  in  std_logic_vector(1 downto 0);
    do :  out std_logic_vector(1 downto 0);
    so :  out std_logic_vector(1 downto 0)
    );
end;

architecture rtl of spacewire_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);
  
  -- Spacewire signals
  signal swni : grspw_in_type;
  signal swno : grspw_out_type;
  
begin
  
  -- AMBA Components are instantiated here
  ...

  -- GRSPW
  sw0 : grspw
  generic map (tech => inferred, hindex => 5, pinde x => 7, paddr => 7, nsync => 1,            
 rmap => 1, rxunaligned => 0, rmapcrc => 0, rxclkbu ftype => 0, sysfreq => 40000,
    pirq => 2, fifosize1 => 4, fifosize2 => 64, rma pbufs => 8, ft => 0, ports => 2)
  port map (rstn, clk, apbi, apbo(7), ahbmi, ahbmo( 5), swni, swno);

swni.rmapen   <= ‘1’;
swni.clkdiv10 <= “00000001”;
swni.tickin   <= ‘0’;
swni.d(0)     <= di(0);
swni.s(0)     <= si(0);
do(0)         <= swno.d(0);
so(0)         <= swno.s(0);

  swni.d(1)     <= di(1);
swni.s(1)     <= si(1);
do(1)         <= swno.d(1);
so(1)         <= swno.s(1);

end;
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46.15 API

A simple Application Programming Interface (API) is provided together with the GRSPW. The API is
located in $(GRLIB)/software/spw. The files are rmapapi.c, spwapi.c, rmapapi.h, spwapi.h. The
spwapi.h file contains the declarations of the functions used for configuring the GRSPW and transfer-
ring data. The corresponding definitions are located in spwapi.c. The rmapapi is structured in the
same manner and contains a function for building RMAP packets.

These functions could be used as a simple starting point for developing drivers for the GRSPW. The
different functions are described in this section.

46.15.1 GRSPW Basic API

The basic GRSPW API is based on a struct spwvars which stores all the information for a single
GRSPW core. The information includes its address on the AMBA bus as well as SpaceWire parame-
ters such as node address and clock divisor. A pointer to this struct is used as a input parameter to all
the functions. If several cores are used, a separate struct for each core is created and used when the
specific core is accessed.

The following functions are available in the basic API:

int spw_setparam(int nodeaddr, int clkdiv, int dest key, int nospill, int timetxen, int 
timerxen, int rxmaxlen, int spwadr, struct spwvars *spw);

Table 449.The spwvars struct

Field Description Allowed range

regs Pointer to the GRSPW -

nospill The nospill value used for the core. 0 - 1

rmap Indicates whether the core is configured with RMAP. Set by 
spw_init.

0 - 1

rxunaligned Indicates whether the core is configured with rxunaligned support. 
Set by spw_init.

0 - 1

rmapcrc Indicates whether the core is configured with RMAPCRC support. 
Set by spw_init.

0 - 1

clkdiv The clock divisor value used for the core. 0 - 255

nodeaddr The node address value used for the core. 0 - 255

destkey The destination key value used for the core. 0 - 255

rxmaxlen The Receiver maximum length value used for the core. 0 - 33554431

rxpnt Pointer to the next receiver descriptor. 0 - 127

rxchkpnt Pointer to the next receiver descriptor that will be polled. 0 - 127

txpnt Pointer to the next transmitter descriptor. 0 - 63

txchkpnt Pointer to the next transmitter descriptor that will be polled. 0 - 63

timetxen The timetxen value used for this core. 0 - 1

timerxen The timerxen value used for this core. 0 - 1

txd Pointer to the transmitter descriptor table. -

rxd Pointer to the receiver descriptor table -
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Used for setting the different parameters in the spwvars struct. Should always be run first after creat-
ing a spwvars struct. This function only initializes the struct. Does not write anything to the
SpaceWire core.

int spw_init(struct spwvars *spw);

Initializes the GRSPW core located at the address set in the struct spw. Sets the following registers:
node address, destination key, clock divisor, receiver maximum length, transmitter descriptor table
address, receiver descriptor table address, ctrl and dmactrl. All bits are set to the values found in the
spwvars struct. If a register bit is not present in the struct it will be set to zero. The descriptor tables
are allocated to an aligned area using malloc. The status register is cleared and lastly the link interface
is enabled. The run state frequency will be set according to the value in clkdiv.

int set_txdesc(int pnt, struct spwvars *spw);

Table 450.Return values for spw_setparam

Value Description

0 The function completed successfully

1 One or more of the parameters had an illegal value

Table 451.Parameters for spw_setparam

Parameter Description Allowed range

nodeaddr Sets the node address value of the struct spw passed to the function. 0-255

clkdiv Sets the clock divisor value of the struct spw passed to the function. 0-255

destkey Sets the destination key of the struct spw passed to the function. 0-255

nospill Sets the nospill value of the struct spw passed to the function. 0 - 1

timetxen Sets the timetxen value of the struct spw passed to the function. 0 - 1

timerxen Sets the timerxen value of the struct spw passed to the function. 0 - 1

rxmaxlen Sets the receiver maximum length field of the struct spw passed to 
the function.

0 - 225-1

spwadr Sets the address to the GRSPW core which will be associated with 
the struct passed to the function.

0 - 232-1

Table 452.Return values for spw_init

Value Description

0 The function completed successfully

1 One or more of the parameters could not be set correctly or the link failed to initialize.

Table 453.Parameters for spw_init

Parameter Description Allowed range

spw The spwvars struct associated with the GRSPW core that should be 
initialized.

-
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Sets a new address to the transmitter descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_tx and spw_checktx (Explained in the section
for those functions).

 

int set_rxdesc(int pnt, struct spwvars *spw);

Sets a new address to the Receiver descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_rx and spw_checkrx (Explained in the section
for those functions).

 

void spw_disable(struct spwvars *spw);

Disables the GRSPW core (the link disable bit is set to ‘1’).

Table 454.Return values for spw_txdesc

Value Description

0 The function completed successfully

1 The new address could not be written correctly

Table 455.Parameters for spw_txdesc

Parameter Description Allowed range

pnt The new address to the descriptor table area 0 - 232-1

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 456.Return values for spw_rxdesc

Value Description

0 The function completed successfully

1 The new address could not be written correctly

Table 457.Parameters for spw_rxdesc

Parameter Description Allowed range

pnt The new address to the descriptor table area 0 - 232-1

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-
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void spw_enable(struct spwvars *spw);

Enables the GRSPW core (the link disable bit is set to ‘0’).

void spw_start(struct spwvars *spw);

Starts the GRSPW core (the link start bit is set to ‘1’).

void spw_stop(struct spwvars *spw);

Stops the GRSPW core (the link start bit is set to ‘0’).

int spw_setclockdiv(struct spwvars *spw);

Sets the clock divisor register with the clock divisor value stored in the spwvars struct. 

Table 458.Parameters for spw_disable

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 459.Parameters for spw_enable

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 460.Parameters for spw_start

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 461.Parameters for spw_start

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 462.Return values for spw_setclockdiv

Value Description

0 The function completed successfully

1 The new clock divisor value is illegal.
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int spw_set_nodeadr(struct spwvars *spw);

Sets the node address register with the node address value stored in the spwvars struct. 

int spw_set_rxmaxlength(struct spwvars *spw);

Sets the Receiver maximum length register with the rxmaxlen value stored in the spwvars struct. 

int spw_tx(int crc, int skipcrcsize, int hsize, cha r *hbuf, int dsize, char *dbuf, struct 
spwvars *spw);

Transmits a packet. Separate header and data buffers can be used. If CRC logic is available the GSPW
inserts RMAP CRC values after the header and data fields if crc is set to one. This function only sets a
descriptor and initiates the transmission. Spw_checktx must be used to check if the packet has been
transmitted. A pointer into the descriptor table is stored in the spwvars struct to keep track of the next
location to use. It is incremented each time the function returns 0. 

Table 463.Parameters for spw_setclockdiv

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 464.Return values for spw_set_nodeadr

Value Description

0 The function completed successfully

1 The new node address value is illegal.

Table 465.Parameters for spw_set_nodeadr

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 466.Return values for spw_set_rxmaxlength

Value Description

0 The function completed successfully

1 The new node address value is illegal.

Table 467.Parameters for spw_set_rxmaxlength

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 468.Return values for spw_tx

Value Description

0 The function completed successfully

1 There are no free transmit descriptors currently available

2 There was illegal parameters passed to the function
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int spw_rx(char *buf, struct spwvars *spw);

Enables a descriptor for reception. The packet will be stored to buf. Spw_checkrx must be used to
check if a packet has been received. A pointer in the spwvars struct is used to keep track of the next
location to use in the descriptor table. It is incremented each time the function returns 0. 

int spw_checkrx(int *size, struct rxstatus *rxs, st ruct spwvars *spw);

Checks if a packet has been received. When a packet has been received the size in bytes will be stored
in the size parameter and status is found in the rxs struct. A pointer in the spwvars struct is used to
keep track of the location in the descriptor table to poll. It is incremented each time the function
returns nonzero. 

Table 469.Parameters for spw_tx

Parameter Description Allowed range

crc Set to one to append RMAP CRC after the header and data fields. 
Only available if hardware CRC is available in the core.

0 - 1

skipcrcsize The number of bytes in the beginning of a packet that should not be 
included in the CRC calculation

0 - 15

hsize The size of the header in bytes 0 - 255

hbuf Pointer to the header data -

dsize The size of the data field in bytes 0 - 224-1

dbuf Pointer to the data area. -

spw Pointer to the spwvars struct associated with GRSPW core that 
should transmit the packet

-

Table 470.Return values for spw_rx

Value Description

0 The function completed successfully

1 There are no free receive descriptors currently available

Table 471.Parameters for spw_rx

Parameter Description Allowed range

buf Pointer to the data area. -

spw Pointer to the spwvars struct associated with GRSPW core that 
should receive the packet

-

Table 472.Return values for spw_checkrx

Value Description

0 No packet has been received

1 A packet has been received

Table 473.Parameters for spw_checkrx

Parameter Description Allowed range

size When the function returns 1 this variable holds the number of bytes 
received

-

rxs When the function returns 1 this variable holds status information -

spw Pointer to the spwvars struct associated with GRSPW core that 
should be polled

-
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int spw_checktx(struct spwvars *spw);

Checks if a packet has been transmitted. A pointer is used to keep track of the location in the descrip-
tor table to poll. It is incremented each time the function returns nonzero. 

void send_time(struct spwvars *spw);

Sends a new time-code. Increments the time-counter in the GRSPW and transmits the value.

int check_time(struct spwvars *spw);

Check if a new time-code has been received. 

Table 474.The rxstatus struct

Field Description Allowed range

truncated Packet was truncated 0 - 1

dcrcerr Data CRC error bit was set. Only indicates an error if the packet 
received was an RMAP packet.

0 - 1

hcrcerr Header CRC error bit was se.t. Only indicates an error if the packet 
received was an RMAP packet.

0 - 1

eep Packet was terminated with EEP 0 - 1

Table 475.Return values for spw_checktx

Value Description

0 No packet has been transmitted

1 A packet has been correctly transmitted

2 A packet has been incorrectly transmitted

Table 476.Parameters for spw_checktx

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be polled

-

Table 477.Parameters for send time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be polled

-

Table 478.Return values for check_time

Value Description

0 No time-code has been received

1 A new time-code has been received

Table 479.Parameters for check_time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be polled

-
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int get_time(struct spwvars *spw);

Get the current time counter value. 

void spw_reset(struct spwvars *spw);

Resets the GRSPW. 

void spw_rmapen(struct spwvars *spw); 

Enables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW.

void spw_rmapdis(struct spwvars *spw); 

Disables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW

int spw_setdestkey(struct spwvars *spw); 

Set the destination key of the GRSPW. Has no effect if the RMAP command handler is not available.
The value from the spwvars struct is used.

Table 480.Return values for get_time

Value Description

0 - 63 Returns the current time counter value

Table 481.Parameters for get_time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be polled

-

Table 482.Parameters for spw_reset

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be reset

-

Table 483.Parameters for spw_rmapen

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be set

-

Table 484.Parameters for spw_rmapdis

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be set

-

Table 485.Return values for spw_setdestkey

Value Description

0 The function completed successfully

1 The destination key parameter in the spwvars struct contains an illegal value
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46.15.2 GRSPW RMAP API

The RMAP API contains only one function which is used for building RMAP headers.

int build_rmap_hdr(struct rmap_pkt *pkt, char *hdr,  int *size);

Builds a RMAP header to the buffer pointed to by hdr. The header data is taken from the rmap_pkt
struct. 

Table 486.Parameters for spw_setdestkey

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be set.

-

Table 487.Return values for build_rmap_hdr

Value Description

0 The function completed successfully

1 One or more of the parameters contained illegal values

Table 488.Parameters for build_rmap_hdr

Parameter Description Allowed range

pkt Pointer to a rmap_pkt struct which contains the data from which the 
header should be built

hdr Pointer to the buffer where the header will be built

spw Pointer to the spwvars struct associated with GRSPW core that 
should be set

-
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Table 489.rmap_pkt struct fields

Field Description Allowed Range

type Selects the type of packet to build. writecmd, readcmd, 
rmwcmd, writerep, readrep, 
rmwrep

verify Selects whether the data should be verified before writing yes, no

ack Selects whether an acknowledge should be sent yes, no

incr Selects whether the address should be incremented or not yes, no

destaddr Sets the destination address 0 - 255

destkey Sets the destination key 0 - 255

srcaddr Sets the source address 0 - 255

tid Sets the transaction identifier field 0 - 65535

addr Sets the address of the operation to be performed. The extended 
address field is currently always set to 0.

0 - 232-1

len The number of bytes to be writte, read or read-modify-written 0 - 224-1

status Sets the status field 0 - 11

dstspalen Number of source path address bytes to insert before the destination 
address

0 - 228

dstspa Pointer to memory holding the destination path address bytes -

srcspalen Number of source path address bytes to insert in a command. For a 
reply these bytes are placed before the return address

0 - 12

srcspa Pointer to memory holding the source path address bytes -
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47 GRSPW2 - SpaceWire codec with AHB host Interface and RMAP target

47.1 Overview

The SpaceWire core provides an interface between the AHB bus and a SpaceWire network. It imple-
ments the SpaceWire standard (ECSS-E-50-12A) with the protocol identification extension (ECSS-E-
50-11). The optional Remote Memory Access Protocol (RMAP) target implements the ECSS standard
(ECSS-E-50-11).

The SpaceWire interface is configured through a set of registers accessed through an APB interface.
Data is transferred through DMA channels using an AHB master interface. The number of DMA
channels is configurable from one to four.

The core can also be configured with two SpaceWire ports with manual or automatic switching
between them. 

There can be up to four clock domains: one for the AHB interface (system clock), one for the trans-
mitter and one or two for the receiver depending on the number of configured ports. The receiver
clock can be four times as fast and the transmitter clock eight times as fast as the system clock. 

The core only supports byte addressed 32-bit big-endian host systems. 

47.2 Operation

47.2.1 Overview

The main sub-blocks of the core are the link interface, the RMAP target and the AMBA interface. A
block diagram of the internal structure can be found in figure 148. 

The link interface consists of the receiver, transmitter and the link interface FSM. They handle com-
munication on the SpaceWire network. The AMBA interface consists of the DMA engines, the AHB
master interface and the APB interface. The link interface provides FIFO interfaces to the DMA
engines. These FIFOs are used to transfer N-Chars between the AMBA and SpaceWire domains dur-
ing reception and transmission.

The RMAP target is an optional part of the core which can be enabled with a VHDL generic. The
RMAP handler handles incoming packets which are determined to be RMAP commands instead of
the receiver DMA engine. The RMAP command is decoded and if it is valid, the operation is per-

Figure 148.  Block diagram
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formed on the AHB bus. If a reply was requested it is automatically transmitted back to the source by
the RMAP transmitter. 

The core is controlled by writing to a set of user registers through the APB interface and three signals:
tick-in, rmapen and clkdiv10.

The link interface, DMA engines, RMAP handler and AMBA interface are described in section 47.3,
47.4, 47.6 and 47.7 respectively. 

47.2.2 Protocol support

The core only accepts packets with a valid destination address in the first received byte. Packets with
address mismatch will be silently discarded (except in promiscuous mode which is covered in section
47.4.10). 

The second byte is always interpreted as a protocol ID. The only protocol handled separately in hard-
ware is the RMAP protocol (ID=0x1) while other packets are stored to a DMA channel. If the RMAP
target is present and enabled all RMAP commands will be processed, executed and replied automati-
cally in hardware. Otherwise RMAP commands are stored to a DMA channel in the same way as
other packets. RMAP replies are always stored to a DMA channel. More information on the RMAP
protocol support is found in section 47.6. When the RMAP target is not present or disabled, there is no
need to include a protocol ID in the packets and the data can start immediately after the address. 

All packets arriving with the extended protocol ID (0x00) are stored to a DMA channel. This means
that the hardware RMAP target will not work if the incoming RMAP packets use the extended proto-
col ID. Note also that packets with the reserved extended protocol identifier (ID = 0x000000) are not
ignored by the core. It is up to the client receiving the packets to ignore them.

When transmitting packets, the address and protocol-ID fields must be included in the buffers from
where data is fetched. They are not automatically added by the core. 

Figure 149 shows a packet with a normal protocol identifier. The core also allows reception and trans-
mission with extended protocol identifiers but without support for RMAP CRC calculations and the
RMAP target.

47.3 Link interface

The link interface handles the communication on the SpaceWire network and consists of a transmitter,
receiver, a FSM and FIFO interfaces. An overview of the architecture is found in figure 148.

47.3.1 Link interface FSM

The FSM controls the link interface (a more detailed description is found in the SpaceWire standard).
The low-level protocol handling (the signal and character level of the SpaceWire standard) is handled
by the transmitter and receiver while the FSM handles the exchange level.

The link interface FSM is controlled through the control register. The link can be disabled through the
link disable bit, which depending on the current state, either prevents the link interface from reaching
the started state or forces it to the error-reset state. When the link is not disabled, the link interface
FSM is allowed to enter the started state when either the link start bit is set or when a NULL character
has been received and the autostart bit is set.

Figure 149.  The SpaceWire packet with protocol ID that is expected by the GRSPW.

Addr ProtID Dn-2..D3D2D1D0 Dn-1 EOP
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The current state of the link interface determines which type of characters are allowed to be transmit-
ted which together with the requests made from the host interfaces determine what character will be
sent.

Time-codes are sent when the FSM is in the run-state and a request is made through the time-interface
(described in section 47.3.5). 

When the link interface is in the connecting- or run-state it is allowed to send FCTs. FCTs are sent
automatically by the link interface when possible. This is done based on the maximum value of 56 for
the outstanding credit counter and the currently free space in the receiver N-Char FIFO. FCTs are sent
as long as the outstanding counter is less than or equal to 48 and there are at least 8 more empty FIFO
entries than the counter value. 

N-Chars are sent in the run-state when they are available from the transmitter FIFO and there are
credits available. NULLs are sent when no other character transmission is requested or the FSM is in
a state where no other transmissions are allowed.

The credit counter (incoming credits) is automatically increased when FCTs are received and
decreased when N-Chars are transmitted. Received N-Chars are stored to the receiver N-Char FIFO
for further handling by the DMA interface. Received Time-codes are handled by the time-interface.

47.3.2 Transmitter

The state of the FSM, credit counters, requests from the time-interface and requests from the DMA-
interface are used to decide the next character to be transmitted. The type of character and the charac-
ter itself (for N-Chars and Time-codes) to be transmitted are presented to the low-level transmitter
which is located in a separate clock-domain. 

This is done because one usually wants to run the SpaceWire link on a different frequency than the
host system clock. The core has a separate clock input which is used to generate the transmitter clock.
More information on transmitter clock generation is found in section 47.8.1. Since the transmitter
often runs on high frequency clocks (> 100 MHz) as much logic as possible has been placed in the
system clock domain to minimize power consumption and timing issues.

The transmitter logic in the host clock domain decides what character to send next and sets the proper
control signal and presents any needed character to the low-level transmitter as shown in figure 150.
The transmitter sends the requested characters and generates parity and control bits as needed. If no
requests are made from the host domain, NULLs are sent as long as the transmitter is enabled. Most of
the signal and character levels of the SpaceWire standard is handled in the transmitter. External LVDS
drivers are needed for the data and strobe signals. 

A transmission FSM reads N-Chars for transmission from the transmitter FIFO. It is given packet
lengths from the DMA interface and appends EOPs/EEPs and RMAP CRC values if requested. When
it is finished with a packet the DMA interface is notified and a new packet length value is given.

Transmitter Clock Domain Host Clock Domain

Transmitter 

D

S

Send Time-code
Send FCT
Send NChar
Time-code[7:0]
NChar[8:0]

Figure 150.  Schematic of the link interface transmitter.
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47.3.3 Receiver

The receiver detects connections from other nodes and receives characters as a bit stream on the data
and strobe signals. It is also located in a separate clock domain which runs on a clock generated from
the received data and strobe signals. More information on the clock-generation can be found in sec-
tion 47.8.1.

The receiver is activated as soon as the link interface leaves the error reset state. Then after a NULL is
received it can start receiving any characters. It detects parity, escape and credit errors which causes
the link interface to enter the error reset state. Disconnections are handled in the link interface part in
the tx clock domain because no receiver clock is available when disconnected.

Received Characters are flagged to the host domain and the data is presented in parallel form. The
interface to the host domain is shown in figure 151. L-Chars are the handled automatically by the host
domain link interface part while all N-Chars are stored in the receiver FIFO for further handling. If
two or more consecutive EOPs/EEPs are received all but the first are discarded.

47.3.4 Dual port support

The core can be configured to include an additional SpaceWire port. With dual ports the transmitter
drives an additional pair of data/strobe output signals and one extra receiver is added to handle a sec-
ond pair of data/strobe input signals. 

One of the ports is set as active (how the active port is selected is explained below) and the transmitter
drives the data/strobe signals of the active port with the actual output values as explained in section
47.3.2. The inactive port is driven with zero on both data and strobe. 

Both receivers will always be active but only the active port’s interface signals (see figure 151) will be
propagated to the link interface FSM. Each time the active port is changed, the link will be reset so
that the new link is started in a controlled manner. 

When the noportforce register is zero the portsel register bit selects the active link and when set to one
it is determined by the current link activity. In the latter mode the port is changed when no activity is
seen on the currently active link while there is activity on the deselected receive port. Activity is
defined as a detected null. This definition is selected so that glitches (e.g. port unconnected) do not
cause unwanted port switches. 

47.3.5 Time interface

The time interface is used for sending Time-codes over the SpaceWire network and consists of a time-
counter register, time-ctrl register, tick-in signal, tick-out signal, tick-in register field and a tick-out
register field. There are also two control register bits which enable the time receiver and transmitter
respectively. 

Each Time-code sent from the grspw is a concatenation of the time-ctrl and the time-counter register.
There is a timetxen bit which is used to enable Time-code transmissions. It is not possible to send
time-codes if this bit is zero. 

Receiver Clock Domain Host Clock Domain

Receiver

D

S

Got Time-code
Got FCT

Got NChar
Time-code[7:0]
NChar[7:0]

Figure 151.  Schematic of the link interface receiver.

Got EEP
Got EOP
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Received Time-codes are stored to the same time-ctrl and time-counter registers which are used for
transmission. The timerxen bit in the control register is used for enabling time-code reception. No
time-codes will be received if this bit is zero.

The two enable bits are used for ensuring that a node will not (accidentally) both transmit and receive
time-codes which violates the SpaceWire standard. It also ensures that a the master sending time-
codes on a network will not have its time-counter overwritten if another (faulty) node starts sending
time-codes. 

The time-counter register is set to 0 after reset and is incremented each time the tick-in signal is
asserted for one clock-period and the timetxen bit is set. This also causes the link interface to send the
new value on the network. Tick-in can be generated either by writing a one to the register field or by
asserting the tick-in signal. A Tick-in should not be generated too often since if the time-code after the
previous Tick-in has not been sent the register will not be incremented and no new value will be sent.
The tick-in field is automatically cleared when the value has been sent and thus no new ticks should
be generated until this field is zero. If the tick-in signal is used there should be at least 4 system-clock
and 25 transmit-clock cycles between each assertion.

A tick-out is generated each time a valid time-code is received and the timerxen bit is set. When the
tick-out is generated the tick-out signal will be asserted one clock-cycle and the tick-out register field
is asserted until it is cleared by writing a one to it.

The current time counter value can be read from the time register. It is updated each time a Time-code
is received and the timerxen bit is set. The same register is used for transmissions and can also be
written directly from the APB interface.

The control bits of the Time-code are stored to the time-ctrl register when a Time-code is received
whose time-count is one more than the nodes current time-counter register. The time-ctrl register can
be read through the APB interface. The same register is used during time-code transmissions. 

It is possible to have both the time-transmission and reception functions enabled at the same time.

47.4 Receiver DMA channels

The receiver DMA engine handles reception of data from the SpaceWire network to different DMA
channels. 

47.4.1 Address comparison and channel selection

Packets are received to different channels based on the address and whether a channel is enabled or
not. When the receiver N-Char FIFO contains one or more characters, N-Chars are read by the
receiver DMA engine. The first character is interpreted as the logical address and is compared with
the addresses of each channel starting from 0. The packet will be stored to the first channel with an
matching address. The complete packet including address and protocol ID but excluding EOP/EEP is
stored to the memory address pointed to by the descriptors (explained later in this section) of the
channel. 

Each SpaceWire address register has a corresponding mask register. Only bits at an index containing a
zero in the corresponding mask register are compared. This way a DMA channel can accept a range of
addresses. There is a default address register which is used for address checking in all implemented
DMA channels that do not have separate addressing enabled and for RMAP commands in the RMAP
target. With separate addressing enabled the DMA channels’ own address/mask register pair is used
instead.

If an RMAP command is received it is only handled by the target if the default address register
(including mask) matches the received address. Otherwise the packet will be stored to a DMA channel
if one or more of them has a matching address. If the address does not match neither the default
address nor one of the DMA channels’ separate register, the packet is still handled by the RMAP tar-
get if enabled since it has to return the invalid address error code. The packet is only discarded (up to
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and including the next EOP/EEP) if an address match cannot be found and the RMAP target is dis-
abled. 

Packets, other than RMAP commands, that do not match neither the default address register nor the
DMA channels’ address register will be discarded. Figure 152 shows a flowchart of packet reception. 

At least 2 non EOP/EEP N-Chars needs to be received for a packet to be stored to the DMA channel.
If it is an RMAP packet with hardware RMAP enabled 3 N-Chars are needed since the command byte
determines where the packet is processed. Packets smaller than these sizes are discarded.
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Figure 152.  Flow chart of packet reception.
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47.4.2 Basic functionality of a channel

Reception is based on descriptors located in a consecutive area in memory that hold pointers to buff-
ers where packets should be stored. When a packet arrives at the core the channel which should
receive it is first determined as described in the previous section. A descriptor is then read from the
channels’ descriptor area and the packet is stored to the memory area pointed to by the descriptor.
Lastly, status is stored to the same descriptor and increments the descriptor pointer to the next one.
The following sections will describe DMA channel reception in more detail.

47.4.3 Setting up the core for reception

A few registers need to be initialized before reception to a channel can take place. First the link inter-
face need to be put in the run state before any data can be sent. The DMA channel has a maximum
length register which sets the maximum packet size in bytes that can be received to this channel.
Larger packets are truncated and the excessive part is spilled. If this happens an indication will be
given in the status field of the descriptor. The minimum value for the receiver maximum length field
is 4 and the value can only be incremented in steps of four bytes up to the maximum value 33554428.
If the maximum length is set to zero the receiver will not function correctly.

Either the default address register or the channel specific address register (the accompanying mask
register must also be set) needs to be set to hold the address used by the channel. A control bit in the
DMA channel control register determines whether the channel should use default address and mask
registers for address comparison or the channel’s own registers. Using the default register the same
address range is accepted as for other channels with default addressing and the RMAP target while the
separate address provides the channel its own range. If all channels use the default registers they will
accept the same address range and the enabled channel with the lowest number will receive the
packet.

Finally, the descriptor table and control register must be initialized. This will be described in the two
following sections.

47.4.4 Setting up the descriptor table address

The core reads descriptors from an area in memory pointed to by the receiver descriptor table address
register. The register consists of a base address and a descriptor selector. The base address points to
the beginning of the area and must start on a 1024 bytes aligned address. It is also limited to be 1024
bytes in size which means the maximum number of descriptors is 128 since the descriptor size is 8
bytes. 

The descriptor selector points to individual descriptors and is increased by 1 when a descriptor has
been used. When the selector reaches the upper limit of the area it wraps to the beginning automati-
cally. It can also be set to wrap at a specific descriptor before the upper limit by setting the wrap bit in
the descriptor. The idea is that the selector should be initialized to 0 (start of the descriptor area) but it
can also be written with another 8 bytes aligned value to start somewhere in the middle of the area. It
will still wrap to the beginning of the area.

If one wants to use a new descriptor table the receiver enable bit has to be cleared first. When the
rxactive bit for the channel is cleared it is safe to update the descriptor table register. When this is fin-
ished and descriptors are enabled the receiver enable bit can be set again.

47.4.5 Enabling descriptors

As mentioned earlier one or more descriptors must be enabled before reception can take place. Each
descriptor is 8 byte in size and the layout can be found in the tables below. The descriptors should be
written to the memory area pointed to by the receiver descriptor table address register. When new
descriptors are added they must always be placed after the previous one written to the area. Otherwise
they will not be noticed.
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A descriptor is enabled by setting the address pointer to point at a location where data can be stored
and then setting the enable bit. The WR bit can be set to cause the selector to be set to zero when
reception has finished to this descriptor. IE should be set if an interrupt is wanted when the reception
has finished. The DMA control register interrupt enable bit must also be set for an interrupt to be gen-
erated. 

The descriptor packet address should be word aligned. All accesses on the bus are word accesses so
complete words will always be overwritten regardless of whether all 32-bit contain received data.
Also if the packet does not end on a word boundary the complete word containing the last data byte
will be overwritten. If the rxunaligned or rmap VHDL generic is set to 1 this restriction is removed
and any number of bytes can be received to any packet address without excessive bytes being over-
written.

47.4.6 Setting up the DMA control register

The final step to receive packets is to set the control register in the following steps: The receiver must
be enabled by setting the rxen bit in the DMA control register (see section 47.9). This can be done
anytime and before this bit is set nothing will happen. The rxdescav bit in the DMA control register is
then set to indicate that there are new active descriptors. This must always be done after the descrip-
tors have been enabled or the core might not notice the new descriptors. More descriptors can be acti-
vated when reception has already started by enabling the descriptors and writing the rxdescav bit.
When these bits are set reception will start immediately when data is arriving.

47.4.7 The effect to the control bits during reception

When the receiver is disabled all packets going to the DMA-channel are discarded if the packet’s
address does not fall into the range of another DMA channel. If the receiver is enabled and the address

Table 490. GRSPW receive descriptor word 0 (address offset 0x0)
31 30 29 28 27 26 25 24 0

TR DC HC EP IE WR EN PACKETLENGTH

31 Truncated (TR) - Packet was truncated due to maximum length violation.

30 Data CRC (DC) - 1 if a CRC error was detected for the data and 0 otherwise.

29 Header CRC (HC) - 1 if a CRC error was detected for the header and 0 otherwise.

28 EEP termination (EP) - This packet ended with an Error End of Packet character.

27 Interrupt enable (IE) - If set, an interrupt will be generated when a packet has been received if the 
receive interrupt enable bit in the DMA channel control register is set.

26 Wrap (WR) - If set, the next descriptor used by the GRSPW will be the first one in the descriptor 
table (at the base address). Otherwise the descriptor pointer will be increased with 0x8 to use the 
descriptor at the next higher memory location. The descriptor table is limited to 1 kbytes in size and 
the pointer will be automatically wrap back to the base address when it reaches the 1 kbytes bound-
ary.

25 Enable (EN) - Set to one to activate this descriptor. This means that the descriptor contains valid con-
trol values and the memory area pointed to by the packet address field can be used to store a packet.

24: 0 Packet length (PACKETLENGTH) - The number of bytes received to this buffer. Only valid after 
EN has been set to 0 by the GRSPW.

Table 491. GRSPW receive descriptor word 1 (address offset 0x4)
31 0

PACKETADDRESS

31: 0 Packet address (PACKETADDRESS) - The address pointing at the buffer which will be used to store 
the received packet. If the rxunaligned and rmap VHDL generics are both set to zero only bit 31 to 2 
are used.
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falls into the accepted address range, the next state is entered where the rxdescav bit is checked. This
bit indicates whether there are active descriptors or not and should be set by the external application
using the DMA channel each time descriptors are enabled as mentioned above. If the rxdescav bit is
‘0’ and the nospill bit is ‘0’ the packets will be discarded. If nospill is one the grspw waits until rxdes-
cav is set and the characters are kept in the N-Char fifo during this time. If the fifo becomes full fur-
ther N-char transmissions are inhibited by stopping the transmission of FCTs.

When rxdescav is set the next descriptor is read and if enabled the packet is received to the buffer. If
the read descriptor is not enabled, rxdescav is set to ‘0’ and the packet is spilled depending on the
value of nospill.

The receiver can be disabled at any time and will stop packets from being received to this channel. If
a packet is currently received when the receiver is disabled the reception will still be finished. The
rxdescav bit can also be cleared at any time. It will not affect any ongoing receptions but no more
descriptors will be read until it is set again. Rxdescav is also cleared by the core when it reads a dis-
abled descriptor.

47.4.8 Status bits

When the reception of a packet is finished the enable bit in the current descriptor is set to zero. When
enable is zero, the status bits are also valid and the number of received bytes is indicated in the length
field. The DMA control register contains a status bit which is set each time a packet has been
received. The core can also be made to generate an interrupt for this event.

RMAP CRC logic is included in the implementation if the rmapcrc or rmap VHDL generic set to 1.
The RMAP CRC calculation is always active for all received packets and all bytes except the EOP/
EEP are included. The packet is always assumed to be a RMAP packet and the length of the header is
determined by checking byte 3 which should be the command field. The calculated CRC value is then
checked when the header has been received (according to the calculated number of bytes) and if it is
non-zero the HC bit is set indicating a header CRC error.

The CRC value is not set to zero after the header has been received, instead the calculation continues
in the same way until the complete packet has been received. Then if the CRC value is non-zero the
DC bit is set indicating a data CRC error. This means that the core can indicate a data CRC error even
if the data field was correct when the header CRC was incorrect. However, the data should not be used
when the header is corrupt and therefore the DC bit is unimportant in this case. When the header is not
corrupted the CRC value will always be zero when the calculation continues with the data field and
the behaviour will be as if the CRC calculation was restarted 

If the received packet is not of RMAP type the header CRC error indication bit cannot be used. It is
still possible to use the DC bit if the complete packet is covered by a CRC calculated using the RMAP
CRC definition. This is because the core does not restart the calculation after the header has been
received but instead calculates a complete CRC over the packet. Thus any packet format with one
CRC at the end of the packet calculated according to RMAP standard can be checked using the DC
bit.

If the packet is neither of RMAP type nor of the type above with RMAP CRC at the end, then both the
HC and DC bits should be ignored.

47.4.9 Error handling

If a packet reception needs to be aborted because of congestion on the network, the suggested solution
is to set link disable to ‘1’. Unfortunately, this will also cause the packet currently being transmitted to
be truncated but this is the only safe solution since packet reception is a passive operation depending
on the transmitter at the other end. A channel reset bit could be provided but is not a satisfactory solu-
tion since the untransmitted characters would still be in the transmitter node. The next character
(somewhere in the middle of the packet) would be interpreted as the node address which would prob-
ably cause the packet to be discarded but not with 100% certainty. Usually this action is performed
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when a reception has stuck because of the transmitter not providing more data. The channel reset
would not resolve this congestion.

If an AHB error occurs during reception the current packet is spilled up to and including the next
EEP/EOP and then the currently active channel is disabled and the receiver enters the idle state. A bit
in the channels control/status register is set to indicate this condition.

47.4.10 Promiscuous mode

The core supports a promiscuous mode where all the data received is stored to the first DMA channel
enabled regardless of the node address and possible early EOPs/EEPs. This means that all non-eop/
eep N-Chars received will be stored to the DMA channel. The rxmaxlength register is still checked
and packets exceeding this size will be truncated. 

RMAP commands will still be handled by it when promiscuous mode is enabled if the rmapen bit is
set. If it is cleared, RMAP commands will also be stored to a DMA channel. 

47.5 Transmitter DMA channels

The transmitter DMA engine handles transmission of data from the DMA channels to the SpaceWire
network. Each receive channel has a corresponding transmit channel which means there can be up to
4 transmit channels. It is however only necessary to use a separate transmit channel for each receive
channel if there are also separate entities controlling the transmissions. The use of a single channel
with multiple controlling entities would cause them to corrupt each other’s transmissions. A single
channel is more efficient and should be used when possible. 

Multiple transmit channels with pending transmissions are arbitrated in a round-robin fashion.

47.5.1 Basic functionality of a channel

A transmit DMA channel reads data from the AHB bus and stores them in the transmitter FIFO for
transmission on the SpaceWire network. Transmission is based on the same type of descriptors as for
the receiver and the descriptor table has the same alignment and size restrictions. When there are new
descriptors enabled the core reads them and transfer the amount data indicated.

47.5.2 Setting up the core for transmission

Four steps need to be performed before transmissions can be done with the core. First the link inter-
face must be enabled and started by writing the appropriate value to the ctrl register. Then the address
to the descriptor table needs to be written to the transmitter descriptor table address register and one or
more descriptors must also be enabled in the table. Finally, the txen bit in the DMA control register is
written with a one which triggers the transmission. These steps will be covered in more detail in the
next sections.

47.5.3 Enabling descriptors

The descriptor table address register works in the same way as the receiver’s corresponding register
which was covered in section 47.4. The maximum size is 1024 bytes as for the receiver but since the
descriptor size is 16 bytes the number of descriptors is 64.

To transmit packets one or more descriptors have to be initialized in memory which is done in the fol-
lowing way: The number of bytes to be transmitted and a pointer to the data has to be set. There are
two different length and address fields in the transmit descriptors because there are separate pointers
for header and data. If a length field is zero the corresponding part of a packet is skipped and if both
are zero no packet is sent. The maximum header length is 255 bytes and the maximum data length is
16 Mbyte - 1. When the pointer and length fields have been set the enable bit should be set to enable
the descriptor. This must always be done last. The other control bits must also be set before enabling
the descriptor.
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The transmit descriptors are 16 bytes in size so the maximum number in a single table is 64. The dif-
ferent fields of the descriptor together with the memory offsets are shown in the tables below.

The HC bit should be set if RMAP CRC should be calculated and inserted for the header field and
correspondingly the DC bit should be set for the data field. This field is only used by the GRSPW
when the CRC logic is available (rmap or rmapcrc VHDL generic set to 1). The header CRC will be
calculated from the data fetched from the header pointer and the data CRC is generated from data
fetched from the data pointer. The CRCs are appended after the corresponding fields. The NON-CRC
bytes field is set to the number of bytes in the beginning of the header field that should not be included
in the CRC calculation.

The CRCs are sent even if the corresponding length is zero, but when both lengths are zero no packet
is sent not even an EOP.

47.5.4 Starting transmissions

When the descriptors have been initialized, the transmit enable bit in the DMA control register has to
be set to tell the core to start transmitting. New descriptors can be activated in the table on the fly
(while transmission is active). Each time a set of descriptors is added the transmit enable register bit
should be set. This has to be done because each time the core encounters a disabled descriptor this
register bit is set to 0.

Table 492. GRSPW transmit descriptor word 0 (address offset 0x0)
31 18 17 16 15 14 13 12 11 8 7 0

RESERVED DC HC LE IE WR EN NONCRCLEN HEADERLEN

31: 18 RESERVED

17 Append data CRC (DC) - Append CRC calculated according to the RMAP specification after the 
data sent from the data pointer. The CRC covers all the bytes from this pointer. A null CRC will 
be sent if the length of the data field is zero.

16 Append header CRC (HC) - Append CRC calculated according to the RMAP specification after the 
data sent from the header pointer. The CRC covers all bytes from this pointer except a number of 
bytes in the beginning specified by the non-crc bytes field. The CRC will not be sent if the header 
length field is zero.

15 Link error (LE) - A Link error occurred during the transmission of this packet.

14 Interrupt enable (IE) - If set, an interrupt will be generated when the packet has been transmitted and 
the transmitter interrupt enable bit in the DMA control register is set.

13 Wrap (WR) - If set, the descriptor pointer will wrap and the next descriptor read will be the first one 
in the table (at the base address). Otherwise the pointer is increased with 0x10 to use the descriptor at 
the next higher memory location.

12 Enable (EN) - Enable transmitter descriptor. When all control fields (address, length, wrap and crc) 
are set, this bit should be set. While the bit is set the descriptor should not be touched since this 
might corrupt the transmission. The GRSPW clears this bit when the transmission has finished.

11: 8 Non-CRC bytes (NONCRCLEN)- Sets the number of bytes in the beginning of the header which 
should not be included in the CRC calculation. This is necessary when using path addressing since 
one or more bytes in the beginning of the packet might be discarded before the packet reaches its 
destination.

7: 0 Header length (HEADERLEN) - Header Length in bytes. If set to zero, the header is skipped.
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47.5.5 The transmission process

When the txen bit is set the core starts reading descriptors immediately. The number of bytes indicated
are read and transmitted. When a transmission has finished, status will be written to the first field of
the descriptor and a packet sent bit is set in the DMA control register. If an interrupt was requested it
will also be generated. Then a new descriptor is read and if enabled a new transmission starts, other-
wise the transmit enable bit is cleared and nothing will happen until it is enabled again.

47.5.6 The descriptor table address register

The internal pointer which is used to keep the current position in the descriptor table can be read and
written through the APB interface. This pointer is set to zero during reset and is incremented each
time a descriptor is used. It wraps automatically when the 1024 bytes limit for the descriptor table is
reached or it can be set to wrap earlier by setting a bit in the current descriptor.

The descriptor table register can be updated with a new table anytime when no transmission is active.
No transmission is active if the transmit enable bit is zero and the complete table has been sent or if
the table is aborted (explained below). If the table is aborted one has to wait until the transmit enable
bit is zero before updating the table pointer.

47.5.7 Error handling

Abort Tx

The DMA control register contains a bit called Abort TX which if set causes the current transmission
to be aborted, the packet is truncated and an EEP is inserted. This is only useful if the packet needs to
be aborted because of congestion on the SpaceWire network. If the congestion is on the AHB bus this

Table 493. GRSPW transmit descriptor word 1 (address offset 0x4)
31 0

HEADERADDRESS

31: 0 Header address (HEADERADDRESS) - Address from where the packet header is fetched. Does not 
need to be word aligned.

Table 494. GRSPW transmit descriptor word 2 (address offset 0x8)
31 24 23 0

RESERVED DATALEN

31: 24 RESERVED

23: 0 Data length (DATALEN) - Length of data part of packet. If set to zero, no data will be sent. If both 
data- and header-lengths are set to zero no packet will be sent.

Table 495. GRSPW transmit descriptor word 3(address offset 0xC)
31 0

DATAADDRESS

31: 0 Data address (DATAADDRESS) - Address from where data is read. Does not need to be word 
aligned.
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will not help (This should not be a problem since AHB slaves should have a maximum of 16 wait-
states). The aborted packet will have its LE bit set in the descriptor. The transmit enable register bit is
also cleared and no new transmissions will be done until the transmitter is enabled again. 

AHB error

When an AHB error is encountered during transmission the currently active DMA channel is disabled
and the transmitter goes to the idle mode. A bit in the DMA channel’s control/status register is set to
indicate this error condition and, if enabled, an interrupt will also be generated. Further error handling
depends on what state the transmitter DMA engine was in when the AHB error occurred. If the
descriptor was being read the packet transmission had not been started yet and no more actions need
to be taken. 

If the AHB error occurs during packet transmission the packet is truncated and an EEP is inserted.
Lastly, if it occurs when status is written to the descriptor the packet has been successfully transmitted
but the descriptor is not written and will continue to be enabled (this also means that no error bits are
set in the descriptor for AHB errors). 

The client using the channel has to correct the AHB error condition and enable the channel again. No
more AHB transfers are done again from the same unit (receiver or transmitter) which was active dur-
ing the AHB error until the error state is cleared and the unit is enabled again. 

Link error

When a link error occurs during the transmission the remaining part of the packet is discarded up to
and including the next EOP/EEP. When this is done status is immediately written (with the LE bit set)
and the descriptor pointer is incremented. The link will be disconnected when the link error occurs but
the grspw will automatically try to connect again provided that the link-start bit is asserted and the
link-disabled bit is deasserted. If the LE bit in the DMA channel’s control register is not set the trans-
mitter DMA engine will wait for the link to enter run-state and start a new transmission immediately
when possible if packets are pending. Otherwise the transmitter will be disabled when a link error
occurs during the transmission of the current packet and no more packets will be transmitted until it is
enabled again.n immediately when possible if packets are pending.

47.6 RMAP

The Remote Memory Access Protocol (RMAP) is used to implement access to resources in the node
via the SpaceWire Link. Some common operations are reading and writing to memory, registers and
FIFOs. The core has an optional hardware RMAP command handler which is enabled with a VHDL
generic. This section describes the basics of the RMAP protocol and the command handler implemen-
tation.

47.6.1 Fundamentals of the protocol

RMAP is a protocol which is designed to provide remote access via a SpaceWire network to memory
mapped resources on a SpaceWire node. It has been assigned protocol ID 0x01. It provides three oper-
ations write, read and read-modify-write. These operations are posted operations which means that a
source does not wait for an acknowledge or reply. It also implies that any number of operations can be
outstanding at any time and that no timeout mechanism is implemented in the protocol. Time-outs
must be implemented in the user application which sends the commands. Data payloads of up to 16
Mb - 1 is supported in the protocol. A destination can be requested to send replies and to verify data
before executing an operation. A complete description of the protocol is found in the RMAP standard.

47.6.2 Implementation

The core includes an handler for RMAP commands which processes all incoming packets with proto-
col ID = 0x01, type field (bit 7 and 6 of the 3rd byte in the packet) equal to 01b and an address falling
in the range set by the default address and mask register. When such a packet is detected it is not
stored to the DMA channel, instead it is passed to the RMAP receiver. 
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The core implements all three commands defined in the standard with some restrictions. The imple-
mentation is based on draft F of the RMAP standard (the only exception being that error code 12 is
not implemented). Support is only provided for 32-bit big-endian systems. This means that the first
byte received is the msb in a word. The command handler will not receive RMAP packets using the
extended protocol ID which are always dumped to the DMA channel.

The RMAP receiver processes commands. If they are correct and accepted the operation is performed
on the AHB bus and a reply is formatted. If an acknowledge is requested the RMAP transmitter auto-
matically send the reply. RMAP transmissions have priority over DMA channel transmissions.

Packets with a mismatching destination logical address are never passed to the RMAP handler. There
is a user accessible destination key register which is compared to destination key field in incoming
packets. If there is a mismatch and a reply has been requested the error code in the reply is set to 3.
Replies are sent if and only if the ack field is set to ‘1’. 

When a failure occurs during a bus access the error code is set to 1 (General Error). There is predeter-
mined order in which error-codes are set in the case of multiple errors in the core. It is shown in table
496. 

Read accesses are performed on the fly, that is they are not stored in a temporary buffer before trans-
mitting. This means that the error code 1 will never be seen in a read reply since the header has
already been sent when the data is read. If the AHB error occurs the packet will be truncated and
ended with an EEP. 

Errors up to and including Invalid Data CRC (number 8) are checked before verified commands. The
other errors do not prevent verified operations from being performed.

The details of the support for the different commands are now presented. All defined commands
which are received but have an option set which is not supported in this specific implementation will
not be executed and a possible reply is sent with error code 10.

47.6.3 Write commands

The write commands are divided into two subcategories when examining their capabilities: verified
writes and non-verified writes. Verified writes have a length restriction of 4 bytes and the address
must be aligned to the size. That is 1 byte writes can be done to any address, 2 bytes must be halfword
aligned, 3 bytes are not allowed and 4 bytes writes must be word aligned. Since there will always be
only on AHB operation performed for each RMAP verified write command the incrementing address
bit can be set to any value. 

Table 496.The order of error detection in case of multiple errors in the GRSPW. The error detected first has number 1.

Detection Order Error Code Error

1 12 Invalid destination logical address

2 2 Unused RMAP packet type or command code

3 3 Invalid destination key

4 9 Verify buffer overrun

5 11 RMW data length error

6 10 Authorization failure

7* 1 General Error (AHB errors during non-verified writes)

8 5/7 Early EOP / EEP (if early)

9 4 Invalid Data CRC

10 1 General Error (AHB errors during verified writes or RMW)

11 7 EEP

12 6 Cargo Too Large

*The AHB error is not guaranteed to be detected before Early EOP/EEP or Invalid Data CRC. For very long accesses 
the AHB error detection might be delayed causing the other two errors to appear first.
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Non-verified writes have no restrictions when the incrementing bit is set to 1. If it is set to 0 the num-
ber of bytes must be a multiple of 4 and the address word aligned. There is no guarantee how many
words will be written when early EOP/EEP is detected for non-verified writes.

47.6.4 Read commands

Read commands are performed on the fly when the reply is sent. Thus if an AHB error occurs the
packet will be truncated and ended with an EEP. There are no restrictions for incrementing reads but
non-incrementing reads have the same alignment restrictions as non-verified writes. Note that the
“Authorization failure” error code will be sent in the reply if a violation was detected even if the
length field was zero. Also note that no data is sent in the reply if an error was detected i.e. if the status
field is non-zero.

47.6.5 RMW commands

All read-modify-write sizes are supported except 6 which would have caused 3 B being read and writ-
ten on the bus. The RMW bus accesses have the same restrictions as the verified writes. As in the ver-
ified write case, the incrementing bit can be set to any value since only one AHB bus operation will be
performed for each RMW command. Cargo too large is detected after the bus accesses so this error
will not prevent the operation from being performed. No data is sent in a reply if an error is detected
i.e. the status field is non-zero.

47.6.6 Control

The RMAP command handler mostly runs in the background without any external intervention, but
there are a few control possibilities.

There is an enable bit in the control register of the core which can be used to completely disable the
RMAP command handler. When it is set to ‘0’ no RMAP packets will be handled in hardware, instead
they are all stored to the DMA channel. 

There is a possibility that RMAP commands will not be performed in the order they arrive. This can
happen if a read arrives before one or more writes. Since the command handler stores replies in a
buffer with more than one entry several commands can be processed even if no replies are sent. Data
for read replies is read when the reply is sent and thus writes coming after the read might have been
performed already if there was congestion in the transmitter. To avoid this the RMAP buffer disable
bit can be set to force the command handler to only use one buffer which prevents this situation.

The last control option for the command handler is the possibility to set the destination key which is
found in a separate register.
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Table 497.GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command 
/ Response

Write /
Read

Verify 
data 
before 
write

Acknow-
ledge

Increment 
Address

0 0 - - - - Response Stored to DMA-channel.

0 1 0 0 0 0 Not used Does nothing. No reply is sent.

0 1 0 0 0 1 Not used Does nothing. No reply is sent.

0 1 0 0 1 0 Read single 
address

Executed normally. Address has 
to be word aligned and data size 
a multiple of four. Reply is sent. 
If alignment restrictions are vio-
lated error code is set to 10. 

0 1 0 0 1 1 Read incre-
menting 
address.

Executed normally. No restric-
tions. Reply is sent. 

0 1 0 1 0 0 Not used Does nothing. No reply is sent.

0 1 0 1 0 1 Not used Does nothing. No reply is sent.

0 1 0 1 1 0 Not used Does nothing. Reply is sent with 
error code 2.

0 1 0 1 1 1 Read-Mod-
ify-Write 
increment-
ing address

Executed normally. If length is 
not one of the allowed rmw val-
ues nothing is done and error 
code is set to 11. If the length 
was correct, alignment restric-
tions are checked next. 1 byte 
can be rmw to any address. 2 
bytes must be halfword aligned. 
3 bytes are not allowed. 4 bytes 
must be word aligned. If these 
restrictions are violated nothing 
is done and error code is set to 
10. If an AHB error occurs error 
code is set to 1. Reply is sent.

0 1 1 0 0 0 Write, sin-
gle-address, 
do not verify 
before writ-
ing, no 
acknowledge

Executed normally. Address has 
to be word aligned and data size 
a multiple of four. If alignment is 
violated nothing is done. No 
reply is sent.

0 1 1 0 0 1 Write, incre-
menting 
address, do 
not verify 
before writ-
ing, no 
acknowledge

Executed normally. No restric-
tions. No reply is sent.

0 1 1 0 1 0 Write, sin-
gle-address, 
do not verify 
before writ-
ing, send 
acknowledge

Executed normally. Address has 
to be word aligned and data size 
a multiple of four. If alignment is 
violated nothing is done and 
error code is set to 10. If an AHB 
error occurs error code is set to 1. 
Reply is sent.
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47.7 AMBA interface

The AMBA interface consists of an APB interface, an AHB master interface and DMA FIFOs. The
APB interface provides access to the user registers which are described in section 47.9. The DMA
engines have 32-bit wide FIFOs to the AHB master interface which are used when reading and writ-
ing to the bus.

The transmitter DMA engine reads data from the bus in bursts which are half the FIFO size in length.
A burst is always started when the FIFO is half-empty or if it can hold the last data for the packet. The
burst containing the last data might have shorter length if the packet is not an even number of bursts in
size.

0 1 1 0 1 1 Write, incre-
menting 
address, do 
not verify 
before writ-
ing, send 
acknowledge

Executed normally. No restric-
tions. If AHB error occurs error 
code is set to 1. Reply is sent.

0 1 1 1 0 0 Write, single 
address, ver-
ify before 
writing, no 
acknowledge

Executed normally. Length must 
be 4 or less. Otherwise nothing is 
done. Same alignment restric-
tions apply as for rmw. No reply 
is sent.

0 1 1 1 0 1 Write, incre-
menting 
address, ver-
ify before 
writing, no 
acknowledge

Executed normally. Length must 
be 4 or less. Otherwise nothing is 
done. Same alignment restric-
tions apply as for rmw. If they 
are violated nothing is done. No 
reply is sent.

0 1 1 1 1 0 Write, single 
address, ver-
ify before 
writing, send 
acknowledge

Executed normally. Length must 
be 4 or less. Otherwise nothing is 
done and error code is set to 9. 
Same alignment restrictions 
apply as for rmw. If they are vio-
lated nothing is done and error 
code is set to 10. If an AHB error 
occurs error code is set to 1. 
Reply is sent.

0 1 1 1 1 1 Write, incre-
menting 
address, ver-
ify before 
writing, send 
acknowledge

Executed normally. Length must 
be 4 or less. Otherwise nothing is 
done and error code is set to 9. 
Same alignment restrictions 
apply as for rmw. If they are vio-
lated nothing is done and error 
code is set to 10. If an AHB error 
occurs error code is set to 1. 
Reply is sent.

1 0 - - - - Unused Stored to DMA-channel.

1 1 - - - - Unused Stored to DMA-channel.

Table 497.GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command 
/ Response

Write /
Read

Verify 
data 
before 
write

Acknow-
ledge

Increment 
Address
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The receiver DMA works in the same way except that it checks if the FIFO is half-full and then per-
forms a burst write to the bus which is half the fifo size in length. The last burst might be shorter. If
the rmap or rxunaligned VHDL generics are set to 1 the interface also handles byte accesses. Byte
accesses are used for non word-aligned buffers and/or packet lengths that are not a multiple of four
bytes. There might be 1 to 3 single byte writes when writing the beginning and end of the received
packets. 

47.7.1 APB slave interface

As mentioned above, the APB interface provides access to the user registers which are 32-bits in
width. The accesses to this interface are required to be aligned word accesses. The result is undefined
if this restriction is violated.

47.7.2 AHB master interface

The core contains a single master interface which is used by both the transmitter and receiver DMA
engines. The arbitration algorithm between the channels is done so that if the current owner requests
the interface again it will always acquire it. This will not lead to starvation problems since the DMA
engines always deassert their requests between accesses.

 if rmap and rxunaligned are disabledThe AHB accesses can be of size byte, halfword and word
(HSIZE = 0x000, 0x001, 0x010) otherwise. Byte and halfword accesses are always NONSEQ. 

The burst length will be half the AHB FIFO size except for the last transfer for a packet which might
be smaller. Shorter accesses are also done during descriptor reads and status writes.

The AHB master also supports non-incrementing accesses where the address will be constant for sev-
eral consecutive accesses. HTRANS will always be NONSEQ in this case while for incrementing
accesses it is set to SEQ after the first access. This feature is included to support non-incrementing
reads and writes for RMAP.

If the core does not need the bus after a burst has finished there will be one wasted cycle (HTRANS =
IDLE). 

BUSY transfer types are never requested and the core provides full support for ERROR, RETRY and
SPLIT responses.

47.8 Synthesis and hardware

47.8.1 Clock-generation

Figure 153 shows the clock recovery scheme for the receiver. Data and strobe are coupled directly
from their pads to an xor gate which generates the clock. The output from the xor is then connected to
a clock network. The specific type of clock network depends on the technology used. The xor gate is
actually all that logically belongs to the Rx clock recovery module in figure 153.

The clock output drives all flip-flops in the receiver module found in figure 148. The data signal
which is used for generating the clock is also coupled to the data inputs of several flip-flops clocked
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by the Rx clock as seen in figure 153. Care must be taken so that the delay from the data and strobe
signals through the clock network are longer than the delay to the data input + setup time.

The transmitter clock is generated from the txclk input. A separate clock input is used to allow the
transmitter to be run at much higher frequencies than the system clock. The SpaceWire node contains
a clock-divider which divides the txclk signal to the wanted frequency. The transmitter clock should
be 10 MHz during initialization and any frequency above 2 MHz in the run-state. 

There is an input signal called clkdiv10 which sets the reset values for the user accessible clock divi-
sor registers. There is one register value which is used during initialisation and one which is used in
run-state The resulting tx clock frequency will be txclk/(clock divisor value+1). So if no clock divi-
sion is wanted, the clock divisor should be set to 0.

Since only integer values are allowed for the clock division and the required init-frequency is 10 Mhz
the frequency of the txclk input must be a multiple of 10 MHz. The clock divisor value is 8-bits wide
so the maximum txclk frequency supported is 2.56 GHz (note that there is also a restriction on the
relation between the system and transmit clock frequencies).

47.8.2 Timers

There are two timers in the grspw: one for generating the 6.4/12.8 us periods and one for disconnect
timing. 

The timeout periods are generated from the tx clock whose frequency must be at least 10 MHz to
guarantee disconnect timing limits. The same clock divisor is used as for the tx clock during initialisa-
tion so it must be set correctly for the link timing to work. 

47.8.3 Synchronization

The VHDL generic nsync selects how many synchronization registers are used between clock
domains. The default is one and should be used when maximum performance is needed. It allows the
transmitter to be clocked 4 times faster than the system clock and the receiver 2 times faster. These are
theoretical values without consideration for clock skew and jitter. Note also that the receiver clocks
data at both negative and positive edges. Thus, the bitrate is twice as high as the clock-rate.

The synchronization limits the Tx and Rx clocks to be at most 4 and 2 times faster than the system
clock. But it might not be possible to achieve such high clock rates for the Tx and Rx clocks for all
technologies.

The asynchronous reset to the receiver clock domain has to have a maximum delay of one receiver
clock cycle to ensure correct operation. This is needed because the receiver uses has a completely
asynchronous reset. To make sure that nothing bad happens the is a synchronous reset guard which
prevents any signals from being assigned before all registers have their reset signals released.

D

S

D

D

Q

Q

Figure 153.  The clocking scheme for the receiver. The clock is 
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47.8.4 Fault-tolerance

The core can optionally be implemented with fault-tolerance against SEU errors in the FIFO memo-
ries. The fault-tolerance is enabled through the ft VHDL generic. Possible options are byte parity pro-
tection (ft = 1) or TMR registers (ft = 2). Note: the GPL version of GRLIB does not include fault-
tolerance, and the core will not work unless the ft VHDL generic is 0.

47.8.5 Synthesis

Since the receiver and transmitter may run on very high frequency clocks their clock signals have
been coupled through a clock buffer with a technology wrapper. This clock buffer will utilize a low
skew net available in the selected technology for the clock. 

The clock buffer will also enable most synthesis tools to recognize the clocks and it is thus easier to
find them and place constraints on them. The fact there are three clock domains in the core of which
all are possibly high frequency clocks makes it necessary to declare all paths between the clock
domains as false paths. 

In Synplify this is most easily done by declaring all the clocks to be in different clockgroups in the sdc
file (if Synplify does not automatically put them in different groups). This will disable any timing
considerations between the clock domains and these constraints will also propagate to the place and
route tool.

The type of clock buffer is selectable with a VHDL generic and the value zero provides a normal feed
through which lets the synthesis tool infer the type of net used.

47.8.6 Technology mapping

The core has three generics for technology mapping: tech, techfifo and memtech. Tech selects the tech-
nology used for the clock buffers and also adds reset to some registers for technologies where they
would otherwise cause problems with gate-level simulations. Techfifo selects whether memtech
should be used to select the technology for the FIFO memories (the RMAP buffer is not affected by
the this generic) or if they should be inferred. Tech and memtech can be set to any value from 0 to
NTECH as defined in the GRLIB.TECH package.

47.8.7 RAM usage

The core maps all RAM memories on the syncram_2p component if the ft generic is 0 and to the
syncram_2pft component for other values. The syncrams are located in the technology mapping
library (TECHMAP). The organization of the different memories are described below. If techfifo and/
or memtech is set to 0 the synthesis tool will infer the memories. Either RAM blocks or flip-flops will
be used depending on the tool and technology. The number of flip-flops used is syncram depth x syn-
cram width for all the different memories. The receiver AHB FIFO with fifosize 32 will for example
use 1024 flips-flops. 

Receiver ahb FIFO

The receiver AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is deter-
mined by the configured FIFO depth. Table 498 shows the syncram organization for the allowed con-
figurations.

Table 498.syncram_2p sizes for GRSPW receiver AHB FIFO.

Fifosize Syncram_2p organization

4 4x32

8 8x32

16 16x32

32 32x32
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Transmitter ahb FIFO

The transmitter AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is
determined by the configured FIFO depth. Table 499 shows the syncram organization for the allowed
configurations.

Receiver N-Char FIFO

The receiver N-Char fifo consists of one syncram_2p block with a width of 9-bits. The depth is deter-
mined by the configured FIFO depth. Table 500 shows the syncram organization for the allowed con-
figurations.

RMAP buffer

The RMAP buffer consists of one syncram_2p block with a width of 8-bits. The depth is determined
by the number of configured RMAP buffers. Table 501 shows the syncram organization for the
allowed configurations.

Table 499.syncram_2p sizes for transmitter AHB FIFO.

Fifosize Syncram_2p organization

4 4x32

8 8x32

16 16x32

32 32x32

Table 500.syncram_2p sizes for the receiver N-Char FIFO.

Fifosize Syncram_2p organization

16 16x9

32 32x9

64 64x9

Table 501.syncram_2p sizes for RMAP buffer memory.

RMAP buffers Syncram_2p organization

2 64x8

4 128x8

8 256x8
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47.9 Registers

The core is programmed through registers mapped into APB address space.

Table 502.GRSPW registers

APB address offset Register

0x0 Control

0x4 Status/Interrupt-source

0x8 Node address

0xC Clock divisor

0x10 Destination key

0x14 Time

0x20 DMA channel 1 control/status

0x24 DMA channel 1 rx maximum length

0x28 DMA channel 1 transmit descriptor table address.

0x2C DMA channel 1 receive descriptor table address.

0x30 DMA channel 1 address register

0x34 Unused

0x38 Unused

0x3C Unused

0x40 - 0x5C DMA channel 2 registers

0x60 - 0x7C DMA channel 3 registers

0x80 - 0x9C DMA channel 4 registers

Table 503. GRSPW control register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RA RX RC NCH PO RESERVED PS NP RD RE RESERVED TR TT LI TQ RS PM TI IE AS LS LD

31 RMAP available (RA) - Set to one if the RMAP command handler is available. Only readable.

30 RX unaligned access (RX) - Set to one if unaligned writes are available for the receiver. Only read-
able.

29 RMAP CRC available (RC) - Set to one if RMAP CRC is enabled in the core. Only readable.

28: 27 Number of DMA channels (NCH) - The number of available DMA channels minus one (Number of 
channels = NCH+1).

26 Number of ports (PO) - The number of available SpaceWire ports minus one. 

25: 22 RESERVED

21 Port select (PS) - Selects the active port when the no port force bit is zero. ‘0’ selects the port con-
nected to data and strobe on index 0 while ‘1’ selects index 1. Only available if the ports VHDL 
generic is set to 2. Reset value: ‘0’.

20 No port force (NP) - Disable port force. When disabled the port select bit cannot be used to select the 
active port. Instead, it is automatically selected by checking the activity on the respective receive 
links. Only available if the ports VHDL generic is set to 2. Reset value: ‘0’.
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19: 18 RESERVED

17 RMAP buffer disable (RD) - If set only one RMAP buffer is used. This ensures that all RMAP com-
mands will be executed consecutively. Only available if the rmap VHDL generic is set to 1. Reset 
value: ‘0’.

16 RMAP Enable (RE) - Enable RMAP target. Only available if rmap VHDL generic is set to 1. Reset 
value: ‘1’. 

15: 12 RESERVED

11 Time Rx Enable (TR) - Enable time-code receptions. Reset value: ‘0’.

10 Time Tx Enable (TT) - Enable time-code transmissions. Reset value: ‘0’.

9 Link error IRQ (LI) - Generate interrupt when a link error occurs. Not reset.

8 Tick-out IRQ (TQ) - Generate interrupt when a valid time-code is received. Not reset.

7 RESERVED

6 Reset (RS) - Make complete reset of the SpaceWire node. Self clearing. Reset value: ‘0’.

5 Promiscuous Mode (PM) - Enable Promiscuous mode. Reset value: ‘0’.

4 Tick In (TI) - The host can generate a tick by writing a one to this field. This will increment the timer 
counter and the new value is transmitted after the current character is transferred. A tick can also be 
generated by asserting the tick_in signal. Reset value: ‘0’.

3 Interrupt Enable (IE) - If set, an interrupt is generated when one of bit 8 to 10 is set and its corre-
sponding event occurs. Reset value: ‘0’.

2 Autostart (AS) - Automatically start the link when a NULL has been received. Not reset.

1 Link Start (LS) - Start the link, i.e. allow a transition from ready to started state. Reset value: ‘0’ if 
the RMAP command handler is not available. If available the reset value is set to the value of the 
rmapen input signal.

0 Link Disable (LD) - Disable the SpaceWire codec. Reset value: ‘0’.

Table 504. GRSPW status register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED LS RESERVED AP EE IA PE DE ER CE TO

31: 24 RESERVED

23: 21 Link State (LS) - The current state of the start-up sequence. 0 = Error-reset, 1 = Error-wait, 2 = 
Ready, 3 = Started, 4 = Connecting, 5 = Run. Reset value: 0.

20: 10 RESERVED

9 Active port (AP) - Shows the currently active port. ‘0’ = Port 0 and ‘1’ = Port 1 where the port num-
bers refer to the index number of the data and strobe signals. Only available if the ports generic is set 
to 2.

8 Early EOP/EEP (EE) - Set to one when a packet is received with an EOP after the first byte for a 
non-rmap packet and after the second byte for a RMAP packet. Cleared when written with a one. 
Reset value: ‘0’.

7 Invalid Address (IA) - Set to one when a packet is received with an invalid destination address field, 
i.e it does not match the nodeaddr register. Cleared when written with a one. Reset value: ‘0’.

Table 503. GRSPW control register
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6: 5 RESERVED

4 Parity Error (PE) - A parity error has occurred. Cleared when written with a one. Reset value: ‘0’.

3 Disconnect Error (DE) - A disconnection error has occurred. Cleared when written with a one. Reset 
value: ‘0’.

2 Escape Error (ER) - An escape error has occurred. Cleared when written with a one. Reset value: ‘0’.

1 Credit Error (CE) - A credit has occurred. Cleared when written with a one. Reset value: ‘0’.

0 Tick Out (TO) - A new time count value was received and is stored in the time counter field. Cleared 
when written with a one. Reset value: ‘0’.

Table 505. GRSPW default address register
31 16 15 8 7 0

RESERVED DEFMASK DEFADDR

31: 8 RESERVED

15: 8 Default mask (DEFMASK) - Default mask used for node identification on the SpaceWire network. 
This field is used for masking the address before comparison. Both the received address and the 
DEFADDR field are anded with the inverse of DEFMASK before the address check. 

7: 0 Default address (DEFADDR) - Default address used for node identification on the SpaceWire net-
work. Reset value: 254.

Table 506. GRSPW clock divisor register
31 16 15 8 7 0

RESERVED CLKDIVSTART CLKDIVRUN

31: 16 RESERVED

15: 8 Clock divisor startup (CLKDIVSTART) - Clock divisor value used for the clock-divider during 
startup (link-interface is in other states than run). The actual divisor value is Clock Divisor regis-
ter + 1. Reset value: clkdiv10 input signal.

7: 0 Clock divisor run (CLKDIVRUN) - Clock divisor value used for the clock-divider when the link-
interface is in the run-state. The actual divisor value is Clock Divisor register + 1. Reset value: 
clkdiv10 input signal.

Table 507. GRSPW destination key
31 8 7 0

RESERVED DESTKEY

31: 8 RESERVED

7: 0 Destination key (DESTKEY) - RMAP destination key. Only available if the rmap VHDL generic is 
set to 1. Reset value: 0.

Table 508. GRSPW time register
31 8 7 6 5 0

RESERVED TCTRL TIMECNT

31: 8 RESERVED

Table 504. GRSPW status register
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7: 6 Time control flags (TCTRL) - The current value of the time control flags. Sent with time-code 
resulting from a tick-in. Received control flags are also stored in this register. Reset value: ‘0’.

5: 0 Time counter (TIMECNT) - The current value of the system time counter. It is incremented for each 
tick-in and the incremented value is transmitted. The register can also be written directly but the 
written value will not be transmitted. Received time-counter values are also stored in this register. 
Reset value: ‘0’.

Table 509. GRSPW dma control register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED LE SP SA EN NS RD RX AT RA TA PR PS AI RI TI RE TE

31: 17 RESERVED

16 Link error disable (LE) - Disable transmitter when a link error occurs. No more packets will be trans-
mitted until the transmitter is enabled again. Reset value: ‘0’.

15 Strip pid (SP) - Remove the pid byte (second byte) of each packet. The address byte (first byte) will 
also be removed when this bit is set independent of the SA bit. Reset value: ‘0’.

14 Strip addr (SA) - Remove the addr byte (first byte) of each packet. Reset value: ‘0’.

13 Enable addr (EN) - Enable separate node address for this channel. Reset value: ‘0’.

12 No spill (NS) - If cleared, packets will be discarded when a packet is arriving and there are no active 
descriptors. If set, the GRSPW will wait for a descriptor to be activated.

11 Rx descriptors available (RD) - Set to one, to indicate to the GRSPW that there are enabled descrip-
tors in the descriptor table. Cleared by the GRSPW when it encounters a disabled descriptor: Reset 
value: ‘0’.

10 RX active (RX) - Is set to ‘1’ if a reception to the DMA channel is currently active otherwise it is ‘0’. 
Only readable.

9 Abort TX (AT) - Set to one to abort the currently transmitting packet and disable transmissions. If no 
transmission is active the only effect is to disable transmissions. Self clearing. Reset value: ‘0’.

8 RX AHB error (RA) - An error response was detected on the AHB bus while this receive DMA 
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.

7 TX AHB error (TA) - An error response was detected on the AHB bus while this transmit DMA 
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.

6 Packet received (PR) - This bit is set each time a packet has been received. never cleared by the SW-
node. Cleared when written with a one. Reset value: ‘0’.

5 Packet sent (PS) - This bit is set each time a packet has been sent. Never cleared by the SW-node. 
Cleared when written with a one. Reset value: ‘0’.

4 AHB error interrupt (AI) - If set, an interrupt will be generated each time an AHB error occurs when 
this DMA channel is accessing the bus. Not reset.

3 Receive interrupt (RI) - If set, an interrupt will be generated each time a packet has been received. 
This happens both if the packet is terminated by an EEP or EOP. Not reset.

2 Transmit interrupt (TI) - If set, an interrupt will be generated each time a packet is transmitted. The 
interrupt is generated regardless of whether the transmission was successful or not. Not reset.

1 Receiver enable (RE) - Set to one when packets are allowed to be received to this channel. Reset 
value: ‘0’.

0 Transmitter enable (TE) - Write a one to this bit each time new descriptors are activated in the table. 
Writing a one will cause the SW-node to read a new descriptor and try to transmit the packet it points 
to. This bit is automatically cleared when the SW-node encounters a descriptor which is disabled. 
Reset value: ‘0’.

Table 510. GRSPW RX maximum length register.
31 25 24 0

RESERVED RXMAXLEN

Table 508. GRSPW time register
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47.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x29. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

31: 25 RESERVED

24: 0 RX maximum length (RXMAXLEN) - Receiver packet maximum length in bytes. Only bits 24 - 2 
are writable. Bits 1 - 0 are always 0. Not reset.

Table 511. GRSPW transmitter descriptor table address register.
31 10 9 4 3 0

DESCBASEADDR DESCSEL RESERVED

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table. 
Not reset.

9: 4 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 16 and 
eventually wrap to zero again. Reset value: 0. 

3: 0 RESERVED

Table 512. GRSPW receiver descriptor table address register.
31 10 9 3 2 0

DESCBASEADDR DESCSEL RESERVED

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table. 
Not reset.

9: 3 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 8 and even-
tually wrap to zero again. Reset value: 0.

2: 0 RESERVED

Table 513. GRSPW dma channel address register
31 16 15 8 7 0

RESERVED MASK ADDR

31: 8 RESERVED

15: 8 Mask (MASK) - Mask used for node identification on the SpaceWire network. This field is used for 
masking the address before comparison. Both the received address and the ADDR field are anded 
with the inverse of MASK before the address check.

7: 0 Address (ADDR) - Address used for node identification on the SpaceWire network for the corre-
sponding dma channel when the EN bit in the DMA control register is set. Reset value: 254.

Table 510. GRSPW RX maximum length register.
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47.11 Configuration options

Table 514 shows the configuration options of the core (VHDL generics).

Table 514.Configuration options

Generic Function Allowed range Default

tech Technology for fifo memories. 0 - NTECH inferred

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by GRSPW. 0 - NAHBIRQ-1 0

nsync Number of synchronization registers. 1 - 2 1

rmap Include hardware RMAP command handler. RMAP CRC 
logic will also be added.

0 - 1 0

rmapcrc Enable RMAP CRC logic. 0 - 1 0

fifosize1 Sets the number of entries in the 32-bit receiver and trans-
mitter AHB fifos.

4 - 32 32

fifosize2 Sets the number of entries in the 9-bit receiver fifo (N-
Char fifo).

16 - 64 64

rxclkbuftype Select clock buffer type for receiver clock. 0 does not 
select a buffer, instead i connects the input directly to the 
output (synthesis tools may still infer a buffer). 1 selects 
hardwired clock while 2 selects routed clock.

0 - 2 0

rxunaligned Receiver unaligned write support. If set, the receiver can 
write any number of bytes to any start address without 
writing any excessive bytes.

0 - 1 0

rmapbufs Sets the number of buffers to hold RMAP replies. 2 - 8 4

ft Enable fault-tolerance against SEU errors 0 - 2 0

ports Sets the number of ports 1 - 2 1
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47.12 Signal descriptions

Table 515 shows the interface signals of the core (VHDL ports). 

47.13 Library dependencies

Table 516 shows libraries used when instantiating the core (VHDL libraries).

47.14 Instantiation

This example shows how the core can be instantiated. 

Normally di, si, do and so should be connected to input and output pads configured with LVDS driv-
ers. How this is done is technology dependent.

The core in the example is configured with non-ft memories of size 4, 64 and 8 entries for AHB
FIFOs, N-Char FIFO and RMAP buffers respectively. The system frequency (clk) is 40 MHz and the
transmitter frequency (txclk) is 20 MHz. 

The memory technology is inferred which means that the synthesis tool will select the appropriate
components. The rx clk buffer uses a hardwired clock.

The hardware RMAP command handler is enabled which also automatically enables rxunaligned and
rmapcrc. The Finally, the DMA channel interrupt line is 2 and the number of synchronization registers
is 1. 

library ieee;
use ieee.std_logic_1164.all;

Table 515. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

TXCLK N/A Input Transmitter default run-state clock -

AHBMI * Input AMB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

SWNI D Input Data input -

S Input Strobe input -

TICKIN Input Time counter tick input High

CLKDIV10 Input Clock divisor value used during initialization 
and as reset value for the clock divisor register

-

RMAPEN Input Reset value for the rmapen control register bit -

SWNO D Output Data output -

S Output Strobe output -

TICKOUT Output Time counter tick output High

* see GRLIB IP Library User’s Manual

Table 516.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER SPACEWIRE Signals, component Component and record declarations.
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library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.spacewire.all;

entity spacewire_ex is
  port (
    clk  : in std_ulogic;
    rstn : in std_ulogic;
    
    -- spacewire signals
    di :  in  std_logic_vector(1 downto 0);
    si :  in  std_logic_vector(1 downto 0);
    do :  out std_logic_vector(1 downto 0);
    so :  out std_logic_vector(1 downto 0)
    );
end;

architecture rtl of spacewire_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);
  
  -- Spacewire signals
  signal swni : grspw_in_type;
  signal swno : grspw_out_type;
  
begin
  
  -- AMBA Components are instantiated here
  ...

  -- GRSPW
  sw0 : grspw2
  generic map (tech => inferred, hindex => 5, pinde x => 7, paddr => 7, nsync => 1,            
 rmap => 1, rxunaligned => 0, rmapcrc => 0, rxclkbu ftype => 0, pirq => 2, 
    fifosize1 => 4, fifosize2 => 64, rmapbufs => 8,  ft => 0, ports => 2,
    dmachan => 4)
  port map (rstn, clk, apbi, apbo(7), ahbmi, ahbmo( 5), swni, swno);

swni.rmapen   <= ‘1’;
swni.clkdiv10 <= “00000001”;
swni.tickin   <= ‘0’;
swni.d(0)     <= di(0);
swni.s(0)     <= si(0);
do(0)         <= swno.d(0);
so(0)         <= swno.s(0);

 swni.d(1)     <= di(1);
swni.s(1)     <= si(1);
do(1)         <= swno.d(1);
so(1)         <= swno.s(1);

end;

47.15 RTEMS Driver

The RTEMS GRSPW driver supports the standard accesses to file descriptors such as read, write and
ioctl. User applications should include the file spacewire.h which contains definitions of all necessary
data structures used when accessing the driver and a function for registration. An example application
using the driver called rtems-spwtest is provided in the Gaisler Research RTEMS distribution.
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47.15.1 Driver registration

The function spacewire_register whose prototype is provided in spacewire.h is used for registering
the driver. It returns 0 on success and 1 on failure. 

47.15.2 Opening the device

After the driver is registered the device should be opened next. It is done with the open call. An exam-
ple of a open call is shown below. 

fd = open("/dev/spacewire", O_RDONLY)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set.

47.15.3 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the Spacewire driver.

47.15.4 Data structures

The spw_ioctl_packetsize struct is used when changing the size of the drivers’ receive and transmit
buffers. 

typedef struct {
   unsigned int rxsize;
   unsigned int txdsize;
   unsigned int txhsize;
} spw_ioctl_packetsize;

The spw_ioctl_pkt_send struct is used for transmissions through the ioctl call. Se the transmission
section for more information. The sent variable is set by the driver when returning from the ioctl call
while the other are set by the caller. 

typedef struct {
   unsigned int hlen;
   char *hdr;
   unsigned int dlen;
   char *data;
   unsigned int sent;
} spw_ioctl_pkt_send;

Table 517.Open errno values.

ERRNO Description

EINVAL Illegal device name or not available.

EIO Error when writing to grspw registers.

ETIMEDOUT Link did not startup.

Table 518.spw_ioctl_packetsize member descriptions.

Member Description

rxsize Sets the size of the receiver descriptor buffers.

txdsize Sets the size of the transmitter data buffers.

txhsize Sets the size of the transmitter header buffers.
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The spw_stats struct contains various statistics gathered from the GRSPW. 

typedef struct {
   unsigned int tx_link_err;
   unsigned int rx_rmap_header_crc_err;
   unsigned int rx_rmap_data_crc_err;
   unsigned int rx_eep_err;
   unsigned int rx_truncated;
   unsigned int parity_err;
   unsigned int escape_err;
   unsigned int credit_err;
   unsigned int write_sync_err;
   unsigned int disconnect_err;
   unsigned int early_ep;
   unsigned int invalid_address;
   unsigned int packets_sent;
   unsigned int packets_received;
} spw_stats;

The spw_config struct holds the current configuration of the GRSPW. 

typedef struct {
   unsigned int nodeaddr;
   unsigned int destkey;
   unsigned int clkdiv;
   unsigned int rxmaxlen;
   unsigned int timer;
   unsigned int disconnect;

Table 519.spw_ioctl_pkt_send member descriptions.

Member Description

hlen Number of bytes that shall be transmitted from the header buffer.

hdr Pointer to the header buffer.

dlen Number of bytes that shall be transmitted from the data buffer.

data Pointer to the data buffer.

sent Number of bytes transmitted.

Table 520.spw_stats member descriptions.

Member Description

tx_link_err Number of link-errors detected during transmission.

rx_rmap_header_crc_err Number of RMAP header CRC errors detected in received packets.

rx_rmap_data_crc_err Number of RMAP data CRC errors detected in received packets.

rx_eep_err Number of EEPs detected in received packets.

rx_truncated Number of truncated packets received.

parity_err Number of parity errors detected.

escape_err Number of escape errors detected.

credit_err Number of credit errors detected.

write_sync_err Number of write synchronization errors detected.

disconnect_err Number of disconnect errors detected.

early_ep Number of packets received with an early EOP/EEP. 

invalid_address Number of packets received with an invalid destination address.

packets_sent Number of packets transmitted.

packets_received Number of packets received.



462

   unsigned int promiscuous;
   unsigned int timetxen;
   unsigned int timerxen;
   unsigned int rmapen;
   unsigned int rmapbufdis;
   unsigned int linkdisabled;
   unsigned int linkstart;

   unsigned int check_rmap_err; 
   unsigned int rm_prot_id; 
   unsigned int tx_blocking; 
   unsigned int tx_block_on_full; 
   unsigned int rx_blocking; 
   unsigned int disable_err; 
   unsigned int link_err_irq; 
   rtems_id event_id; 
   
   unsigned int is_rmap;
   unsigned int is_rxunaligned;
   unsigned int is_rmapcrc;
} spw_config;

47.15.5 Configuration

The GRSPW core and driver are configured using ioctl calls. The table below lists all the supported
calls. SPACEWIRE_IOCTRL_ should be concatenated with the call number in the table to get the

Table 521.spw_config member descriptions.

Member Description

nodeaddr Node address.

destkey Destination key.

clkdiv Clock division factor.

rxmaxlen Receiver maximum packet length.

timer Link-interface 6.4 us timer value.

disconnect Link-interface disconnection timeout value.

promiscuous Promiscuous mode. 

timetxen Time-code transmission enable.

timerxen Time-code reception enable.

rmapen RMAP command handler enable.

rmapbufdis RMAP multiple buffer enable.

linkdisabled Linkdisabled.

linkstart Linkstart.

check_rmap_error Check for RMAP CRC errors in received packets.

rm_prot_id Remove protocol ID from received packets.

tx_blocking Select between blocking and non-blocking transmissions.

tx_block_on_full Block when all transmit descriptors are occupied.

rx_blocking Select between blocking and non-blocking receptions.

disable_err Disable Link automatically when link-error interrupt occurs.

link_err_irq Enable link-error interrupts.

event_id Task ID to which event is sent when link-error interrupt occurs.

is_rmap RMAP command handler available.

is_rxunaligned RX unaligned support available.

is_rmapcrc RMAP CRC support available.
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actual constant used in the code. Return values for all calls are 0 for success and -1 for failure. Errno
is set after a failure. 

An example of a ioctl is shown below:

result = ioctl(fd, SPACEWIRE_IOCTRL_SET_NODEADDR, 0 xFE);

Table 522.ERRNO values for ioctl calls.

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument. 

EBUSY Only used for SEND. Returned when no descriptors are available in non-
blocking mode.

ENOSYS Returned for SET_DESTKEY if RMAP command handler is not available 
or if an non-implemented call is used.

ETIMEDOUT Returned for SET_PACKETSIZE if the link did not start after the size 
change.

ENOMEM Returned for SET_PACKETSIZE if it was unable to allocate the new buff-
ers.

EIO Error when writing to grspw registers.
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SET_NODEADDR

This call sets the node address. It is only used to check the destination of incoming packets. The argu-
ment must be an integer in the range 0 to 255. The call will fail if the argument contains an illegal
value or if the register can not be written.

SET_RXBLOCK

This call sets the blocking mode for receptions. The argument must be an integer in the range 0 to 1. 0
selects non blocking mode while 1 selects blocking mode. The call will fail if the argument contains
an illegal value.

SET_DESTKEY

This call sets the destination key. It can only be used if the RMAP command handler is available. The
argument must be an integer in the range 0 to 255. The call will fail if the argument contains an illegal
value, if the RMAP command handler is not available or if the register cannot be written.

SET_CLKDIV

This call sets the clock division factor used in the run-state. The argument must be an integer in the
range 0 to 255. The call will fail if the argument contains an illegal value or if the register cannot be
written.

Table 523.Ioctl calls supported by the GRSPW driver.

Call Number Description

SET_NODEADDR Change node address. 

SET_RXBLOCK Change blocking mode of receptions.

SET_DESTKEY Change destination key.

SET_CLKDIV Change clock division factor.

SET_TIMER Change timer setting.

SET_DISCONNECT Change disconnection timeout.

SET_PROMISCUOUS Enable/Disable promiscuous mode.

SET_RMAPEN Enable/Disable RMAP command handler.

SET_RMAPBUFDIS Enable/Disable multiple RMAP buffer utilization.

SET_CHECK_RMAP Enable/Disable RMAP CRC error check for reception.

SET_RM_PROT_ID Enable/Disable protocol ID removal for reception.

SET_TXBLOCK Change blocking mode of transmissions.

SET_TXBLOCK_ON_FULL Change the blocking mode when all descriptors are in use.

SET_DISABLE_ERR Enable/Disable automatic link disabling when link error occurs.

SET_LINK_ERR_IRQ Enable/Disable link error interrupts.

SET_EVENT_ID Change the task ID to which link error events are sent.

SET_PACKETSIZE Change buffer sizes. 

GET_LINK_STATUS Read the current link status.

SET_CONFIG Set all configuration parameters with one call.

GET_CONFIG Read the current configuration parameters.

GET_STATISTICS Read statistics.

CLR_STATISTICS Clear all statistics.

SEND Send a packet with both header and data buffers.

LINKDISABLE Disable the link.

LINKSTART Start the link. 
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SET_TIMER

This call sets the counter used to generate the 6.4 and 12.8 us time-outs in the link-interface FSM. The
argument must be an integer in the range 0 to 4095. The call will fail if the argument contains an ille-
gal value or if the register cannot be written. 

SET_DISCONNECT

This call sets the counter used to generate the 850 ns disconnect interval in the link-interface FSM.
The argument must be an integer in the range 0 to 1023. The call will fail if the argument contains an
illegal value or if the register cannot be written.

SET_PROMISCUOUS

This call sets the promiscuous mode bit. The argument must be an integer in the range 0 to 1. The call
will fail if the argument contains an illegal value or if the register cannot be written.

SET_RMAPEN

This call sets the RMAP enable bit. It can only be used if the RMAP command handler is available.
The argument must be an integer in the range 0 to 1. The call will fail if the argument contains an ille-
gal value, if the RMAP command handler is not available or if the register cannot be written.

SET_RMAPBUFDIS

This call sets the RMAP buffer disable bit. It can only be used if the RMAP command handler is
available. The argument must be an integer in the range 0 to 1. The call will fail if the argument con-
tains an illegal value, if the RMAP command handler is not available or if the register cannot be writ-
ten.

SET_CHECK_RMAP

This call selects whether or not RMAP CRC should be checked for received packets. If enabled the
header CRC error and data CRC error bits are checked and if one or both are set the packet will be dis-
carded. The argument must be an integer in the range 0 to 1. 0 disables and 1 enables the RMAP CRC
check. The call will fail if the argument contains an illegal value.

SET_RM_PROT_ID

This call selects whether or not the protocol ID should be removed from received packets. It is
assumed that all packets contain a protocol ID so when enabled the second byte (the one after the
node address) in the packet will be removed. The argument must be an integer in the range 0 to 1. 0
disables and 1 enables the RMAP CRC check. The call will fail if the argument contains an illegal
value.

SET_TXBLOCK

This call sets the blocking mode for transmissions. The argument must be an integer in the range 0 to
1. 0 selects non blocking mode while 1 selects blocking mode. The call will fail if the argument con-
tains an illegal value.

SET_TXBLOCK_ON_FULL

This call sets the blocking mode for transmissions when all descriptors are in use. The argument must
be an integer in the range 0 to 1. 0 selects non blocking mode while 1 selects blocking mode. The call
will fail if the argument contains an illegal value.

SET_DISABLE_ERR

This call sets automatic link-disabling due to link-error interrupts. Link-error interrupts must be
enabled for it to have any effect. The argument must be an integer in the range 0 to 1. 0 disables auto-
matic link-disabling while a 1 enables it. The call will fail if the argument contains an illegal value.

SET_LINK_ERR_IRQ

This call sets the link-error interrupt bit in the control register. The interrupt-handler sends an event to
the task specified with the event_id field when this interrupt occurs. The argument must be an integer
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in the range 0 to 1. The call will fail if the argument contains an illegal value or if the register write
fails.

SET_EVENT_ID

This call sets the task ID to which an event is sent when a link-error interrupt occurs. The argument
can be any positive integer. The call will fail if the argument contains an illegal value. 

SET_PACKETSIZE

This call changes the size of buffers and consequently the maximum packet sizes. The this cannot be
done while the link is running so first it is stopped and then the old buffers are deallocated. Lastly the
new buffers are allocated and the link is started again. The configuration before the call will be pre-
served (except for the packet sizes). The argument must be a pointer to a spw_ioctl_packetsize struct.
The call will fail if the argument contains an illegal pointer, the requested buffer sizes cannot be allo-
cated or the link cannot be re-started.

GET_LINK_STATUS

This call returns the current link status. The argument must be a pointer to an integer. The return value
in the argument can be one of the following: 0 = Error-reset, 1 = Error-wait, 2 = Ready, 3 = Started, 4
= Connecting, 5 = Run. The call will fail if the argument contains an illegal pointer.

GET_CONFIG

This call returns all configuration parameters in a spw_config struct which is defined in spacewire.h.
The argument must be a pointer to a spw_config struct. The call will fail if the argument contains an
illegal pointer. 

GET_STATISTICS

This call returns all statistics in a spw_stats struct. The argument must be a pointer to a spw_stats
struct. The call will fail if the argument contains an illegal pointer.

CLR_STATISTICS

This call clears all statistics. No argument is taken and the call always succeeds. 

SEND

This call sends a packet. The difference to the normal write call is that separate data and header buff-
ers can be used. The argument must be a pointer to a spw_ioctl_send struct. The call will fail if the
argument contains an illegal pointer, or the struct contains illegal values. See the transmission section
for more information.

LINKDISABLE

This call disables the link (sets the linkdisable bit to 1 and the linkstart bit to 0). No argument is taken.
The call fails if the register write fails. 

LINKSTART

This call starts the link (sets the linkdisable bit to 0 and the linkstart bit to 1). No argument is taken.
The call fails if the register write fails.

47.15.6 Transmission

Transmissions are done with either the write call or a special ioctl call. Write calls are used when data
only needs to be taken from a single contiguous buffer. An example of a write call is shown below:

result = write(fd, tx_pkt, 10))

On success the number of transmitted bytes is returned and -1 on failure. Errno is also set in the latter
case. Tx_pkt points to the beginning of the packet which includes the destination node address. The
last parameter sets the number of bytes that the user wants to transmit.
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The call will fail if the user tries to send more bytes than is allocated for a single packet (this can be
changed with the SET_PACKETSIZE ioctl call) or if a NULL pointer is passed. 

The write call can be configured to block in different ways. If normal blocking is enabled the call will
only return when the packet has been transmitted. I non-blocking mode, the transmission is only set
up in the hardware and then the function returns immediately (that is before the packet is actually
sent). If there are no resources available in the non-blocking mode the call will return with an error. 

There is also a feature called Tx_block_on_full which means that the write call blocks when all
descriptors are in use. 

The ioctl call used for transmissions is SPACEWIRE_IOCTRL_SEND. A spw_ioctl_send struct is
used as argument and contains length, and pointer fields. The structure is shown in the data structures
section. This ioctl call should be used when a header is taken from one buffer and data from another.
The header part is always transmitted first. The hlen field sets the number of header bytes to be trans-
mitted from the hdr pointer. The dlen field sets the number of data bytes to be transmitted from the
data pointer. Afterwards the sent field contains the total number (header + data) of bytes transmitted.

The blocking behavior is the same as for write calls. The call fails if hlen+dlen is 0, one of the buffer
pointer is zero and its corresponding length variable is nonzero. 

47.15.7 Reception

Reception is done using the read call. An example is shown below:

len = read(fd, rx_pkt, tmp);

The requested number of bytes to be read is given in tmp. The packet will be stored in rx_pkt. The
actual number of received bytes is returned by the function on success and -1 on failure. In the latter
case errno is also set. 

The call will fail if a null pointer is passed. 

The blocking behavior can be set using ioctl calls. In blocking mode the call will block until a packet 
has been received. In non-blocking mode, the call will return immediately and if no packet was 
available -1 is returned and errno set appropriately. The table below shows the different errno values 
that can be returned.

47.16 API

A simple Application Programming Interface (API) is provided together with the GRSPW. The API is
located in $(GRLIB)/software/spw. The files are rmapapi.c, spwapi.c, rmapapi.h, spwapi.h. The
spwapi.h file contains the declarations of the functions used for configuring the GRSPW and transfer-
ring data. The corresponding definitions are located in spwapi.c. The rmapapi is structured in the
same manner and contains a function for building RMAP packets.

Table 524.ERRNO values for write and ioctl send.

ERRNO Description

EINVAL An invalid argument was passed. The buffers could be null pointers or the 
length parameters could be 0 or larger than the maximum allowed size.

EBUSY The packet could not be transmitted because all descriptors are in use (only 
in non-blocking mode).

Table 525.ERRNO values for read calls.

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer or the length was illegal.

EBUSY No data could be received (no packets available) in non-blocking mode.
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These functions could be used as a simple starting point for developing drivers for the GRSPW. The
different functions are described in this section.

47.16.1 GRSPW Basic API

The basic GRSPW API is based on a struct spwvars which stores all the information for a single
GRSPW core. The information includes its address on the AMBA bus as well as SpaceWire parame-
ters such as node address and clock divisor. A pointer to this struct is used as a input parameter to all
the functions. If several cores are used, a separate struct for each core is created and used when the
specific core is accessed.

The following functions are available in the basic API:

int spw_setparam(int nodeaddr, int clkdiv, int dest key, int nospill, int timetxen, int 
timerxen, int rxmaxlen, int spwadr, struct spwvars *spw);

Used for setting the different parameters in the spwvars struct. Should always be run first after creat-
ing a spwvars struct. This function only initializes the struct. Does not write anything to the
SpaceWire core.

Table 526.The spwvars struct

Field Description Allowed range

regs Pointer to the GRSPW -

nospill The nospill value used for the core. 0 - 1

rmap Indicates whether the core is configured with RMAP. Set by 
spw_init.

0 - 1

rxunaligned Indicates whether the core is configured with rxunaligned support. 
Set by spw_init.

0 - 1

rmapcrc Indicates whether the core is configured with RMAPCRC support. 
Set by spw_init.

0 - 1

clkdiv The clock divisor value used for the core. 0 - 255

nodeaddr The node address value used for the core. 0 - 255

destkey The destination key value used for the core. 0 - 255

rxmaxlen The Receiver maximum length value used for the core. 0 - 33554431

rxpnt Pointer to the next receiver descriptor. 0 - 127

rxchkpnt Pointer to the next receiver descriptor that will be polled. 0 - 127

txpnt Pointer to the next transmitter descriptor. 0 - 63

txchkpnt Pointer to the next transmitter descriptor that will be polled. 0 - 63

timetxen The timetxen value used for this core. 0 - 1

timerxen The timerxen value used for this core. 0 - 1

txd Pointer to the transmitter descriptor table. -

rxd Pointer to the receiver descriptor table -

Table 527.Return values for spw_setparam

Value Description

0 The function completed successfully

1 One or more of the parameters had an illegal value
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int spw_init(struct spwvars *spw);

Initializes the GRSPW core located at the address set in the struct spw. Sets the following registers:
node address, destination key, clock divisor, receiver maximum length, transmitter descriptor table
address, receiver descriptor table address, ctrl and dmactrl. All bits are set to the values found in the
spwvars struct. If a register bit is not present in the struct it will be set to zero. The descriptor tables
are allocated to an aligned area using malloc. The status register is cleared and lastly the link interface
is enabled. The run state frequency will be set according to the value in clkdiv.

int set_txdesc(int pnt, struct spwvars *spw);

Sets a new address to the transmitter descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_tx and spw_checktx (Explained in the section
for those functions).

 

Table 528.Parameters for spw_setparam

Parameter Description Allowed range

nodeaddr Sets the node address value of the struct spw passed to the function. 0-255

clkdiv Sets the clock divisor value of the struct spw passed to the function. 0-255

destkey Sets the destination key of the struct spw passed to the function. 0-255

nospill Sets the nospill value of the struct spw passed to the function. 0 - 1

timetxen Sets the timetxen value of the struct spw passed to the function. 0 - 1

timerxen Sets the timerxen value of the struct spw passed to the function. 0 - 1

rxmaxlen Sets the receiver maximum length field of the struct spw passed to 
the function.

0 - 225-1

spwadr Sets the address to the GRSPW core which will be associated with 
the struct passed to the function.

0 - 232-1

Table 529.Return values for spw_init

Value Description

0 The function completed successfully

1 One or more of the parameters could not be set correctly or the link failed to initialize.

Table 530.Parameters for spw_init

Parameter Description Allowed range

spw The spwvars struct associated with the GRSPW core that should be 
initialized.

-

Table 531.Return values for spw_txdesc

Value Description

0 The function completed successfully

1 The new address could not be written correctly
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int set_rxdesc(int pnt, struct spwvars *spw);

Sets a new address to the Receiver descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_rx and spw_checkrx (Explained in the section
for those functions).

 

void spw_disable(struct spwvars *spw);

Disables the GRSPW core (the link disable bit is set to ‘1’).

void spw_enable(struct spwvars *spw);

Enables the GRSPW core (the link disable bit is set to ‘0’).

Table 532.Parameters for spw_txdesc

Parameter Description Allowed range

pnt The new address to the descriptor table area 0 - 232-1

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 533.Return values for spw_rxdesc

Value Description

0 The function completed successfully

1 The new address could not be written correctly

Table 534.Parameters for spw_rxdesc

Parameter Description Allowed range

pnt The new address to the descriptor table area 0 - 232-1

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 535.Parameters for spw_disable

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-
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void spw_start(struct spwvars *spw);

Starts the GRSPW core (the link start bit is set to ‘1’).

void spw_stop(struct spwvars *spw);

Stops the GRSPW core (the link start bit is set to ‘0’).

int spw_setclockdiv(struct spwvars *spw);

Sets the clock divisor register with the clock divisor value stored in the spwvars struct. 

int spw_set_nodeadr(struct spwvars *spw);

Table 536.Parameters for spw_enable

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 537.Parameters for spw_start

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 538.Parameters for spw_start

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 539.Return values for spw_setclockdiv

Value Description

0 The function completed successfully

1 The new clock divisor value is illegal.

Table 540.Parameters for spw_setclockdiv

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-
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Sets the node address register with the node address value stored in the spwvars struct. 

int spw_set_rxmaxlength(struct spwvars *spw);

Sets the Receiver maximum length register with the rxmaxlen value stored in the spwvars struct. 

int spw_tx(int crc, int skipcrcsize, int hsize, cha r *hbuf, int dsize, char *dbuf, struct 
spwvars *spw);

Transmits a packet. Separate header and data buffers can be used. If CRC logic is available the GSPW
inserts RMAP CRC values after the header and data fields if crc is set to one. This function only sets a
descriptor and initiates the transmission. Spw_checktx must be used to check if the packet has been
transmitted. A pointer into the descriptor table is stored in the spwvars struct to keep track of the next
location to use. It is incremented each time the function returns 0. 

Table 541.Return values for spw_set_nodeadr

Value Description

0 The function completed successfully

1 The new node address value is illegal.

Table 542.Parameters for spw_set_nodeadr

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 543.Return values for spw_set_rxmaxlength

Value Description

0 The function completed successfully

1 The new node address value is illegal.

Table 544.Parameters for spw_set_rxmaxlength

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be configured

-

Table 545.Return values for spw_tx

Value Description

0 The function completed successfully

1 There are no free transmit descriptors currently available

2 There was illegal parameters passed to the function
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int spw_rx(char *buf, struct spwvars *spw);

Enables a descriptor for reception. The packet will be stored to buf. Spw_checkrx must be used to
check if a packet has been received. A pointer in the spwvars struct is used to keep track of the next
location to use in the descriptor table. It is incremented each time the function returns 0. 

int spw_checkrx(int *size, struct rxstatus *rxs, st ruct spwvars *spw);

Checks if a packet has been received. When a packet has been received the size in bytes will be stored
in the size parameter and status is found in the rxs struct. A pointer in the spwvars struct is used to
keep track of the location in the descriptor table to poll. It is incremented each time the function
returns nonzero. 

Table 546.Parameters for spw_tx

Parameter Description Allowed range

crc Set to one to append RMAP CRC after the header and data fields. 
Only available if hardware CRC is available in the core.

0 - 1

skipcrcsize The number of bytes in the beginning of a packet that should not be 
included in the CRC calculation

0 - 15

hsize The size of the header in bytes 0 - 255

hbuf Pointer to the header data -

dsize The size of the data field in bytes 0 - 224-1

dbuf Pointer to the data area. -

spw Pointer to the spwvars struct associated with GRSPW core that 
should transmit the packet

-

Table 547.Return values for spw_rx

Value Description

0 The function completed successfully

1 There are no free receive descriptors currently available

Table 548.Parameters for spw_rx

Parameter Description Allowed range

buf Pointer to the data area. -

spw Pointer to the spwvars struct associated with GRSPW core that 
should receive the packet

-

Table 549.Return values for spw_checkrx

Value Description

0 No packet has been received

1 A packet has been received

Table 550.Parameters for spw_checkrx

Parameter Description Allowed range

size When the function returns 1 this variable holds the number of bytes 
received

-

rxs When the function returns 1 this variable holds status information -

spw Pointer to the spwvars struct associated with GRSPW core that 
should be polled

-
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int spw_checktx(struct spwvars *spw);

Checks if a packet has been transmitted. A pointer is used to keep track of the location in the descrip-
tor table to poll. It is incremented each time the function returns nonzero. 

void send_time(struct spwvars *spw);

Sends a new time-code. Increments the time-counter in the GRSPW and transmits the value.

int check_time(struct spwvars *spw);

Check if a new time-code has been received. 

Table 551.The rxstatus struct

Field Description Allowed range

truncated Packet was truncated 0 - 1

dcrcerr Data CRC error bit was set. Only indicates an error if the packet 
received was an RMAP packet.

0 - 1

hcrcerr Header CRC error bit was se.t. Only indicates an error if the packet 
received was an RMAP packet.

0 - 1

eep Packet was terminated with EEP 0 - 1

Table 552.Return values for spw_checktx

Value Description

0 No packet has been transmitted

1 A packet has been correctly transmitted

2 A packet has been incorrectly transmitted

Table 553.Parameters for spw_checktx

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be polled

-

Table 554.Parameters for send time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be polled

-

Table 555.Return values for check_time

Value Description

0 No time-code has been received

1 A new time-code has been received

Table 556.Parameters for check_time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be polled

-
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int get_time(struct spwvars *spw);

Get the current time counter value. 

void spw_reset(struct spwvars *spw);

Resets the GRSPW. 

void spw_rmapen(struct spwvars *spw); 

Enables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW.

void spw_rmapdis(struct spwvars *spw); 

Disables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW

int spw_setdestkey(struct spwvars *spw); 

Set the destination key of the GRSPW. Has no effect if the RMAP command handler is not available.
The value from the spwvars struct is used.

Table 557.Return values for get_time

Value Description

0 - 63 Returns the current time counter value

Table 558.Parameters for get_time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be polled

-

Table 559.Parameters for spw_reset

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be reset

-

Table 560.Parameters for spw_rmapen

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be set

-

Table 561.Parameters for spw_rmapdis

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be set

-

Table 562.Return values for spw_setdestkey

Value Description

0 The function completed successfully

1 The destination key parameter in the spwvars struct contains an illegal value
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47.16.2 GRSPW RMAP API

The RMAP API contains only one function which is used for building RMAP headers.

int build_rmap_hdr(struct rmap_pkt *pkt, char *hdr,  int *size);

Builds a RMAP header to the buffer pointed to by hdr. The header data is taken from the rmap_pkt
struct. 

Table 563.Parameters for spw_setdestkey

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that 
should be set.

-

Table 564.Return values for build_rmap_hdr

Value Description

0 The function completed successfully

1 One or more of the parameters contained illegal values

Table 565.Parameters for build_rmap_hdr

Parameter Description Allowed range

pkt Pointer to a rmap_pkt struct which contains the data from which the 
header should be built

hdr Pointer to the buffer where the header will be built

spw Pointer to the spwvars struct associated with GRSPW core that 
should be set

-
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Table 566.rmap_pkt struct fields

Field Description Allowed Range

type Selects the type of packet to build. writecmd, readcmd, 
rmwcmd, writerep, readrep, 
rmwrep

verify Selects whether the data should be verified before writing yes, no

ack Selects whether an acknowledge should be sent yes, no

incr Selects whether the address should be incremented or not yes, no

destaddr Sets the destination address 0 - 255

destkey Sets the destination key 0 - 255

srcaddr Sets the source address 0 - 255

tid Sets the transaction identifier field 0 - 65535

addr Sets the address of the operation to be performed. The extended 
address field is currently always set to 0.

0 - 232-1

len The number of bytes to be writte, read or read-modify-written 0 - 224-1

status Sets the status field 0 - 11

dstspalen Number of source path address bytes to insert before the destination 
address

0 - 228

dstspa Pointer to memory holding the destination path address bytes -

srcspalen Number of source path address bytes to insert in a command. For a 
reply these bytes are placed before the return address

0 - 12

srcspa Pointer to memory holding the source path address bytes -
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47.17 Appendix A Clarifications of the GRSPW implementation of the standard

6.3.1 page 9 RMAP draft F

"The user application at destination will be informed that there was an error 

 in the data transferred. The source will be informed of the data error if the 

 acknowledge bit in the command has been set."

We view the RMAP command handler as both protocol parser and user application. All commands
are parsed in the first stage and various (internal) status bits are set. The next step (which can be
viewed as the user application) will make the decision of how to act upon the received command from
these bits. Therefore, the various errors that can occur are not externally observable. 

If an error occurs when the command handler is accessing the AHB bus through the DMA interface
errors will be externally observable using the AHB status register in GRLIB. 

6.3.6 page 13 RMAP draft F

“The Write Command packet arrives at the destination and its header is found to be in error. This fact
is added to the error statistics in the destination node.”

This text does not state how and if these statistics should be observable. At the moment the error han-
dling is internal to the RMAP command handler and therefore no statistics are internally observable.
A counter for this particular error might be added in the future.

6.3.6 page 15 RMAP draft F

"These various errors will be reported to the user application running on the 

destination node (Write Data Error Indication)."

Again the RMAP command handler is the user application and all these errors are handled internally.

6.5.6 page 31 RMAP draft F

"The source user application, in fact immediately rejects this as an authorisation 

failure as the command is trying to RMW an area of protected memory."

It should probably be destination user application instead of source. It is unclear what immediately
means. Should it be rejected before any accesses are done on the bus and thus requiring the RMAP
command handler to include a complete bus decoding. The GRSPW does (probably) not comply to
this paragraph at the moment. If a bus error occurs a general error code will be returned.

6.5.6 page 32

"If the header of the RMW reply packet is received intact but the data field is 

corrupted as indicated by an incorrect data field length (too long or too short)

or by a CRC error, then an error can be flagged to the application immediately

(RMW Data Failure) without having to wait for an application timeout."
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This is not applicable to the GRSPW since it does not handle replies. However this is practically an
unnecessary comment since it is not specified in the standard in which manner received replies are
indicated to the higher layers.
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48 GRUSBHC - USB 2.0 Host Controller

48.1 Overview

The Gaisler Research USB 2.0 Host Controller provides a link between the AMBA AHB bus and the
Universal Serial Bus. The host controller supports High-, Full-, and Low-Speed USB traffic. USB 2.0
High-Speed functionality is supplied by an enhanced host controller implementing the Enhanced Host
Controller Interface revision 1.0. Full- and Low-Speed traffic is handled by up to 15 (USB 1.1) com-
panion controllers implementing the Universal Host Controller Interface, revision 1.1. Each controller
has its own AMBA AHB master interface. Configuration and control of the enhanced host controller
is done via the AMBA APB bus. Companion controller registers are accessed via an AMBA AHB
slave interface. Figure 154 shows a USB 2.0 host system and the organization of the controller types.
Figure 155 shows an example with both host controller types present. 

The controller supports both UTMI+ and ULPI transceivers and can handle up to 15 ports.

Figure 154.  Block diagram of USB 2.0 host system

Figure 155.  Block diagram of both host controller types
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48.2 Operation

48.2.1 System overview

Depending on the core’s configuration it may contain both controller types, one enhanced host con-
troller, or up to 15 standalone universal host controllers. If both controller types are present, each uni-
versal host controller acts as a companion controller to the enhanced host controller. 

The enhanced host controller complies with the Enhanced Host Controller Interface with the excep-
tion of the optional Light Host Controller Reset, which is not implemented.

The universal host controller complies with the Universal Host Controller Interface, with exceptions.
The HCHalted field in the USB Command register is implemented as Read Only instead of Read/
Write Clear. The Port Status/Control registers have been extended with Over Current and Over Cur-
rent Change fields. Changes to both registers have been done in accordance with contemporary imple-
mentations of the interface. Both changes match the description of corresponding bits in the EHCI
specification.

48.2.2 Protocol support

The enhanced host controller has full support for High-Speed traffic as defined in the USB Specifica-
tion, revision 2.0. In addition Asynchronous Park Mode is supported, and the controller has a NAK
counter.

The universal host controller supports Full- and Low-Speed traffic.

48.2.3 Descriptor and data buffering

The enhanced host controller prefetches one frame of isochronous descriptors. All payload data for a
transaction is fetched before the transaction is executed. The enhanced host controller has a 2048 byte
buffer for descriptors and a 2048 byte buffer for payload data, which can hold data for two transac-
tions.

The universal host controller does not prefetch descriptors. Depending on controller configuration a
transaction on the bus may be initiated before all payload data has been fetched from memory. Each
universal host controller has a 1024 byte buffer for payload data. A transfer descriptor in UHCI may
describe a transaction that has a payload of 1280 bytes. The USB specification limits the maximum
allowed data payload to 1023 bytes and the controller will not transfer a larger payload than 1023
bytes. If a descriptor has a, legal, larger payload than 1023 bytes, the controller will only attempt to
transfer the first 1023 bytes before the transaction is marked as completed.

In the event that the host controller has just one port, the universal host controller and the enhanced
host controller will share the data payload buffer. Thus only two 2048 byte buffers are required.

48.2.4 Clocking

The core has two clock domains; the system clock domain and the USB clock domain which includes
the transceiver. All signals that cross a clock domain boundary are synchronized to prevent meta-sta-
bility.

48.2.5 Endianness

The core always accesses the least significant byte of a data payload at offset zero. Depending on the
core’s configuration, registers may be big endian, little endian, or byte swapped little endian. 

48.2.6 RAM test facilities

The VHDL generic ramtest enables RAM testing. If RAM testing is enabled, controller’s internal
buffers are mapped into the register space. The universal host controller maps the packet buffer at off-
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set 0x400 - 0x7FF. An enhanced host controller will map the packet buffer at offset 0x1000 - 0x17FF
and the transaction buffer at 0x1800 - 0x1FFF. Note that the VHDL generics uhchmask and ehcpmask
must be modified to allow access to the increased number of registers. The three least significant bits
of the universal host controller’s mask must be set to zero. The enhanced host controller’s mask must
have its five least significant bits set to zero. The mapped buffers can be read and written using only
WORD accesses, but both controller types must be idle to ensure correct operation. A host controller
is idle when Run/Stop is set to zero and HC Halted is set to one.

48.2.7 Scan test support

The VHDL generic scantest enables scan test support. If the core has been implemented with scan test
support the core will disable the internal RAM blocks when the test enable and scan enable signals are
asserted. The test and scan enable signals are routed via the APB interface to the enhanced host con-
troller and via the AHB slave interface to the universal host controller.

48.3 Port routing

Port routing is implemented according to the EHCI specification but functions regardless of whether
the core is configured with or without an enhanced host controller. The VHDL generic prr enables or
disables Port Routing Rules. With Port Routing Rules enabled, each port can be individually routed to
a specific universal host controller via the VHDL generics portroute1 and portroute2. If Port Routing
Rules is disabled the n_pcc lowest ports are routed to the first companion controller, the next n_pcc
ports to the second companion controller, and so forth. The HCSP-PORTROUTE array is communi-
cated via the portroute VHDL generics, which are calculated with the following algorithm:

portroute1 = 226*CC8 + 222*CC7 + 218*CC6 + 214*CC5 + 210*CC4 + 26*CC3 + 22*CC2 + CC1 / 4

portroute1 = 226*CC15 + 222*CC14 + 218*CC13 + 214*CC12 + 210*CC11 + 26*CC10 + 22*CC9 + CC1 mod 4

where CCP is the companion controller that port P is routed to. Companion controllers are enumerated
starting at 1.

When the enhanced host controller has not been configured by software, or when it is nonexistent,
each port is routed to its companion controller. This allows a universal host controller to function even
if the host system does not have support for the enhanced host controller. Please see the EHCI specifi-
cation for a complete description of port routing.

48.4 DMA operations

Both host controller types have configurable DMA burst lengths. The burst length in words is defined
by the VHDL generic bwrd. The value of bwrd limits how many words a controller may access in
memory during a burst and not the number of memory operations performed after bus access has been
granted. When writing a data payload back to memory that requires half-word or byte addressing the
number of memory operations may exceed bwrd by one before the bus is released. If a host controller
is given a byte-aligned data buffer its burst length may exceed the bwrd limit with one word when
fetching payload data from memory.

The universal host controller uses a burst length of four words when fetching descriptors. This
descriptor burst length is not affected by the bwrd VHDL generic. The universal host controller may
be configured to start transactions on the USB before all data has been fetched from memory. The
VHDL generic uhcblo specifies the number of words that must have been fetched from memory
before a USB transaction is started. Since the USB traffic handled by the universal host controller can
be expected to have significantly lower bandwidth than the system memory bus, this generic should
be set to a low value.
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48.5 Endianness

The core works internally with little endian. If the core is connected to a big endian bus, endian con-
version must be enabled. When the VHDL generic endian_conv is set, all AMBA data lines are byte
swapped. With endian_conv correctly set the core will start accessing data payloads from byte offset
zero in the buffer, this is the first byte that is moved on the USB. The VHDL generic endian_conv
must be set correctly for byte and halfword accesses to work. Therefore it is not possible to change the
byte order of the buffer by configuring the controller for a little endian bus when it is connected to a
big endian bus or vice versa.

The VHDL generics be_regs and be_desc are used to place the controller into big endian mode when
endian conversion is enabled. These configuration options have no effect when the core is connected
to a little endian bus, as determined by the value of VHDL generic endian_conv. The VHDL generic
be_regs arranges the core’s registers in accordance with big endian addressing. In the enhanced host
controller this will only affect the placement of the register fields CAPLENGTH and HCIVERSION,
and the HCSP-PORTROUTE array. In the universal host controller be_regs will affect the placement
of all registers. When be_regs is set, the bus to the register interface is never byte swapped. Tables 567
- 569 below illustrate the difference between big endian, little endian, and little endian layout with
byte swapped (32 bit) WORDs on two 16 bit registers. Register R1 is located at address 0x00 and reg-
ister R2 is located at address 0x02. 

The VHDL generic be_desc removes the byte swapping of descriptors on big endian systems. Tables
570 and 571 below list the effects of endian_conv and be_regs on a big endian and a little endian sys-
tem respectively.

Table 567.R1 and R2 with big endian addressing

31 16 15 0

R1(15:0) R2(15:0)

Table 568.R1 and R2 with little endian addressing

31 16 15 0

R2(15:0) R1(15:0)

Table 569.R1 and R2 with little endian layout and byte swapped DWORD

31 24 23 16 15 8 7 0

R1(7:0) R1(15:8) R2(7:0) R2(15:8)

Table 570.Effect of endian_conv, be_regs, and be_desc on a big endian system

endian_conv be_regs be_desc System configuration

0 - - Illegal. DMA will not function.

1 0 0 Host controller registers will be arranged according to little endian addressing and 
each DWORD will be byte swapped. In-memory transfer descriptors will also be 
byte swapped. This is the correct configuration for operating systems, such as 
Linux, that swap the bytes on big endian systems.

1 0 1 Host controller registers are arranged according to little endian addressing and will 
be byte swapped. Transfer descriptors will not be byte swapped.

1 1 0 Host controller registers will be arranged according to big endian addressing and 
will not be byte swapped. In memory transfer descriptors will be byte swapped.

1 1 1 Host controller registers will be arranged according to big endian addressing. In 
memory transfer descriptors will not be byte swapped.
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48.6 Transceiver support

The controller supports UTMI+ 8-bit, UTMI+ 16-bit, and ULPI transceivers. All connected transceiv-
ers must be of the same type. Transceiver signals not belonging to the selected transceiver type are not
connected and do not need to be driven.When using ULPI transceivers the default, and recommended,
configuration is to use an external source for USB bus power (VBUS) as well as external VBUS fault
detection. However the core can be configured to support configurations where the ULPI transceiver
handles VBUS generation and fault detection internally, and configurations where VBUS generation
is external to transceiver but fault detection is handled internally. Also the active level of the VBUS
fault indicator can be configured. The configuration is handled by the vbusconf generic.

If UTMI+ transceivers are used it does not matter to the core how VBUS generation and fault detec-
tion is handled as long as the VBUS enable signal and VBUS fault indicator are connected to the
core’s drvvbus and vbusvalid signals respectively. The UTMI+ specification defines these two signals
to be active high, however in order to support different types of USB power switches and fault detec-
tors the core can be configured to have active low drvvbus and vbusvalid signals. This configuration
is also handled by the vbusconf generic.

48.7 PCI configuration registers and legacy support

The controller does not implement any PCI configuration registers. Legacy support is not imple-
mented.

48.8 Software drivers

The core implements open interface standards and should function with available drivers. Gaisler
Research supplies initialization code for both controllers for the Linux 2.6 kernel and VxWorks.

48.9 Registers

48.9.1 Enhanced host controller

The core is programmed through registers mapped into APB address space. The contents of each reg-
ister is described in the Enhanced Host Controller Interface Specification for Universal Serial Bus
revision 1.0.

Table 571.Effect of endian_conv, be_regs and be_desc on a little endian system

endian_conv be_regs be_desc System configuration

0 - - Host controller registers will be placed as specified in the register interface specifi-
cations.

1 - - Illegal. DMA will not function.

Table 572.Enhanced Host Controller capability registers

APB address offset Register

0x00 Capability Register Length

0x01 Reserved

0x02 Interface Version Number

0x04 Structural Parameters

0x08 Capability Parameters

0x0C Companion Port Route Description
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48.9.2 Universal host controller

The core is programmed through registers mapped into AHB I/O address space. The contents of each
register is described in the Universal Host Controller Interface (UHCI) Design Guide revision 1.1.

Table 573.Enhanced Host Controller operational registers

APB address offset Register

0x14 USB Command*

0x18 USB Status

0x1C USB Interrupt Enable

0x20 USB Frame Index

0x24 4G Segment Selector (Reserved)

0x28 Frame List Base Address

0x2C Next Asynchronous List Address

0x54 Configured Flag Register

0x58 - 0x90 Port Status/Control Registers**

*Light Host Controller reset is not implemented.

**One 32-bit register for each port.

Table 574.Universal Host Controller I/O registers

AHB address offset Register

0x00 USB Command

0x02 USB Status*

0x04 USB Interrupt Enable

0x06 Frame Number

0x08 Frame List Base Address

0x0C Start Of Frame Modify

0x10 - 0x2C Port Status/Control**

*The HCHalted bit is implemented as Read Only and has the default value 1.

**Over Current and Over Current Change fields have been added. Each port has a 16-bit register.

Table 575. Changes to USB Status register
15 6 5 4 0

UHCI compliant HCH UHCI compliant

15: 6 UHCI compliant

5 Host Controller Halted (HCH) - Same behaviour as specified in the UHCI specification but the field 
has been changed from Read/Write Clear to Read Only and is cleared when Run/Stop is set. The 
default value of this bit has been changed to 1.

4:0 UHCI compliant

Table 576. Changes to Port Status/Control registers
15 11 10 9 0

UHCI compliant OCC OC UHCI compliant

15: 12 UHCI compliant

11 Over Current Change (OCC) - Set to 1 when Over Current (OC) toggles. Read/Write Clear.

10 Over Current Active (OC) - Set to 1 when there is an over current condition. Read Only.

9:0 UHCI compliant
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48.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research), the enhanced host controller has device iden-
tifier 0x026, the universal host controller has device identifier 0x027. For description of vendor and
device identifiers see GRLIB IP Library User’s Manual.

48.11 RAM usage

The core maps all usage of RAM on the syncram_dp component from the technology mapping library
(TECHMAP). A universal host controller requires a 256x32 syncram_dp for its packet buffer. An
enhanced host controller requires a 512x32 syncram_dp for its packet buffer and two 512x16
syncram_dp for its transaction buffer. When the core is instantiated with only one port, the enhanced
host controller and universal host controller will share the packet buffer and the core only requires one
512x32 syncram_dp for the packet buffers. Table 577 below shows RAM usage for all legal configu-
rations.

48.12 Configuration options

Table 578 shows the configuration options of the core (VHDL generics).

Table 577.RAM usage for USB Host Controller core

Enhanced Host Controller 
present

Number of Universal 
Host Controllers

Number of 
ports

RAM
256x32

RAM
512x32

RAM
512x16

No x* Don’t care x* 0 0

Yes 1 1 0 1 2

Yes x* > 1 x* 1 2

* The number of required 256x32 syncram_dp equals the number of instantiated universal host controllers.

Table 578.Configuration options

Generic name Function Allowed range Default

ehchindex Enhanced host controller AHB master index 0 - NAHBMST-1 0

ehcpindex Enhanced host controller APB slave index 0 - NAPBSLV-1 0

ehcpaddr Enhanced host controller ADDR field of the APB BAR. 0 - 16#FFF# 0

ehcpmask Enhanced host controller MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

ehcpirq Enhanced host controller interrupt line 0 - NAHBIRQ-1 0

uhchindex Universal host controller AHB master index. If the core 
contains more than one universal host controller the con-
trollers will be assigned indexes from uhchindex to 
uhchindex+n_cc-1.

0 - NAHBMST-1 0

uhchsindex Universal host controller AHB slave index. If the core 
contains more than one universal host controller the con-
trollers will be assigned indexes from uhc_hsindex to 
uhchsindex+n_cc-1.

0 - NAHBSLV-n_cc 0

uhchaddr Universal host controller ADDR field of the AHB BAR. 
If the core contains more than one universal host control-
ler the controllers will be assigned the address space 
uhchaddr to uhchaddr + n_cc. 

0 - 16#FFF# 0

uhchmask Universal host controller MASK field of the AHB BAR. 0 - 16#FFF# 16#FFF#

uhchirq Universal host controller interrupt line. If the core con-
tains more than one universal host controller the control-
ler will be assigned interrupt lines uhc_hirq to 
uhchirq+n_cc-1.

0 - NAHBIRQ-1 0

tech Technology for clock buffers 0 - NTECH inferred
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memtech Memory Technology used for buffers. 0 - NTECH inferred

nports Number of USB ports 1 - 15 1

ehcgen Enable enhanced host controller 0 - 1 1

uhcgen Enable universal host controller(s) 0 - 1 1

n_cc Number of universal host controllers. This value must be 
consistent with nports and n_pcc, or portroute1 and 
portroute2, depending on the value of the generic prr. 
This value must be at least 1, regardless the value of 
generic uhcgen.

1 - 15 1

n_pcc Number of ports per universal host controller. This value 
must be consistent with n_cc and nports: 

nports <= (n_cc * n_pcc) < (nports + n_pcc)

when Port Routing Rules is disabled. The only allowed 
deviation is if (nports mod n_cc) < n_pcc in which case 
the last universal host controller will get (nports mod 
n_cc) ports. This generic is not used then Port Routing 
Rules (prr) is enabled.

1 - 15 1

prr Port Routing Rules. Determines if the core’s ports are 
routed to companion controller(s) with n_cc and n_pcc 
or with the help of portroute1 and portroute2.

0 - 1 0

portroute1 Defines part of the HCSP-PORTROUTE array - 0

portroute2 Defines part of the HCSP-PORTROUTE array - 0

endian_conv Enable endian conversion. When set, all AMBA data 
lines are byte swapped. This generic must be set to 1 if 
the core is attached to a big endian bus, it must be set to 0 
if the core is attached to a little endian bus.

0 - 1 1

be_regs Arrange host controller registers according to big endian 
addressing. When set no endian conversion is made on 
the AMBA data lines connected to the host controller 
registers, regardless of endian_conv. Valid when 
endian_conv is enabled.

0 - 1 0

be_desc Disable byte swapping of in-memory descriptors. Valid 
when endian_conv is enabled.

0 - 1 0

uhcblo Universal Host Controller Buffer Limit Out. A universal 
host controller will start OUT bus transactions when 
uhcblo words of payload data has been fetched from 
memory. Note that if the core uses the UTMI+ 16 bit 
interface this generic must have a value larger than 2.

1 - 255 2

bwrd Burst length in words. A universal host controller has a 
fixed, not affected by bwrd, burst length of four words 
when fetching transfer descriptors. See comments under 
section 48.2 DMA operations.

0 - 256 16

utm_type Transceiver type:

0: UTMI+ 16 bit data bus

1: UTMI+ 8 bit data bus

2: ULPI

0 - 2 2

Table 578.Configuration options

Generic name Function Allowed range Default
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vbusconf* Selects configuration for USB power source and fault 
detection:

ULPI transceivers:

0: ULPI transceiver generates VBUS internally and no 
external fault indicator present

1: External power source but no external fault indicator

2: External power source and external active high fault 
indicator

3: External power source and external active low fault 
indicator

UTMI+ transceivers:

0: vbusvalid and drvvbus are both active low

1: vbusvalid is active low, drvvbus is active high

2: vbusvalid is active high, drvvbus is active low

3: vbusvalid and drvvbus are both active high

0 - 3 3

ramtest When set each controller maps its internal buffers into 
the controller’s register space.

0 - 1 0

urst_time Amount of time (in ns) that the USB transceiver reset 
output need to be active

- 250

oepol The polarity of the output enable signal for the data 
input/output buffers, 0 means active low and 1 means 
active high.

0 - 1 0

*see section 48.6 Transceiver support for more information

Table 578.Configuration options

Generic name Function Allowed range Default
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48.13 Signal descriptions

Table 579 shows the interface signals of the core (VHDL ports).

Table 579.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

UCLK N/A Input USB clock -

RST N/A Input Reset Low

URSTI N/A Input USB reset Low

APBI * Input APB slave input signals -

EHC_APBO * Output APB slave output signals -

AHBMI * Input AHB master input signals -

AHBSI * Input AHB slave input signals -

EHC_AHBMO * Output AHB master output signals. -

UHC_AHBMO[] * Output AHB master output vector. 

UHC_AHBSO[] * Output AHB slave output vector. -

O[] xcvrsel[1:0] Output UTMI+ output signals -

termsel Output UTMI+ output signal -

suspendm Output UTMI+ output signal Low

opmode[1:0] Output UTMI+ output signals -

txvalid Output UTMI+ output signal High

drvvbus Output UTMI+ output signal **

datah[7:0] Output UTMI+ 16-bit interface output data bus -

validh Output UTMI+ 16-bit interface output signal High

host Output UTMI+ output signal High

stp Output ULPI output signal High

data[7:0] Output UTMI+/ULPI output signals -

utm_rst Output UTMI+/ULPI output signal High/Low

dcrtl Output Data bus direction control; High: Input data -

I[] linestate[1:0] Input UTMI+ input signals -

txready Input UTMI+ input signal High

rxvalid Input UTMI+ input signal High

rxactive Input UTMI+ input signal High

rxerror Input UTMI+ input signal High

vbusvalid Input UTMI+ input signal **

datah[7:0] Input UTMI+ 16-bit interface input data bus -

validh Input UTMI+ 16-bit interface input signal High

hostdisc Input UTMI+ input signal High

nxt Input ULPI input signal High

dir Input ULPI input signal -

data[7:0] Input UTMI+/ULPI input data bus -

* See GRLIB IP Library User’s Manual

** Implementation dependent
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48.14 Library dependencies

Table 580 shows the libraries used when instantiating the core (VHDL libraries).

48.15 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.grusbhc_pkg.all;

-- USB Host controller with 2 ports (ULPI transceiv er).One enhanced host controller
-- and two universal host controllers.

entity usbhc_ex is
  generic (
    tech    => tech;
    memtech => memtech;
    padtech => padtech);
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;
    
    -- USBHC signals
    usbh_clkin     : in std_ulogic;
    usbh_clkout    : out std_ulogic;
    usbh_d         : inout std_logic_vector(15 down to 0);
    usbh_reset     : out std_logic_vector(1 downto 0);
    usbh_nxt       : in std_logic_vector(1 downto 0 );
    usbh_stp       : out std_logic_vector(1 downto 0);
    usbh_dir       : in std_logic_vector(1 downto 0 )
    );
end;

architecture rtl of usbhc_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => a hbs_none);

  -- USBHC signals
  signal usbhci : usbhc_in_vector(1 downto 0);
  signal usbhco : usbhc_out_vector(1 downto 0);
  signal uhclko, urst, uhclk : std_ulogic;
  
begin
  
  -- AMBA Components are instantiated here
  ...

  -- Instantiate pads, one iteration for each port

Table 580.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER GRUSBHC_PKG Signals, component Component declaration, USB signals
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  multi_pads: for i in 0 to 1 generate
      usbh_d_pad: iopadv
        generic map(tech => padtech, width => 8)
        port map (usbh_d((i*2**3+7) downto (i*2**3) ), usbhco(i).data,
                  usbhco(i).dctrl, usbhci(i).data);
      usbh_nxt_pad : inpad generic map (tech => pad tech)
        port map (usbh_nxt(i),usbhci(i).nxt);
      usbh_dir_pad : inpad generic map (tech => pad tech)
        port map (usbh_dir(i),usbhci(i).dir);
      usbh_reset_pad : outpad generic map (tech => padtech)
        port map (usbh_reset(i),usbhco(i).utm_rst);
      usbh_stp_pad : outpad generic map (tech => pa dtech)
        port map (usbh_stp(i),usbhco(i).stp);
    end generate;

    -- Clock generation. This example generates a c lock to the 
    -- transceivers. If the clock is genereated out side the FPGA
    -- no clock generator or clock out pads are nec essary. When

-- the clock is generated interally the ursti port of the core
-- should be connected to lock signal from the DCM (in this case
-- the urst signal makes that connection). When an external clock
-- is used and no lock input is provided ursti shou ld be set to ‘1’.

    usbh_clkgen : clkmul_virtex2
      generic map (clk_mul => 6, clk_div => 10)
      port map (’1’, lclk, uhclko, urst);
    
    -- Clock to transceivers
    usbh_clkout_pad : outpad
        generic map (tech => padtech)
        port map (usbh_clkout, uhclko);

    -- Input clock for USB clock domain. Note: arch  => 3 creates 
    -- a clock pad which removes input delay by ins tatiating a BUFGDLL
    -- or similar.
    usbh_clkin_pad :
      clkpad generic map (tech => padtech, arch => 3)
      port map(usbh_clkin, uhclk);
  
     usbhostcontroller0: grusbhc
      generic map (
        ehchindex => 5,
        ehcpindex => 14,
        ehcpaddr => 14,
        ehcpirq => 9,
        ehcpmask => 16#fff#,
        uhchindex => 6,
        uhchsindex => 3,
        uhchaddr => 16#A00#,
        uhchmask => 16#fff#,
        uhchirq => 10,
        tech => tech,
        memtech => memtech,
        nports => 2,
        ehcgen => 1,
        uhcgen => 1,
        n_cc => 2,
        n_pcc => 1,
        prr => 0,
        portroute1 => 0,
        portroute2 => 0,
        endian_conv => 1,
        be_regs => 0,
        be_desc => 0,
        utm_type => 2,
        uhcblo => 5,
        bwrd => 4,
        vbusconf => 3,
        ramtest => 0,

urst_time => 250)
      port map (
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        clkm,uhclk,rstn,urst,apbi,apbo(14),ahbmi,ah bsi,
        ahbmo(5),
        ahbmo(7 downto 6),
        ahbso(4 downto 3),
        usbhco,usbhci);
end;
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49 I2CMST - I2C-master

49.1 Overview

The I2C-master core is a modified version of the OpenCores I2C-Master where the WISHBONE
interface has been replaced with an AMBA APB interface. The core is compatible with Philips I2C
standard and supports 7- and 10-bit addressing. Standard-mode (100 kb/s) and Fast-mode (400 kb/s)
operation are supported directly. External pull-up resistors must be supplied for both bus lines.

As of the 1st of October 2006 Philips has declared all remaining patents under the I2C program to be
royalty free.

49.2 Operation

49.2.1 Transmission protocol

The I2C-bus is a simple 2-wire serial multi-master bus with collision detection and arbitration. The
bus consists of a serial data line (SDA) and a serial clock line (SCL). The I2C standard defines three
transmission speeds; Standard (100 kb/s), Fast (400 kb/s) and High speed (3.4 Mb/s).

A transfer on the I2C-bus begins with a START condition. A START condition is defined as a high to
low transition of the SDA line while SCL is high. Transfers end with a STOP condition, defined as a
low to high transition of the SDA line while SCL is high. These conditions are always generated by a
master. The bus is considered to be busy after the START condition and is free after a certain amount
of time following a STOP condition. The bus free time required between a STOP and a START condi-
tion is defined in the I2C-bus specification and is dependent on the bus bit rate.

Figure 157 shows a data transfer taking place over the I2C-bus. The master first generates a START
condition and then transmits the 7-bit slave address. The bit following the slave address is the R/W bit
which determines the direction of the data transfer. In this case the R/W bit is zero indicating a write
operation. After the master has transmitted the address and the R/W bit it releases the SDA line. The
receiver pulls the SDA line low to acknowledge the transfer. If the receiver does not acknowledge the
transfer, the master may generate a STOP condition to abort the transfer or start a new transfer by gen-
erating a repeated START condition.

After the first byte has been acknowledged the master transmits the data byte. If the R/W bit had been
set to ‘1’ the master would have acted as a receiver during this phase of the transfer. After the data
byte has been transferred the receiver acknowledges the byte and the master generates a STOP condi-
tion to complete the transfer. Section 49.2.3 contains three more example transfers from the perspec-
tive of a software driver.

Figure 156.  Block diagram
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If the data bitrate is too high for a slave device, it may stretch the clock period by keeping SCL low
after the master has driven SCL low.

49.2.2 Clock generation

The core uses the prescale register to determine the frequency of the SCL clock line and of the 5*SCL
clock that the core uses internally. To calculate the prescale value use the formula:

The SCLfrequency is 100 kHz for Standard-mode operation (100 kb/s) and 400 kHz for Fast mode
operation. To use the core in Standard-mode in a system with a 60 MHz clock driving the AMBA bus
the required prescale value is:

Note that the prescale register should only be changed when the core is disabled. The minimum rec-
ommended prescale value is 3 due to synchronization issues. Lower values may cause the master to
violate I2C timing requirements. This limits the minimum system frequency to 2 MHz for operation in
Standard-mode.

49.2.3 Software operational model

The core is initialized by writing an appropriate value to the clock prescale register and then setting
the enable (EN) bit in the control register. Interrupts are enabled via the interrupt enable (IEN) bit in
the control register.

To write a byte to a slave the I2C-master must generate a START condition and send the slave address
with the R/W bit set to ‘0’. After the slave has acknowledged the address, the master transmits the
data, waits for an acknowledge and generates a STOP condition. The sequence below instructs the
core to perform a write:

1. Left-shift the I2C-device address one position and write the result to the transmit register. The 
least significant bit of the transmit register (R/W) is set to ‘0’.

Figure 157.  Complete I2C data transfer
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2. Generate START condition and send contents of transmit register by setting the STA and WR
bits in the command register.

3. Wait for interrupt, or for TIP bit in the status register to go low.

4. Read RxACK bit in status register. If RxACK is low the slave has acknowledged the transfer,
proceed to step 5. If RxACK is set the device did not acknowledge the transfer, go to step 1.

5. Write the slave-data to the transmit register.

6. Send the data to the slave and generate a stop condition by setting STO and WR in the com-
mand register.

7. Wait for interrupt, or for TIP bit in the status register to go low.

8. Verify that the slave has acknowledged the data by reading the RxACK bit in the status regis-
ter. RxACK should not be set.

To read a byte from an I2C-connected memory much of the sequence above is repeated. The data writ-
ten in this case is the memory location on the I2C slave. After the address has been written the master
generates a repeated START condition and reads the data from the slave. The sequence that software
should perform to read from a memory device:

1. Left-shift the I2C-device address one position and write the result to the transmit register. The 
least significant bit of the transmit register (R/W) is set to ‘0’.

2. Generate START condition and send contents of transmit register by setting the STA and WR
bits in the command register.

3. Wait for interrupt or for TIP bit in the status register to go low.

4. Read RxACK bit in status register. If RxACK is low the slave has acknowledged the transfer,
proceed to step 5. If RxACK is set the device did not acknowledge the transfer, go to step 1.

5. Write the memory location to be read from the slave to the transmit register.

6. Set the WR bit in the command register. Note that a STOP condition is not generated here.

7. Wait for interrupt, or for TIP bit in the status register to go low.

8. Read RxACK bit in the status register. RxACK should be low.

9. Address the I2C-slave again by writing its left-shifted address into the transmit register. Set the
least significant bit of the transmit register (R/W) to ‘1’ to read from the slave.

10. Set the STA and WR bits in the command register to generate a repeated START condition.

11. Wait for interrupt, or for TIP bit in the status register to go low.

12. Read RxACK bit in the status register. The slave should acknowledge the transfer.

13. Prepare to receive the data read from the I2C-connected memory. Set bits RD, ACK and STO
on the command register. Setting the ACK bit NAKs the received data and signifies the end of
the transfer.

14. Wait for interrupt, or for TIP in the status register to go low.

15. The received data can now be read from the receive register.

To perform sequential reads the master can iterate over steps 13 - 15 by not setting the ACK and STO
bits in step 13. To end the sequential reads the ACK and STO bits are set. Consult the documentation
of the I2C-slave to see if sequential reads are supported.

The final sequence illustrates how to write one byte to an I2C-slave which requires addressing. First
the slave is addressed and the memory location on the slave is transmitted. After the slave has
acknowledged the memory location the data to be written is transmitted without a generating a new
START condition:

1. Left-shift the I2C-device address one position and write the result to the transmit register. The 
least significant bit of the transmit register (R/W) is set to ‘0’.
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2. Generate START condition and send contents of transmit register by setting the STA and WR
bits in the command register.

3. Wait for interrupt or for TIP bit in the status register to go low.

4. Read RxACK bit in status register. If RxACK is low the slave has acknowledged the transfer,
proceed to step 5. If RxACK is set the device did not acknowledge the transfer, go to step 1.

5. Write the memory location to be written from the slave to the transmit register.

6. Set the WR bit in the command register.

7. Wait for interrupt, or for TIP bit in the status register to go low.

8. Read RxACK bit in the status register. RxACK should be low.

9. Write the data byte to the transmit register.

10. Set WR and STO in the command register to send the data byte and then generate a STOP
condition.

11. Wait for interrupt, or for TIP bit in the status register to go low.

12. Check RxACK bit in the status register. If the write succeeded the slave should acknowledge
the data byte transfer.

The example sequences presented here can be generally applied to I2C-slaves. However, some
devices may deviate from the protocol above, please consult the documentation of the I2C-slave in
question. Note that a software driver should also monitor the arbitration lost (AL) bit in the status reg-
ister.

49.3 Registers

The core is programmed through registers mapped into APB address space.

Table 581.I2C-master registers

APB address offset Register

0x00 Clock prescale register

0x04 Control register

0x08 Transmit register*

0x08 Receive register**

0x0C Command register*

0x0C Status register**

* Write only

** Read only

Table 582. I2C-master Clock prescale register
31 16 15 7 6 5 4 3 2 1 0

RESERVED Clock prescale

31 : 16 RESERVED

15:0 Clock prescale - Value is used to prescale the SCL clock line. Do not change the value of this register 
unless the EN field of the control register is set to ‘0’. The minimum recommended value of this reg-

ister is 0x0003. Lower values may cause the master to violate I2C timing requirements due to syn-
chronization issues.

Table 583. I2C-master control register
31 8 7 6 5 0

RESERVED EN IEN RESERVED
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31 : 8 RESERVED

7 Enable (EN) - Enable I2C core. The core is enabled when this bit is set to ‘1’.

6 Interrupt enable (IEN) - When this bit is set to ‘1’ the core will generate interrupts upon transfer 
completion.

5:0 RESERVED

Table 584. I2C-master transmit register
31 8 7 1 0

RESERVED TDATA RW

31 : 8 RESERVED

7:1 Transmit data (TDATA) - Most significant bits of next byte to transmit via I2C

0 Read/Write (RW) - In a data transfer this is the data’s least significant bit. In a slave address transfer 
this is the RW bit. ‘1’ reads from the slave and ‘0’ writes to the slave.

Table 585. I2C-master receive register
31 8 7 0

RESERVED RDATA

31 : 8 RESERVED

7:0 Receive data (RDATA) - Last byte received over I2C-bus.

Table 586. I2C-master command register
31 8 7 6 5 4 3 2 1 0

RESERVED STA STO RD WR ACK RESERVED IACK

31 : 8 RESERVED

7 Start (STA) - Generate START condition on I2C-bus. This bit is also used to generate repeated 
START conditions.

6 Stop (STO) - Generate STOP condition

5 Read (RD) - Read from slave

4 Write (WR) - Write to slave

3 Acknowledge (ACK) - Used when acting as a receiver. ‘0’ sends an ACK, ‘1’ sends a NACK.

2:1 RESERVED

0 Interrupt acknowledge (IACK) - Clears interrupt flag (IF) in status register.

Table 587. I2C-master status register
31 8 7 6 5 4 3 2 1 0

RESERVED RxACK BUSY AL RESERVED TIP IF

31 : 8 RESERVED

7 Receive acknowledge (RxACK) - Received acknowledge from slave. ‘1’ when no acknowledge is 
received, ‘0’ when slave has acked the transfer.

6 I2C-bus busy (BUSY) - This bit is set to ‘1’ when a start signal is detected and reset to ‘0’ when a 
stop signal is detected.

5 Arbitration lost (AL) - Set to ‘1’ when the core has lost arbitration. This happens when a stop signal 
is detected but not requested or when the master drives SDA high but SDA is low.

4:2 RESERVED

Table 583. I2C-master control register
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49.4 Vendor and device identifier

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x028. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

49.5 Configuration options

Table 588 shows the configuration options of the core (VHDL generics).

49.6 Signal descriptions

Table 589 shows the interface signals of the core (VHDL ports).

1 Transfer in progress (TIP) - ‘1’ when transferring data and ‘0’ when the transfer is complete.

0 Interrupt flag (IF) - This bit is set when a byte transfer has been completed and when arbitration is 
lost. If IEN in the control register is set an interrupt will be generated. New interrupts will ge gener-
ated even if this bit has not been cleared.

Table 588.Configuration options

Generic name Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by I2C-master 0 - NAHBIRQ-1 0

oepol Output enable polarity 0 - 1 0

Table 589.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

I2CI SCL Input I2C clock line input -

SDA Input I2C data line input -

I2CO SCL Output I2C clock line output -

SCLOEN Output I2C clock line output enable Low

SDA Output I2C data line output -

SDAOEN Output I2C data line output enable Low

* see GRLIB IP Library User’s Manual

Table 587. I2C-master status register
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49.7 Library dependencies

Table 590 shows the libraries used when instantiating the core (VHDL libraries).

49.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity i2c_ex is
  port (
    clk  : in std_ulogic;
    rstn : in std_ulogic;
    
    -- I2C signals
    iic_scl : inout std_ulogic;
    iic_sda : inout std_ulogic
    );
end;

architecture rtl of i2c_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  
  -- I2C signals
  signal i2ci : i2c_in_type;
  signal i2co : i2c_out_type;
begin
  
  -- AMBA Components are instantiated here
  ...

  -- I2C-master
  i2c0 : i2cmst
    generic map (pindex => 12, paddr => 12, pmask = > 16#FFF#, pirq => 8)
    port map (rstn, clkm, apbi, apbo(12), i2ci, i2c o);
  i2c_scl_pad : iopad generic map (tech => padtech)
    port map (iic_scl, i2co.scl, i2co.scloen, i2ci. scl);
  i2c_sda_pad : iopad generic map (tech => padtech)
    port map (iic_sda, i2co.sda, i2co.sdaoen, i2ci. sda);
end;

Table 590.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component, signals Component declaration, I2C signal definitions

OPENCORES I2C Component Component declaration
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50 I2CSLV - I2C slave

50.1 Overview

The I2C slave core is a simple I2C slave that provides a link between the I2C bus and the AMBA APB.
The core is compatible with Philips I2C standard and supports 7- and 10-bit addressing with an
optionally software programmable address. Standard-mode (100 kb/s) and Fast-mode (400 kb/s) oper-
ation are supported directly. External pull-up resistors must be supplied for both bus lines.

As of the 1st of October 2006 NXP/Philips has declared all remaining patents under the I2C program
to be royalty free. NXP still provides the I2C address allocation service, more information is available
from: http://www.nxp.com/products/interface_control/i2c/licensing/

50.2 Operation

50.2.1 Transmission protocol

The I2C-bus is a simple 2-wire serial multi-master bus with collision detection and arbitration. The
bus consists of a serial data line (SDA) and a serial clock line (SCL). The I2C standard defines three
transmission speeds; Standard (100 kb/s), Fast (400 kb/s) and High speed (3.4 Mb/s).

A transfer on the I2C-bus begins with a START condition. A START condition is defined as a high to
low transition of the SDA line while SCL is high. Transfers end with a STOP condition, defined as a
low to high transition of the SDA line while SCL is high. These conditions are always generated by a
master. The bus is considered to be busy after the START condition and is free after a certain amount
of time following a STOP condition. The bus free time required between a STOP and a START condi-
tion is defined in the I2C-bus specification and is dependent on the bus bit rate.

Figure 159 shows a data transfer taking place over the I2C-bus. The master first generates a START
condition and then transmits the 7-bit slave address. I2C also supports 10-bit addresses, which are dis-
cussed briefly below. The bit following the slave address is the R/W bit which determines the direc-
tion of the data transfer. In this case the R/W bit is zero indicating a write operation. After the master
has transmitted the address and the R/W bit it releases the SDA line. The receiver pulls the SDA line
low to acknowledge the transfer. If the receiver does not acknowledge the transfer, the master may
generate a STOP condition to abort the transfer or start a new transfer by generating a repeated
START condition. 

After the address has been acknowledged the master transmits the data byte. If the R/W bit had been
set to ‘1’ the master would have acted as a receiver during this phase of the transfer. After the data

Figure 158.  Block diagram
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byte has been transferred the receiver acknowledges the byte and the master generates a STOP condi-
tion to complete the transfer. 

An I2C slave may also support 10-bit addressing. In this case the master first transmits a pattern of
five reserved bits followed by the two first bits of the 10-bit address and the R/W bit set to ‘0’. The
next byte contains the remaining bits of the 10-bit address. If the transfer is a write operation the mas-
ter then transmits data to the slave. To perform a read operation the master generates a repeated
START condition and repeats the first part of the 10-bit address phase with the R/W bit set to ‘1’.

If the data bitrate is too high for a slave device or if the slave needs time to process data, it may stretch
the clock period by keeping SCL low after the master has driven SCL low.

50.2.2 Slave addressing

The core’s addressing support is implementation dependent. The core may have a programmable
address and may support 10-bit addresses. If the core has support for 10-bit addressing, the TBA bit of
the Slave address register will be set to ‘1’ after reset. If the core’s address is programmable this bit is
writable and is used by the core to determine if it should listen to a 7- or 10-bit address.

Software can determine the addressing characteristics of the core by writing and reading the Slave
address register. The core supports 10-bit addresses if the TBA bit is, or can be set, to ‘1’. The core
has a software programmable address if the SLVADDR field in the same register can be changed.

50.2.3 System clock requirements and sampling

The core samples the incoming I2C SCL clock and does not introduce any additional clock domains
into the system. Both the SCL and SDA lines first pass through two stage synchronizers and are then
filtered with a low pass filter consisting of four registers.

START and STOP conditions are detected if the SDA line, while SCL is high, is at one value for two
system clock cycles, toggles and keeps the new level for two system clock cycles.

The synchronizers and filters constrain the minimum system frequency. The core requires the SCL
signal to be stable for at least four system clock cycles before the core accepts the SCL value as the
new clock value. The core’s reaction to transitions will be additionally delayed since both lines are
taken through two-stage synchronizers before they are filtered. Therefore it takes the core over eight
system clock cycles to discover a transition on SCL. To use the slave in Standard-mode operation at
100 kHz the recommended minimum system frequency is 2 MHz. For Fast-mode operation at 400
kHz the recommended minimum system frequency is 6 MHz.

Figure 159.  Complete I2C data transfer
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50.2.4 Operational model

The core has four main modes of operation and is configured to use one of these modes via the Con-
trol register bits Receive Mode (RMOD) and Transmit Mode (TMOD). The mode setting controls the
core’s behavior after a byte has been received or transmitted. 

The core will always NAK a received byte if the receive register is full when the whole byte is
received. If the receive register is free the value of RMOD determines if the core should continue to
listen to the bus for the master’s next action or if the core should drive SCL low to force the master
into a wait state. If the value of the RMOD field is ‘0’ the core will listen for the master’s next action.
If the value of the RMOD field is ‘1’ the core will drive SCL low until the Receive register has been
read and the Status register bit Byte Received (REC) has been cleared. Note that the core has not
accepted a byte if it does not acknowledge the byte. 

When the core receives a read request it evaluates the Transmit Valid (TV) bit in the Control register.
If the Transmit Valid bit is set the core will acknowledge the address and proceed to transmit the data
held in the Transmit register. After a byte has been transmitted the core assigns the value of the Con-
trol register bit Transmit Always Valid (TAV) to the Transmit Valid (TV) bit. This mechanism allows
the same byte to be sent on all read requests without software intervention. The value of the Transmit
Mode (TMOD) bit determines how the core acts after a byte has been transmitted and the master has
acknowledged the byte, if the master NAKs the transmitted byte the transfer has ended and the core
goes into an idle state. If TMOD is set to ‘0’ when the master acknowledges a byte the core will con-
tinue to listen to the bus and wait for the master’s next action. If the master continues with a sequential
read operation the core will respond to all subsequent requests with the byte located in the Transmit
Register. If TMOD is ‘1’ the core will drive SCL low after a master has acknowledged the transmitted
byte. SCL will be driven low until the Transmit Valid bit in the control register is set to ‘1’. Note that
if the Transmit Always Valid (TAV) bit is set to ‘1’ the Transmit Valid bit will immediately be set and
the core will have show the same behavior for both Transmit modes.

When operating in Receive or Transmit Mode ‘1’, the bus will be blocked by the core until software
has acknowledged the transmitted or received byte. This may have a negative impact on bus perfor-
mance and it also affects single byte transfers since the master is prevented to generate STOP or
repeated START conditions when SCL is driven low by the core.

The core reports three types of events via the Status register. When the core NAKs a received byte, or
its address in a read transfer, the NAK bit in the Status register will be set. When a byte is successfully
received the core asserts the Byte Received (REC) bit. After transmission of a byte, the Byte Trans-
mitted (TRA) bit is asserted. These three bits can be used as interrupt sources by setting the corre-
sponding bits in the Mask register.

50.3 Registers

The core is programmed through registers mapped into APB address space.

Table 591.I2C slave registers

APB address offset Register

0x00 Slave address register

0x04 Control register

0x08 Status register

0x0C Mask register

0x10 Receive register

0x14 Transmit register
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Table 592. Slave address register
31 30 ALEN ALEN-1 0

TBA RESERVED SLVADDR

31 Ten-bit Address (TBA) - When this bit is set the core will interpret the value in the SLVADDR field 
as a 10-bit address. If the core has 10-bit address support this bit will have the reset value ‘1’.

30 : ALEN RESERVED

(ALEN-1):0 Slave address (SLVADDR) - Contains the slave I2C address. The width of the slave address field, 
ALEN, is 7 bits (6:0) if the core only has support for 7-bit addresses. If the core has support for 10-
bit addressing the width of SLVADDR is 10 bits. Depending on the hardware configuration this reg-
ister may be read only. The core checks the length of the programmed address and will function with 
7-bit addresses even if it has support for 10-bit addresses.

I2C addresses can be allocated by NXP, please see the link in the core’s overview section.

Reset value: Implementation dependent

Table 593. Control register
31 5 4 3 2 1 0

RESERVED RMOD TMOD TV TAV EN

31 : 5 RESERVED

4 Receive Mode (RMOD) - Selects how the core handles writes:

‘0’: The slave accepts one byte and NAKs all other transfers until software has acknowledged the 
received byte by reading the Receive register.

‘1’: The slave accepts one byte and keeps SCL low until software has acknowledged the received 
byte by reading the Receive register.

3 Transmit Mode (TMOD) - Selects how the core handles reads:

‘0’: The slave transmits the same byte to all if the master requests more than one byte in the transfer. 
The slave then NAKs all read requests as long as the Transmit Valid (TV) bit is unset.

‘1’: The slave transmits one byte and then keeps SCL low until software has acknowledged that the 
byte has been transmitted by setting the Transmit Valid (TV) bit.

2 Transmit Valid (TV) - Software sets this bit to indicate that the data in the transmit register is valid. 
The core automatically resets this bit when the byte has been transmitted. When this bit is ‘0’ the 
core will either NAK or insert wait states on incoming read requests, depending on the Transmit 
Mode (TMOD).

1 Transmit Always Valid (TAV) - When this bit is set, the core will not clear the Transmit Valid (TV) 
bit when a byte has been transmitted. 

0 Enable core (EN) - Enables core. When this bit is set to ‘1’ the core will react to requests to the 
address set in the Slave address register. If this bit is ‘0’ the core will keep both SCL and SDA inputs 
in Hi-Z state.

Reset value: 0b000000000000000000000000000UUUU0, where U is undefined.

Table 594. Status register
31 3 2 1 0

RESERVED REC TRA NAK

31 : 3 RESERVED

2 Byte Received (REC) - This bit is set to ‘1’ when the core accepts a byte and is automatically cleared 
when the Receive register has been read.

1 Byte Transmitted (TRA) - This bit is set to ‘1’ when the core has transmitted a byte and is cleared by 
writing ‘1’ to this position. Writes of ‘0’ have no effect.

0 NAK Response (NAK) - This bit is set to ‘1’ when the core has responded with NAK to a read or 
write request. This bit does not get set to ‘1’ when the core responds with a NAK to an address that 
does not match the cores address. This bit is cleared by writing ‘1’ to this position, writes of ‘0’ have 
no effect.

Reset value: 0x00000000
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50.4 Vendor and device identifier

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x03E. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

50.5 Configuration options

Table 598 shows the configuration options of the core (VHDL generics).

Table 595. Mask register
31 3 2 1 0

RESERVED RECE TRAE NAKE

31 : 3 RESERVED

2 Byte Received Enable (RECE) - When this bit is set the core will generate an interrupt when bit 2 in 
the Status register gets set.

1 Byte Transmitted Enable (TRAE) - When this bit is set the core will generate an interrupt when bit 1 
in the Status register gets set.

0 NAK Response Enable (NAKE) - When this bit is set the core will generate an interrupt when bit 0 
in the Status register gets set.

Reset value: Undefined

Table 596. Receive register
31 8 7 0

RESERVED RECBYTE

31 : 8 RESERVED

7:0 Received Byte (RECBYTE) - Last byte received from master. This field only contains valid data if 
the Byte received (REC) bit in the status register has been set.

Reset value: Undefined

Table 597. Transmit register
31 8 8 7 0

RESERVED TRABYTE

31 : 8 RESERVED

7:0 Transmit Byte (TRABYTE) - Byte to transmit on the next master read request. 

Reset value: Undefined

Table 598.Configuration options

Generic name Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by I2C slave 0 - NAHBIRQ-1 0

hardaddr If this generic is set to 1 the core uses the value of 
generic i2caddr as the hard coded address. If hardaddr is 
set to 0 the core’s address can be changed via the Slave 
address register.

0 - 1 0

tenbit If this generic is set to 1 the core will support 10-bit 
addresses. Note that the core can still be configured to 
use a 7-bit address.

0 - 1 0

i2caddr The slave’s (initial) I2C address. 0 - 1023 0

oepol Output enable polarity 0 - 1 0
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50.6 Signal descriptions

Table 599 shows the interface signals of the core (VHDL ports).

50.7 Library dependencies

Table 600 shows the libraries used when instantiating the core (VHDL libraries).

50.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity i2cslv_ex is
  port (
    clk  : in std_ulogic;
    rstn : in std_ulogic;
    
    -- I2C signals
    iic_scl : inout std_ulogic;
    iic_sda : inout std_ulogic
    );
end;

architecture rtl of i2cslv_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);

Table 599.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

I2CI SCL Input I2C clock line input -

SDA Input I2C data line input -

I2CO SCL Output I2C clock line output -

SCLOEN Output I2C clock line output enable Low

SDA Output I2C data line output -

SDAOEN Output I2C data line output enable Low

* see GRLIB IP Library User’s Manual

Table 600.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component, signals Component declaration, I2C signal definitions
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  -- I2C signals
  signal i2ci : i2c_in_type;
  signal i2co : i2c_out_type;
begin
  
  -- AMBA Components are instantiated here
  ...

  -- I2C-slave
  i2cslv0 : i2cslv
    generic map (pindex => 1, paddr => 1, pmask => 16#FFF#, pirq => 1,
                 hardaddr => 0, tenbit => 1, i2cadd r => 16#50#)
    port map (rstn, clk, apbi, apbo(1), i2ci, i2co) ;
  i2cslv0_scl_pad : iopad generic map (tech => padt ech)
    port map (iic_scl, i2co.scl, i2co.scloen, i2ci. scl);
  i2cslv0_sda_pad : iopad generic map (tech => padt ech)
    port map (iic_sda, i2co.sda, i2co.sdaoen, i2ci. sda);
end;
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51 IRQMP - Multiprocessor Interrupt Controller

51.1 Overview

The AMBA system in GRLIB provides an interrupt scheme where interrupt lines are routed together
with the remaining AHB/APB bus signals, forming an interrupt bus. Interrupts from AHB and APB
units are routed through the bus, combined together, and propagated back to all units. The multipro-
cessor interrupt controller core is attached to AMBA bus as an APB slave, and monitors the combined
interrupt signals.

The interrupts generated on the interrupt bus are all forwarded to the interrupt controller. The interrupt
controller prioritizes, masks and propagates the interrupt with the highest priority to the processor. In
multiprocessor systems, the interrupts are propagated to all processors.

 

51.2 Operation

51.2.1 Interrupt prioritization

The interrupt controller monitors interrupt 1 - 15 of the interrupt bus (APBI.PIRQ[15:1]). When any
of these lines are asserted high, the corresponding bit in the interrupt pending register is set. The pend-
ing bits will stay set even if the PIRQ line is de-asserted, until cleared by software or by an interrupt
acknowledge from the processor. 

Each interrupt can be assigned to one of two levels (0 or 1) as programmed in the interrupt level regis-
ter. Level 1 has higher priority than level 0. The interrupts are prioritised within each level, with inter-
rupt 15 having the highest priority and interrupt 1 the lowest. The highest interrupt from level 1 will
be forwarded to the processor. If no unmasked pending interrupt exists on level 1, then the highest
unmasked interrupt from level 0 will be forwarded. PIRQ[31:16] are not used by the IRQMP core.

Interrupts are prioritised at system level, while masking and forwarding of interrupts in done for each
processor separately. Each processor in an multiprocessor system has separate interrupt mask and
force registers. When an interrupt is signalled on the interrupt bus, the interrupt controller will priori-
tize interrupts, perform interrupt masking for each processor according to the mask in the correspond-
ing mask register and forward the interrupts to the processors.

MP IRQ 
Processor 0 Processor 1

BUS 
CONTROL

SLAVE 1 SLAVE 2

Processor n
CTRL

Interrupt level

Interrupt acknowledge

Figure 160.  LEON3 multiprocessor system with Multiprocessor Interrupt controller

AHB BUS
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When a processor acknowledges the interrupt, the corresponding pending bit will automatically be
cleared. Interrupt can also be forced by setting a bit in the interrupt force register. In this case, the pro-
cessor acknowledgement will clear the force bit rather than the pending bit. After reset, the interrupt
mask register is set to all zeros while the remaining control registers are undefined. Note that interrupt
15 cannot be maskable by the LEON3 processor and should be used with care - most operating sys-
tems do not safely handle this interrupt.

51.2.2 Processor status monitoring

The processor status can be monitored through the Multiprocessor Status Register. The STATUS field
in this register indicates if a processor is halted (‘1’) or running (‘0’). A halted processor can be reset
and restarted by writing a ‘1’ to its status field. After reset, all processors except processor 0 are
halted. When the system is properly initialized, processor 0 can start the remaining processors by
writing to their STATUS bits.

51.2.3 Irq broadcasting

The Broadcast Register is activated when the generic ncpu is > 1. A incoming irq that has its bit set in
the Broadcast Register is propagated to the force register of all CPUs rather than only to the Pending
Register. This can be used to implement a timer that fires to all cpus with that same irq.

Figure 161.  Interrupt controller block diagram
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51.3 Registers

The core is controlled through registers mapped into APB address space. The number of implemented
registers depend on number of processor in the multiprocessor system. 

51.3.1 Interrupt level register

[31:16] Reserved.
[15:1] Interrupt Level n (IL[n]): Interrupt level for interrupt n.
[0] Reserved.

51.3.2 Interrupt pending register

[31:17] Extended Interrupt Pending n (EIP[n]).
[15:1] Interrupt Pending n (IP[n]): Interrupt pending for interrupt n.
[0] Reserved

Table 601.Interrupt Controller registers

APB address offset Register

0x00 Interrupt level register

0x04 Interrupt pending register

0x08 Interrupt force register (NCPU = 0)

0x0C Interrupt clear register

0x10 Multiprocessor status register

0x14 Broadcast register

0x40 Processor interrupt mask register

0x44 Processor 1 interrupt mask register

0x40 + 4 * n Processor n interrupt mask register

0x80 Processor interrupt force register

0x84 Processor 1 interrupt force register

0x80 + 4 * n Processor n interrupt force register

0xC4 Processor 1 extended interrupt identification register

0xC0 + 4 * n Processor n extended interrupt identification register

Figure 162.  Interrupt level register
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51.3.3 Interrupt force register (NCPU = 0)

[31:16] Reserved.
[15:1] Interrupt Force n (IF[n]): Force interrupt nr n.
[0] Reserved.

51.3.4 Interrupt clear register

[31:16] Reserved.
[15:1] Interrupt Clear n (IC[n]): Writing ‘1’ to ICn will clear interrupt n.
[0] Reserved.

51.3.5 Multiprocessor status register

[31:28] NCPU. Number of CPU’s in the system -1 .
[19:16] EIRQ. Interrupt number (1 - 15) used for extended interrupts. Fixed to 0 if extended interrupts are disabled.
[15:1] Power-down status of CPU [n]: ‘1’ = power-down, ‘0’ = running. Write with ‘1’ to start processor n.

51.3.6 Processor interrupt mask register

[31:16] Interrupt mask for extended interrupts
[15:1] Interrupt Mask n (IM[ n]): If IMn = 0 the interrupt n is masked, otherwise it is enabled.
[0] Reserved.

Figure 164.  Interrupt force register
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Figure 166.  Multiprocessor status register
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51.3.7 Broadcast register (NCPU > 1)

[31:16] Reserved.
[15:1] Broadcast Mask n (BM[n]): If BMn = 1 the interrupt n is broadcasted (written to the Force Register of all CPUs),

otherwise standard semantic applies (Pending Register).
[0] Reserved.

51.3.8 Processor interrupt force register (NCPU > 0)

[31:17] Interrupt force clear n (IFC[n]).
[15:1] Interrupt Force n (IF[n]): Force interrupt nr n.
[0] Reserved.

51.3.9 Extended interrupt identification register

[4:0] ID (16 - 31) of the acknowledged extended interrupt

51.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x00D. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

51.5 Configuration options

Table 602 shows the configuration options of the core (VHDL generics).

Table 602.Configuration options

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used to 
access the timer unit

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 4095 0

pmask The APB address mask 0 to 4095 4095

ncpu Number of processors in multiprocessor system 1 to 16 1

Figure 168.  Processor interrupt mask register
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51.6 Signal descriptions

Table 603 shows the interface signals of the core (VHDL ports).

51.7 Library dependencies

Table 604 shows libraries that should be used when instantiating the core.

51.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

entity irqmp_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ...  -- other signals
    );
end;

architecture rtl of irqmp_ex is
  constant NCPU : integer := 4;
  
  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);
  signal ahbsi : ahb_slv_in_type;
  

Table 603.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

IRQI[n] INTACK Input Processor n Interrupt acknowledge High

IRL[3:0] Processor n interrupt level High

IRQO[n] IRL[3:0] Output Processor n Input interrupt level High

RST Reset power-down and error mode of processor n High

RUN Start processor n after reset (SMP systems only) High

* see GRLIB IP Library User’s Manual

Table 604.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER LEON3 Signals, component Signals and component declaration
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  -- GP Timer Unit input signals
  signal irqi   : irq_in_vector(0 to NCPU-1);
  signal irqo   : irq_out_vector(0 to NCPU-1);  

  -- LEON3 signals
  signal leon3i : l3_in_vector(0 to NCPU-1);
  signal leon3o : l3_out_vector(0 to NCPU-1);  
  
begin

  -- 4 LEON3 processors are instantiated here
  cpu : for i in 0 to NCPU-1 generate
    u0 : leon3s generic map (hindex => i)
    port map (clk, rstn, ahbmi, ahbmo(i), ahbsi, 
irqi(i), irqo(i), dbgi(i), dbgo(i));
  end generate;

  -- MP IRQ controller
  irqctrl0 : irqmp
  generic map (pindex => 2, paddr => 2, ncpu => NCP U)
  port map (rstn, clk, apbi, apbo(2), irqi, irqo);
end



515

52 LEON3 - High-performance SPARC V8 32-bit Processor

52.1 Overview

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption. 

The LEON3 core has the following main features: 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, hardware multiplier and divider, on-chip debug support and multi-
processor extensions. 

Note: this manual describes the full functionality of the LEON3 core. Through the use of VHDL
generics, parts of the described functionality can be suppressed or modified to generate a smaller or
faster implementation.

52.1.1 Integer unit

The LEON3 integer unit implements the full SPARC V8 standard, including hardware multiply and
divide instructions. The number of register windows is configurable within the limit of the SPARC
standard (2 - 32), with a default setting of 8. The pipeline consists of 7 stages with a separate instruc-
tion and data cache interface (Harvard architecture).

52.1.2 Cache sub-system

LEON3 has a highly configurable cache system, consisting of a separate instruction and data cache.
Both caches can be configured with 1 - 4 sets, 1 - 256 kbyte/set, 16 or 32 bytes per line. Sub-blocking
is implemented with one valid bit per 32-bit word. The instruction cache uses streaming during line-
refill to minimize refill latency. The data cache uses write-through policy and implements a double-
word write-buffer. The data cache can also perform bus-snooping on the AHB bus. A local scratch
pad ram can be added to both the instruction and data cache controllers to allow 0-waitstates access
memory without data write back.

Integer pipeline

I-Cache D-Cache

3-Port Register File

AMBA AHB Master (32-bit)

AHB I/F

7-Stage

Interrupt controller

Co-Processor

HW MUL/DIV

IEEE-754 FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Local DRAMLocal IRAM

Figure 171.  LEON3 processor core block diagram

SRMMU DTLBITLB
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52.1.3 Floating-point unit and co-processor

The LEON3 integer unit provides interfaces for a floating-point unit (FPU), and a custom co-proces-
sor. Two FPU controllers are available, one for the high-performance GRFPU (available from Gaisler
Research) and one for the Meiko FPU core (available from Sun Microsystems). The floating-point
processors and co-processor execute in parallel with the integer unit, and does not block the operation
unless a data or resource dependency exists.

52.1.4 Memory management unit

A SPARC V8 Reference Memory Management Unit (SRMMU) can optionally be enabled. The
SRMMU implements the full SPARC V8 MMU specification, and provides mapping between multi-
ple 32-bit virtual address spaces and 36-bit physical memory. A three-level hardware table-walk is
implemented, and the MMU can be configured to up to 64 fully associative TLB entries.

52.1.5 On-chip debug support

The LEON3 pipeline includes functionality to allow non-intrusive debugging on target hardware. To
aid software debugging, up to four watchpoint registers can be enabled. Each register can cause a
breakpoint trap on an arbitrary instruction or data address range. When the (optional) debug support
unit is attached, the watchpoints can be used to enter debug mode. Through a debug support interface,
full access to all processor registers and caches is provided. The debug interfaces also allows single
stepping, instruction tracing and hardware breakpoint/watchpoint control. An internal trace buffer can
monitor and store executed instructions, which can later be read out over the debug interface.

52.1.6 Interrupt interface

LEON3 supports the SPARC V8 interrupt model with a total of 15 asynchronous interrupts. The inter-
rupt interface provides functionality to both generate and acknowledge interrupts.

52.1.7 AMBA interface

The cache system implements an AMBA AHB master to load and store data to/from the caches. The
interface is compliant with the AMBA-2.0 standard. During line refill, incremental burst are generated
to optimise the data transfer.

52.1.8 Power-down mode

The LEON3 processor core implements a power-down mode, which halts the pipeline and caches
until the next interrupt. This is an efficient way to minimize power-consumption when the application
is idle, and does not require tool-specific support in form of clock gating. To implement clock-gating,
a suitable clock-enable signal is produced by the processor.

52.1.9 Multi-processor support

LEON3 is designed to be use in multi-processor systems. Each processor has a unique index to allow
processor enumeration. The write-through caches and snooping mechanism guarantees memory
coherency in shared-memory systems.

52.1.10 Performance

Using 8K + 8K caches and a 16x16 multiplier, the dhrystone 2.1 benchmark reports 1,500 iteration/s/
MHz using the gcc-3.4.4 compiler (-O2). This translates to 0.85 dhrystone MIPS/MHz using the VAX
11/780 value a reference for one MIPS.
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52.2 LEON3 integer unit

52.2.1 Overview

The LEON3 integer unit implements the integer part of the SPARC V8 instruction set. The implemen-
tation is focused on high performance and low complexity. The LEON3 integer unit has the following
main features:

• 7-stage instruction pipeline

• Separate instruction and data cache interface

• Support for 2 - 32 register windows

• Hardware multiplier with optional 16x16 bit MAC and 40-bit accumulator

• Radix-2 divider (non-restoring)

• Single-vector trapping for reduced code size

Figure 172 shows a block diagram of the integer unit.

Figure 172.  LEON3 integer unit datapath diagram

alu/shift mul/div
y

register file

D-cache
address/dataout
datain

32
32

operand2rs1

imm

Ywres

result m_y

Decode

Execute

Memory

Write-back

rs2rs1

rd

tbr, wim, psr

30 jmpl address

e pc

30

+1

d_pc

jmpa

f_pc

Add

call/branch address

tbr‘0’

e_pc

m_pc

w_pc

d_inst

e_inst

m_inst

w_inst

Fetch

I-cache
addressdata

Register Access

x_yxres

Exception

x_pcx_inst

r_pcr_inst

y, tbr, wim, psr

r_imm



518

52.2.2 Instruction pipeline

The LEON integer unit uses a single instruction issue pipeline with 7 stages:

1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched from the
instruction cache. Otherwise, the fetch is forwarded to the memory controller. The instruction is valid
at the end of this stage and is latched inside the IU.

2. DE (Decode): The instruction is decoded and the CALL and Branch target addresses are gener-
ated.

3. RA (Register access): Operands are read from the register file or from internal data bypasses.

4. EX (Execute): ALU, logical, and shift operations are performed. For memory operations (e.g.,
LD) and for JMPL/RETT, the address is generated.

5. ME (Memory): Data cache is accessed. Store data read out in the execution stage is written to the
data cache at this time.

6. XC (Exception) Traps and interrupts are resolved. For cache reads, the data is aligned as appro-
priate.

7. WR (Write): The result of any ALU, logical, shift, or cache operations are written back to the
register file.

Table 605 lists the cycles per instruction (assuming cache hit and no icc or load interlock):

* Multiplication cycle count is 1 clock for the 32x32 multiplier and 4 clocks for the 16x16 version.

52.2.3 SPARC Implementor’s ID

Gaisler Research is assigned number 15 (0xF) as SPARC implementor’s identification. This value is
hard-coded into bits 31:28 in the %psr register. The version number for LEON3 is 3, which is hard-
coded in to bits 27:24 of the %psr.

52.2.4 Divide instructions

Full support for SPARC V8 divide instructions is provided (SDIV, UDIV, SDIVCC & UDIVCC). The
divide instructions perform a 64-by-32 bit divide and produce a 32-bit result. Rounding and overflow
detection is performed as defined in the SPARC V8 standard.

Table 605.Instruction timing

Instruction Cycles (MMU disabled) Cycles (MMU fast-write) Cycles (MMU slow-write)

JMPL, RETT 3 3 3

Double load 2 2 2

Single store 2 2 4

Double store 3 3 5

SMUL/UMUL 1/4* 1/4* 1/4*

SDIV/UDIV 35 35 35

Taken Trap 5 5 5

Atomic load/store 3 3 5

All other instructions 1 1 1



519

52.2.5 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL UMULCC
and SMULCC. These instructions perform a 32x32-bit integer multiply, producing a 64-bit result.
SMUL and SMULCC performs signed multiply while UMUL and UMULCC performs unsigned
multiply. UMULCC and SMULCC also set the condition codes to reflect the result. The multiply
instructions are performed using a 32x32 pipelined hardware multiplier, or a 16x16 hardware multi-
plier which is iterated four times. To improve the timing, the 16x16 multiplier can optionally be pro-
vided with a pipeline stage.

52.2.6 Multiply and accumulate instructions

To accelerate DSP algorithms, two multiply&accumulate instructions are implemented: UMAC and
SMAC. The UMAC performs an unsigned 16-bit multiply, producing a 32-bit result, and adds the
result to a 40-bit accumulator made up by the 8 lsb bits from the %y register and the %asr18 register.
The least significant 32 bits are also written to the destination register. SMAC works similarly but per-
forms signed multiply and accumulate. The MAC instructions execute in one clock but have two
clocks latency, meaning that one pipeline stall cycle will be inserted if the following instruction uses
the destination register of the MAC as a source operand.

Assembler syntax:

umacrs1, reg_imm, rd
smacrs1, reg_imm, rd

Operation: 

prod[31:0] = rs1[15:0] * reg_imm[15:0]
result[39:0] = (Y[7:0] & %asr18[31:0]) + prod[31:0]
(Y[7:0] & %asr18[31:0]) = result[39:0]
rd = result[31:0]

%asr18 can be read and written using the RDASR and WRASR instructions.

52.2.7 Hardware breakpoints

The integer unit can be configured to include up to four hardware breakpoints. Each breakpoint con-
sists of a pair of application-specific registers (%asr24/25, %asr26/27, %asr28/29 and %asr30/31)
registers; one with the break address and one with a mask:

Any binary aligned address range can be watched - the range is defined by the WADDR field, masked
by the WMASK field (WMASK[x] = 1 enables comparison). On a breakpoint hit, trap 0x0B is gener-
ated. By setting the IF, DL and DS bits, a hit can be generated on instruction fetch, data load or data
store. Clearing these three bits will effectively disable the breakpoint function.

01231

DL

WADDR[31:2]
%asr24, %asr26
%asr28, %asr30

0231

DSWMASK[31:2]
%asr25, %asr27
%asr29, %asr31

Figure 173.  Watch-point registers

IF
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52.2.8 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The trace
buffer operation is controlled through the debug support interface, and does not affect processor oper-
ation (see the DSU description). The size of the trace buffer is configurable from 1 to 64 kB through a
VHDL generic. The trace buffer is 128 bits wide, and stores the following information:

• Instruction address and opcode

• Instruction result

• Load/store data and address

• Trap information

• 30-bit time tag

The operation and control of the trace buffer is further described in section 28.4. Note that in multi-
processor systems, each processor has its own trace buffer allowing simultaneous tracing of all
instruction streams.

52.2.9 Processor configuration register

The application specific register 17 (%asr17) provides information on how various configuration
options were set during synthesis. This can be used to enhance the performance of software, or to sup-
port enumeration in multi-processor systems. The register can be accessed through the RDASR
instruction, and has the following layout:

Field Definitions:

[31:28]: Processor index. In multi-processor systems, each LEON core gets a unique index to support enumeration. The
value in this field is identical to the hindex generic parameter in the VHDL model.

value in this field is identical to the hindex generic parameter in the VHDL model.
[17]: Clock switching enabled (CS). If set switching between AHB and CPU frequency is available.
[16:15]: CPU clock frequency (CF). CPU core runs at (CF+1) times AHB frequency.
[14]: Disable write error trap (DWT). When set, a write error trap (tt = 0x2b) will be ignored. Set to zero after reset.
[13]: Single-vector trapping (SVT) enable. If set, will enable single-vector trapping. Fixed to zero if SVT is not

implemented. Set to zero after reset.
[12]: Load delay. If set, the pipeline uses a 2-cycle load delay. Otherwise, a 1-cycle load delay i s used. Generated from

the lddel generic parameter in the VHDL model.
[11:10]: FPU option. “00” = no FPU; “01” = GRFPU; “10” = Meiko FPU, “11” = GRFPU-Lite
[9]: If set, the optional multiply-accumulate (MAC) instruction is available
[8]: If set, the SPARC V8 multiply and divide instructions are available.
[7:5]: Number of implemented watchpoints (0 - 4)
[4:0]: Number of implemented registers windows corresponds to NWIN+1.

04831

RESERVED%asr17

Figure 174.  LEON3 configuration register (%asr17)
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52.2.10 Exceptions

LEON adheres to the general SPARC trap model. The table below shows the implemented traps and
their individual priority. When PSR (processor status register) bit ET=0, an exception trap causes the
processor to halt execution and enter error mode, and the external error signal will then be asserted.

52.2.11 Single vector trapping (SVT)

Single-vector trapping (SVT) is an SPARC V8e option to reduce code size for embedded applications.
When enabled, any taken trap will always jump to the reset trap handler (%tbr.tba + 0). The trap type

Table 606.Trap allocation and priority

Trap TT Pri Description

reset 0x00 1 Power-on reset

write error 0x2b 2 write buffer error

instruction_access_error 0x01 3 Error during instruction fetch

illegal_instruction 0x02 5 UNIMP or other un-implemented instruction

privileged_instruction 0x03 4 Execution of privileged instruction in user mode

fp_disabled 0x04 6 FP instruction while FPU disabled

cp_disabled 0x24 6 CP instruction while Co-processor disabled

watchpoint_detected 0x0B 7 Hardware breakpoint match

window_overflow 0x05 8 SAVE into invalid window

window_underflow 0x06 8 RESTORE into invalid window

register_hadrware_error 0x20 9 register file EDAC error (LEON-FT only)

mem_address_not_aligned 0x07 10 Memory access to un-aligned address

fp_exception 0x08 11 FPU exception

cp_exception 0x28 11 Co-processor exception

data_access_exception 0x09 13 Access error during load or store instruction

tag_overflow 0x0A 14 Tagged arithmetic overflow

divide_exception 0x2A 15 Divide by zero

interrupt_level_1 0x11 31 Asynchronous interrupt 1

interrupt_level_2 0x12 30 Asynchronous interrupt 2

interrupt_level_3 0x13 29 Asynchronous interrupt 3

interrupt_level_4 0x14 28 Asynchronous interrupt 4

interrupt_level_5 0x15 27 Asynchronous interrupt 5

interrupt_level_6 0x16 26 Asynchronous interrupt 6

interrupt_level_7 0x17 25 Asynchronous interrupt 7

interrupt_level_8 0x18 24 Asynchronous interrupt 8

interrupt_level_9 0x19 23 Asynchronous interrupt 9

interrupt_level_10 0x1A 22 Asynchronous interrupt 10

interrupt_level_11 0x1B 21 Asynchronous interrupt 11

interrupt_level_12 0x1C 20 Asynchronous interrupt 12

interrupt_level_13 0x1D 19 Asynchronous interrupt 13

interrupt_level_14 0x1E 18 Asynchronous interrupt 14

interrupt_level_15 0x1F 17 Asynchronous interrupt 15

trap_instruction 0x80 - 0xFF 16 Software trap instruction (TA)
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will be indicated in %tbr.tt, and must be decoded by the shared trap handler. SVT is enabled by setting
bit 13 in %asr17. The model must also be configured with the SVT generic = 1.

52.2.12 Address space identifiers (ASI)

In addition to the address, a SPARC processor also generates an 8-bit address space identifier (ASI),
providing up to 256 separate, 32-bit address spaces. During normal operation, the LEON3 processor
accesses instructions and data using ASI 0x8 - 0xB as defined in the SPARC standard. Using the
LDA/STA instructions, alternative address spaces can be accessed. The table shows the ASI usage for
LEON. Only ASI[5:0] are used for the mapping, ASI[7:6] have no influence on operation. 

52.2.13 Power-down

The processor can be configured to include a power-down feature to minimize power consumption
during idle periods. The power-down mode is entered by performing a WRASR instruction to
%asr19:

wr %g0, %asr19

During power-down, the pipeline is halted until the next interrupt occurs. Signals inside the processor
pipeline and caches are then static, reducing power consumption from dynamic switching.

52.2.14 Processor reset operation

The processor is reset by asserting the RESET input for at least 4 clock cycles. The following table
indicates the reset values of the registers which are affected by the reset. All other registers maintain
their value (or are undefined).

By default, the execution will start from address 0. This can be overridden by setting the RSTADDR
generic in the model to a non-zero value. The reset address is always aligned on a 4 kbyte boundary. If
RSTADDR is set to 16#FFFFF#, then the reset address is taken from the signal IRQI.RSTVEC. This
allows the reset address to be changed dynamically.

52.2.15 Multi-processor support

The LEON3 processor support synchronous multi-processing (SMP) configurations, with up to 16
processors attached to the same AHB bus. In multi-processor systems, only the first processor will
start. All other processors will remain halted in power-down mode. After the system has been initial-

Table 607.ASI usage

ASI Usage

0x01 Forced cache miss

0x02 System control registers (cache control register)

0x08, 0x09, 0x0A, 0x0B Normal cached access (replace if cacheable)

0x0C Instruction cache tags

0x0D Instruction cache data

0x0E Data cache tags

0x0F Data cache data

0x10 Flush instruction cache

0x11 Flush data cache

Table 608.Processor reset values

Register Reset value

PC (program counter) 0x0

nPC (next program counter) 0x4

PSR (processor status register) ET=0, S=1
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ized, the remaining processors can be started by writing to the ‘MP status register’, located in the
multi-processor interrupt controller. The halted processors start executing from the reset address (0 or
RSTADDR generic). Enabling SMP is done by setting the smp generic to 1 or higher. Cache snooping
should always be enabled in SMP systems to maintain data cache coherency between the processors. 

52.2.16 Cache sub-system

The LEON3 processor implements a Harvard architecture with separate instruction and data buses,
connected to two independent cache controllers. Both instruction and data cache controllers can be
separately configured to implement a direct-mapped cache or a multi-set cache with set associativity
of 2 - 4. The set size is configurable to 1 - 256 kbyte, divided into cache lines with 16 or 32 bytes of
data. In multi-set configurations, one of three replacement policies can be selected: least-recently-
used (LRU), least-recently-replaced (LRR) or (pseudo-) random. If the LRR algorithm can only be
used when the cache is 2-way associative. A cache line can be locked in the instruction or data cache
preventing it from being replaced by the replacement algorithm.

NOTE: The LRR algorithm uses one extra bit in tag rams to store replacement history. The LRU algo-
rithm needs extra flip-flops per cache line to store access history. The random replacement algorithm
is implemented through modulo-N counter that selects which line to evict on cache miss. 

Cachability for both caches is controlled through the AHB plug&play address information. The mem-
ory mapping for each AHB slave indicates whether the area is cachable, and this information is used
to (statically) determine which access will be treated as cacheable. This approach means that the cach-
ability mapping is always coherent with the current AHB configuration. The AMBA plug&play cach-
ability can be overriden using the CACHED generic. When this generic is not zero, it is treated as a
16-bit field, defining the cachability of each 256 Mbyte address block on the AMBA bus. A value of
16#00F3# will thus define cachable areas in 0 - 0x20000000 and 0x40000000 - 0x80000000..

52.3 Instruction cache

52.3.1 Operation

The instruction cache can be configured as a direct-mapped cache or as a multi-set cache with asso-
ciativity of 2 - 4 implementing either LRU or random replacement policy or as 2-way associative
cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided into
cache lines of 16- 32 bytes. Each line has a cache tag associated with it consisting of a tag field, valid
field with one valid bit for each 4-byte sub-block and optional LRR and lock bits. On an instruction
cache miss to a cachable location, the instruction is fetched and the corresponding tag and data line
updated. In a multi-set configuration a line to be replaced is chosen according to the replacement pol-
icy.

If instruction burst fetch is enabled in the cache control register (CCR) the cache line is filled from
main memory starting at the missed address and until the end of the line. At the same time, the
instructions are forwarded to the IU (streaming). If the IU cannot accept the streamed instructions due
to internal dependencies or multi-cycle instruction, the IU is halted until the line fill is completed. If
the IU executes a control transfer instruction (branch/CALL/JMPL/RETT/TRAP) during the line fill,
the line fill will be terminated on the next fetch. If instruction burst fetch is enabled, instruction
streaming is enabled even when the cache is disabled. In this case, the fetched instructions are only
forwarded to the IU and the cache is not updated. During cache line refill, incremental burst are gener-
ated on the AHB bus.

If a memory access error occurs during a line fill with the IU halted, the corresponding valid bit in the
cache tag will not be set. If the IU later fetches an instruction from the failed address, a cache miss
will occur, triggering a new access to the failed address. If the error remains, an instruction access
error trap (tt=0x1) will be generated.
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52.3.2 Instruction cache tag

A instruction cache tag entry consists of several fields as shown in figure 175:

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the tag address of the cache line.
[9]: LRR - Used by LRR algorithm to store replacement history, otherwise 0.
[8]: LOCK - Locks a cache line when set. 0 if cache locking not implemented.
[7:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits are set when a

sub-block is filled due to a successful cache miss; a cache fill which results in a memory error will leave the valid
bit unset. A FLUSH instruction will clear all valid bits. V[0] corresponds to address 0 in the cache line, V[1] to
address 1, V[2] to address 2 and so on.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 4 kbyte cache with 16 bytes per line would only have four valid bits and 20
tag bits. The cache rams are sized automatically by the ram generators in the model.

52.4 Data cache

52.4.1 Operation

The data cache can be configured as a direct-mapped cache or as a multi-set cache with associativity
of 2 - 4 implementing either LRU or (pseudo-) random replacement policy or as 2-way associative
cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided into
cache lines of 16 - 32 bytes. Each line has a cache tag associated with it consisting of a tag field, valid
field with one valid bit for each 4-byte sub-block and optional lock and LRR bits. On a data cache
read-miss to a cachable location 4 bytes of data are loaded into the cache from main memory. The
write policy for stores is write-through with no-allocate on write-miss. In a multi-set configuration a
line to be replaced on read-miss is chosen according to the replacement policy. Locked AHB transfers
are generated for LDST and SWAP instructions. If a memory access error occurs during a data load,
the corresponding valid bit in the cache tag will not be set. and a data access error trap (tt=0x9) will be
generated.

52.4.2 Write buffer

The write buffer (WRB) consists of three 32-bit registers used to temporarily hold store data until it is
sent to the destination device. For half-word or byte stores, the stored data replicated into proper byte
alignment for writing to a word-addressed device, before being loaded into one of the WRB registers.
The WRB is emptied prior to a load-miss cache-fill sequence to avoid any stale data from being read
in to the data cache. 

Since the processor executes in parallel with the write buffer, a write error will not cause an exception
to the store instruction. Depending on memory and cache activity, the write cycle may not occur until
several clock cycles after the store instructions has completed. If a write error occurs, the currently
executing instruction will take trap 0x2b.

Figure 175.  Instruction cache tag layout examples
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Note: the 0x2b trap handler should flush the data cache, since a write hit would update the cache while
the memory would keep the old value due the write error.

52.4.3 Data cache tag

A data cache tag entry consists of several fields as shown in figure 176:

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the address of the data held in the cache line.
[9]: LRR - Used by LRR algorithm to store replacement history. ‘0’ if LRR is not used.
[8]: LOCK - Locks a cache line when set. ‘0’ if instruction cache locking was not enabled in the configuration.
[3:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. These bits are set when a

sub-block is filled due to a successful cache miss; a cache fill which results in a memory error will leave the valid
bit unset. V[0] corresponds to address 0 in the cache line, V[1] to address 1, V[2] to address 2 and V[3] to address 3.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache configu-
ration. As an example, a 2 kbyte cache with 32 bytes per line would only have eight valid bits and 21
tag bits. The cache rams are sized automatically by the ram generators in the model.

52.5 Additional cache functionality

52.5.1 Cache flushing

Both instruction and data cache are flushed by executing the FLUSH instruction. The instruction
cache is also flushed by setting the FI bit in the cache control register, or by writing to any location
with ASI=0x15. The data cache is also flushed by setting the FD bit in the cache control register, or by
writing to any location with ASI=0x16. Cache flushing takes one cycle per cache line, during which
the IU will not be halted, but during which the caches are disabled. When the flush operation is com-
pleted, the cache will resume the state (disabled, enabled or frozen) indicated in the cache control reg-
ister. Diagnostic access to the cache is not possible during a FLUSH operation and will cause a data
exception (trap=0x09) if attempted.

52.5.2 Diagnostic cache access

Tags and data in the instruction and data cache can be accessed through ASI address space 0xC, 0xD,
0xE and 0xF by executing LDA and STA instructions. Address bits making up the cache offset will be
used to index the tag to be accessed while the least significant bits of the bits making up the address
tag will be used to index the cache set. 

Diagnostic read of tags is possible by executing an LDA instruction with ASI=0xC for instruction
cache tags and ASI=0xE for data cache tags. A cache line and set are indexed by the address bits mak-
ing up the cache offset and the least significant bits of the address bits making up the address tag. Sim-
ilarly, the data sub-blocks may be read by executing an LDA instruction with ASI=0xD for instruction
cache data and ASI=0xF for data cache data. The sub-block to be read in the indexed cache line and
set is selected by A[4:2].

The tags can be directly written by executing a STA instruction with ASI=0xC for the instruction
cache tags and ASI=0xE for the data cache tags. The cache line and set are indexed by the address bits
making up the cache offset and the least significant bits of the address bits making up the address tag.
D[31:10] is written into the ATAG field (see above) and the valid bits are written with the D[7:0] of

Figure 176.  Data cache tag layout
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the write data. Bit D[9] is written into the LRR bit (if enabled) and D[8] is written into the lock bit (if
enabled). The data sub-blocks can be directly written by executing a STA instruction with ASI=0xD
for the instruction cache data and ASI=0xF for the data cache data. The sub-block to be read in the
indexed cache line and set is selected by A[4:2].

In multi-way caches, the address of the tags and data of the ways are concatenated. The address of a
tag or data is thus:

ADDRESS = WAY & LINE & DATA & “00”

Examples: the tag for line 2 in way 1 of a 2x4 Kbyte cache with 16 byte line would be: 

A[13:12] = 1 (WAY)

A[11:5] = 2 (TAG)

=> TAG ADDRESS = 0x1040

The data of this line would be at addresses 0x1040 - 0x104C

52.5.3 Cache line locking

In a multi-set configuration the instruction and data cache controllers can be configured with optional
lock bit in the cache tag. Setting the lock bit prevents the cache line to be replaced by the replacement
algorithm. A cache line is locked by performing a diagnostic write to the instruction tag on the cache
offset of the line to be locked setting the Address Tag field to the address tag of the line to be locked,
setting the lock bit and clearing the valid bits. The locked cache line will be updated on a read-miss
and will remain in the cache until the line is unlocked. The first cache line on certain cache offset is
locked in the set 0. If several lines on the same cache offset are to be locked the locking is performed
on the same cache offset and in sets in ascending order starting with set 0. The last set can not be
locked and is always replaceable. Unlocking is performed in descending set order.

NOTE: Setting the lock bit in a cache tag and reading the same tag will show if the cache line locking
was enabled during the LEON3 configuration: the lock bit will be set if the cache line locking was
enabled otherwise it will be 0.

52.5.4 Local instruction ram

A local instruction ram can optionally be attached to the instruction cache controller. The size of the
local instruction is configurable from 1-64 kB. The local instruction ram can be mapped to any 16
Mbyte block of the address space. When executing in the local instruction ram all instruction fetches
are performed from the local instruction ram and will never cause IU pipeline stall or generate an
instruction fetch on the AHB bus. Local instruction ram can be accessed through load/store integer
word instructions (LD/ST). Only word accesses are allowed, byte, halfword or double word access to
the local instruction ram will generate data exception.

52.5.5 Local scratch pad ram

Local scratch pad ram can optionally be attached to both instruction and data cache controllers. The
scratch pad ram provides fast 0-waitstates ram memories for both instructions and data. The ram can
be between 1 - 512 kbyte, and mapped on any 16 Mbyte block in the address space. Accessed per-
formed to the scratch pad ram are not cached, and will not appear on the AHB bus. The scratch pads
rams do not appear on the AHB bus, and can only be read or written by the processor. The instruction
ram must be initialized by software (through store instructions) before it can be used. The default
address for the instruction ram is 0x8e000000, and for the data ram 0x8f000000. See section 52.10 for
additional configuration details. Note: local scratch pad ram can only be enabled when the MMU is
disabled.
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52.5.6 Data Cache snooping

To keep the data cache synchronized with external memory, cache snooping can be enabled through
the dsnoop generic. When enabled, the data cache monitors write accesses on the AHB bus to cache-
able locations. If an other AHB master writes to a cacheable location which is currently cached in the
data cache, the corresponding cache line is marked as invalid.

52.5.7 Cache Control Register

The operation of the instruction and data caches is controlled through a common Cache Control Reg-
ister (CCR) (figure 177). Each cache can be in one of three modes: disabled, enabled and frozen. If
disabled, no cache operation is performed and load and store requests are passed directly to the mem-
ory controller. If enabled, the cache operates as described above. In the frozen state, the cache is
accessed and kept in sync with the main memory as if it was enabled, but no new lines are allocated
on read misses.

[23]: Data cache snoop enable [DS] - if set, will enable data cache snooping.
[22]: Flush data cache (FD). If set, will flush the instruction cache. Always reads as zero.
[21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
[16]: Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
[15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation is in progress.
[14]: Data cache flush pending (DP). This bit is set when an data cache flush operation 

is in progress.
[5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an asynchronous

interrupt is taken.
[4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen when an

asynchronous interrupt is taken.
[3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following: X0= disabled, 01 =

frozen, 11 = enabled.
[1:0]: Instruction Cache state (ICS) - Indicates the current data cache state according to the 

following: X0= disabled, 01 = frozen, 11 = enabled.

If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous interrupt is
taken. This can be beneficial in real-time system to allow a more accurate calculation of worst-case
execution time for a code segment. The execution of the interrupt handler will not evict any cache
lines and when control is returned to the interrupted task, the cache state is identical to what it was
before the interrupt. If a cache has been frozen by an interrupt, it can only be enabled again by
enabling it in the CCR. This is typically done at the end of the interrupt handler before control is
returned to the interrupted task.

52.5.8 Cache configuration registers

The configuration of the two caches if defined in two registers: the instruction and data configuration
registers. These registers are read-only and indicate the size and configuration of the caches.

Figure 177.  Cache control register
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[31]: Cache locking (CL). Set if cache locking is implemented.
[29:28]: Cache replacement policy (REPL). 00 - no replacement policy (direct-mapped cache), 01 - least recently used

(LRU), 10 - least recently replaced (LRR), 11 - random
[27]: Cache snooping (SN). Set if snooping is implemented.
[26:24]: Cache associativity (SETS). Number of sets in the cache: 000 - direct mapped, 001 - 2-way associative, 010 - 3-way

associative, 011 - 4-way associative
[23:20]: Set size (SSIZE). Indicates the size (Kbytes) of each cache set. Size = 2SIZE

[19]: Local ram (LR). Set if local scratch pad ram is implemented.
[18:16]: Line size (LSIZE). Indicated the size (words) of each cache line. Line size = 2LSZ

[15:12]: Local ram size (LRSZ). Indicates the size (Kbytes) of the implemented local scratch pad ram. Local ram size =
2LRSZ

[11:4]: Local ram start address. Indicates the 8 most significant bits of the local ram start address.
[3]: MMU present. This bit is set to ‘1’ if an MMU is present.

All cache registers are accessed through load/store operations to the alternate address space (LDA/
STA), using ASI = 2. The table below shows the register addresses:

52.5.9 Software consideration

After reset, the caches are disabled and the cache control register (CCR) is 0. Before the caches may
be enabled, a flush operation must be performed to initialized (clear) the tags and valid bits. A suitable
assembly sequence could be:

flush
set 0x81000f, %g1
sta%g1, [%g0] 2

52.6 Memory management unit

A memory management unit (MMU) compatible with the SPARC V8 reference MMU can optionally
be configured. For details on operation, see the SPARC V8 manual.

52.6.1 ASI mappings

When the MMU is used, the following ASI mappings are added: 

Table 609.ASI 2 (system registers) address map

Address Register

0x00 Cache control register

0x04 Reserved

0x08 Instruction cache configuration register

0x0C Data cache configuration register

Table 610.MMU ASI usage

ASI Usage

0x10 Flush page

0x10 MMU flush page

0x13 MMU flush context

0x14 MMU diagnostic dcache context access

0x15 MMU diagnostic icache context access

0x19 MMU registers

0x1C MMU bypass

0x1D MMU diagnostic access

0x1E MMU snoop tags diagnostic access
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52.6.2 MMU/Cache operation

When the MMU is disabled, the caches operate as normal with physical address mapping. When the
MMU is enabled, the caches tags store the virtual address and also include an 8-bit context field. If
cache snooping is desired, bit 2 of the dsnoop generic has to be set. This will store the physical tag in
a separate RAM block, which then is used for snooping. In addition, the size of each data cache way
has to be smaller or equal to 4 kbyte (MMU page size). This is necessary to avoid aliasing in the cache
since the virtual tags are indexed with a virtual offset while the physical tags are indexed with a phys-
ical offset. Physical tags and snoop support is needed for SMP systems using the MMU (linux-2.6).

Because the cache is virtually tagged, no extra clock cycles are needed in case of a cache load hit. In
case of a cache miss or store hit (write-through cache) at least 2 extra clock cycles are used if there is
a TLB hit. If there is a TLB miss the page table must be traversed, resulting in up to 4 AMBA read
accesses and one possible writeback operation. If a combined TLB is used by the instruction cache,
the translation is stalled until the TLB is free. If fast TLB operation is selected (tlb_type = 2), the TLB
will be accessed simultaneously with tag access, saving 2 clocks on cache miss. This will increase the
area somewhat, and may reduce the timing, but usually results in better overall throughput.

52.6.3 MMU registers

The following MMU registers are implemented:

The definition of the registers can be found in the SPARC V8 manual.

52.6.4 Translation look-aside buffer (TLB)

The MMU can be configured to use a shared TLB, or separate TLB for instructions and data. The
number of TLB entries can be set to 2 - 32 in the configuration record. The organisation of the TLB
and number of entries is not visible to the software and does thus not require any modification to the
operating system.

52.6.5 Snoop tag diagnostic access

If the MMU has been configured to use separate snoop tags, they can be accessed via ASI 0x1E. This
is primarily useful for RAM testing, and should not be performed during normal operation. The figure
below shows the layout of the snoop tag for a 1 Kbyte data cache:

[31:10] Address tag. The physical address tag of the cache line.
[1]: Parity. The odd parity over the data tag. LEON3FT only.
[0]: Snoop hit. When set, the cache line is not valid and will cause a cache miss if accessed by the processor.

Table 611.MMU registers (ASI = 0x19)

Address Register

0x000 MMU control register

0x100 Context pointer register

0x200 Context register

0x300 Fault status register

0x400 Fault address register

Figure 179.  Snoop cache tag layout
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52.7 Floating-point unit and custom co-processor interface

The SPARC V8 architecture defines two (optional) co-processors: one floating-point unit (FPU) and
one user-defined co-processor. The LEON3 pipeline provides an interface port for both of these units.
Two different FPU’s can be interfaced: Gaisler Research’s GRFPU, and the Meiko FPU from Sun.
Selection of which FPU to use is done through the VHDL model’s generic map. The characteristics of
the FPU’s are described in the next sections.

52.7.1 Gaisler Research’s floating-point unit (GRFPU)

The high-performance GRFPU operates on single- and double-precision operands, and implements
all SPARC V8 FPU instructions. The FPU is interfaced to the LEON3 pipeline using a LEON3-spe-
cific FPU controller (GRFPC) that allows FPU instructions to be executed simultaneously with inte-
ger instructions. Only in case of a data or resource dependency is the integer pipeline held. The
GRFPU is fully pipelined and allows the start of one instruction each clock cycle, with the exception
is FDIV and FSQRT which can only be executed one at a time. The FDIV and FSQRT are however
executed in a separate divide unit and do not block the FPU from performing all other operations in
parallel.

All instructions except FDIV and FSQRT has a latency of three cycles, but to improve timing, the
LEON3 FPU controller inserts an extra pipeline stage in the result forwarding path. This results in a
latency of four clock cycles at instruction level. The table below shows the GRFPU instruction timing
when used together with GRFPC:

The GRFPC controller implements the SPARC deferred trap model, and the FPU trap queue (FQ) can
contain up to 7 queued instructions when an FPU exception is taken. When the GRFPU is enabled in
the model, the version field in %fsr has the value of 2.

52.7.2 GRFPU-Lite

GRFPU-Lite is a smaller version of GRFPU, suitable for FPGA implementations with limited logic
resources. The GRFPU-Lite is not pipelined and executes thus only one instruction at a time. To
improve performance, the FPU controller (GRLFPC) allows GRFPU-Lite to execute in parallel with

Table 612.GRFPU instruction timing with GRFPC

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD, 
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 1 4

FDIVS 14 16

FDIVD 15 17

FSQRTS 22 24

FSQRTD 23 25
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the processor pipeline as long as no new FPU instructions are pending. Below is a table of worst-case
throughput of the GRFPU-Lite:

When the GRFPU-Lite is enabled in the model, the version field in %fsr has the value of 3.

52.7.3 The Meiko FPU

The Meiko floating-point core operates on both single- and double-precision operands, and imple-
ments all SPARC V8 FPU instructions. The Meiko FPU is interfaced through the Meiko FPU control-
ler (MFC), which allows one FPU instruction to execute in parallel with IU operation. The MFC
implements the SPARC deferred trap model, and the FPU trap queue (FQ) can contain up to one
queued instruction when an FPU exception is taken.

When the Meiko FPU is enabled in the model, the version field in %fsr has the value of 1.

The Meiko FPU is not distributed by Gaisler Research, and must be obtained separately from Sun.

52.7.4 Generic co-processor

LEON can be configured to provide a generic interface to a user-defined co-processor. The interface
allows an execution unit to operate in parallel to increase performance. One co-processor instruction
can be started each cycle as long as there are no data dependencies. When finished, the result is writ-
ten back to the co-processor register file.

52.8 Vendor and device identifiers

The core has vendor identifiers 0x01 (Gaisler Research) and device identifiers 0x003. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

52.9 Implementation

52.9.1 Area and timing

Both area and timing of the LEON3 core depends strongly on the selected configuration, target tech-
nology and the used synthesis tool. The table below indicates the typical figures for two baseline con-
figurations. 

Table 613.GRFPU-Lite worst-case instruction timing with GRLFPC

Instruction Throughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD, FSMULD, FITOS, FITOD, 
FSTOI, FDTOI, FSTOD, FDTOS, FCMPS, FCMPD, FCMPES. FCMPED 8 8

FDIVS 31 31

FDIVD 57 57

FSQRTS 46 46

FSQRTD 65 65

Table 614.Area and timing

Configuration

Actel AX2000 ASIC (0.13 um)

Cells RAM64 MHz Gates MHz

LEON3, 8 + 8 Kbyte cache 6,500 40 30 25,000 400

LEON3, 8 + 8 Kbyte cache + DSU3 7,500 40 25 30,000 400
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52.9.2 Technology mapping

LEON3 has two technology mapping generics, fabtech and memtech. The fabtech generic controls the
implementation of some pipeline features, while memtech selects which memory blocks will be used
to implement cache memories and the IU/FPU register file. Fabtech can be set to any of the provided
technologies (0 - NTECH) as defined in the GRPIB.TECH package. See the GRLIB Users’s Manual
for available settings for memtech.

52.9.3 RAM usage

The LEON3 core maps all usage of RAM memory on the syncram, syncram_2p and syncram_dp
components from the technology mapping library (TECHMAP). The type, configuration and number
of RAM blocks is described below.

Register file

The register file is implemented with two synram_2p blocks for all technologies where the
regfile_3p_infer constant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p
is shown in the following table:

If regfile_3p_infer is set to 1, the synthesis tool will automatically infer the register. On FPGA tech-
nologies, it can be in either flip-flops or RAM cells, depending on the tool and technology. On ASIC
technologies, it will be flip-flops. The amount of flip-flops inferred is equal to the number of registers:

Number of flip-flops = ((NWINDOWS *16) + 8) * 32

FP register file

If FPU support is enabled, the FP register file is implemented with four synram_2p blocks when the
regfile_3p_infer constant in TECHMAP.GENCOMP is set to 0. The organization of the syncram_2p
blocks is 16x32. 

If regfile_3p_infer is set to 1, the synthesis tool will automatically infer the FP register file. For ASIC
technologies the number of inferred flip-flops is equal to number of bits in the FP register file which is
32 * 32 = 1024.

Cache memories

RAM blocks are used to implement the cache tags and data memories. Depending on cache configura-
tion, different types and sizes of RAM blocks are used.

The tag memory is implemented with one syncram per cache way when no snooping is enabled. The
tag memory depth and width is calculated as follows:

Depth = (cache way size in bytes) / (cache line size in bytes)

Width = 32 - log2(cache way size in bytes) + (cache line size in bytes)/4 + lrr + lock

For a 2 Kbyte cache way with lrr replacement and 32 bytes/line, the tag RAM depth will be (2048/32)
= 64. The width will be: 32 - log2(2048) + 32/4 + 1 = 32 - 11 + 8 + 1 = 28. The tag RAM organization

Table 615.syncram_2p sizes for LEON3 register file

Register windows Syncram_2p organization

2 - 3 64x32

4 - 7 128x32

8 - 15 256x32

16-31 512x31

32 1024x32
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will thus be 64x28 for the configuration. If the MMU is enabled, the tag memory width will increase
with 8 to store the process context ID, and the above configuration will us a 64x36 RAM.

If snooping is enabled, the tag memories will be implemented using the syncram_dp component
(dual-port RAM). One port will be used by the processor for cache access/refill, while the other port
will be used by the snooping and invalidation logic. The size of the syncram_dp block will be the
same as when snooping is disabled. If physical snooping is enabled (separate snoop tags), one extra
RAM block per data way will be instatiated to hold the physical tags. The width of the RAM block
will be the same as the tag address: 32 - log2(way size). A 4 Kbyte data cache way will thus require a
32 - 12 = 20 bit wide RAM block for the physical tags. If fast snooping is enabled, the tag RAM (vir-
tual and physical) will be implemented using syncram_2p instead of syncram_dp. This can be used to
implement snooping on technologies which lack dual-port RAM but have 2-port RAM.

The data part of the caches (storing instructions or data) is always 32 bit wide. The depth is equal to
the way size in bytes, divided by 4. A cache way of 2 Kbyte will thus use syncram component with
and organization of 512x32.

Instruction Trace buffer

The instruction trace buffer will use four identical RAM blocks (syncram) to implement the buffer
memory. The syncrams will always be 32-bit wide. The depth will depend on the TBUF generic,
which indicates the total size of trace buffer in Kbytes. If TBUF = 1 (1 Kbyte), then four RAM blocks
of 64x32 will be used. If TBUF = 2, then the RAM blocks will be 128x32 and so on.

Scratch pad RAM

If the instruction scratch pad RAM is enabled, a syncram block will be instantiated with a 32-bit data
width. The depth of the RAM will correspond to the configured scratch pad size. An 8 Kbyte scratch
pad will use a syncram with 2048x32 organization. The RAM block for the data scratch pad will be
configured in the same way as the instruction scratch pad.

52.9.4 Double clocking

The LEON3 CPU core be clocked at twice the clock speed of the AMBA AHB bus. When clocked at
double AHB clock frequency, all CPU core parts including integer unit and caches will operate at
double AHB clock frequency while the AHB bus access is performed at the slower AHB clock fre-
quency. The two clocks have to be synchronous and a multicycle paths between the two clock
domains have to be defined at synthesis tool level. A separate component (leon3s2x) is provided for
the double clocked core. Double clocked versions of DSU (dsu3_2x) and MP interrupt controller
(irqmp2x) are used in a double clocked LEON3 system. An AHB clock qualifier signal (clken input)
is used to identify end of AHB cycle. The AHB qualifier signal is generated in CPU clock domain and
is high during the last CPU clock cycle under AHB clock low-phase. Sample leon3-clk2x design pro-
vides a module that generates an AHB clock qualifier signal.

Double-clocked design has two clock domains: AMBA clock domains (HCLK) and CPU clock
domain (CPUCLK). LEON3 (leon3s2x component) and DSU3 (dsu3_2x) belong to CPU clock
domain (clocked by CPUCLK), while the rest of the system is in AMBA clock domain (clocked by
HCLK). Paths between the two clock domains (paths starting in CPUCLK domain and ending in
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HCLK and paths starting in HCLK domain and ending in CPUCLK domain) are multicycle paths
with propagation time of two CPUCLK periods (or one HCLK period) with following exceptions:

52.9.5 Clock gating

To further reduce the power consumption of the processor, the clock can be gated-off when the pro-
cessor has entered power-down state. Since the cache controllers and MMU operate in parallel with
the processor, the clock cannot be gated immediately when the processor has entered the power-down
state. Instead, a power-down signal (DBGO.idle) is generated when all outstanding AHB accesses
have been completed and it is safe to gate the clock. This signal should be clocked though a positive-
edge flip-flop followed by a negative-edge flip-flop to guarantee that the clock is gated off during the
clock-low phase. To insure proper start-up state, the clock should not be gated during reset.

Start point Through End point Propagation time

leon3s2x core

CPUCLK ahbi CPUCLK 2 CPUCLK

CPUCLK ahbsi CPUCLK 2 CPUCLK

CPUCLK ahbso CPUCLK 2 CPUCLK

HCLK irqi CPUCLK 1 CPUCLK

CPUCLK irqo HCLK 1 CPUCLK

CPUCLK u0_0/p0/c0/sync0/r[*]
(register)

1 CPUCLK

Start point Through End point Propagation time

dsu3_2x core

CPUCLK ahbmi  CPUCLK 2 CPUCLK

CPUCLK ahbsi  CPUCLK 2 CPUCLK

dsui  CPUCLK 1 CPUCLK

r[*] (register) rh[*] (register) 1 CPUCLK

irqmp2x core

r2[*] (register)  r[*] (register) 1 CPUCLK
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The processor should exit the power-down state when an interrupt become pending. The signal
DBGO.ipend will then go high when this happen, and should be used to re-enable the clock.

When the debug support unit (DSU3) is used, the DSUO.pwd signal should be used instead of
DBGO.idle. This will insure that the clock also is re-enabled when the processor is switched from
power-down to debug state by the DSU. The DSUO.pwd is a vector with one power-down signal per
CPU (for SMP systems). DSUO.pwd takes DBGO.ipend into account, and no further gating or latch-
ing needs to be done of this signal. If cache snooping has been enabled, the continuous clock will
insure that the snooping logic is activated when necessary and will keep the data cache synchronized
even when the processor clock is gated-off. In a multi-processor system, all processor except node 0
will enter power-down after reset and will allow immediate clock-gating without additional software
support.

Clock-tree routing must insure that the continuous clock (CLK) and the gated clock (GCLK) are
phase-aligned. The template design leon3-clock-gating shows an example of a clock-gated system.
The leon3cg entity should be used when clock gating is implemented. This entity has one input more
(GCLK) which should be driven by the gated clock. Using the double-clocked version of leon3
(leon3s2x), the GCLK2 is the gated double-clock while CLK and CLK2 should be continuous.

52.9.6 Scan support

If the SCANTEST generic is set to 1, support for scan testing is enabled. This will make use of the
AHB scan support signals in the following manner: when AHBI.testen and AHBI.scanen are both ‘1’,
the select signals to all RAM blocks (cache RAM, register file and DSU trace buffers) are disabled.
This means that when the scan chain is shifted, no accidental write or read can occur in the RAM
blocks. The scan signal AHBI.testrst is not used as there are no asynchronous resets in the LEON3
core.

Figure 180.  Examples of LEON3 clock gating
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52.10 Configuration options

Table 616 shows the configuration options of the core (VHDL generics).

Table 616.Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

fabtech Target technology 0 - NTECH 0 (inferred)

memtech Vendor library for regfile and cache RAMs 0 - NTECH 0 (inferred)

nwindows Number of SPARC register windows. Choose 8 windows to be 
compatible with Bare-C and RTEMS cross-compilers.

2 - 32 8

dsu Enable Debug Support Unit interface 0 - 1 0

fpu Floating-point Unit

0 : no FPU
1 - 7: GRFPU 1 - inferred multiplier, 2 - DW multiplier, 3 - Mod-
ule Generator multiplier
8 - 14: GRFPU-Lite 8 - simple FPC, 9 - data forwarding FPC, 10 
- non-blocking FPC
15: Meiko

16 - 31: as above (modulo 16) but use netlist

0 - 31 0

v8 Generate SPARC V8 MUL and DIV instructions

0 : No multiplier or divider

1 : 16x16 multiplier

2: 16x16 pipelined multiplier

16#32# : 32x32 pipelined multiplier

0 - 16#3F# 0

cp Generate co-processor interface 0 -1 0

mac Generate SPARC V8e SMAC/UMAC instruction 0 - 1 0

pclow Least significant bit of PC (Program Counter) that is actually 
generated. PC[1:0] are always zero and are normally not gener-
ated. Generating PC[1:0] makes VHDL-debugging easier.

0, 2 2

notag Currently not used - -

nwp Number of watchpoints 0 - 4 0

icen Enable instruction cache 0 - 1 1

irepl Instruction cache replacement policy. 

0 - least recently used (LRU), 1 - least recently replaced (LRR), 
2 - random

0 - 1 0

isets Number of instruction cache sets 1 - 4 1

ilinesize Instruction cache line size in number of words 4, 8 4

isetsize Size of each instruction cache set in kByte 1 - 256 1

isetlock Enable instruction cache line locking 0 - 1 0

dcen Data cache enable 0 - 1 1

drepl Data cache replacement policy. 

0 - least recently used (LRU), 1 - least recently replaced (LRR), 
2 - random

0 - 1 0

dsets Number of data cache sets 1 - 4 1

dlinesize Data cache line size in number of words 4, 8 4

dsetsize Size of each data cache set in kByte 1 - 256 1

dsetlock Enable data cache line locking 0 - 1 0
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dsnoop Enable data cache snooping

Bit 0-1: 0: disable, 1: slow, 2: fast (see text)

Bit 2: 0: simple snooping, 1: save extra physical tags (MMU 
snooping)

0 - 6 0

ilram Enable local instruction RAM 0 - 1 0

ilramsize Local instruction RAM size in kB 1 - 512 1

ilramstart 8 MSB bits used to decode local instruction RAM area 0 - 255 16#8E#

dlram Enable local data RAM (scratch-pad RAM) 0 - 1 0

dlramsize Local data RAM size in kB 1 - 512 1

dlramstart 8 MSB bits used to decode local data RAM area 0 - 255 16#8F#

mmuen Enable memory management unit (MMU) 0 - 1 0

itlbnum Number of instruction TLB entries 2 - 64 8

dtlbnum Number of data TLB entries 2 - 64 8

tlb_type 0 : separate TLB with slow write
1: shared TLB with slow write
2: separate TLB with fast write

0 - 2 1

tlb_rep LRU (0) or Random (1) TLB replacement 0 - 1 0

lddel Load delay. One cycle gives best performance, but might create a 
critical path on targets with slow (data) cache memories. A 2-
cycle delay can improve timing but will reduce performance 
with about 5%. 

1 - 2 2

disas Print instruction disassembly in VHDL simulator console. 0 - 1 0

tbuf Size of instruction trace buffer in kB (0 - instruction trace dis-
abled)

0 - 64 0

pwd Power-down. 0 - disabled, 1 - area efficient, 2 - timing efficient. 0 - 2 1

svt Enable single-vector trapping 0 - 1 0

rstaddr Default reset start address 0 - (2**20-1) 0

smp Enable multi-processor support 0 - 15 0

cached Fixed cacheability mask 0 - 16#FFFF# 0

scantest Enable scan test support 0 - 1 0

Table 616.Configuration options

Generic Function Allowed range Default



538

52.11 Signal descriptions

Table 617 shows the interface signals of the core (VHDL ports).

52.12 Library dependencies

Table 618 shows the libraries used when instantiating the core (VHDL libraries).

52.13 Component declaration 

The core has the following component declaration.

entity leon3s is
  generic (
    hindex    : integer               := 0;
    fabtech   : integer range 0 to NTECH  := 0;
    memtech   : integer range 0 to NTECH  := 0;
    nwindows  : integer range 2 to 32 := 8;
    dsu       : integer range 0 to 1  := 0;
    fpu       : integer range 0 to 3  := 0;
    v8        : integer range 0 to 2  := 0;
    cp        : integer range 0 to 1  := 0;
    mac       : integer range 0 to 1  := 0;
    pclow     : integer range 0 to 2  := 2;
    notag     : integer range 0 to 1  := 0;
    nwp       : integer range 0 to 4  := 0;
    icen      : integer range 0 to 1  := 0;

Table 617.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input AMBA and processor clock (leon3s, leon3cg) -

CLK2 Input Processor clock in 2x mode (leon3sx2)

GCLK2 Input Gated processor clock in 2x mode (leon3sx2)

RSTN N/A Input Reset Low

AHBI * Input AHB master input signals -

AHBO * Output AHB master output signals -

AHBSI * Input AHB slave input signals -

IRQI IRL[3:0] Input Interrupt level High

RST Input Reset power-down and error mode High

RUN Input Start after reset (SMP system only)

IRQO INTACK Output Interrupt acknowledge High

IRL[3:0] Output Processor interrupt level High

DBGI - Input Debug inputs from DSU -

DBGO - Output Debug outputs to DSU -

ERROR Processor in error mode, execution halted Low

GCLK Input Gated processor clock for leon3cg

* see GRLIB IP Library User’s Manual

Table 618.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER LEON3 Component, signals LEON3 component declaration, interrupt and 
debug signals declaration
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    irepl     : integer range 0 to 2  := 2;
    isets     : integer range 1 to 4  := 1;
    ilinesize : integer range 4 to 8  := 4;
    isetsize  : integer range 1 to 256 := 1;
    isetlock  : integer range 0 to 1  := 0;
    dcen      : integer range 0 to 1  := 0;
    drepl     : integer range 0 to 2  := 2;
    dsets     : integer range 1 to 4  := 1;
    dlinesize : integer range 4 to 8  := 4;
    dsetsize  : integer range 1 to 256 := 1;
    dsetlock  : integer range 0 to 1  := 0;
    dsnoop    : integer range 0 to 6:= 0;
    ilram      : integer range 0 to 1 := 0;
    ilramsize  : integer range 1 to 512 := 1;
    ilramstart : integer range 0 to 255 := 16#8e#;
    dlram      : integer range 0 to 1 := 0;
    dlramsize  : integer range 1 to 512 := 1;
    dlramstart : integer range 0 to 255 := 16#8f#;
    mmuen     : integer range 0 to 1  := 0;
    itlbnum   : integer range 2 to 64 := 8;
    dtlbnum   : integer range 2 to 64 := 8;
    tlb_type  : integer range 0 to 1 := 1;
    tlb_rep   : integer range 0 to 1 := 0;
    lddel     : integer range 1 to 2  := 2;
    disas     : integer range 0 to 1  := 0;
    tbuf      : integer range 0 to 64 := 0;
    pwd       : integer range 0 to 2  := 2;     -- power-down
    svt       : integer range 0 to 1  := 1;     -- single vector trapping
    rstaddr   : integer               := 0;
    smp       : integer range 0 to 15 := 0;    -- s upport SMP systems
    cached    : integer               := 0;     -- cacheability table
    scantest  : integer               := 0
  );

port (
    clk    : in  std_ulogic;
    rstn   : in  std_ulogic;
    ahbi   : in  ahb_mst_in_type;
    ahbo   : out ahb_mst_out_type;
    ahbsi  : in  ahb_slv_in_type;
    ahbso  : in  ahb_slv_out_vector;    
    irqi   : in  l3_irq_in_type;
    irqo   : out l3_irq_out_type;
    dbgi   : in  l3_debug_in_type;
    dbgo   : out l3_debug_out_type
  );
end;
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53 LEON3FT - Fault-Tolerant SPARC V8 Processor

53.1 Overview

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption. 

The LEON3 core has the following main features: 7-stage pipeline with Harvard architecture, sepa-
rate instruction and data caches, on-chip debug support and multi-processor extensions. 

The LEON3FT processor is a derivate of the standard LEON3 SPARC V8 processor, enhanced with
fault-tolerance against SEU errors. The fault-tolerance is focused on the protection of on-chip RAM
blocks, which are used to implement IU/FPU register files and the cache memory. The LEON3FT
processor is functionally identical to the standard LEON3 processor, and this chapter only outlines the
FT features.

53.2 Register file SEU protection

53.2.1 IU SEU protection

The SEU protection for the integer unit register file can be implemented in four different ways,
depending on target technology and available RAM blocks. The SEU protection scheme is selected
during synthesis, using the iuft VHDL generic. Table 619 below shows the implementation character-
istics of the four possible SEU protection schemes. 

The SEU error detection has no impact on behaviour, but a correction cycle (scheme 1 and 3) will
delay the the current instruction with 6 clock cycles. An uncorrectable error in the IU register file will
cause trap 0x20 (register_access_error). 

53.2.2 FPU SEU protection

The FPU register file has similar SEU protection as the IU register file, but with less configuration
options. When the GRFPU is selected and the FPU register file protection is enabled, the protection
scheme is always 8-bit parity without pipeline restart. For GRFPU-Lite the protection scheme is
always 4-bit parity with pipeline restart. An uncorrectable error in the FPU register file will cause an
(deferred) FPU exception with %fsr.ftt set to 5 (hardware_error). When FPU register file protection is
disabled the FPU register file is implemented using flip-flops.

Table 619.Integer unit SEU protection schemes

ID Implementation Description

0 Hardened flip-flops or TMR Register file implemented with SEU hardened flip-flops. No error checking.

1 4-bit parity with restart 4-bit checksum per 32-bit word. Detects and corrects 1 bit per byte (4 bits 
per word). Pipeline restart on correction.

2 8-bit parity without restart 8-bit checksum per 32-bit word. Detects and corrects 1 bit per byte (4 bits 
per word). Correction on-the-fly without pipeline restart.

3 7-bit BCH with restart 7-bit BCH checksum per 32-bit word. Detects 2 bits and corrects 1 bit per 
word. Pipeline restart on correction.
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53.2.3 ASR16 register

ASR register 16 (%asr16) is used to control the IU/FPU register file SEU protection. It is possible to
disable the SEU protection by setting the IDI/FDI bits, and to inject errors using the ITE/FTE bits.
Corrected errors in the register file are counted, and available in ICNT and FCNT fields. The counters
saturate at their maximum value (7), and should be reset by software after read-out.

[31:30]: FP FT ID - Defines which SEU protection is implemented in the FPU (table 619).
[29:27]: FP RF error counter - Number of detected parity errors in the FP register file.
[26:18]: Reserved
[17]: FPU RF Test Enable - Enables FPU register file test mode. Parity bits are xored with TB before written to the FPU

register file.
[16]: FP RF protection disable (FDI) - Disables FP RF parity protection when set.
[15:14]: IU FT ID - Defines which SEU protection is implemented in the IU (table 619).
[13:11]: IU RF error counter - Number of detected parity errors in the IU register file.
[10:3]: RF Test bits (FTB) - In test mode, these bits are xored with correct parity bits before written to the register file.
[2]: DP ram select (DP) - Only applicable if the IU or FPU register files consists of two dual-port rams. See text below

for details.
[1]: IU RF Test Enable - Enables register file test mode. Parity bits are xored with TB before written to the register file.
[0]: IU RF protection disable (IDI) - Disables IU RF parity protection when set.

53.2.4 Register file EDAC/parity bits diagnistic read-out

The register file EDAC/parity bits can be read out throught the DSU address space at 0x300800. The
ECC bits are read out for both read ports simultaneously as defined in the figure below:

53.2.5 IU/FPU register file error injection

For test purposes, the IU and FPU register file EDAC/parity checkbits can be modified by software.
This is done by setting the ITE or FTE bits to ‘1’. In this mode, the EDAC/parity bits are first XORed
with the contents of %asr16.FTB before written to the register files.

Table 620.DP ram select usage

ITE/FTE DP Function

1 0 Write to IU register (%i, %l, %o, %g) will only write location of %rs2

Write to FPU register (%f) will only write location of %rs2

1 1 Write to IU register (%i, %l, %o, %g) will only write location of %rs1

Write to FPU register (%f) will only write location of %rs1

0 X IU and FPU registers written nominally

Figure 181.  %asr16 - Register protection control register
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53.3 Cache memory

Each word in the cache tag or data memories is protected by four check bits. An error during cache
access will cause a cache line flush, and a re-excution of the failing instruction. This will insure that
the complete cache line (tags and data) is refilled from external memory. For every detected error, a
counter in the cache control register is incremented. The counters saturate at their maximum value (3),
and should be reset by software after read-out. The cache memory check bits can be diagnostically
read by setting the PS bit in the cache control register and then perform a normal tag or data diagnos-
tic read.

53.3.1 Cache Control Register

[28]: Parity Select [PS] - if set diagnostic read will return 4 check bits in the lsb bits, otherwise tag or data word is
returned.

[27:24]: Test Bits [TB] - if set, check bits will be xored with test bits TB during diagnostic write
[23]: Data cache snoop enable [DS] - if set, will enable data cache snooping.
[22]: Flush data cache (FD). If set, will flush the instruction cache. Always reads as zero.
[21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
[20:19]: FT scheme: “00” = no FT, “01” = 4-bit checking implemented
[16]: Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
[15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation is in progress.
[14]: Data cache flush pending (DP). This bit is set when an data cache flush operation is in progress.
[13:12]: Instruction Tag Errors (ITE) - Number of detected parity errors in the instruction tag cache.
[11:10]: Instruction Data Errors (IDE) - Number of detected parity errors in the instruction data cache.
[9:8]: Data Tag Errors (DTE) - Number of detected parity errors in the data tag cache.
[7:6]: Data Data Errors (IDE) - Number of detected parity errors in the data data cache.
[5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when an asynchronous

interrupt is taken.
[4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be frozen when an

asynchronous interrupt is taken.
[3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following: X0= disabled, 01 =

frozen, 11 = enabled.
[1:0]: Instruction Cache state (ICS) - Indicates the current data cache state according to the following: X0= disabled, 01

= frozen, 11 = enabled.

53.3.2 Diagnostic cache access

The context and parity bits for data and instruction caches can be read out via ASI 0xC - 0xF when the
PS bit in the cache control register is set. The data will be organized as shown below:

Figure 183.  Cache control register
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53.4 DSU memory map

The FPU register file check bits can be accessed at address 0x301800 - 0x30187C.

Table 621.DSU memory map

Address offset Register

0x000000 DSU control register

0x000008 Time tag counter

0x000020 Break and Single Step register

0x000024 Debug Mode Mask register

0x000040 AHB trace buffer control register

0x000044 AHB trace buffer index register

0x000050 AHB breakpoint address 1

0x000054 AHB mask register 1

0x000058 AHB breakpoint address 2

0x00005c AHB mask register 2

0x100000 - 0x110000 Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64, 

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x110000 Intruction Trace buffer control register

0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64, 

..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x300000 - 0x3007FC IU register file, port1 (%asr16.dpsel = 0)

IU register file, port 2 (%asr16.dpsel = 1)

0x300800 - 0x300FFC IU register file check bits

0x301000 - 0x30107C

0x301800 - 0x30187C

FPU register file

FPU register file check bits

0x400000 - 0x4FFFFC IU special purpose registers

0x400000 Y register

0x400004 PSR register

0x400008 WIM register

0x40000C TBR register

0x400010 PC register

0x400014 NPC register

0x400018 FSR register

0x40001C CPSR register

0x400020 DSU trap register

0x400024 DSU ASI register

0x400040 - 0x40007C ASR16 - ASR31 (when implemented)

0x700000 - 0x7FFFFC ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])

ASI = 0x9 : Local instruction RAM

ASI = 0xB : Local data RAM

ASI = 0xC : Instruction cache tags

ASI = 0xD : Instruction cache data

ASI = 0xE : Data cache tags

ASI = 0xF : Instruction cache data
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53.4.1 Data scrubbing

There is generally no need to perform data scrubbing on either IU/FPU register files or the cache
memory. During normal operation, the active part of the IU/FPU register files will be flushed to mem-
ory on each task switch. This will cause all registers to be checked and corrected if necessary. Since
most real-time operating systems performs several task switches per second, the data in the register
files will be frequently refreshed.

The similar situation arises for the cache memory. In most applications, the cache memory is signifi-
cantly smaller than the full application image, and the cache contents is gradually replaced as part of
normal operation. For very small programs, the only risk of error build-up is if a part of the applica-
tion is resident in the cache but not executed for a long period of time. In such cases, executing a
cache flush instruction periodically (e.g. once per minute) is sufficient to refresh the cache contents.

53.4.2 Initialisation

After power-on, the check bits in the IU and FPU register files are not initialized. This means that
access to an uninitialized (un-written) register could cause a register access trap (tt = 0x20). Such
behaviour is considered as a software error, as the software should not read a register before it has
been written. It is recommended that the boot code for the processor writes all registers in the IU and
FPU register files before launching the main application.

The check bits in the cache memories do not need to be initialized as this is done automatically during
cache line filling.

53.5 Vendor and device identifers

The core has vendor identifers 0x01 (Gaisler Research) and device identifers 0x053. For description
of vendor and device identiferss see GRLIB IP Library User’s Manual.

53.6 Configuration options

In addition to the configuration of the standard LEON3 processor, the LEON3FT processor has the
following configuartion options.

Table 622 shows the configuration options of the core (VHDL generics).

53.7 Limitations

The LEON3FT core does not support the following functions present in the LEON3 model:

- Local instruction/data scratch pad RAM

- Cache locking

Table 622.Configuration options

Generic Function Range Default

iuft, fpft Register file SEU protection. (0: no protection; 1 : 4-bit parity, 2 
: 8-bit parity; 3 : 7-bit BCH)

0 - 3 0

cft Enable cache memory SEU protection. 0 - 1 0

ceinj Error injection. Used for simulation only. 0 - 3 0

netlist Use netlist rather then RTL code 0 - 1 0
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54 LOGAN - On-chip Logic Analyzer

54.1 Introduction

The LOGAN core implements an on-chip logic analyzer for tracing and displaying of on-chip signals.
LOGAN consists of a circular trace buffer and a triggering module. When armed, the logic analyzers
stores the traced signals in the circular buffer until a trigger condition occurs. A trigger condition will
freeze the buffer, and the traced data can then be read out via an APB interface. 

The depth and width of the trace buffer is configurable through VHDL generics, as well as the number
of trigger levels.

Figure 185.  On-chip Logic Analyzer block diagram

54.2 Operation

54.2.1 Trace buffer

When the logic analyzer is armed, the traced signals are sampled and stored to the trace buffer on the
rising edge of the sample clock (TCLK). The trace buffer consists of a circular buffer with an index
register pointing to the next address in the buffer to be written. The index register is automatically
incremented after each store operation to the buffer.

54.2.2 Clocking

LOGAN uses two clocks: TCLK and the APB clock. The trace signals are sampled on the rising edge
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54.2.3 Triggering

The logic analyzer contains a configurable number of trig levels. Each trig level is associated with a
pattern and a mask. The traced signals are compared with the pattern, only comparing the bits set in
the mask. This allows for triggering on any specific value or range. Furthermore each level has a
match counter and a boolean equality flag. The equality flag specifies whether a match means that the
pattern should equal the traced signals or that it should not be equal. It is possible to configure the trig-
ger engine to stay at a certain level while the traced signals have a certain value using this flag. The
match counter is a 6 bit counter which can be used to specify how many times a level should match
before proceeding to the next. This is all run-time configurable through registers described in the reg-
ister section.

To specify post-, center- or pre-triggering mode, the user can set a counter register that controls when
the sampling stops relative to the triggering event. It can be set to any value in the range 0 to depth-1
thus giving total control of the trace buffer content.

To support the tracing of slowly changing signals, the logic analyzer has a 16-bit sample frequency
divider register that controls how often the signals are sampled. The default divider value of 1 will
sample the signals every clock cycle.

The usequal configuration option has a similar purpose as the sample frequency divider. The user can
define one of the traced signals as a qualifier bit that has to have a specified value for the current sig-
nals to be stored in the trace buffer. This makes sampling of larger time periods possible if only some
easily distinguished samples are interesting. This option has to be enabled with the usequal generic
and the qualifier bit and value are written to a register.

54.2.4 Arming

To start operation, the logic analyzer needs to be armed. This is done by writing to the status register
with bit 0 set to 1. A reset can be performed anytime by writing zero to the status register. After the
final triggering event, the trigged flag will be raised and can be read out from the status register. The
logic analyzer remains armed and trigged until the trigger counter reaches zero. When this happens
the index of the oldest sample can be read from the trace buffer index register. 

54.3 Registers

Both trace data and all registers are accessed through an APB interface. The LOGAN core will allo-
cate a 64 kbyte block in the APB address space.

Table 623.APB address mapping

APB address offset Registers

0x0000 Status register

0x0004 Trace buffer index

0x0008 Page register

0x000C Trig counter

0x0010 Sample freq. divider

0x0014 Storage qualifier setting

0x2000 - 0x20FF Trig control settings

0x6000 - 0x6FFF Pattern/mask configuration

0x8000 - 0xFFFF Trace data
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54.3.1 Status register

[31:28] These bits indicate whether an input register and/or storage qualifier is used and if the Logic Analyzer is armed and/
or trigged.

[27:20] Number of traced signals.
[19:6] Last index of trace buffer. Depth-1.
[5:0] Number of trig levels.

54.3.2 Trace buffer index

[31:abits] - Reserved.
[abits-1:0] - The index of the oldest sample in the buffer. abits is the number of bits needed to represent the configured depth.
Note that this register is written by the trigger engine clock domain and thus needs to be known stable
when read out. Only when the ‘armed’ bit in the status register is zero is the content of this register
reliable.

54.3.3 Page register

[31:4] - Reserved.
[3:0] - This register selects what page that will be used when reading from the trace buffer. 

The trace buffer is organized into pages of 1024 samples. Each sample can be
between 1 and 256 bits. If the depth of the buffer is more than 1024 the page register has to be used to
access the other pages. To access the i:th page the register should be set i (where i=0..15).

54.3.4 Trig counter

[31:abits] - Reserved. 
[nbits-1:0] - Trig counter value. A counter is incremented by one for each stored sample after the final triggering event and

when it reaches the value stored in this register the sampling stops. 0 means posttrig and depth-1 is pretrig. Any
value in between can be used.

Figure 186.  Status register
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54.3.5 Sample frequency divider

[31:16] - Reserved. 
[15:0] - A sample is stored on every i:th clock cycle where i is specified through this register. This resets to 1 thus sampling

occurs every cycle if not changed.

54.3.6 Storage qualifier

[31:9] - Reserved.
[8:1] - Which bit to use as qualifier.
[0] - Qualify storage if bit is 1/0.

54.3.7 Trig control registers

This memory area contains the registers that control when the trigger engine shall proceed to the next
level, i.e the match counter and a one bit field that specifies if it should trig on equality or inequality.
There are trigl words where each word is used like in the figure below.

[31:7] - Reserved.
[6:1] - Match counter. A counter is increased with one on each match on the current level and when it reaches the value stored

in this register the trigger engine proceeds to the next level or if it is the last level it raises the trigged flag and starts
the count of the trigger counter.

[0] - Specifies if a match is that the pattern/mask combination is equal or inequal compared to the traced signals.

54.3.8 Pattern/mask configuration

In these registers the pattern and mask for each trig level is configured. The pattern and mask can con-
tain up to 8 words (256 bits) each so a number of writes can be necessary to specify just one pattern.
They are stored with the LSB at the lowest address. The pattern of the first trig level is at 0x6000 and
the mask is located 8 words later at 0x6020. Then the next trig levels starts at address 0x6040 and so
on.

54.3.9 Trace data

It is placed in the upper half of the allocated APB address range. If the configuration needs more than
the allocated 32 kB of the APB range the page register is used to page into the trace buffer. Each
stored word is dbits wide but 8 words of the memory range is always allocated so the entries in the
trace buffer are found at multiples of 0x20, i.e. 0x8000, 0x8020 and so on.

Figure 190.  Sample freq. divider register
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54.4 Graphical interface

The logic analyzer is normally controlled by the LOGAN debug driver in GRMON. It is also possible
to control the LOGAN operation using a graphical user interface (GUI) written in Tcl/Tk. The GUI is
provided with GRMON, refer to the GRMON manual for more details.

54.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x062. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

54.6 Configuration options

Table 624 shows the configuration options of the core (VHDL generics).

Table 624.Configuration options

Generic Function Allowed range Default

dbits Number of traced signals 1 - 255 32

depth Number of stored samples 256 - 16384 1024

trigl Number of trigger levels 1 - 63 1

usereg Use input register 0 - 1 1

usequal Use storage qualifier 0 - 1 0

pindex APB slave index 0 - NAPBSLV - 1 0

paddr The 12-bit MSB APB address 0 -16#FFF# 0

pmask The APB address mask 16#000 - 16#F00# F00

memtech Memory technology 0 - NTECH 0
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The usereg VHDL generic specifies whether to use an input register to synchronize the traced signals
and to minimize their fan out. If usereg=1 then all signals will be clocked into a register on the posi-
tive edge of the supplied clock signal, otherwise they are sent directly to the RAM.

54.7 Signal descriptions

Table 625 shows the interface signals of the core (VHDL ports). 

* See GRLIB IP Library users manual

54.8 Library dependencies

Table 626 shows libraries used when instantiating the core (VHDL libraries).

54.9 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

entity logan_ex is
  port (
    clk : in std_ulogic;
    rstn : in std_ulogic;

    ... -- other signals
    );
end;

architecture rtl of logan_ex is

  -- AMBA signals
signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb _none);
signal signals : std_logic_vector(63 downto 0);
   
begin
  
-- Logic analyzer core

Table 625.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input System clock -

TCLK N/A Input Sample clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

SIGNALS N/A Input Vector of traced signals -

Table 626.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Component declaration
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  logan0 : logan
  generic map (dbits=>64,depth=>4096,trigl=>2,usere g=>1,usequal=>0, 
            pindex => 3, paddr => 3, pmask => 16#F0 0#, memtech => memtech)
  port map (rstn, clk, clk, apbi, apbo(3), signals) ;

end;
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55 MCTRL - Combined PROM/IO/SRAM/SDRAM Memory Controller

55.1 Overview

The memory controller handles a memory bus hosting PROM, memory mapped I/O devices, asyn-
chronous static ram (SRAM) and synchronous dynamic ram (SDRAM). The controller acts as a slave
on the AHB bus. The function of the memory controller is programmed through memory configura-
tion registers 1, 2 & 3 (MCFG1, MCFG2 & MCFG3) through the APB bus. The memory bus supports
four types of devices: prom, sram, sdram and local I/O. The memory bus can also be configured in 8-
or 16-bit mode for applications with low memory and performance demands. 

Chip-select decoding is done for two PROM banks, one I/O bank, five SRAM banks and two
SDRAM banks. 

The controller decodes three address spaces (PROM, I/O and RAM) whose mapping is determined
through VHDL-generics.

Figure 193 shows how the connection to the different device types is made.

55.2 PROM access

Accesses to prom have the same timing as RAM accesses, the differences being that PROM cycles
can have up to 15 waitstates.

Figure 193.  Memory controller conected to AMBA bus and different types of memory devices
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Figure 194.  Prom non-consecutive read cyclecs.

data1 data2

address

romsn

data

oen

cb

data1 data2lead-out lead-out

clk

D1 D2

CB2CB1

A1 A2

Figure 195.  Prom consecutive read cyclecs.
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Figure 196.  Prom read access with two waitstates.
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Two PROM chip-select signals are provided, MEMO.ROMSN[1:0]. MEMO.ROMSN[0] is asserted
when the lower half of the PROM area as addressed while MEMO.ROMSN[1] is asserted for the
upper half. When the VHDL model is configured to boot from internal prom, MEMO.ROMSN[0] is
never asserted and all accesses to the lower half of the PROM area are mapped on the internal prom. 

55.3 Memory mapped I/O

Accesses to I/O have similar timing to ROM/RAM accesses, the differences being that a additional
waitstates can be inserted by de-asserting the MEMI.BRDYN signal. The I/O select signal
(MEMO.IOSN) is delayed one clock to provide stable address before MEMO.IOSN is asserted.

Figure 197.  Prom write cycle (0-waitstates)
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Figure 198.  Prom write cycle (2-waitstates)
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55.4 SRAM access

The SRAM area can be up to 1 Gbyte, divided on up to five RAM banks. The size of banks 1-4
(MEMO.RAMSN[3:0]is programmed in the RAM bank-size field (MCFG2[12:9]) and can be set in
binary steps from 8 Kbyte to 256 Mbyte. The fifth bank (RAMSN[4]) decodes the upper 512 Mbyte
and cannot be used simultaneously with SDRAM memory. A read access to SRAM consists of two
data cycles and between zero and three waitstates. Accesses to MEMO.RAMSN[4] can further be
stretched by de-asserting MEMI.BRDYN until the data is available. On non-consecutive accesses, a
lead-out cycle is added after a read cycle to prevent bus contention due to slow turn-off time of mem-
ories or I/O devices. Figure 201 shows the basic read cycle waveform (zero waitstate).

Figure 199.  I/O read cycle (0-waitstates)
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Figure 200.  I/O write cycle (0-waitstates)

address

iosn

data

oen

cb

lead-out

clk

A1

D1

lead-in data

CB1



556

For read accesses to MEMO.RAMSN[4:0], a separate output enable signal (MEMO.RAMOEN[n]) is
provided for each RAM bank and only asserted when that bank is selected. A write access is similar to
the read access but takes a minimum of three cycles:

Through an (optional) feed-back loop from the write strobes, the data bus is guaranteed to be driven
until the write strobes are de-asserted. Each byte lane has an individual write strobe to allow efficient
byte and half-word writes. If the memory uses a common write strobe for the full 16- or 32-bit data,
the read-modify-write bit in the MCFG2 register should be set to enable read-modify-write cycles for
sub-word writes.

A drive signal vector for the data I/O-pads is provided which has one drive signal for each data bit. It
can be used if the synthesis tool does not generate separate registers automatically for the current
technology. This can remove timing problems with output delay.

55.5 8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, it is not neces-
sary to always have full 32-bit memory banks. The SRAM and PROM areas can be individually con-
figured for 8- or 16-bit operation by programming the ROM and RAM size fields in the memory
configuration registers. Since read access to memory is always done on 32-bit word basis, read access
to 8-bit memory will be transformed in a burst of four read cycles while access to 16-bit memory will

Figure 201.  SRAM non-consecutive read cyclecs.
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Figure 202.  Sram write cycle (0-waitstates)
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generate a burst of two 16-bits reads. During writes, only the necessary bytes will be writen. Figure
203 shows an interface example with 8-bit PROM and 8-bit SRAM. Figure 204 shows an example of
a 16-bit memory interface.

55.6 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills, double loads and double stores. The timing
of a burst cycle is identical to the programmed basic cycle with the exception that during read cycles,
the lead-out cycle will only occurs after the last transfer. 

Figure 203.  8-bit memory interface example
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Figure 204.  16-bit memory interface example
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55.7 8- and 16-bit I/O access

Similar to the PROM/RAM areas, the I/O area can also be configured to 8- or 16-bit mode. However,
the I/O device will NOT be accessed by multiple 8/16 bit accesses as the memory areas, but only with
one single access just as in 32-bit mode. To access an I/O device on a 16-bit bus, LDUH/STH instruc-
tions should be used while LDUB/STB should be used with an 8-bit bus.

55.8 SDRAM access

55.8.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. This is implemented by a special version of the SDCTRL SDRAM controller core from
Gaisler Research, which is optionally instantiated as a sub-block. The SDRAM controller supports
64M, 256M and 512M devices with 8 - 12 column-address bits, and up to 13 row-address bits. The
size of the two banks can be programmed in binary steps between 4 Mbyte and 512 Mbyte. The oper-
ation of the SDRAM controller is controlled through MCFG2 and MCFG3 (see below). Both 32- and
64-bit data bus width is supported, allowing the interface of 64-bit DIMM modules. The memory con-
troller can be configured to use either a shared or separate bus connecting the controller and SDRAM
devices. When the VHDL generic mobile is set to a value not equal to 0, the controller supports
mobile SDRAM.

55.8.2 Address mapping

The two SDRAM chip-select signals are decoded. SDRAM area is mapped into the upper half of the
RAM area defined by BAR2 register. When the SDRAM enable bit is set in MCFG2, the controller is
enabled and mapped into upper half of the RAM area as long as the SRAM disable bit is not set. If the
SRAM disable bit is set, all access to SRAM is disabled and the SDRAM banks are mapped into the
lower half of the RAM area.

55.8.3 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 2x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. When mobile SDRAM functionality is enabled the initialization sequence is appended by a
LOAD-EXTMODE-REG command. The controller programs the SDRAM to use page burst on read
and single location access on write.

55.8.4 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), some
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2) The pro-
grammable SDRAM parameters can be seen in tabel 627.

Remaining SDRAM timing parameters are according the PC100/PC133 specification.

Table 627.SDRAM programmable timing parameters

Function Parameter Range Unit

CAS latency, RAS/CAS delay tCAS, tRCD 2 - 3 clocks

Precharge to activate tRP 2 - 3 clocks

Auto-refresh command period tRFC 3 - 11 clocks

Auto-refresh interval 10 - 32768 clocks



559

When mobile SDRAM support is enabled, one additional timing parameter (TXSR) can be pro-
grammed though the Power-Saving configuration register.

55.9 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the MCFG3 register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6 µs (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in MCFG2.

55.9.1 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking
and refresh are handled internally. The memory array that is refreshed during the self refresh opera-
tion is defined in the extended mode register. These settings can be changed by setting the PASR bits
in the Power-Saving configuration register. The extended mode register is automatically updated
when the PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half,
Quarter, Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile
SDRAM functionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-
Saving configuration register to “010” (Self Refresh). The controller will enter self refresh mode after
every memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits
are cleared. When exiting this mode the controller introduce a delay defined by tXSR in the Power-
Saving configuration register and a AUTO REFRESH command before any other memory access is
allowed. The minimum duration of this mode is defined by tRAS. This mode is only available then
the VHDL generic mobile >=1.

55.9.2 Power-Down

When entering the power-down mode all input and output buffers, excluding SDCKE, are deacti-
vated. All data in the SDRAM is retained during this operation. To enable the power-down mode, set
the PMODE bits in the Power-Saving configuration register to “001” (Power-Down). The controller
will enter power-down mode after every memory access (when the controller has been idle for 16
clock cycles), until the PMODE bits is cleared. The REFRESH command will still be issued by the
controller in this mode. When exiting this mode a delay of one clock cycles are added before issue any
command to the memory. This mode is only available then the VHDL generic mobile >=1.

55.9.3 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared. The controller will respond with an AMBA
ERROR response to an AMBA access, that will result in a memory access, during Deep Power-Down
mode. This mode is only available then the VHDL generic mobile >=1 and mobile SDRAM function-
ality is enabled.

Table 628.Mobile SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

Exit Self Refresh mode to first valid command (tXSR) tXSR
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55.9.4 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting the
TCSR bits in the Power-Saving configuration register. The extended mode register is automatically
updated when the TCSR bits are changed. Note that some vendors implements a Internal Tempera-
ture-Compensated Self Refresh feature, which makes the memory to ignore the TCSR bits. This func-
tionality is only available then the VHDL generic mobile >=1 and mobile SDRAM functionality is
enabled.

55.9.5 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available then the VHDL generic mobile >=1 and mobile SDRAM functionality
is enabled.

55.9.6 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
MCFG2: PRE-CHARGE, AUTO-REFRESH, LOAD-MODE-REG (LMR) and LOAD-EXTMODE-
REG (EMR). If the LMR command is issued, the CAS delay as programmed in MCFG2 will be used,
remaining fields are fixed: page read burst, single location write, sequential burst. If the EMR com-
mand is issued, the DS, TCSR and PASR as programmed in Power-Saving configuration register will
be used. To issue the EMR command, the EMR bit in the MCFG4 register has to be set. The command
field will be cleared after a command has been executed. Note that when changing the value of the
CAS delay, a LOAD-MODE-REGISTER command should be generated at the same time.

55.9.7 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses.

55.9.8 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between.

55.9.9 Address bus connection

The memory controller can be configured to either share the address and data buses with the SRAM,
or to use separate address and data buses. When the buses are shared, the address bus of the SDRAMs
should be connected to A[14:2], the bank address to A[16:15]. The MSB part of A[14:2] can be left
unconnected if not used. When separate buses are used, the SDRAM address bus should be connected
to SA[12:0] and the bank address to SA[14:13].

55.9.10 Data bus

SDRAM can be connected to the memory controller through the common or separate data bus. If the
separate bus is used the width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit
SDRAM devices to be connected using the full data capacity of the devices. 64-bit SDRAM devices
can be connected to 32-bit data bus if 64-bit data bus is not available but in this case only half the full
data capacity will be used. There is a drive signal vector and separate data vector available for
SDRAM. The drive vector has one drive signal for each data bit. These signals can be used to remove
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timing problems with the output delay when a separate SDRAM bus is used. SDRAM bus signals are
described in section 55.13, for configuration options refer to section 55.15. 

55.9.11 Clocking

The SDRAM clock typically requires special synchronisation at layout level. For Xilinx and Altera
device, the GR Clock Generator can be configured to produce a properly synchronised SDRAM
clock. For other FPGA targets, the GR Clock Generator can produce an inverted clock.

55.10 Using bus ready signalling

The MEMI.BRDYN signal can be used to stretch access cycles to the I/O area and the ram area
decoded by MEMO.RAMSN[4]. The accesses will always have at least the pre-programmed number
of waitstates as defined in memory configuration registers 1 & 2, but will be further stretched until
MEMI.BRDYN is asserted. MEMI.BRDYN should be asserted in the cycle preceding the last one.
The use of MEMI.BRDYN can be enabled separately for the I/O and RAM areas.

55.11 Access errors

An access error can be signalled by asserting the MEMI.BEXCN signal, which is sampled together
with the data. If the usage of MEMI.BEXCN is enabled in memory configuration register 1, an error

Figure 205.  READ cycle with one extra data2 cycle added with BRDYN (synchronous sampling). Lead-out cycle is 
only applicable for I/O accesses.
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Figure 206.  Read cycle with one waitstate (configured) and one BRDYN generated waitstate (synchronous 
sampling).

data1 data2

address

romsn/iosn/ramsn[4]

data

oen

data2 lead-out

clk

D1

A1

brdyn

data2
ws brdyn



562

response will be generated on the internal AMBA bus. MEMI.BEXCN can be enabled or disabled
through memory configuration register 1, and is active for all areas (PROM, I/O an RAM).

55.12 Attaching an external DRAM controller

To attach an external DRAM controller, MEMO.RAMSN[4] should be used since it allows the cycle
time to vary through the use of MEMI.BRDYN. In this way, delays can be inserted as required for
opening of banks and refresh.

55.13 Registers

The memory controller is programmed through registers mapped into APB address space.

Table 629.Memory controller registers

APB address offset Register

0x0 MCFG1

0x4 MCFG2

0x8 MCFG3

0xC MCFG4 (Power-Saving configuration register)

Figure 207.  Read cycle with BEXCN.
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55.13.1 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and local I/O accesses.

During power-up, the prom width (bits [9:8]) are set with value on MEMI.BWIDTH inputs. The prom
waitstates fields are set to 15 (maximum). External bus error and bus ready are disabled. All other
fields are undefined.

55.13.2 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM and SDRAM.

Table 630. Memory configuration register 1.
31 29 28 27 26 25 24 23 20 19 18

RESERVED IOBUSW IBRDY BEXCN IO WAITSTATES IOEN

12 11 10 9 8 7 4 3 0

RESERVED PWEN PROM WIDTH PROM WRITE WS PROM READ WS

31 : 29 RESERVED

28 : 27 I/O bus width (IOBUSW) - Sets the data width of the I/O area (“00”=8, “01”=16, “10” =32).

26 I/O bus ready enable (IBRDY) - Enables bus ready (BRDYN) signalling for the I/O area. Reset to 
‘0’.

25 Bus error enable (BEXCN) - Enables bus error signalling. Reset to ‘0’.

24 RESERVED

23 : 20 I/O waitstates (IO WAITSTATES) - Sets the number of waitstates during I/O accesses (“0000”=0, 
“0001”=1, “0010”=2,..., “1111”=15).

19 I/O enable (IOEN) - Enables accesses to the memory bus I/O area. 

18:12 RESERVED

11 PROM write enable (PWEN) - Enables write cycles to the PROM area.

10 RESERVED

9 : 8 PROM width (PROM WIDTH) - Sets the data width of the PROM area (“00”=8, “01”=16, 
“10”=32).

7 : 4 PROM write waitstates (PROM WRITE WS) - Sets the number of wait states for PROM write 
cycles (“0000”=0, “0001”=1, “0010”=2,..., “1111”=15).

3 : 0 PROM read waitstates (PROM READ WS) - Sets the number of wait states for PROM read cycles 
(“0000”=0, “0001”=1, “0010”=2,...,”1111”=15). Reset to “1111”.

Table 631. Memory configuration register 2.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SDRF TRP SDRAM TRFC TCAS SDRAM BANKSZ SDRAM COLSZ SDRAM CMD D64 RES MS

15 14 13 12 9 8 7 6 5 4 3 2 1 0

RES SE SI RAM BANK SIZE RBRDY RMW RAM WIDTH RAM WRITE WS RAM READ WS

31 SDRAM refresh (SDRF) - Enables SDRAM refresh.

30 SDRAM TRP parameter (TRP) - tRP will be equal to 2 or 3 system clocks (0/1). 

29 : 27 SDRAM TRFC parameter (SDRAM TRFC) - tRFC will be equal to 3+field-value system clocks.

26 SDRAM TCAS parameter (TCAS) - Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-
COMMAND-REGISTER command must be issued at the same time. Also sets RAS/CAS delay 
(tRCD).

25 : 23 SDRAM bank size (SDRAM BANKSZ) - Sets the bank size for SDRAM chip selects (“000”=4 
Mbyte, “001”=8 Mbyte, “010”=16 Mbyte.... “111”=512 Mbyte).

22 : 21 SDRAM column size (SDRAM COLSZ) - “00”=256, “01”=512, “10”=1024, “11”=4096 when bit 
25:23=”111” 2048 otherwise.
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55.13.3 Memory configuration register 3 (MCFG3)

MCFG3 is contains the reload value for the SDRAM refresh counter.

The period between each AUTO-REFRESH command is calculated as follows:

tREFRESH = ((reload value) + 1) / SYSCLK

20 : 19 SDRAM command (SDRAM CMD) - Writing a non-zero value will generate a SDRAM command. 
“01”=PRECHARGE, “10”=AUTO-REFRESH, “11”=LOAD-COMMAND-REGISTER. The field is 
reset after the command has been executed.

18 64-bit SDRAM data bus (D64) - Reads ‘1’ if the memory controller is configured for 64-bit SDRAM 
data bus width, ‘0’ otherwise. Read-only.

17 RESERVED 

16 Mobile SDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)

15 RESERVED

14 SDRAM enable (SE) - Enables the SDRAM controller.

13 SRAM disable (SI) - Disables accesses RAM if bit 14 (SE) is set to ‘1’.

12 : 9 RAM bank size (RAM BANK SIZE) - Sets the size of each RAM bank (“0000”=8 kbyte, “0001”=16 
kbyte, ..., “1111”=256 Mbyte).

8 RESERVED

7 RAM bus ready enable (RBRDY) - Enables bus ready signalling for the RAM area.

6 Read-modify-write enable (RMW) - Enables read-modify-write cycles for sub-word writes to 16- bit 
32-bit areas with common write strobe (no byte write strobe).

5 : 4 RAM width (RAM WIDTH) - Sets the data width of the RAM area (“00”=8, “01”=16, “1X”=32).

3 : 2 RAM write waitstates (RAM WRITE WS) - Sets the number of wait states for RAM write cycles 
(“00”=0, “01”=1, “10”=2, “11”=3).

1 : 0 RAM read waitstates (RAM READ WS) - Sets the number of wait states for RAM read cycles 
(“00”=0, “01”=1, “10”=2, “11”=3).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED SDRAM REFRESH RELOAD VALUE RESERVED

31: 27 RESERVED

26: 12 SDRAM refresh counter reload value (SDRAM 
REFRESH RELOAD VALUE)

11: 0 RESERVED

Table 632. MCFG4 Power-Saving configuration register
31 30 29 28 24 23 20 19 18 16 15 7 6 5 4 3 2 0

ME CE EM Reserved tXSR res PMODE Reserved DS TCSR PASR

31 Mobile SDRAM functionality enabled. ‘1’ = Enabled (support for Mobile SDRAM), ‘0’ = disabled 
(support for standard SDRAM)

30 Clock enable (CE). This value is driven on the CKE inputs of the SDRAM. Should be set to ‘1’ for 
correct operation. This register bit is read only when Power-Saving mode is other then none.

29 EMR. When set, the LOAD-COMMAND-REGISTER command issued by the SDRAM command 
filed in MCFG2 will be interpret as a LOAD-EXTENDED-COMMAND-REGISTER command.

28: 24 Reserved

Table 631. Memory configuration register 2.
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55.14 Vendor and device identifiers

The core has vendor identifier 0x04 (ESA) and device identifier 0x00F. For description of vendor and
device identifier see GRLIB IP Library User’s Manual.

23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile 
SDR support is disabled).

19 Reserved

18: 16 Power-Saving mode (Read only when Mobile SDR support is disabled).
“000”: none
“001”: Power-Down (PD)
“010”: Self-Refresh (SR)
“101”: Deep Power-Down (DPD)

15: 7 Reserved

6: 5 Selectable output drive strength (Read only when Mobile SDR support is disabled).
“00”: Full
“01”: One-half
“10”: One-quarter
“11”: Three-quarter

4: 3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile SDR support is disa-
bled).
“00”: 70ªC
“01”: 45ªC
“10”: 15ªC
“11”: 85ªC

2: 0 Partial Array Self Refresh (Read only when Mobile SDR support is disabled).
“000”: Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010”: Quarter array (Bank 0)
“101”: One-eighth array (Bank 0 with row MSB = 0)
“110”: One-sixteenth array (Bank 0 with row MSB = 00)

Table 632. MCFG4 Power-Saving configuration register
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55.15 Configuration options

Table 633 shows the configuration options of the core (VHDL generics).

55.16 Signal descriptions

Table 634 shows the interface signals of the core (VHDL ports).

Table 633.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

pindex APB slave index 0 - NAPBSLV-1 0

romaddr ADDR field of the AHB BAR0 defining PROM address space. 
Default PROM area is 0x0 - 0x1FFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#E00#

ioaddr ADDR field of the AHB BAR1 defining I/O address space. 
Default I/O area is 0x20000000 - 0x2FFFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#E00#

ramaddr ADDR field of the AHB BAR2 defining RAM address space. 
Default RAM area is 0x40000000-0x7FFFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR2 defining RAM address space. 0 -16#FFF# 16#C00#

paddr ADDR field of the APB BAR configuration registers address 
space.

0 - 16#FFF# 0

pmask MASK field of the APB BAR configuration registers address 
space.

0 - 16#FFF# 16#FFF#

wprot RAM write protection. 0 - 1 0

invclk Inverted clock is used for the SDRAM. 0 - 1 0

fast Enable fast SDRAM address decoding. 0 - 1 0

romasel log2(PROM address space size) - 1. E.g. if size of the PROM 
area is 0x20000000 romasel is log2(2^29)-1 = 28.

0 - 31 28

sdrasel log2(RAM address space size) - 1. E.g if size of the RAM 
address space is 0x40000000 sdrasel is log2(2^30)-1= 29.

0 - 31 29

srbanks Number of SRAM banks. 0 - 5 4

ram8 Enable 8-bit PROM and SRAM access. 0 - 1 0

ram16 Enable 16-bit PROM and SRAM access. 0 - 1 0

sden Enable SDRAM controller. 0 - 1 0

sepbus SDRAM is located on separate bus. 0 - 1 1

sdbits 32 or 64 -bit SDRAM data bus. 32, 64 32

oepol Select polarity of drive signals for data pads. 0 = active low, 1 = 
active high.

0 - 1 0

mobile Enable Mobile SDRAM support
0: Mobile SDRAM support disabled
1: Mobile SDRAM support enabled but not default
2: Mobile SDRAM support enabled by default
3: Mobile SDRAM support only (no regular SDR support)

0 - 3 0

Table 634.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low
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MEMI DATA[31:0] Input Memory data High

BRDYN Input Bus ready strobe Low

BEXCN Input Bus exception Low

WRN[3:0] Input SRAM write enable feedback signal Low

BWIDTH[1:0] Input Sets the reset value of the PROM data bus width 
field in the MCFG1 register

High

SD[31:0] Input SDRAM separate data bus High

MEMO ADDRESS[27:0] Output Memory address High

DATA[31:0] Output Memory data -

SDDATA[63:0] Output Sdram memory data -

RAMSN[4:0] Output SRAM chip-select Low

RAMOEN[4:0] Output SRAM output enable Low

IOSN Output Local I/O select Low

ROMSN[1:0] Output PROM chip-select Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable:

WRN[0] corresponds to DATA[31:24],

WRN[1] corresponds to DATA[23:16],

WRN[2] corresponds to DATA[15:8],

WRN[3] corresponds to DATA[7:0].

Low

MBEN[3:0] Output Byte enable:

MBEN[0] corresponds to DATA[31:24],

MBEN[1] corresponds to DATA[23:16],

MBEN[2] corresponds to DATA[15:8],

MBEN[3] corresponds to DATA[7:0].

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus.Con-
trols I/O-pads connected to external memory 
bus:

BDRIVE[0] corresponds to DATA[31:24],

BDRIVE[1] corresponds to DATA[23:16],

BDRIVE[2] corresponds to DATA[15:8],

BDRIVE[3] corresponds to DATA[7:0].

Low/High

VBDRIVE[31:0] Output Vectored I/O-pad drive signals. Low/High

SVBDRIVE[63:0] Output Vectored I/O-pad drive signals for separate 
sdram bus. 

Low/High

READ Output Read strobe High

SA[14:0] Output SDRAM separate address bus High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

WPROT WPROTHIT Input Unused -

Table 634.Signal descriptions

Signal name Field Type Function Active
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55.17 Library dependencies

Table 635 shows libraries used when instantiating the core (VHDL libraries).

55.18 Instantiation

This example shows how the core can be instantiated. 

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator. 

Memory controller decodes default memory areas: PROM area is 0x0 - 0x1FFFFFFF, I/O-area is
0x20000000-0x3FFFFFFF and RAM area is 0x40000000 - 0x7FFFFFFF. SDRAM controller is
enabled. SDRAM clock is synchronized with system clock by clock generator.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
library esa;
use esa.memoryctrl.all;

entity mctrl_ex is

SDO SDCASN Output SDRAM column address strobe Low

SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDDQM[7:0] Output SDRAM data mask:

DQM[7] corresponds to DATA[63:56],

DQM[6] corresponds to DATA[55:48],

DQM[5] corresponds to DATA[47:40],

DQM[4] corresponds to DATA[39:32],

DQM[3] corresponds to DATA[31:24],

DQM[2] corresponds to DATA[23:16],

DQM[1] corresponds to DATA[15:8],

DQM[0] corresponds to DATA[7:0].

Low

SDRASN Output SDRAM row address strobe Low

SDWEN Output SDRAM write enable Low

* see GRLIB IP Library User’s Manual

Table 635.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals

Components

Memory bus signals definitions

SDMCTRL component

ESA MEMORYCTRL Component Memory controller component declaration

Table 634.Signal descriptions

Signal name Field Type Function Active
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  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic; 
    
    -- memory bus
    address  : out   std_logic_vector(27 downto 0);  -- memory bus
    data     : inout std_logic_vector(31 downto 0);
    ramsn    : out   std_logic_vector(4 downto 0);
    ramoen   : out   std_logic_vector(4 downto 0);
    rwen     : inout std_logic_vector(3 downto 0);
    romsn    : out   std_logic_vector(1 downto 0);
    iosn     : out   std_logic;
    oen      : out   std_logic;
    read     : out   std_logic;
    writen   : inout std_logic;
    brdyn    : in    std_logic;
    bexcn    : in    std_logic;
-- sdram i/f
    sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); - - optional sdram address
    sd       : inout std_logic_vector(63 downto 0) -- optional sdram data
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => a hbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo : sdram_out_type;  

  signal wprot : wprot_out_type;  -- dummy signal, not used
  signal clkm, rstn : std_ulogic; -- system clock a nd reset

-- signals used by clock and reset generators
  signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;

  signal gnd : std_ulogic;
  
begin

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_d iv => 2, sdramen => 1, 
                                tech => virtex2, sd invclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open , cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pl lref <= pllref;
  
  -- Memory controller
  mctrl0 : mctrl generic map (srbanks => 1, sden =>  1)
    port map (rstn, clkm, memi, memo, ahbsi, ahbso( 0), apbi, apbo(0), wprot, sdo);

  -- memory controller inputs not used in this conf iguration  
  memi.brdyn <= ’1’; memi.bexcn <= ’1’; memi.wrn <=  "1111";
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  memi.sd <= sd;
  
  -- prom width at reset
  memi.bwidth <= "10";
  
  -- I/O pads driving data memory bus data signals
  datapads : for i in 0 to 3 generate
      data_pad : iopadv generic map (width => 8)
      port map (pad => data(31-i*8 downto 24-i*8),
                o => memi.data(31-i*8 downto 24-i*8 ),
                en => memo.bdrive(i),
                i => memo.data(31-i*8 downto 24-i*8 ));
  end generate;

  -- connect memory controller outputs to entity ou tput signals
  address <= memo.address; ramsn <= memo.ramsn; rom sn <= memo.romsn; 
  oen <= memo.oen; rwen <= memo.wrn; ramoen <= "111 1" & memo.ramoen(0);
  sa <= memo.sa;  
  writen <= memo.writen; read <= memo.read; iosn <=  memo.iosn;  
  sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn; 
  sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;
end;
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56 MUL32 - Signed/unsigned 32x32 multiplier module 

56.1 Overview

The multiplier module is highly configurable module implementing 32x32 bit multiplier. Multiplier
takes two signed or unsigned numbers as input and produces 64-bit result. Multiplication latency and
hardware complexity depend on multiplier configuration. Variety of configuration option makes it
possible to configure the multiplier to meet wide range of requirements on complexity and perfor-
mance.

For DSP applications the module can be configured to perform multiply & accumulate (MAC) opera-
tion. In this configuration 16x16 multiplication is performed and the 32-bit result is added to 40-bit
value accumulator.

56.2 Operation

The multiplication is started when ‘1’ is samples on MULI.START on positive clock edge. Operands
are latched externally and provided on inputs MULI.OP1 and MULI.OP2 during the whole operation.
The result appears on the outputs during the clock cycle following the clock cycle when
MULO.READY is asserted if multiplier if 16x16, 32x8 or 32x16 configuration is used. For 32x32
configuration result appears on the output during the second clock cycle after the MULI.START was
asserted. 

Signal MULI.MAC shall be asserted to start multiply & accumulate (MAC) operation. This signal is
latched on positive clock edge. Multiplication is performed between two 16-bit values on inputs
MULI.OP1[15:0] and MULI.OP2[15:0]. The 32-bit result of the multiplication is added to the 40-bit
accumulator value on signal MULI.ACC to form a 40-bit value on output MULO.RESULT[39:0].
The result of MAC operation appears during the second clock cycle after the MULI.MAC was
asserted.

56.3 Synthesis

Table 636 shows hardware complexity in ASIC gates and latency for different multiplier configura-
tions.

Table 636.Multiplier latencies and hardware complexity

Multiplier size 
(multype) Pipelined (pipe) Latency (clocks) Approximate area (gates)

16x16 1 5 6 500

16x16 0 4 6 000

32x8 - 4 5 000

32x16 - 2 9 000

32x32 - 1 15 000
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56.4 Configuration options

Table 637 shows the configuration options of the core (VHDL generics).

Table 637.Configuration options

Generic Function Allowed range Default

infer If set the multipliers will be inferred by the synthesis tool. Use 
this option if your synthesis tool i capable of inferring efficient 
multiplier implementation.

0 to 1 1

multype Size of the multiplier that is actually implemented. All configu-
ration produce 64-bit result with different latencies.

0 - 16x16 bit multiplier

1 - 32x8 bit multiplier 

2 - 32x16 bit multiplier

3 - 32x32 bit multiplier

0 to 3 0

pipe Used in 16x16 bit multiplier configuration with inferred option 
enabled. Adds a pipeline register stage to the multiplier. This 
option gives better timing but adds one clock cycle to latency.

0 to 1 0

mac Enable multiply & accumulate operation. Use only with 16x16 
multiplier option with no pipelining (pipe = 0)

0 to 1 0
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56.5 Signal descriptions

Table 638 shows the interface signals of the core (VHDL ports). 

56.6 Library dependencies

Table 639 shows the libraries used when instantiating the core (VHDL libraries).

56.7 Component declaration 

The core has the following component declaration.

component mul32
generic (
    infer   : integer := 1;
    multype : integer := 0;

Table 638.Signal declarations

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

HOLDN N/A Input Hold Low

MULI OP1[32:0] Input Operand 1

OP1[32] - Sign bit.

OP1[31:0] - Operand 1 in 2’s complement for-
mat

High

OP2[32:0] Operand 2

OP2[32] - Sign bit.

OP2[31:0] - Operand 2in 2’s complement format 

High

FLUSH Flush current operation High

SIGNED Signed multiplication High

START Start multiplication High

MAC Multiply & accumulate High

ACC[39:0] Accumulator. Accumulator value is held exter-
nally.

High

MULO READY Output Result is ready during the next clock cycle for 
16x16, 32x8 and 32x16 configurations. Not used 
for 32x32 configuration or MAC operation.

High

NREADY Not used -

ICC[3:0] Condition codes

ICC[3] - Negative result (not used in 32x32 
conf)

ICC[1] - Zero result (not used in 32x32 conf)

ICC[1:0] - Not used

High

RESULT[63:0] Result. Available at the end of the clock cycle if 
MULO.READY was asserted in previous clock 
cycle. For 32x32 configuration the result is avail-
able during second clock cycle after the 
MULI.START was asserted.

High

Table 639.Library dependencies

Library Package Imported unit(s) Description

GAISLER ARITH Signals, component Signals, component declaration
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    pipe    : integer := 0;
    mac     : integer := 0
);
port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    holdn   : in  std_ulogic;
    muli    : in  mul32_in_type;
    mulo    : out mul32_out_type
);
end component;

56.8 Instantiation

This example shows how the core can be instantiated. 

The module is configured to implement 16x16 pipelined multiplier with support for MAC operations.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use gaisler.arith.all;

.

.

.

signal muli  : mul32_in_type;
signal mulo  : mul32_out_type;

begin

mul0 : mul32 generic map (infer => 1, multype => 0,  pipe => 1, mac => 1)
    port map (rst, clk, holdn, muli, mulo);

end;
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57 MULTLIB - High-performance multipliers

57.1 Overview

The GRLIB.MULTLIB VHDL-library contains a collection of high-performance multipliers from the
Arithmetic Module Generator at Norwegian University of Science and Technology. 32x32, 32x8,
32x16, 16x16 unsigned/signed multipliers are included. 16x16-bit multiplier can be configured to
include a pipeline stage. This option improves timing but increases latency with one clock cycle.

57.2 Configuration options

Table 640 shows the configuration options of the core (VHDL generics).

57.3 Signal descriptions

Table 641 shows the interface signals of the core (VHDL ports).

57.4 Library dependencies

Table 642 shows libraries used when instantiating the core (VHDL libraries).

Table 640.Configuration options

Generic Function Allowed range Default

mulpipe Include a pipeline stage

(0 -pipelining disabled, 1 - pipelining enabled)

0 - 1 0

Table 641.Signal descriptions

Signal name Type Function Active

CLK 

(16x16 multiplier only)

Input Clock -

HOLDN

(16x16 multiplier only)

Input Hold. When active, the pipeline register is not 
updates

Low

X[16:0] (16x16 mult)

X[32:0] (32x8 mult)

X[32:0] (32x16 mult)

X[32:0] (32x32 mult)

Input Operand 1. MBS bit is sign bit. High

Y[16:0] (16x16 mult)

Y[8:0] (32x8 mult)

Y[16:0] (32x16 mult)

Y[32:0] (32x32 mult)

Input Operand 2. MSB bit is sign bit. High

P[33:0] (16x16 mult)

P[41:0] (32x8 mult)

P[49:0] (32x16 mult)

P[65:0] (32x32 mult)

Result. Two MSB bits are sign bits. High

Table 642.Library dependencies

Library Package Imported unit Description

GRLIB MULTLIB Component Multiplier component declarations
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57.5 Component declaration

The core has the following component declaration.

component mul_33_33
  port (
    x    : in  std_logic_vector(32 downto 0);
    y    : in  std_logic_vector(32 downto 0);
    p    : out std_logic_vector(65 downto 0)
  ); 
end component;

57.6 Instantiation

This example shows how the core can be instantiated. 

The core is configured to implement 16x16 pipelined multiplier with support for MAC operations.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.multlib.all;

.

.

signal op1, op2 : std_logic_vector(32 downto 0);
signal prod : std_logic_vector(65 downto 0);

begin

m0 : mul_33_33
         port map (op1, op2, prod);

end;
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58 GRPCI - 32-bit PCI Master/Target with configurable FIFOs and AHB back end

58.1 Overview

The PCI Master/Target is a bridge between the PCI bus and the AMBA AHB bus. The core is con-
nected to the PCI bus through two interfaces, a target and master. The PCI master interface is optional
and can be disabled through a VHDL generic. The AHB side of the core uses one slave interface and
one master interface. Configuration registers are available through the AMBA APB bus.

The PCI and AMBA interfaces belong to two different clock domains. Synchronization is performed
inside the core through FIFOs with configurable depth.

A summary of the GRPCI key features:

• 32-bit PCI interface

• PCI bus master and target

• AMBA AHB/APB 2.0 back end interface

• Configurable FIFOs for both master and target operation

• Supports incremental bursts and single accesses

• Bus master capabilities:

 o Memory read, memory write

         o Memory read multiple

         o Memory read line

         o I/O read, I/O write

         o Type 0 and 1 configuration read and write

Figure 209. GRPCI master/target 

PCI Master PCI Target

AHB Slave AHB Master

APB registers

AMBA bus

PCI Off-chip bus

PCI Bridge

MRd FIFO MWr FIFO TRd FIFO TWr FIFO



578

         o Host bridging

• Target capabilities:

         o Type 0 configuration space header

         o Configuration read and write

         o Parity generation (PAR), Parity error detection (PERR, SERR)

         o 2 Memory BARs

         o Memory read, memory write

         o Memory read multiple

         o Memory read line

         o Memory write and invalidate

• Optional DMA engine add on (see PCIDMA IP core)

58.2 Operation

PCI transactions are initiated by accessing the GRPCI AHB slave. The AHB slave has one memory
bank of configurable size (128 MB - 2 GB) and one 128 KB IO bank. Accesses to the memory bank
are translated into PCI memory cycles while accesses to the lower half of the IO bank are translated
into IO cycles. Configuration cycles are generated through accesses to the upper half of the IO bank.
The AHB slave supports 8/16/32-bit single accesses and 32-bit bursts. The address translation from
AHB to PCI is determined by the memory map register and the IO map register.

A connection from the PCI bus to the AHB bus is provided by the core’s PCI target interface and
AHB master. The PCI target is capable of handling configuration cycles, 8/16/32-bit single access
memory cycles and burst memory cycles of any alignment on the PCI bus. Configuration cycles are
used to access the PCI targets configuration space while the memory cycles are translated to AHB
accesses. The PCI target provides two memory space Base Address Registers (BARs) of configurable
size and can thus occupy two areas in the PCI memory space. Each BAR is associated with a PAGE
register which determines the address translation from PCI to AHB.

For burst transactions the data is buffered internally in FIFOs with configurable size. For more infor-
mation about the flow of data through the FIFOs and how it affects the operation see section 58.8.

Since PCI is little endian and LEON3 big endian GRPCI defaults to performing byte twisting on all
accesses to preserve the byte ordering. See 58.7 for more information.

58.3 PCI target interface

The PCI target interface occupies two memory areas in the PCI address space and the memory map-
ping is determined by the BAR0 and BAR1 registers in the targets configurations space. The size of
the PCI memory areas is determined by number of bits actually implemented by the BAR registers
(configurable through abits and dmaabits VHDL-generics).

58.3.1 PCI commands

The GRPCI target interface handles the following PCI commands:

• Configuration Read/Write:  Single access to the configuration space. No AHB access is per-
formed.

• Memory Read: If prefetching is enabled through the readpref generic (it is disabled per default),
the units AHB master interface fetches a cache line, otherwise a single AHB access is performed.
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• Memory Read Line: The unit prefetches data according to the value of the cache line size regis-
ter. 

• Memory Read Multiple:  The unit performs maximum prefetching. This can cause long
response time, depending of the user defined FIFO depth.

• Memory Write, Memory Write and Invalidate:  Handled similarly.

58.3.2 PCI responses

The target interface can terminate a PCI transaction with one of the following responses:

• Retry:  This response indicates that the master should perform the same request later as the target
is temporarily busy. This response is always given at least one time for read accesses, but can also
occur for write accesses.

• Disconnect with data: Terminate the transaction and transfer data in the current data phase. This
occurs if a master tries to transfer more data that fits in the FIFO or if prefetching is disabled and
a Memory Read command is performed. 

• Disconnect without data: Terminate the transaction without transfering data in the current data
phase. This can occur during a PCI read burst if the PCI target is forced to insert more than 8 wait
states while waiting for the AHB master to complete.

• Target-Abort:  Indicates that the current access caused an internal error, and the target never will
be able to finish it. 

An AHB transaction with ‘retry’ responses is repeated by the AHB master until an ‘ok’ or ‘error’
response is received. The ‘error’ response on AHB bus will result in ‘target abort’ response for the
PCI memory read cycle. In case of PCI memory write cycle, AHB access will not be finished with
error response since write data is posted to the destination unit. Instead the write error (WE) bit will
be set in the APB configuration/status register.

58.3.3 Bursts and byte enables

The target is capable of handling burst transactions. A PCI burst crossing 1 kB address boundary will
be performed as multiple AHB bursts by the AHB master interface. The AHB master interface will
insert an idle-cycle before requesting a new AHB burst to allow re-arbitration on the AHB. 

A PCI master is allowed to change the byte enables on any data phase during a transaction. The
GRPCI core handles this but each non 32-bit access in a PCI write burst will be translated into an
AHB single access of the corresponding size by the AHB master. For PCI reads the byte enables are
ignored by the PCI target and all byte lanes are driven with valid data.
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58.3.4 Configuration Space

The following registers are implemented in the GRPCI configuration space. Please refer to the PCI
specification for more information than is given here. 

[31:16]: Device ID (read-only). Returns value of device_id VHDL-generic.
[15:0]: Vendor ID (read-only). Returns value of vendor_id VHDL-generic.

[31:16]: Status Register - Writing one to a bit 31 - 16 clears the bit. Writes can not set a bit. 
[31]: Detected parity Error (DPE).
[30]: Signalled System Error (SSE) - Not implemented. Always reads 0.
[29]: Received Master Abort (RMA) - Set by the PCI Master interface when its transaction is terminated with Master-

Abort.
[28]:  Received Target Abort (RTA) - Set by the PCI Master interface when its transaction is terminated with Target-

Abort.
[27]: Signalled Target Abort (STA) - Set by the PCI Target Interface when the target terminates transaction with Target-

Abort.
[26:25]: DEVSEL timing (DST) -Always reads “10” - medium DEVSEL timing.
[24]: Data Parity Error Detected (DPD).
[23]: Fast Back-to-Back Capable - The Target interface is not capable of fast back-to-back transactions. Always reads ‘0’.
[22]: UDF Supported - Not supported. Always reads ‘0’,
[21]: 66 Mhz Capable - Not supported. Always reads ‘0’.
[20:16]: Reserved. Always reads ‘00..0’.
[15:0]: Command Register - Writing one to an implemented bit sets the bit. Writing zero clears the bit.
[15:10]: Reserved - Always reads as ‘00..0’.
[9]: Fast back-to-Back Enable - Not implemented. Always reads ‘0’.
[8]: SERR# enable - Not implemented. Always reads ‘0’.
[7]: Wait cycle control - Not implemented. Always reads ‘0’.
[6]: Parity Error Response (PER) - Controls units response on parity error. 
[5]: VGA Palette Snoop - Not implemented. Always reads ‘0’.

Table 643.Configuration Space Header registers

Address offset Register

0x00 Device ID, Vendor ID

0x04 Status, Command

0x08 Class Code & Revision ID 

0x0C BIST, Header Type, Latency Timer, Cache Line Size

0x10 BAR0

0x14 BAR1

0x3C Max_lat, min_gnt, interrupt pin, interrupt line.

Figure 210. Device ID & Vendor ID register
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[4]: Memory Write and Invalidate Enable (MIE) - Enables the PCI Master interface to generate Memory Write and
Invalidate Command.

[3]: Special Cycles - Not implemented. Always reads ‘0’.
[2]: Bus Master (BM) - Enables the Master Interface to generate PCI cycles.
[1]: Memory Space (MS) - Allows the unit to respond to Memory space accesses.
[0]: I/O Space (IOS) - The unit never responds to I/O cycles. Always reads as ‘0’.

[31:8]: Class Code - Processor device class code. Set with class_code generic (read-only).
[7:0]: Revision ID - Set with rev generic (read-only).

[31:24]: BIST - Not supported. Reads always as ‘00..0’.
[23:16]: Header Type (HEADER)- Header Type 0. Reads always as ‘00..0’.
[15:8]: Latency Timer (LTIM) - Maximum number of PCI clock cycles that Master can own the bus. 
[7:0]: Cache Line Size (CLS) - System cache line size. Defines the prefetch length for ‘Memory Read’ and ‘Memory Read

Line’ commands.

[31:abits]: PCI Base Address - PCI Targets interface Base Address 0. The number of implemented bits depend on the VHDL-
generic abits. Memory area of size 2^abits bytes at Base Address is occupied through this Base Address register.
Register PAGE0 is accessed through upper half of this area. PCI memory accesses to the lower half of this area is
translated to AHB accesses using PAGE0 map register.

[abits-1:4]: These bits are read-only and always read as ‘00..0’. This field can be used to determine devices memory
requirement by writing value of all ones to this register and reading the value back. The device will return zeroes in
unimplemented bits positions effectively defining memory area requested.

[3]: Prefetchable: Not supported. Always reads ‘0’.
[2:1]: Base Address Type - Mapping can be done anywhere in the 32-bit memory space. Reads always as ‘00’.
[0]: Memory Space Indicator - Register maps into Memory space. Read always as ‘0’.

PAGE0 register is mapped into upper half of the PCI address space defined by BAR0 register.

Figure 212. Class Code & revision ID
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[31:dmaabits]: PCI Base Address - PCI Targets interface Base Address 1. The number of implemented bits depends on the
VHDL-generic dmaabits. Memory area of size 2^dmaabits bytes at Base Address is occupied through this Base
Address register. PCI memory accesses to this memory space are translated to AHB accesses using PAGE1 map
register.

[dmaabits-1:4]: These bits are read-only and always read as ‘00..0’. This field can be used to determine devices memory
requirement by writing value of all ones to this register and reading the value back. The device will return zeroes in
unimplemented bits positions effectively defining memory area requested.

[3]: Prefetchable: Not supported. Always reads as ‘0’.
[2:1]: Base Address Type - Mapping can be done anywhere in the 32-bit memory space. Reads always as ‘00’.
[0]: Memory Space Indicator - Register maps in Memory space. Read always as ‘0’.

[31-24]: Max_lat. Reads 0.
[23-16]: Min_gnt. Reads 2^(fifodepth-3).
[15:8]: Interrupt pin. Always reads 1, indicating that the device uses PCI interrupt pin A. If used the interrupt must be driven

from outside the GRPCI core.
[7-0]: Interrupt line. Write able register used by the operating system to store information about interrupt routing.

58.3.5 The PAGE0/1 map registers

The PAGE0 and PAGE1 registers are used to translate PCI addresses to AHB addresses for BAR0 and
BAR1 respectively. PAGE0 is mapped into the PCI address space defined by BAR0, while PAGE1 is
an APB register.  

[31:abits-1]: AHB Map Address - Maps PCI accesses to PCI BAR0 address space to AHB address space. AHB address is 
formed by concatenating AHB MAP with LSB of the PCI address.

[abits-2:1]: Reserved. Reads always as ‘00..0’.
[0]:  BTEN - Byte twisting enabled if ‘1’. Reset value ‘1’. May only be altered when bus mastering is disabled.

Table 644.PCI target map registers

Register Address Address space

PAGE0 Upper half of PCI address space defined by BAR0 register PCI

PAGE1 APB base address + 0x10 APB

Figure 216. Max_lat, min_gnt and interrupt settings

031

Max_lat Min_gnt Interrupt pin Interrupt line

7815162324

Figure 217. PAGE0 register

031

AHB MAP ‘00..0’ 

abits-1 abits-2 1

BTEN

Figure 218. PAGE1 register

031

AHB MAP ‘00..0’ 

dmaabits dmaabits-1



583

[31:dmaabits]: AHB Map Address (AHB MAP) - Maps PCI accesses to PCI BAR1 address space to AHB address space.
AHB address is formed by concatenating AHB MAP with LSB of the PCI address.

[dmaabits-1:0]: Reserved. Reads always as ‘00..0’.

Note that it is possible to set the PAGE1 register from PCI by configuring PAGE0 to point to the APB
base address and then writing to BAR0 + GRPCI_APB_OFFSET + 0x10.

58.3.6 Calculating the address of PAGE0

Since the size of BAR0 is configurable the address of the PAGE0 register is not constant between
designs. It is possible to calculate the address of PAGE0 in a simple manner in order to write code that
is portable between devices with differently sized BAR0 registers. This is shown below using C syn-
tax.

/* Save original BAR0 (address 0x10 in the conf. sp ace) */
pci_read_config_dword(bus,slot,function,0x10, &tmp) ;

/* Write 0xffffffff to BAR0 */
pci_write_config_dword(bus, slot, function, 0x10, 0 xffffffff);

/* Read it back */
pci_read_config_dword(bus, slot, function, 0x10, &a ddr);

/* Restore to original */
pci_write_config_dword(bus, slot, function, 0x10, t mp);

/* Calculate PAGE0 offset from BAR0 (upper half of BAR0) */
addr = (~addr+1)>>1;

/* Set PAGE0 to point to start of APB */
page0 = tmp + addr;
*page0 = (unsigned int *) 0x80000000; 

58.4 PCI master Interface

The PCI Master interface occupies 128 MB to 2 GB of AHB memory address space and 128 kB of
AHB I/O address space. It handles AHB accesses to its AHB slave interface and translates them to
PCI configuration (host only), memory or I/O cycles. 

The mapping of the AHB slave into AHB address space is configurable through VHDL generics (see
the GRLIB User’s Manual for a detailed description of the AHB address mapping). The PCI cycles
performed on the PCI bus depends on the AHB access and the values in the configuration/status regis-
ter.

If the PCI host signal is asserted (active low) during reset, the PCI master function will be enabled
after reset. Otherwise the PCI host must enable the device to act as a master through the Bus Master
bit in the command register in PCI configuration space.

The PCI master interface is capable of performing the following PCI cycles:

58.4.1 Configuration cycles

PCI configuration cycles are performed by accessing the upper 64 kB of the AHB I/O address space
allocated by the AHB slave. If the bus number field in the AHB configuration register is set to 0 then
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type 0 cycles are generated with the mapping shown in the figure below.

[31:16]: AHB Address MSB - Not used for configuration cycle address mapping.
[15:11]: IDSEL - This field is decoded to drive PCI AD[IDSEL+10]. AD[31:11] signal lines are supposed to drive IDSEL

lines during configuration cycles.
[10:8]: Function Number (FUNC) - Selects function on multi-function device.
[7:2]: Register Number (REGISTER) - Used to index a PCI DWORD in configuration space.
[1:0]: Always driven to ‘00’ to generate Type 0 configuration cycle.

If the bus number field in the AHB configuration register is set to a value between 1 and 15 then type
1 cycles are generated with the mapping shown in the figure below.

[31:20]: AHB Address MSB - Not used for configuration cycle address mapping.
[19:16]: Bus number (BUSNO) - Which bus to access.
[15:11]: Device number (DEVICE) - Which device to select.
[10:8]: Function Number (FUNC) - Selects function on multi-function device.
[7:2]: Register Number (REGISTER) - Used to index a PCI DWORD in configuration space.
[1:0]: Always driven to ‘01’ to generate Type 1 configuration cycle.

When a configuration cycle does not get a response the configuration timeout (CTO) bit is set in the
APB configuration/status register. This bit should be checked when scanning the bus for devices in
order to detect the slots which are used.

58.4.2 I/O cycles

Single access PCI I/O cycles are supported. Accesses to the lower 64 kB of the GRPCI AHB I/O
address space are translated into PCI I/O cycles. The address translation is determined by the value in
the I/O map register.

58.4.3 Memory cycles

PCI memory cycles are performed by accessing the AHB memory slave. Mapping and PCI command
generation are determined by the values in the AMBA configuration/status register. Burst operation is
supported for PCI memory cycles. 

The PCI commands generated by the master are directly dependant of the AMBA access and the value
of the configuration/status register. The configuration/status register can be programmed to issue
Memory Read, Memory Read Line, Memory Read Multiple, Memory Write or Memory Write and
Invalidate. 

If a burst AHB access is made to PCI master’s AHB slave it is translated into burst PCI memory
cycles. When the PCI master interface is busy performing the transaction on the PCI bus, its AHB
slave interface will not be able to accept new requests. A ‘retry’ response will be given to all accesses
to its AHB slave interface. A requesting AHB master should repeat its request until ‘ok’ or ‘error’
response is given by the PCI master’s AHB slave interface. 

Figure 219. Mapping of AHB I/O addresses to PCI address for PCI Configuration cycle, type 0
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Note that ‘retry’ responses on the PCI bus will automatically be retried by the PCI master interface
until the transfer is either finished or aborted. 

For burst accesses, only linear-incremental mode is supported and is directly translated from the
AMBA commands. 

58.4.4 PCI byte enable generation

The byte-enables on the PCI bus are translated from the AHB HSIZE control signal and the AHB
address according to the table below. Note that only word, half-word and byte values of HSIZE are
valid. 

58.5 PCI host operation

The GRPCI core provides a host input signal that must be asserted (active low) for PCI host operation.
If this signal is asserted the bus master interface is automatically enabled (BM bit set in PCI configu-
ration space command register).

An asserted PCI host signal also makes the PCI target respond to configuration cycles when no
IDSEL signals are asserted (none of AD[31:11] are asserted). This is done for the master to be able to
configure its own target. 

For designs intended to be hosts or peripherals only the pci_host signal can be tied low or high inter-
nally in the design. For multi-purpose designs it should be connected to a pin. The PCI Industrial
Computers Manufacturers Group (PICMG) cPCI specification uses pin C2 on connector P2 for this
purpose. The pin should have pull-up resistors since peripheral slots leave it unconnected.

It is possible to enable the GRPCI core to drive the PCI reset signal if in the host slot. Normally the
PCI reset is used as an input but if the hostrst generic is enabled it will drive the reset signal when
located in the host slot. The GRPCI reset output signal should then be connected to an open drain pad
with a pull up on the output.

PCI interrupts are supported as inputs for PCI hosts. See section 58.6.

58.6 Interrupt support

When acting as a PCI host the GRPCI core can take the four PCI interrupt lines as inputs and use
them to forward an interrupt to the interrupt controller. 

If any of the PCI interrupts lines specified through the irqmask generic is asserted the PCI core will
drive the internal irq line specified through the irq generic. E.g. if irqmask is 1 only PCI int A will be
used but if it is 3 PCI int A and B will be used.

There is no built in support in the PCI core to generate PCI interrupts. These should be generated by
the respective IP core and drive an open-drain pad connected to the correct PCI interrupt line. Note
that all single function PCI devices should drive PCI interrupt A.

Table 645.Byte enable generation (in PCI little endian configuration)

HSIZE Address[1:0] CBE[3:0]

00 (8 bit) 00 1110

00 (8 bit) 01 1101

00 (8 bit) 10 1011

00 (8 bit) 11 0111

01 (16 bit) 00 1100

01 (16 bit) 10 0011

10 (32 bit) 00 0000
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58.7 Byte twisting

To maintain the correct byte order on transfers going from AHB to PCI and vice versa the GRPCI
core defaults to byte twisting on all such accesses. This means that all the byte lanes are swapped as
shown in the figure below.

The byte twisting can be disabled by writing 0 to bit 0 in the PAGE0 register. This should be done if
the AHB bus is little endian or if no twisting is wanted for another reason. It it also possible to config-
ure the PCI bus to be big endian through the endian generic (0, meaning little endian, is default). 

NOTE: Only accesses that go from AHB to PCI and vice versa are twisted, i.e not accesses to config-
uration space or the PAGE0 register as they are little endian.

58.7.1 Byte twisting for hosts

Byte twisting should be enabled for big endian PCI hosts. Otherwise DMA transfers from PCI periph-
erals into the host memory will not have the correct byte ordering.

When the byte twisting is enabled byte sized PIO accesses work as expected but 16 bit and larger PIO
accesses need to be twisted before being sent to the PCI core. I.e. if the value 0x12345678 is supposed
to be written to a 32-bit register in a PCI peripheral the CPU will need to twist this into 0x78563412
before doing the access. Then the hardware will twist this value back and the correct 32-bit value of
0x12345678 is presented on the PCI bus. Non 8-bit descriptors must also be twisted.

58.7.2 Byte twisting for peripherals

Byte twisting must be enabled if the GRPCI core is used in a peripheral that does DMA to a little
endian (or byte twisting big endian) PCI host and the correct byte order is of importance. In this case
the data will keep the original byte order but non 8-bit descriptors and PIO accesses must be pre-
twisted in software.

Figure 221. GRPCI byte twisting
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If the host is a LEON3 with GRPCI and all peripherals are big endian systems then the PCI bus could
be defined big endian and byte twisting disabled for all devices (including the host).

58.8 FIFO operation

Asynchronous FIFOs of configurable size are used for all burst transactions. They are implemented
with two port RAM blocks as described in 58.13.2. The PCI master and target interface have two
FIFOs each, one used for read transactions and one for write transactions. Each FIFO is divided into
two ping pong buffers. How the FIFOs operate during the possible transactions are described below.

58.8.1 PCI target write

When the GRPCI core is the target of a PCI write burst the PCI target begins to fill the write FIFO.
After the first ping pong buffer has been filled by the PCI target it continues with filling the second
buffer and the AHB master initiates an AHB burst and reads the first ping pong buffer. When the PCI
target has finished filling the second buffer it is also emptied by the AHB master. If the PCI write burst
is larger than the size of the FIFO the PCI target terminates the PCI transaction with a disconnect with
data.

The PCI target does not accept any new transactions until the AHB master has finished emptying the
complete FIFO. Any incoming access will receive a retry response.

58.8.2 PCI target read

How PCI target reads are treated depend on the PCI command used. If prefetching is disabled (read-
pref generic = 0) then for Memory Read (0x6) commands data is fetched one word at a time. After
each word the target terminates using disconnect with data. If prefetching is enabled one cache line
(as defined by the cache line register) is prefetched. For bursts the Memory Read Multiple (0xC) com-
mand should be used. In this case the PCI target requests the AHB master to start filling the FIFO. The
PCI targets gives retry responses until the AHB master has filled the first buffer. When the first buffer
is full the PCI target responds with the data while the AHB master fills the second buffer. When the
PCI target has read out the complete FIFO it terminates the read transaction with disconnect with
data. 

If the PCI target is forced to insert more than 8 wait states while waiting for the AHB master to to fill
the second buffer it will generate a disconnect without data response.

During the period before the target responds it will give retry responses to masters trying to read an
address different from the address of the already initiated read transaction.

58.8.3 PCI master write

A PCI write transaction is initiated by an access to the AHB slave of GRPCI. The AHB slave interface
fills the FIFO with data. When the first buffer is full the PCI master begins the PCI write transaction
while the AHB slave continues filling the second buffer. Accesses to the AHB slave that occurs when
the PCI master is emptying the FIFO receives retry responses.

58.8.4 PCI master read

When the AHB slave receives a read access it requests the PCI master to issue a read transaction on
the PCI bus and to fill the FIFO with the result. After the first buffer has been filled the AHB slave
reads the buffer and begins to empty it to the AHB bus. When the second buffer is full it is also emp-
tied by the AHB slave. While the AHB slave is waiting for the PCI master to fill the FIFO it gives
retry responses.
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58.9 Registers

The core is programmed through registers mapped into APB address space. 

[31:X]: Memory Space Map register - Defines mapping between PCI Master’s AHB memory address space and PCI address
space when performing PCI memory cycles. Value of this field is used as the MSB of the PCI address. LSB bits are
taken from the AHB address (X = 32 - number of bits not masked with the hmask generic).

[X:27]: Reserved.
[26:23]: Bus number (BUSNO) - Which bus to access when generating configuration cycles.
[22:15]: Latency Timer (LTIMER) - Value of Latency Timer Register in Configuration Space Header. (Read-only)
[14]: Write Error (WE) - Target Write Error. Write access to units target interface resulted in error. (Read-only)
[13]: System Host (SH) - Set if the unit is system host. (Read-only)
[12]: Bus Master (BM) - Value of BM field in Command register in Configuration Space Header. (Read-only)
[11]: Memory Space (MS) - Value of MS field in Command register in Configuration Space Header. (Read-only)
[10]: Write Burst Command (WB) - Defines PCI command used for PCI write bursts.

‘0’ - ‘Memory Write’
‘1’ - ‘Memory Write and Invalidate’

[9]: Read Burst Command (RB) - Defines PCI command used for PCI read bursts.
‘0’ - Memory Read Multiple’
‘1’ - Memory Read Line’

[8]: Configuration Timeout (CTO) - Received timeout when performing Configuration cycle. (Read-only)
[7:0]: Cache Line Size (CLS) - Value of Cache Line Size register in Configuration Space Header. (Read-only)

[31:16]: I/O Map (IOMAP) - Most significant bits of PCI address when performing PCI I/O cycle. Concatenated with low
bits of AHB address to from PCI address.

[15:0]: Reserved.

Table 646.AMBA registers

Address offset Register Note

0x00 Configuration/Status register -

0x04 BAR0 register Read-only access from AMBA, write/read access from PCI 
(see section 58.3.4).

0x08 PAGE0 register Read-only access from AMBA, write/read access from PCI 
(see section 58.3.5).

0x0C BAR1 register Read-only access from AMBA, write/read access from PCI 
(see section 58.3.4).

0x10 PAGE1 register -

0x14 IO Map register -

0x18 Status & Command register (PCI 
Configuration Space Header)

Read-only access from AMBA, write/read access from PCI 
(see section 58.3.4).

Figure 222. Configuration/Status register
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Figure 223. I/O Map register
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58.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x014. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

58.11 Scan support

When the SCANEN generic is 1, scan support is enabled. All asynchronous reset are then connected
to AHBMI.testrst when AHBMI.testen = ‘1’. Note that the PCI clock is not multiplexed, and should
be driven with the same clock as the AHB clk when AHBMI.testen = ‘1’.
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58.12 Configuration options

Table 647 shows the configuration options of the core (VHDL generics).

Table 647.Configuration options

Generic Function Allowed range Default

memtech The memory technology used for the FIFO instantiation - 0

mstndx The AMBA master index for the target backend AHB master 
interface.

0 - NAHBMST-1 0

dmamst The AMBA master index for the DMA controller, if present. 
This value is used by the PCI core to detect when the DMA con-
troller accesses the AHB slave interface.

0 - NAHBMS NAHBMST 
(= disabled)

readpref Prefetch data for the ‘memory read’ command. If set, the target 
prefetches a cache line, otherwise the target will give a single 
word response.

0 -1 0

abits Least significant implemented bit of BAR0 and PAGE0 registers. 
Defines PCI address space size.

16 - 28 21 

dmaabits Least significant implemented bit of BAR1 and PAGE1 registers. 
Defines PCI address space size.

16 - 28 26

fifodepth Size of each FIFO is 2^fifodepth 32-bit words. >= 3 5

device_id PCI device ID number 0 -16#FFE# 0

vendor_id PCI vendor ID number 0 - 16#FFF# 0

master Disables/enables PCI master interface. 0 - 1 0

slvndx The AHB index of the master backend AHB slave interface. 0 - NAHBSLV-1 0

apbndx The AMBA APB index for the configuration/status APB inter-
face

0 - NAPBMAX-
1

0

paddr APB interface base address 0 - 16#FFF# 0

pmask APB interface address mask 0 - 16#FFF# 16#FFF#

haddr AHB slave base address 0 - 16#FFF# 16#F00#

hmask AHB address mask. 128 MB - 2 GB. 16#800# - 
16#F80#

16#F00#

ioaddr AHB I/O area base address 0 - 16#FFF# 0

irq IRQ line driven by the PCI core 0 - NAHBIRQ-1 0

irqmask Specifies which PCI interrupt lines that can cause an interrupt 0 - F 0

nsync The number of clock registers used by each signal that crosses 
the clock regions.

1 - 2 2

oepol Polarity of pad output enable signals. 0=active low, 1=active 
high

0 - 1 0

endian Endianess of the PCI bus. 0 is little and 1 big. 0 - 1 0

class_code Class code. Defaults to base class 0x0B (processor), sub class 
0x40 (co-processor).

See PCI spec. 16#0B4000#

rev Revision 0 - 16#FF# 0

scanen Enable scan support 0 - 1 0

hostrst Enable driving of pci_rst when host 0 - 1 0



591

58.13 Implementation

58.13.1 Technology mapping

GRPCI has one technology mapping generic, memtech, which controls how the memory cells used
will be implemented. See the GRLIB Users’s Manual for available settings.

58.13.2 RAM usage

The FIFOs in GRPCI are implemented with the syncram_2p (with separate clocks for each port) com-
ponent from the technology mapping library (TECHMAP). The number of FIFOs used depends on
whether the core is configured to be master/target or target only (as selected with the master generic).
The master and target interface both use two 32 bits wide FIFOs. The depth of all FIFOs is the same
and is controlled by the fifodepth generic. 

58.13.3 Area

The GRPCI is portable and can be implemented on most FPGA and ASIC technologies. The table
below shows the approximate area usage.

58.13.4 Timing

In order for the PCI core to function properly in a PCI system it is necessary to meet the PCI timing
constraints. The PCI clock to out should not exceed 11 ns and the setup time must be below 7 ns. If
you experience excessive clock to out make sure that the synthesizer has not removed the output reg-
isters. This can happen with too aggressive pipelining/retiming.

Table 648.RAM usage

Configuration Number of fifodepth x 32 bit RAM blocks

Master/target 4

Target only 2

Table 649.Approximate area requirements

FIFO size VirtexII LUTs StratixII LUTs ASIC gates

8 1500 1200 8000

32 1900 1300 10000
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58.13.5 Pull-ups

For PCI hosts we recommend that the following signals are provided with pull-ups (if these are not
available on the motherboard/rack).

58.14 Signal description

Table 651 shows the interface signals of the core (VHDL ports). 

The PCIO record contains an additional output enable signal VADEN. It is has the same value as aden
at each index but they are all driven from separate registers. A directive is placed on this vector so that
the registers will not be removed during synthesis. This output enable vector can be used instead of
aden if output delay is an issue in the design.

For a system host, the (active low) PCII.host signal should to be connected to the PCI SYSEN signal.
For a device that is not a system host, this signal should have a pull-up connection.

Table 650.PCI host pull-ups

pci_devsel

pci_frame

pci_irdy

pci_lock

pci_perr

pci_serr

pci_stop

pci_trdy

pci_gnt 

pci_par

pci_rst

pci_arb_req(x)

Table 651.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input AMBA system clock -

PCICLK N/A Input PCI clock -

PCII *1 Input PCI input signals -

PCIO *1 Output PCI output signals -

APBI *2 Input APB slave input signals -

APBO *2 Output APB slave output signals -

AHBMI *2 Input AHB master input signals -

AHBMO *2 Output AHB master output signals -

AHBSI *2 Input AHB slave input signals -

AHBSO *2 Output AHB slave output signals -

*1) see PCI specification
*2) see GRLIB IP Library User’s Manual
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58.15 Library dependencies

Table 652 shows libraries used when instantiating the core (VHDL libraries).

58.16 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.stdlib.all;
library techmap;
use techmap.gencomp.all;
library gaisler;
use gaisler.pci.all;

.

.
signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb _none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahb s_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahb m_none);

signal pcii : pci_in_type;
signal pcio : pci_out_type;

begin

pci0 : pci_mtf generic map (memtech => memtech, 
hmstndx => 1, 
fifodepth => log2(CFG_PCIDEPTH), device_id => CFG_P CIDID, vendor_id => CFG_PCIVID,
hslvndx => 4, pindex => 4, paddr => 4, haddr => 16# E00#,
ioaddr => 16#400#, nsync => 2)
port map (rstn, clkm, pciclk, pcii, pcio, apbi, apb o(4), ahbmi,
ahbmo(1), ahbsi, ahbso(4));

pcipads0 : pcipads generic map (padtech => padtech) -- PCI pads
    port map ( pci_rst, pci_gnt, pci_idsel, pci_loc k, pci_ad, pci_cbe,
               pci_frame, pci_irdy, pci_trdy, pci_d evsel, pci_stop, pci_perr,
               pci_par, pci_req, pci_serr, pci_host , pci_66, pcii, pcio );

58.17 Software support

Support for LEON3 systems acting as PCI hosts using the GRPCI is available in Linux 2.6, RTEMS
and VxWorks. In the GRLIB IP library there is a simple Bare C (BCC) example of how configure and
use PCI in GRLIB/software/leon3/pcitest.c. See also 58.18, Appendix A for BCC source code exam-
ples.

The debug monitor GRMON supports PCI bus scanning and configuration for GRPCI hosts.

Table 652.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PCI Signals, component PCI signals and component declaration
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58.18 Appendix A - Software examples

Examples of PCI configurations functions.

pci_read_config_dword - generate a configuration read (type 0) cycle

pci_write_config_dword - generate a configuration write (type 0) cycle

pci_mem_enable - enable the memory space of a device

pci_master_enable - enable bus master for a device

/* Upper half of IO area */
#define PCI_CONF 0xfff10000

typedef struct {
volatile unsigned int cfg_stat;
volatile unsigned int bar0;
volatile unsigned int page0;
volatile unsigned int bar1;
volatile unsigned int page1;
volatile unsigned int iomap;
volatile unsigned int stat_cmd;
} LEON3_GRPCI_Regs_Map;

int
pci_read_config_dword(unsigned char bus, unsigned char slot, unsigned ch ar function, unsigned 
char offset, unsigned int *val) {

    volatile unsigned int *pci_conf;

    if (offset & 3) return -1;
        
    if (slot >= 21) {
        *val = 0xffffffff;
        return 0;
    }

    pci_conf = PCI_CONF + ((slot<<11) | (function<< 8) | offset);

    *val =  *pci_conf;

    if (pcic->cfg_stat & 0x100) {
        *val = 0xffffffff;
    }

    return 0;
}

int
pci_write_config_dword(unsigned char bus, unsigned char slot, unsigned ch ar function, 
unsigned char offset, unsigned int val) {

    volatile unsigned int *pci_conf;

    if (offset & 3) return -1;

    pci_conf = PCI_CONF + ((slot<<11) | (function<< 8) | (offset & ~3));

    *pci_conf = val;

    return 0;
}

void pci_mem_enable(unsigned char bus, unsigned char slot, unsigned ch ar function) {
    unsigned int data;

    pci_read_config_dword(0, slot, function, 0x04, &data);
    pci_write_config_dword(0, slot, function, 0x04,  data | 0x2);  
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}

void pci_master_enable(unsigned char bus, unsigned char slot, unsigned ch ar function) {
    unsigned int data;

    pci_read_config_dword(0, slot, function, 0x04, &data);
    pci_write_config_dword(0, slot, function, 0x04,  data | 0x4);  

}

58.19 Appendix B - Troubleshooting

58.19.1 GRPCI does not operate correctly. 

Make sure that the PCI timing constraints are met (see 58.13.4) and that all necessary pull-ups are
available. The generic nsync should be set to 2 for reliable operation.

58.19.2 It is impossible to meet the PCI clock to out constraint due to too many levels of logic.

The PCI output registers have been removed. This can happen when the tools use pipelining and
retiming to aggressively.

58.19.3 I write 0x12345678 but get 0x78563412, what is the matter?

Please read about byte twisting in section 58.7. 

58.19.4 The PCI target responds by asserting stop when I try to read data.

The PCI target gives a ‘retry’ response (stop but not trdy asserted on initial data phase). This is normal
since the PCI target needs to request the data from the AHB master before it can deliver it on the PCI
bus.

If a Memory Read Multiple command is issued the PCI target will give retry responses until half the
FIFO has been prefetched. Thus the initial latency is dependant on the FIFO size and the PCI com-
mand. See section 58.8.

58.19.5 Configuration space accesses do not work.

In order to initiate any access the device must have the Bus Master bit set in the PCI configuration
space command register. This bit is automatically set if the GRPCI host input signal is asserted (low).
See section 58.5 (PCI host operation).
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59 PCIDMA - DMA Controller for the GRPCI interface

59.1 Introduction

The DMA controller is an add-on interface to the GRPCI interface. This controller perform bursts to
or from PCI bus using the master interface of GR PCI Master/target unit. 

Figure 1 below illustrates how the DMA controller is attached between the AHB bus and the PCI
master interface.

59.2 Operation

The DMA controller is set up by defining the location of memory areas between which the DMA will
take place in both PCI and AHB address space as well as direction, length and type of the transfer.
Only 32-bit word transfer are supported.

The DMA transfer is automatically aborted when any kind of error is detected during a transfer. The
DMA controller does not detect deadlocks in its communication channels. If the system concludes
that a deadlock has occurred, it can manually abort the DMA transfer. It is allowed to perform burst
over a 1 Kbyte boundary of the AHB bus. When this happens, an AHB idle cycle will be automati-
cally inserted to break up the burst over the boundary.

When the DMA is not active the AHB slave interface of PCI Master/Target unit will be directly con-
nected to AMBA AHB bus.

Figure 224.  DMA Controller unit
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59.3 Registers

The core is programmed through registers mapped into APB address space. 

[31:8]: Reserved.
[7:4]: Transfer Type (TTYPE) - Perform either PCI Memory or I/O cycles. “1000” - memory cycles, “0100” - I/O cycles.

This value drives directly HMBSEL signals on PCI Master/Targets units AHB Slave interface.
[3]: Error (ERR) - Last transfer was abnormally terminated. If set by the DMA Controller this bit will remain zero until

cleared by writing ‘1’ to it.
[2]: Ready (RDY) - Current transfer is completed. When set by the DMA Controller this bit will remain zero until

cleared by writing ‘1’ to it.
[1]: Transfer Direction (TD) - ‘1’ - write to PCI, ‘0’ - read form PCI.
[0]: Start (ST) - Start DMA transfer. Writing ‘1’ will start the DMA transfer. All other registers have to be set up before

setting this bit. Set by the PCI Master interface when its transaction is terminated with Target-Abort. Writing ‘1’

[31:0]: AMAB Target Address (ATA) - AHB start address for the data on AMBA bus. In case of error, it indicated failing
address.

[31:0]: PCI Target Address (PTA) - PCI start address on PCI bus. This is a complete 32-bit PCI address and is not further
mapped by the PCI Master/Target unit. In case of error, it indicated failing address.

[blentgh-1:0]: DMA Transfer Length (LEN) - Number of 32-bit words to be transferred.

Table 653.DMA Controller registers

Address offset Register

0x00 Command/status register

0x04 AMBA Target Address

0x08 PCI Target Address

0x0C Burst length

Figure 225.  Status/Command register
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59.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x016. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

59.5 Configuration options

Table 654 shows the configuration options of the core (VHDL generics).

59.6 Signal description

Table 655 shows the interface signals of the core (VHDL ports). 

59.7 Library dependencies

Table 656 shows libraries used when instantiating the core (VHDL libraries).

Table 654.Configuration options

Generic Function Allowed range Default

mstndx DMA Controllers AHB Master interface index 0 - NAHBMST-1 0

apbndx The AMBA APB index for the configuration/status APB 
interface

0 - NAPBMAX-1 0

apbaddr APB interface base address 0 - 16#FFF# 0

apbmask APB interface address mask 0 - 16#FFF# 16#FFF#

blength Number of bits in the Burst length register - 16

Table 655.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input AMBA system clock -

PCICLK N/A Input PCI clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

AHBSI0 * Input AHB slave input signals, main AHB bus -

AHBSO0 * Output AHB slave output signals, main AHB bus -

AHBSI1 * Input AHB slave input signals, connected to PCI Tar-
get/Master unit

-

AHBSO1 * Output AHB slave output signals, connected to PCI Tar-
get/Master unit

-

* see GRLIB IP Library User’s Manual

Table 656.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PCI Component Component declaration
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59.8 Instantiation

This example shows how the core can be instantiated

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.pci.all;
use gaisler.pads.all;

signal pcii : pci_in_type;
signal pcio : pci_out_type;

dma : pcidma generic map (memtech => memtech, dmstn dx => 1, 
  dapbndx => 5, dapbaddr => 5, blength => blength, mstndx => 0,
  fifodepth => log2(fifodepth), device_id => CFG_PC IDID, vendor_id => CFG_PCIVID,
  slvndx => 4, apbndx => 4, apbaddr => 4, haddr => 16#E00#, ioaddr => 16#800#, 
  nsync => 1)
port map (rstn, clkm, pciclk, pcii, pcio, apbo(5), ahbmo(1), 
apbi, apbo(4), ahbmi, ahbmo(0), ahbsi, ahbso(4));

pcipads0 : pcipads generic map (padtech => padtech)
port map ( pci_rst, pci_gnt, pci_idsel, pci_lock, p ci_ad, pci_cbe,
      pci_frame, pci_irdy, pci_trdy, pci_devsel, pc i_stop, pci_perr,
      pci_par, pci_req, pci_serr, pci_host, pci_66,  pcii, pcio );
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60 PCITB_MASTER_SCRIPT - Scriptable PCI testbench master

60.1 Overview

The PCITB_MASTER_SCRIPT IP core provides a simulation model for a PCI master with system
host capabilities. The user specifies the requested PCI commands and check their result in a script file
which has an easy to use syntax. 

Features:

• Support for PCI memory, i/o and configuration cycles

• Easy to use scripting syntax

• Write/read PCI data to/from files

• Flexible burst length (1-65535 words)

• User can specify byte enables for each data phase

60.2 Operation

As soon as the PCI reset is released the PCI master begins to parse the specified script file. It will dis-
play the operations performed in the simulation console. 

The following commands are supported. Comments are supported in script files and such lines must
begin with ‘#’. Note that address and data must be specified in hexadecimal width 8 digits and that
length must be hexadecimal with 4 digits. Each command should be ended with a semicolon. 

60.2.1 wait <cycles>;

The master waits the specified number of clock cycles.

Example: 

wait 5;

60.2.2 comp <file1> <file2>;

Compare file1 to file1 and display the result.

Example: 

comp test1.log test2.log;

60.2.3 stop;

End PCI master operation.

60.2.4 halt;

Halt simulation.

60.2.5 print <string>;

Prints everything between ‘print’ and ‘;’ to the simulation console.

Example:

print PCI testbench print example;

60.2.6 estop <0|1>;

Turn on (1) or off (0) stop on error. If on, the PCI test master will stop the testbench with a failure if
any error is detected.
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Example:

estop 1;

60.2.7 rcfg <addr> <data | *>;

Perform a configuration read cycle from address ‘addr’ and compare to ‘data’. If a ‘*’ is specified
instead of a data word then no checking is done.

Examples: 

rcfg 10000000 12345678;

rcfg 10000000 *;

60.2.8 wcfg <addr> <data.cbe>;

Perform a configuration write cycle with the specified data to address ‘addr’. Specifying the byte
enables is optional.

Examples:

wcfg 10000000 12345678;

wcfg 10000000 12345678.C;

60.2.9 rmem <cmd> <addr> <length> <data | filename | *>;

Perform a PCI read transaction using command ‘cmd’ from address ‘addr’ and compare to the speci-
fied data. If a ‘*’ is specified then no checking is done. If a filename is specified then the read data is
stored in that file. Note that data must be specfied between braces. If byte enables are specified for a
word then only the enabled bytes will be compared.

Examples: 

# Burst read 4 words and compare against specified data

rmem C 10000000 0004 {

12345678

87654321

AA55AA55

11223344

};

# Read a single word and compare using CBE=3

rmem 6 10000000 0001 {

12345678.3

};

# Read single word and ignore result

rmem 6 10000000 0001 *;

# Burst read 64 words and store in file read.log

rmem C 10000000 0040 read.log;

60.2.10 wmem <cmd> <addr> <length> <data | filename>;

Perform a PCI write transaction using command ‘cmd’ to address ‘addr’. Note that data must be
specfied between braces. If a filename is specified then the data is read from that file. 



602

Examples: 

# Burst write 4 words

wmem 7 10000000 0004 {

12345678

87654321

AA55AA55

11223344

};

# Write a single word using CBE=3

wmem 7 10000000 0001 {

12345678.3

};

# Write burst 64 words from file write.txt (write.t xt should have 

# one word per line)

wmem 7 10000000 0040 write.txt;

60.2.11 Example script file

#########################
# PCI TEST SCRIPT
#########################

# Wait 10 clock cycles
wait 10;

# Read vendor/device id and compare to 0xBACCFEED ( of device with idsel <= ad31)
rcfg 80000000 BACCFEED;

# Enable memory space
wcfg 80000004 00000002;

# Set BAR0 to 0x10000000
wcfg 80000010 10000000;

# Set BAR1 to 0x20000000
wcfg 80000014 20000000;

# Write single word to PAGE0 (BAR0 + 0x8000). 
# BAR0 -> APB, byte twisting enabled
wmem 7 10008000 0001 {
80000001
};

# Read single word from BAR0 and compare to 0x80000 000
rmem 6 10008000 0001 {
80000001
};

# Set GRPCI PAGE1 to 0x40000000 (RAM) through BAR0 (BAR0 + 0x410)
wmem 7 10000410 0001 {
00000040.0 
};

# Read back PAGE1 and  compare 
rmem 6 10000410 0001 {
00000040
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};

# Burst write 8 words to BAR1 (memory)
wmem 7 20000000 0008 {
11223344.3 
22334411.0 
33441122.0
44112233.0 
12345678.0
87654321.0
a5a5a5a5.0
00001111.c 
};

# Burst read 8 words and check against specified da ta
rmem C 20000000 0008 {
11223344.3
22334411
33441122
44112233 
12345678
87654321
a5a5a5a5
00001111.c
};

# Burst write 64 words from file wf1.txt
wmem 7 20000000 0040 wf1.txt;

# Burst read 64 words and store result in rf1.txt
rmem C 20000000 0040 rf1.txt;

# Compare wf1.txt with rf1.txt
comp wf1.txt rf1.txt;

# End of Simulation
stop;

60.3 Configuration options

Table 657 shows the configuration options of the core (VHDL generics).

60.4 Signal descriptions

Table 658 shows the interface signals of the core (VHDL ports).

Table 657.Configuration options

Generic Function Allowed range Default

slot PCI slot used by master. Determines which req/gnt pair to use 0-20 0

tval Output delay for signals that are driven by this unit 0-7 ns 7 ns

dbglevel Debug level. Higher value means more debug information 0-2 1

maxburst Maximum burst length supported 1-65535 1024

filename PCI command script file - pci.cmd

Table 658.Signals descriptions

Signal name Field Type Function Active

PCIIN * Input PCI input signals -

PCIOUT * Output PCI output signals -

*1) PCI_TYPE (declared in pcitb.vhd). See PCI specification for more info on PCI signals
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60.5 Library dependencies

Table 659 shows the libraries used when instantiating the core (VHDL libraries).

Table 659.Library dependencies

Library Package Imported unit(s) Description

GAISLER PCITB Signals, component PCI TB signals and component declaration
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61 PCITARGET - Simple 32-bit PCI target with AHB interface

61.1 Overview

This core implements PCI interface with a simple target-only interface. The interface is developed
primarily to support DSU communication over the PCI bus. Focus has been put on small area and
robust operation, rather than performance. The interface has no FIFOs, limiting the transfer rate to
about 5 Mbyte/s. This is however fully sufficient to allow fast download and debugging using the
DSU.

61.2 Registers

The core implements one PCI memory BAR.

The interface consist of one PCI memory BAR occupying (2 âbits) bytes (default: 2 Mbyte) of the
PCI address space, and an AHB address register. Any access to the lower half of the address space
(def.: 0 - 0xFFFFF) will be forwarded to the internal AHB bus. The AHB address will be formed by
concatenating the AHB address field of AHB address register with the LSB bits of the PCI address.
An access to the upper half of the address space (default: 1 Mbyte on 0x100000 - 0x1FFFFF) of the
BAR will read or write the AHB address register.

61.3 Vendor and device identifier

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x012. For description of
vendor and device identifies see GRLIB IP Library User’s Manual.

Figure 229.  Target-only PCI interface

AMBA AHB

AHB Master AHB
Interface

PCI
Target

PCI Bus

Figure 230.  AHB address register (BAR0, 0x100000)
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61.4 Configuration options

Table 660 shows the configuration options of the core (VHDL generics).

61.5 Signal descriptions

Table 661 shows the interface signals of the core (VHDL ports).

The PCIO record contains an additional output enable signal vaden. It is has the same value as aden at
each index but they are all driven from separate registers. A directive is placed on this vector so that
the registers will not be removed during synthesis. This output enable vector can be used instead of
aden if output delay is an issue in the design.

61.6 Library dependencies

Table 662 shows the libraries used when instantiating the core (VHDL libraries).

Table 660.Configuration options

Generic Function Allowed range Default

hindex Selects which AHB select signal (HSEL) will be used to access 
the PCI target core

0 to NAHBMAX-1 0

abits Number of bits implemented for PCI memory BAR 0 to 31 21

device_id PCI device id 0 to 65535 0

vendor_id PCI vendor id 0 to 65535 0

nsync One or two synchronization registers between clock regions 1 - 2 1

oepol Polarity of output enable signals. 0=active low, 1=active high 0 - 1 0

Table 661.Signals descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input AHB system clock -

PCICLK N/A Input PCI clock -

PCII *1 Input PCI input signals -

PCIO *1 Output PCI output signals -

APBI *2 Input APB slave input signals -

APBO *2 Output APB slave output signals -

*1) see PCI specification
*2) see GRLIB IP Library User’s Manual

Table 662.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PCI Signals, component PCI signals and component declaration
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62 PHY - Ethernet PHY simulation model

62.1 Overview

The PHY is a simulation model of an IEEE 802.3 compliant Ethernet PHY. It provides a complete MII
and GMII interface with the basic, extended status and extended capability registers accessible
through the management interface (MDIO). Not all of the functionality is implemented and many of
the register bits are therefore only writable and readable but do not have any effect. Currently only the
loopback is supported.

62.2 Operation

The PHY simulation model was designed to make it possible to perform simple simulations on the
GRETH and GRETH_GBIT cores in GRLIB. It provides the complete set of basic, extended capabil-
ity and extended status registers through the MII management interface (MDIO) and a loopback mode
for data transfers. Figure 1 shows a block diagram of a typical connection.

The PHY model provides the complete GMII and MII interface as defined by the IEEE 802.3 stan-
dard. The model can be used in any of the following modes: 10 Mbit half- or full duplex, 100 Mbit
half- or full-duplex and 1000 Mbit half- or full-duplex. This support refers only to the configuration
settings available through the MDIO registers. Since the datapath implementation is loopback no col-
lisions will ever be seen on the network and operation will essentially be full-duplex all the time. In
loopback mode, rx_clk and tx_clk are identical in both frequency and phase and are driven by the
PHY when not in gigabit mode. In gigabit mode the gtx_clk input is used as the transmitter clock and
it also drives rx_clk. 

When not configured to loopback mode the PHY just sits idle and ignores transmitted packet and does
not insert any activity on the receive interface. Clocks are still generated but in this case rx_clk and
tx_clk does have the same frequency but not the same phase when not in gigabit mode. 

A simple auto-negotiation function is provided and the supported and advertised modes are set
through vhdl generics. The generic values will be directly reflected in the reset values and read-only
values of all corresponding MII management registers.

PHY

MAC
MAC

GMII/MII Interface

Figure 231.  Block diagram of the PHY simulation model connected to a MAC.

Loopback
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62.3 Configuration options

Table 663 shows the configuration options of the model (VHDL generics).

62.4 Signal descriptions

Table 664 shows the interface signals of the model (VHDL ports).

Table 663.Configuration options

Generic Function Allowed range Default

address Address of the PHY on the MII management interface 0 - 31 0

extended_regs Include extended register capability 0 - 1 1

aneg Enable auto-negotiation functionality 0 - 1 1

base100_t4 Enable support for 100Base-T4 0 - 1 0

base100_x_fd Enable support for 100Base-X full-duplex 0 - 1 1

base100_x_hd Enable support for 100Base-X half-duplex 0 - 1 1

fd_10 Enable support for 10Base-T full-duplex 0 - 1 1

hd_10 Enable support for 10Base-T half-duplex 0 - 1 1

base100_t2_fd Enable support for 100Base-T2 full-duplex 0 - 1 1

base100_t2_hd Enable support for 100Base-T2 half-duplex 0 - 1 1

base1000_x_fd Enable support for 1000Base-X full-duplex 0 - 1 0

base1000_x_hd Enable support for 1000Base-X half-duplex 0 - 1 0

base1000_t_fd Enable support for 1000Base-T full-duplex 0 - 1 1

base1000_t_hd Enable support for 1000Base-T half-duplex 0 - 1 1

Table 664.Signal descriptions

Signal name Field Type Function Active

RSTN - Input Reset Low

MDIO - Input/
Output

Data signal for the management interface (Cur-
rently not used)

-

TX_CLK - Output Transmitter clock -

RX_CLK - Output Receiver clock -

RXD - Output Receiver data -

RX_DV - Output Receiver data valid High

RX_ER - Output Receiver error High

RX_COL - Output Collision High

RX_CRS - Output Carrier sense High

TXD - Input Transmitter data -

TX_EN - Input Transmitter enable High

TX_ER - Input Transmitter error High

MDC - Input Management interface clock (Currently not 
used)

-

GTX_CLK - Input Gigabit transmitter clock -

see the IEEE 802.3 standard for a description of how the signals are used.
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62.5 Library dependencies

Table 665 shows the libraries used when instantiating the model (VHDL libraries).

62.6 Instantiation

This example shows how the model can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library gaisler;
use gaisler.sim.all;

entity phy_ex is
  port (
rst : std_ulogic;
clk : std_ulogic;
    );
end;

architecture rtl of phy_ex is

  -- Signals

 signal etx_clk : std_logic;
 signal gtx_clk : std_logic;

signal erx_clk : std_logic;
signal erxd : std_logic_vector(7 downto 0);
signal erx_dv : std_logic;
signal erx_er : std_logic;
signal erx_col : std_logic;
signal erx_crs : std_logic;
signal etxd : std_logic_vector(7 downto 0);
signal etx_en : std_logic;
signal etx_er : std_logic;
signal emdc : std_logic;

  
begin
  
  -- Other components are instantiated here
  ...

  -- PHY model
phy0 : phy

  generic map (address => 1)
  port map(resetn => rst, mdio => open, tx_clk => e tx_clk, rx_clk => erx_clk, rxd => erxd,    
  rx_dv => erx_dv, rx_er => erx_er,

rx_col => erx_col, rx_crs => erx_crs, txd => etxd, tx_en => etx_en,
tx_er => etx_er, mdc => emdc, gtx_clk => gtx_clk);

end;

Table 665.Library dependencies

Library Package Imported unit(s) Description

GAISLER SIM Component Component declaration
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63 REGFILE_3P 3-port RAM generator (2 read, 1 write)

63.1 Overview

The 3-port register file has two read ports and one write port. Each port has a separate address and
data bus. All inputs are latched on the rising edge of clk. The read data appears on dataout directly
after the clk rising edge. Note: on most technologies, the register file is implemented with two 2-port
RAMs with combined write ports. Address width, data width and target technology is parametrizable
through generics. 

Write-through is supported if the function syncram_2p_write_through(tech) returns 1 for the target
technology.

63.2 Configuration options 

Table 666 shows the configuration options of the core (VHDL generics).

Table 667 shows the supported technologies for the core.

Table 666.Configuration options

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table 667 -

dbits Data width see table 667l -

wrfst Write-first (write-through). Only applicable to inferred technol-
ogy

0 - 1 0

numregs Not used

Table 667.Supported technologies

Tech name Technology RAM cell abit range dbit range

axcel Actel AX/RTAX RAM64K36 2 - 12 unlimited

altera All Altera devices altsyncram unlimited unlimited

ihp25 IHP 0.25 flip-flops unlimited unlimited

inferred Behavioural description synthesis tool dependent

rhumc Rad-hard UMC 0.18  flip-flops unlimited unlimited

virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited

virtex2 Xilinx Virtex2, Spartan3, Virtex4 RAMB16_Sn 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9 2 - 12 unlimited

lattice Lattice XP/EC/ECP dp8ka 2 - 13 unlimited

memvirage Virage ASIC RAM hdss2_64x32cm4sw0

hdss2_128x32cm4sw0

hdss2_256x32cm4sw0

hdss2_512x32cm4sw0

6 - 9 32

eclipse Aeroflex/Quicklogic FPGA RAM128x18_25um
RAM256X9_25um
RAM512X4_25um
RAM1024X2_25um

2 - 10 unlimited

easic90 eASIC 90 nm Nextreme eram 2 - 12 unlimited
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63.3 Signal descriptions

Table 668 shows the interface signals of the core (VHDL ports).

63.4 Library dependencies

Table 669 shows libraries used when instantiating the core (VHDL libraries).

63.5 Component declaration

The core has the following component declaration.

library techmap;
use techmap.gencomp.all;

component regfile_3p
  generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8;
           wrfst : integer := 0; numregs : integer := 64);
  port (
    wclk   : in  std_ulogic;
    waddr  : in  std_logic_vector((abits -1) downto  0);
    wdata  : in  std_logic_vector((dbits -1) downto  0);
    we     : in  std_ulogic;
    rclk   : in  std_ulogic;
    raddr1 : in  std_logic_vector((abits -1) downto  0);
    re1    : in  std_ulogic;
    rdata1 : out std_logic_vector((dbits -1) downto  0);
    raddr2 : in  std_logic_vector((abits -1) downto  0);
    re2    : in  std_ulogic;
    rdata2 : out std_logic_vector((dbits -1) downto  0)
  );
  end component;

Table 668.Signal descriptions

Signal name Field Type Function Active

WCLK N/A Input Write port clock

WADDR N/A Input Write address

WDATA N/A Input Write data

WE N/A Input Write enable High

RCLK N/A Input Read ports clock -

RADDR1 N/A Input Read port1 address -

RE1 N/A Input Read port1 enable High

RDATA1 N/A Output Read port1 data -

RADDR2 N/A Input Read port2 address -

RE2 N/A Input Read port2 enable High

RDATA2 N/A Output Read port2 data -

Table 669.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Constants Technology contants
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64 RSTGEN - Reset generation

64.1 Overview

The RSTGEN reset generator implements input reset signal synchronization with glitch filtering and
generates the internal reset signal. The input reset signal can be asynchronous.

64.2 Operation

The reset generator latches the value of the clock lock signal on each rising edge of the clock. The
lock signal serves as input to a five-bit shift register. The three most significant bits of this shift regis-
ter are clocked into the reset output register. The reset signal to the system is high when both the reset
output register and the reset input signal are high. Since the output register depends on the system
clock the active low reset output from the core will go high synchronously to the system clock. The
raw reset output does not depend on the system clock or clock lock signal and is polarity adjusted to
be active low.

The VHDL generic syncrst determines how the core resets its shift register and the reset output regis-
ter. When syncrst is set to 1 the core’s shift register will have an synchronous reset and no reset signal
will be connected to the output reset register, see figure 232. Note that the core’s reset output signal
will always go low when the input reset signal is activated. 

When syncrst is 0 the shift register will be reset asynchronously together with the reset output register.
Figure 233 shows the reset generator when scan test support is disabled. The shift register reset will be
connected to the core’s normal reset input and the test reset input will be unused. When scan test sup-
port is enabled, the core’s test reset input can be connected to the reset input on both registers. The
reset signal to use for the registers is selected with the test enable input, see figure 234.

Figure 232.  Reset generator with VHDL generic syncrst set to 1
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Figure 233.  Reset generator with VHDL generic syncrst set to 0 and scan test disabled
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Figure 234.  Reset generator with VHDL generic syncrst set to 0 and scan test enabled
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64.3 Configuration options

Table 670 shows the configuration options of the core (VHDL generics).

64.4 Signal descriptions

Table 671 shows the interface signals of the core (VHDL ports).

64.5 Library dependencies

Table 672 shows the libraries used when instantiating the core (VHDL libraries).

64.6 Instantiation

This example shows how the core can be instantiated together with the GRLIB clock generator.

library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
library gaisler;
use gaisler.misc.all;

entity rstgen_ex is
  port (
    resetn  : in  std_ulogic;
    clk     : in  std_ulogic; -- 50 MHz main clock
    pllref  : in  std_ulogic;

Table 670.Configuration options

Generic name Function Allowed range Default

acthigh Set to 1 if reset input is active high. The core outputs an 
active low reset.

0

syncrst When this generic is set to 1 the reset signal will use a 
synchronous reset to reset the filter registers. When this 
generic is set to 1 the TESTRST and TESTEN inputs 
will not be used.

0

scanen Setting this generic to 1 enables scan test support. This 
connects the TESTRST input via a multiplexer so that 
the TESTRST and TESTEN signals can be used to asyn-
chronously reset the core’s registers. This also requires 
that the generic syncrst is set to 1.

0

Table 671.Signal descriptions

Signal name Field Type Function Active

RSTIN N/A Input Reset -

CLK N/A Input Clock -

CLKLOCK N/A Input Clock lock High

RSTOUT N/A Output Filtered reset Low

RSTOUTRAW N/A Output Raw reset Low

TESTRST N/A Input Test reset -

TESTEN N/A Input Test enable High

Table 672.Library dependencies

Library Package Imported unit(s) Description

GAISLER MISC Component Component definition
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    testrst : in std_ulogic;
    testen  : in std_ulogic
  );
end;

architecture example of rstgen_ex is

signal lclk, clkm, rstn, rstraw, sdclkl, clk50: std _ulogic;
signal cgi   : clkgen_in_type;
signal cgo   : clkgen_out_type;

begin
  cgi.pllctrl <= "00"; cgi.pllrst <= rstraw;
  pllref_pad : clkpad generic map (tech => padtech)  port map (pllref, cgi.pllref); 
  clk_pad : clkpad generic map (tech => padtech) po rt map (clk, lclk); 
  clkgen0 : clkgen  -- clock generator
    generic map (clktech, CFG_CLKMUL, CFG_CLKDIV, C FG_MCTRL_SDEN,
                 CFG_CLK_NOFB, 0, 0, 0, BOARD_FREQ)
    port map (lclk, lclk, clkm, open, open, sdclkl,  open, cgi, cgo, open, clk50);
  sdclk_pad : outpad generic map (tech => padtech, slew => 1, strength => 24) 
    port map (sdclk, sdclkl);

  resetn_pad : inpad generic map (tech => padtech) port map (resetn, rst); 
  
  rst0 : rstgen  -- reset generator
    generic map (acthigh => 0, syncrst => 0, scanen  => 1)
    port map (rst, clkm, cgo.clklock, rstn, rstraw,  testrst, testen);
end;
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65 SDCTRL - 32/64-bit PC133 SDRAM Controller

65.1 Overview

The SDRAM controller handles PC133 SDRAM compatible memory devices attached to 32 or 64 bit
wide data bus. The controller acts as a slave on the AHB bus where it occupies configurable amount
of address space for SDRAM access. The SDRAM controller function is programmed by writing to a
configuration register mapped into AHB I/O address space. 

Chip-select decoding is provided for two SDRAM banks.

65.2 Operation

65.2.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 compati-
ble devices. The controller supports 64M, 256M and 512M device with 8 - 12 column-address bits, up
to 13 row-address bits, and 4 banks. The size of each of the two banks can be programmed in binary
steps between 4 Mbyte and 512 Mbyte. The operation of the SDRAM controller is controlled through
the configuration register SDCFG (see section 65.3). SDRAM banks data bus width is configurable
between 32 and 64 bits. When the VHDL generic mobile is set to a value not equal to 0, the controller
supports mobile SDRAM.

65.2.2 Initialization

When the SDRAM controller is enabled, it automatically performs the SDRAM initialization
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simulta-
neously. When mobile SDRAM functionality is enabled the initialization sequence is appended by a
LOAD-EXTMODE-REG command. The controller programs the SDRAM to use page burst on read
and single location access on write. If the pwron VHDL generic is 1, the initialization sequence is also
sent automatically when reset is released. Note that some SDRAM require a stable clock of 100 us
before any commands might be sent. When using on-chip PLL, this might not always be the case and
the pwron VHDL generic should be set to 0 in such cases.

Figure 235.  SDRAM Memory controller conected to AMBA bus and SDRAM
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65.2.3 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies), three
SDRAM parameters can be programmed through memory configuration register 2 (MCFG2): TCAS,
TRP and TRFCD. The value of these field affects the SDRAM timing as described in table 673.

If the TCAS, TRP and TRFC are programmed such that the PC100/133 specifications are fulfilled, the
remaining SDRAM timing parameters will also be met. The table below shows typical settings for
100 and 133 MHz operation and the resulting SDRAM timing (in ns):

When mobile SDRAM support is enabled, one additional timing parameter (TXSR) can be pro-
grammed though the Power-Saving configuration register.

65.2.4 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-REFRESH
command to both SDRAM banks. The period between the commands (in clock periods) is pro-
grammed in the refresh counter reload field in the SDCFG register. Depending on SDRAM type, the
required period is typically 7.8 or 15.6 µs (corresponding to 780 or 1560 clocks at 100 MHz). The
generated refresh period is calculated as (reload value+1)/sysclk. The refresh function is enabled by
setting bit 31 in SDCFG register.

65.2.5 Self Refresh

The self refresh mode can be used to retain data in the SDRAM even when the rest of the system is
powered down. When in the self refresh mode, the SDRAM retains data without external clocking and
refresh are handled internally. The memory array that is refreshed during the self refresh operation is
defined in the extended mode register. These settings can be changed by setting the PASR bits in the
Power-Saving configuration register. The extended mode register is automatically updated when the
PASR bits are changed. The supported “Partial Array Self Refresh” modes are: Full, Half, Quarter,

Table 673.SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

CAS latency, RAS/CAS delay (tCAS, tRCD) TCAS + 2

Precharge to activate (tRP) TRP + 2

Auto-refresh command period (tRFC) TRFC + 3

Activate to precharge (tRAS) TRFC + 1

Activate to Activate (tRC) TRP + TRFC + 4

Table 674.SDRAM example programming

SDRAM settings tCAS tRC tRP tRFC tRAS

100 MHz, CL=2; TRP=0, TCAS=0, TRFC=4 20 80 20 70 50

100 MHz, CL=3; TRP=0, TCAS=1, TRFC=4 30 80 20 70 50

133 MHz, CL=2; TRP=1, TCAS=0, TRFC=6 15 82 22 67 52

133 MHz, CL=3; TRP=1, TCAS=1, TRFC=6 22 82 22 67 52

Table 675.Mobile SDRAM programmable minimum timing parameters

SDRAM timing parameter Minimum timing (clocks)

Exit Self Refresh mode to first valid command (tXSR) tXSR
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Eighth, and Sixteenth array. “Partial Array Self Refresh” is only supported when mobile SDRAM
functionality is enabled. To enable the self refresh mode, set the PMODE bits in the Power-Saving
configuration register to “010” (Self Refresh). The controller will enter self refresh mode after every
memory access (when the controller has been idle for 16 clock cycles), until the PMODE bits are
cleared. When exiting this mode the controller introduce a delay defined by tXSR in the Power-Sav-
ing configuration register and a AUTO REFRESH command before any other memory access is
allowed. The minimum duration of this mode is defined by tRAS. This mode is only available then the
VHDL generic mobile >=1.

65.2.6 Power-Down

When entering the power-down mode all input and output buffers, excluding SDCKE, are deactivated.
All data in the SDRAM is retained during this operation. To enable the power-down mode, set the
PMODE bits in the Power-Saving configuration register to “001” (Power-Down). The controller will
enter power-down mode after every memory access (when the controller has been idle for 16 clock
cycles), until the PMODE bits is cleared. The REFRESH command will still be issued by the control-
ler in this mode. When exiting this mode a delay of one clock cycles are added before issue any com-
mand to the memory. This mode is only available then the VHDL generic mobile >=1.

65.2.7 Deep Power-Down

The deep power-down operating mode is used to achieve maximum power reduction by eliminating
the power of the memory array. Data will not be retained after the device enters deep power-down
mode. To enable the deep power-down mode, set the PMODE bits in the Power-Saving configuration
register to “101” (Deep Power-Down). To exit the deep power-down mode the PMODE bits in the
Power-Saving configuration register must be cleared. The controller will respond with an AMBA
ERROR response to an AMBA access, that will result in a memory access, during Deep Power-Down
mode. This mode is only available then the VHDL generic mobile >=1 and mobile SDRAM function-
ality is enabled.

65.2.8 Temperature-Compensated Self Refresh

The settings for the temperature-compensation of the Self Refresh rate can be controlled by setting
the TCSR bits in the Power-Saving configuration register. The extended mode register is automati-
cally updated when the TCSR bits are changed. Note that some vendors implements a Internal Tem-
perature-Compensated Self Refresh feature, which makes the memory to ignore the TCSR bits. This
functionality is only available then the VHDL generic mobile >=1 and mobile SDRAM functionality
is enabled.

65.2.9 Drive Strength

The drive strength of the output buffers can be controlled by setting the DS bits in the Power-Saving
configuration register. The extended mode register is automatically updated when the DS bits are
changed. The available options are: full, three-quarter, one-half, and one-quarter drive strengths. This
functionality is only available then the VHDL generic mobile >=1 and mobile SDRAM functionality
is enabled.

65.2.10 SDRAM commands

The controller can issue four SDRAM commands by writing to the SDRAM command field in
SDCFG: PRE-CHARGE, AUTO-REFRESH, LOAD-MODE-REG (LMR) and LOAD-EXTMODE-
REG (EMR). If the LMR command is issued, the CAS delay as programmed in SDCFG will be used,
remaining fields are fixed: page read burst, single location write, sequential burst. If the EMR com-
mand is issued, the DS, TCSR and PASR as programmed in Power-Saving configuration register will
be used. The command field will be cleared after a command has been executed. Note that when
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changing the value of the CAS delay, a LOAD-MODE-REGISTER command should be generated at
the same time.

65.2.11 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, followed
by a READ command after the programmed CAS delay. A read burst is performed if a burst access
has been requested on the AHB bus. The read cycle is terminated with a PRE-CHARGE command,
no banks are left open between two accesses. Note that only word bursts are supported by the
SDRAM controller. The AHB bus supports bursts of different sizes such as bytes and half-words but
they cannot be used.

65.2.12 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE commands are
issued after activation. A write burst on the AHB bus will generate a burst of write commands without
idle cycles in-between. As in the read case, only word bursts are supported.

65.2.13 Address bus connection

The SDRAM address bus should be connected to SA[12:0], the bank address to SA[14:13], and the
data bus to SD[31:0] or SD[63:0] if 64-bit data bus is used.

65.2.14 Data bus

The external SDRAM data bus is configurable to either 32 or 64 bits width, using the sdbits generic.
64-bit data bus allows 64-bit (SO)DIMS to be connected using the full data capacity of the devices.
The polarity of the output enable signal to the data pads can be selected with the oepol generic. Some-
times it is difficult to fulfil the output delay requirements of the output enable signal. In this case, the
vbdrive signal can be used instead of bdrive. Each index in this vector is driven by a separate register
and a directive is placed on them so that they will not be removed by the synthesis tool. 

65.2.15 Clocking

The SDRAM controller is designed for an external SDRAM clock that is in phase or slightly earlier
than the internal AHB clock. This provides the maximum margin for setup and hold on the external
signals, and allows highest possible frequency. For Xilinx and Altera device, the GRLIB Clock Gen-
erator (CLKGEN) can be configured to produce a properly synchronized SDRAM clock. For other
FPGA targets, the custom clock synchronization must be designed, or the inverted clock option can be
used (see below). For ASIC targets, the SDRAM clock can be derived from the AHB clock with
proper delay adjustments during place&route.

If the VHDL generic INVCLK is set, then all outputs from the SDRAM controller are delayed for 1/2
clock. This is done by clocking all output registers on the falling clock edge. This option can be used
on FPGA targets where proper SDRAM clock synchronization cannot be achieved. The SDRAM
clock can be the internal AHB clock without further phase adjustments. Since the SDRAM signals
will only have 1/2 clock period to propagate, this option typically limits the maximum SDRAM fre-
quency to 40 - 50 MHz.
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65.3 Registers

The memory controller is programmed through register(s) mapped into the AHB I/O space defined by
the controllers AHB BAR1. 

Table 676.SDRAM controller registers

AHB address offset Register

0x0 SDRAM Configuration register

0x4 SDRAM Power-Saving configuration register

Table 677.  SDRAM configuration register
31 30 29 27 26 25 23 22 21 20 18 17 16 15 14 0

Refresh tRP tRFC tCD SDRAM 
bank size

SRAM 
col. size

SDRAM
commnad

Page-
Burst

MS D64 SDRAM refresh load value

31 SDRAM refresh. If set, the SDRAM refresh will be enabled.

30 SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1). When mobile DDR support is 
enabled, this bit also represent the MSB in the tRFC timing.

29: 27 SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks. When mobile DDR sup-
port is enabled, this field is extended with the bit 30.

26 SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-COMMAND-
REGISTER command must be issued at the same time. Also sets RAS/CAS delay (tRCD).

25: 23 SDRAM banks size. Defines the decoded memory size for each SDRAM chip select: “000”= 4 
Mbyte, “001”= 8 Mbyte, “010”= 16 Mbyte .... “111”= 512 Mbyte.

22: 21 SDRAM column size. “00”=256, “01”=512, “10”=1024, “11”=4096 when bit[25:23]= “111”, 2048 
otherwise.

20: 18 SDRAM command. Writing a non-zero value will generate an SDRAM command: “010”=PRE-
CHARGE, “100”=AUTO-REFRESH, “110”=LOAD-COMMAND-REGISTER, “111”=LOAD-
EXTENDED-COMMAND-REGISTER. The field is reset after command has been executed.

17 1 = pageburst is used for read operations, 0 = line burst of length 8 is used for read operations. (Only 
available when VHDL generic pageburst i set to 2)

16 Mobile SDR support enabled. ‘1’ = Enabled, ‘0’ = Disabled (read-only)

15 64-bit data bus (D64) - Reads ‘1’ if memory controller is configured for 64-bit data bus, otherwise 
‘0’. Read-only.

14: 0 The period between each AUTO-REFRESH command - Calculated as follows: tREFRESH = 
((reload value) + 1) / SYSCLK

Table 678. SDRAM Power-Saving configuration register
31 30 29 24 23 20 19 18 16 15 7 6 5 4 3 2 0

ME CE Reserved tXSR res PMODE Reserved DS TCSR PASR

31 Mobile SDRAM functionality enabled. ‘1’ = Enabled (support for Mobile SDRAM), ‘0’ = disabled 
(support for standard SDRAM)

30 Clock enable (CE). This value is driven on the CKE inputs of the SDRAM. Should be set to ‘1’ for 
correct operation. This register bit is read only when Power-Saving mode is other then none.

29: 24 Reserved

23: 20 SDRAM tXSR timing. tXSR will be equal to field-value system clocks. (Read only when Mobile 
SDR support is disabled).

19 Reserved
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65.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x009. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

18: 16 Power-Saving mode (Read only when Mobile SDR support is disabled).
“000”: none
“001”: Power-Down (PD)
“010”: Self-Refresh (SR)
“101”: Deep Power-Down (DPD)

15: 7 Reserved

6: 5 Selectable output drive strength (Read only when Mobile SDR support is disabled).
“00”: Full
“01”: One-half
“10”: One-quarter
“11”: Three-quarter

4: 3 Reserved for Temperature-Compensated Self Refresh (Read only when Mobile SDR support is disa-
bled).
“00”: 70ªC
“01”: 45ªC
“10”: 15ªC
“11”: 85ªC

2: 0 Partial Array Self Refresh (Read only when Mobile SDR support is disabled).
“000”: Full array (Banks 0, 1, 2 and 3)
“001”: Half array (Banks 0 and 1)
“010”: Quarter array (Bank 0)
“101”: One-eighth array (Bank 0 with row MSB = 0)
“110”: One-sixteenth array (Bank 0 with row MSB = 00)

Table 678. SDRAM Power-Saving configuration register
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65.5 Configuration options

Table 679 shows the configuration options of the core (VHDL generics).

Table 679.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

haddr ADDR field of the AHB BAR0 defining SDRAM area. Default 
is 0xF0000000 - 0xFFFFFFFF.

0 - 16#FFF# 16#000#

hmask MASK field of the AHB BAR0 defining SDRAM area. 0 - 16#FFF# 16#F00#

ioaddr ADDR field of the AHB BAR1 defining I/O address space where 
SDCFG register is mapped. 

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR1 defining I/O address space. 0 - 16#FFF# 16#FFF#

wprot Write protection. 0 - 1 0

invclk Inverted clock is used for the SDRAM. 0 - 1 0

pwron Enable SDRAM at power-on initialization 0 - 1 0

sdbits 32 or 64-bit data bus width. 32, 64 32

oepol Polarity of bdrive and vbdrive signals. 0=active low, 1=active 
high

0 - 1 0

pageburst Enable SDRAM page burst operation.
0: Controller uses line burst of length 8 for read operations.
1: Controller uses pageburst for read operations.
2: Controller uses pageburst/line burst depending on PageBurst 
bit in SDRAM configuration register.

0 - 2 0

mobile Enable Mobile SDRAM support
0: Mobile SDRAM support disabled
1: Mobile SDRAM support enabled but not default
2: Mobile SDRAM support enabled by default
3: Mobile SDRAM support only (no regular SDR support)

0 - 3 0
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65.6 Signal descriptions

Table 680 shows the interface signals of the core (VHDL ports).

65.7 Library dependencies

Table 681 shows libraries used when instantiating the core (VHDL libraries).

65.8 Instantiation

This example shows how the core can be instantiated. 

Table 680.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

AHBSI 1) Input AHB slave input signals -

AHBSO 1) Output AHB slave output signals -

SDI WPROT Input Not used -

DATA[63:0] Input Data High

SDO SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDWEN Output SDRAM write enable Low

RASN Output SDRAM row address strobe Low

CASN Output SDRAM column address strobe Low

DQM[7:0] Output SDRAM data mask:

DQM[7] corresponds to DATA[63:56],

DQM[6] corresponds to DATA[55:48],

DQM[5] corresponds to DATA[47:40],

DQM[4] corresponds to DATA[39:32],

DQM[3] corresponds to DATA[31:24],

DQM[2] corresponds to DATA[23:16],

DQM[1] corresponds to DATA[15:8],

DQM[0] corresponds to DATA[7:0].

Low

BDRIVE Output Drive SDRAM data bus Low/High2

VBDRIVE[31:0] Output Identical to BDRIVE but has one signal for each 
data bit. Every index is driven by its own register. 
This can be used to reduce the output delay.

Low/High2

ADDRESS[16:2] Output SDRAM address Low

DATA[31:0] Output SDRAM data Low

1) see GRLIB IP Library User’s Manual 

2) Polarity selected with the oepol generic

Table 681.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration
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The example design contains an AMBA bus with a number of AHB components connected to it
including the SDRAM controller. The external SDRAM bus is defined on the example designs port
map and connected to the SDRAM controller. System clock and reset are generated by GR Clock
Generator and Reset Generator. 

SDRAM controller decodes SDRAM area:0x60000000 - 0x6FFFFFFF. SDRAM Configuration regis-
ter is mapped into AHB I/O space on address (AHB I/O base address + 0x100).

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
use gaisler.misc.all; 

entity mctrl_ex is
  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic; 
sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); - - optional sdram address
    sd       : inout std_logic_vector(63 downto 0) -- optional sdram data
    );
end;

architecture rtl of mctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => a hbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);

signal sdi   : sdctrl_in_type;  
  signal sdo   : sdctrl_out_type;  

  signal clkm, rstn : std_ulogic;
signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;
  signal gnd : std_ulogic;
  
begin

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_d iv => 2, sdramen => 1, 
                                tech => virtex2, sd invclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open , cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pl lref <= pllref;
  
  rst0 : rstgen
  port map (resetn, clkm, cgo.clklock, rstn);  
  
  -- SDRAM controller
  sdc : sdctrl generic map (hindex => 3, haddr => 1 6#600#, hmask => 16#F00#, 
    ioaddr => 1, pwron => 0, invclk => 0)
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    port map (rstn, clkm, ahbsi, ahbso(3), sdi, sdo );

  -- input signals
  sdi.data(31 downto 0) <= sd(31 downto 0);
  
  -- connect SDRAM controller outputs to entity out put signals
  sa <= sdo.address; sdcke <= sdo.sdcke; sdwen <= s do.sdwen;
  sdcsn <= sdo.sdcsn; sdrasn <= sdo.rasn; sdcasn <=  sdo.casn;
  sddqm <= sdo.dqm;

--Data pad instantiation with scalar bdrive
sd_pad : iopadv generic map (width => 32) 
port map (sd(31 downto 0), sdo.data, sdo.bdrive, sd i.data(31 downto 0));
end;

--Alternative data pad instantiation with vectored bdrive
sd_pad : iopadvv generic map (width => 32) 
port map (sd(31 downto 0), sdo.data, sdo.vbdrive, s di.data(31 downto 0));
end;
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66 SPICTRL - SPI Controller

66.1 Overview

The core provides a link between the AMBA APB bus and the Serial Peripheral Interface (SPI) bus.
Through registers mapped into APB address space the core can be configured to work either as a mas-
ter or a slave. The SPI bus parameters are highly configurable via registers, the core has configurable
word length, bit ordering and clock gap insertion. All SPI modes are supported and also a 3-wire
mode where the core uses a bidirectional data line. To facilitate reuse of existing software drivers the
controller’s interface is compatible with the SPI controller interface in the Freescale MPC83xx series.
In slave mode the core synchronizes the incoming clock and can operate in systems where other SPI
devices are driven by asynchronous clocks.

66.2 Operation

66.2.1 SPI transmission protocol

The SPI bus is a full-duplex synchronous serial bus. Transmission starts when a master selects a slave
through the slave’s Slave Select (SLVSEL) signal and the clock line SCK transitions from its idle
state. Data is transferred from the master through the Master-Output-Slave-Input (MOSI) signal and
from the slave through the Master-Input-Slave-Output (MISO) signal. In a system with only one mas-
ter and one slave, the Slave Select input of the slave may be always active and the master does not
need to have a slave select output. If the core is configured as a master it will monitor the SPISEL sig-
nal to detect collisions with other masters, if SPISEL is activated the master will be disabled.

During a transmission on the SPI bus data is either changed or read at a transition of SCK. If data has
been read at edge n, data is changed at edge n+1. If data is read at the first transition of SCK the bus is
said to have clock phase 0, and if data is changed at the first transition of SCK the bus has clock phase
1. The idle state of SCK may be either high or low. If the idle state of SCK is low, the bus has clock
polarity 0 and if the idle state is high the clock polarity is 1. The combined values of clock polarity
(CPOL) and clock phase (CPHA) determine the mode of the SPI bus. Figure 237 shows one byte
(0x55) being transferred MSb first over the SPI bus under the four different modes. Note that the idle
state of the MOSI line is ‘1’ and that CPHA = 0 means that the devices must have data ready before
the first transition of SCK. The figure does not include the MISO signal, the behavior of this line is
the same as for the MOSI signal. However, due to synchronization issues the MISO signal will be
delayed when the core is operating in slave mode, please see section 66.2.5 for details.

Figure 236.  Block diagram
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66.2.2 3-wire transmission protocol

The core can be configured to operate in 3-wire mode where the controller uses a bidirectional data-
line instead of separate data lines for input and output data. In 3-wire mode the bus is thus a half-
duplex synchronous serial bus. Transmission starts when a master selects a slave through the slave’s
Slave Select (SLVSEL) signal and the clock line SCK transitions from its idle state. Data is trans-
ferred from the master through the Master-Output-Slave-Input (MOSI) signal. After a word has been
transferred the slave uses the same Master-Output-Slave-Input (MOSI) data line to transfer a word
back to the master. The MISO signal is not used in 3-wire mode.

The data line transitions depending on the clock polarity and clock phase in the same manner as in SPI
mode. The afformentioned slave delay of the MISO signal in SPI mode will affect the MOSI signal in
3-wire mode, when the core operates as a slave.

66.2.3 Receive and transmit queues

The core’s transmit queue consists of the transmit register and the transmit FIFO. The receive queue
consists of the receive register and the receive FIFO. The total number of words that can exist in each
queue is thus the FIFO depth plus one. When the core has one or more free slots in the transmit queue
it will assert the Not full (NF) bit in the event register. Software may only write to the transmit register
when this bit is asserted. When the core has received a word, as defined by word length (LEN) in the
Mode register, it will place the data in the receive queue. When the receive queue has one or more ele-
ments stored the Event register bit Not empty (NE) will be asserted. The receive register will only
contain valid data if the Not empty bit is asserted and software should not access the receive register
unless this bit is set. If the receive queue is full and the core receives a new word, an overrun condi-
tion will occur. The received data will be discarded and the Overrun (OV) bit in the Event register will
be set.

Figure 237.  SPI transfer of byte 0x55 in all modes
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The core will also detect underrun conditions. An underrun condition occurs when the core is
selected, via SPISEL, and the SCK clock transitions while the transmit queue is empty. In this sce-
nario the core will respond with all bits set to ‘1’ and set the Underrun (UN) bit in the Event register.
An underrun condition will never occur in master mode. When the master has an empty transmit
queue the bus will go into an idle state.

66.2.4 Clock generation

The core only generates the clock in master mode, the generated frequency depends on the system
clock frequency and the Mode register fields DIV16 and PM. Without DIV16 the SCK frequency is:

With DIV16 enabled the frequency of SCK is derived through:

Note that the fields of the Mode register, which includes DIV16 and PM, should not be changed when
the core is enabled.

66.2.5 Slave operation

When the core is configured for slave operation it does not drive any SPI signal until the core is
selected, via the SPISEL input, by a master. If the core operates in SPI mode when SPISEL goes low
the core configures MISO as an output and drives the value of the first bit scheduled for transfer. If the
core is configured into 3-wire mode the core will first listen to the MOSI line and when a word has
been transfered drive the response on the MOSI line. If the core is selected when the transmit queue is
empty it will transfer a word with all bits set to ‘1’ and the core will report an underflow.

Since the core synchronizes the incoming clock it will not react to transitions on SCK until two sys-
tem clock cycles have passed. This leads to a delay of three system clock cycles when the data output
line should change as the result of a SCK transition. This constrains the maximum input SCK fre-
quency of the slave to (system clock) / 8 or less. The controlling master must also allow the decreased
setup time on the slave data out line.

66.2.6 Master operation

When the core is configured for master operation it will transmit a word when there is data available
in the transmit queue. When the transmit queue is empty the core will drive SCK to its idle state. If the
SPISEL input goes low during master operation the core will abort any active transmission and the
Multiple-master error (MME) bit will be asserted in the Event register. If a Multiple-master error
occurs the core will be disabled. Note that the core will react to changes on SPISEL even if the core is
operating in loop mode.

SCKFrequency
AMBAclockfrequency

4 PM 1+( )⋅
----------------------------------------------------------=

SCKFrequency
AMBAclockfrequency

16 4 PM 1+( )⋅( )⋅
----------------------------------------------------------=
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66.3 Registers

The core is programmed through registers mapped into APB address space.

Table 682.SPI controller registers

APB address offset Register

0x00 Capability register

0x04-0x1C Reserved

0x20 Mode register

0x24 Event register

0x28 Mask register

0x2C Command register

0x30 Transmit register

0x34 Receive register

0x38 Slave Select register (optional)

Table 683. SPI controller Capability register
31 24 23 16 15 8 7 0

SSSZ SSEN FDEPTH REV

31 : 24 Slave Select register size (SSSZ) - If the core has been configured with slave select signals this field 
contains the number of available signals.

23:16 Slave Select Enable (SSEN) - If the core has a slave select register, and corresponding slave select 
lines, the value of this field is one. Otherwise the value of this field is zero.

15:8 FIFO depth (FDEPTH) - This field contains the depth of the core’s internal FIFOs. The number of 
words the core can store in each queue is FDEPTH+1, since the transmit and receive registers can 
contain one word each.

7:0 Core revision (REV)

Table 684. SPI controller Mode register
31 30 29 28 27 26 25 24 23 20 19 16

R LOOP CPOL CPHA DIV16 REV MS EN LEN PM

15 14 12 11 7 6 0

TWEN CG R

31 RESERVED (R) - Read as zero and should be written as zero to ensure forward compatibility.

30 Loop mode (LOOP) - When this bit is set, and the core is enabled, the core’s transmitter and receiver 
are interconnected and the core will operate in loopback mode. The core will still detect, and will be 
disabled, on Multiple-master errors.

29 Clock polarity (CPOL) - Determines the polarity (idle state) of the SCK clock.

28 Clock phase (CPHA) - When CPOL is ‘0’ data will be read on the first transition of SCK. When 
CPOL is ‘1’ data will be read on the second transition of SCK.

27 Divide by 16 (DIV16) - Divide system clock by 16, see description of PM field below and see sec-
tion 66.2.4 on clock generation. This bit has no significance in slave mode.

26 Reverse data (REV) - When this bit is ‘0’ data is transmitted LSB first, when this bit is ‘1’ data is 
transmitted MSB first. This bit affects the layout of the transmit and receive registers.

25 Master/Slave (MS) - When this bit is set to ‘1’ the core will act as a master, when this bit is set to ‘0’ 
the core will operate in slave mode.

24 Enable core (EN) - When this bit is set to ‘1’ the core is enabled. No fields in the mode register 
should be changed while the core is enabled. This can bit can be set to ‘0’ by software, or by the core 
if a multiple-master error occurs.
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23:20 Word length (LEN) - The value of this field determines the length in bits of a transfer on the SPI bus. 
Values are interpreted as:

0b0000 - 32-bit word length

0b0001-0b0010 - Illegal values

0b0011-0b1111 - Word length is LEN+1, allows words of length 4-16 bits.

19:16 Prescale modulus (PM) - This value is used in master mode to divide the system clock and generate 
the SPI SCK clock. The system clock is divided by 4*(PM+1) if the DIV16 field is ‘0’ and 
16*4*(PM+1) if the DIV16 field is set to ‘1’. The highest SCK frequency is attained when PM is set 
to 0b0000 and DIV16 to ‘0’, this configuration will give a SCK frequency that is (system clock)/4.

15 Three-wire mode (tw) - If this bit is set to ‘1’ the core will operate in 3-wire mode.

14:12 RESERVED (R) - Read as zero and should be written as zero to ensure forward compatibility.

11:7 Clock gap (CG) - The value of this field is only significant in master mode. The core will insert CG 
SCK clock cycles between each consecutive word. This only applies when the transmit queue is kept 
non-empty. After the last word of the transmit queue has been sent the core will go into an idle state 
and will continue to transmit data as soon as a new word is written to the transmit register, regardless 
of the value in CG. A value of 0b00000 in this field enables back-to-back transfers.

6:0 RESERVED (R) - Read as zero and should be written as zero to ensure forward compatibility.

Table 685. SPI controller Event register
31 15 14 13 12 11 10 9 8 7 0

R LT R OV UN MME NE NF R

31 : 15 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

14 Last character (LT) - This bit is set when a transfer completes if the transmit queue is empty and the 
LST bit in the Command register has been written. This bit is cleared by writing ‘1’, writes of ‘0’ 
have no effect.

13 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

12 Overrun (OV) - This bit gets set when the receive queue is full and the core receives new data. The 
core continues communicating over the SPI bus but discards the new data. This bit is cleared by writ-
ing ‘1’, writes of ‘0’ have no effect.

11 Underrun (UN) - This bit is only set when the core is operating in slave mode. The bit is set if the 
core’s transmit queue is empty when a master initiates a transfer. When this happens the core will 
respond with a word where all bits are set to ‘1’. This bit is cleared by writing ‘1’, writes of ‘0’ have 
no effect.

10 Multiple-master error (MME) - This bit is set when the core is operating in master mode and the 
SPISEL input goes active. In addition to setting this bit the core will be disabled. This bit is cleared 
by writing ‘1’, writes of ‘0’ have no effect.

9 Not empty (NE) - This bit is set when the receive queue contains one or more elements. It is cleared 
automatically by the core, writes have no effect.

8 Not full (NF) - This bit is set when the transmit queue has room for one or more words. It is cleared 
automatically by the core when the queue is full, writes have no effect.

7:0 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

Table 686. SPI controller Mask register
31 15 14 13 12 11 10 9 8 7 0

R LTE R OVE UNE MMEE NEE NFE R

31 : 15 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

14 Last character enable (LTE) - When this bit is set the core will generate an interrupt when the LT bit 
in the Event register transitions from ‘0’ to ‘1’.

13 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

12 Overrun enable (OVE) - When this bit is set the core will generate an interrupt when the OV bit in 
the Event register transitions from ‘0’ to ‘1’.

11 Underrun enable (UNE) - When this bit is set the core will generate an interrupt when the UN bit in 
the Event register transitions from ‘0’ to ‘1’.

Table 684. SPI controller Mode register
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10 Multiple-master error enable (MMEE) - When this bit is set the core will generate an interrupt when 
the MME bit in the Event register transitions from ‘0’ to ‘1’.

9 Not empty enable (NEE) - When this bit is set the core will generate an interrupt when the NE bit in 
the Event register transitions from ‘0’ to ‘1’.

8 Not full enable (NFE) - When this bit is set the core will generate an interrupt when the NF bit in the 
Event register transitions from ‘0’ to ‘1’.

7:0 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatibility.

Table 687. SPI controller Command register
31 23 22 21 0

R LST R

31 : 23 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatiability.

22 Last (LST) - After this bit has been written to ‘1’ the core will set the Event register bit LT when a 
character has been transmitted and the transmit queue is empty. If the core is operating in 3-wire 
mode the Event register bit is set when the whole transfer has completed. This bit is automatically 
cleared when the Event register bit has been set and is always read as zero.

21:0 RESERVED (R) - Read as zero and should be written to zero to ensure forward compatiability.

Table 688. SPI controller Transmit register
31 23 22 21 0

TDATA

31 : 0 Transmit data (TDATA) - Writing a word into this register places the word in the transmit queue. 
This register will only react to writes if the Not full (NF) bit in the Event register is set. The layout of 
this register depends on the value if the REV field in the Mode register:

Rev = ‘0’: The word to transmit should be written with its least significant bit at bit 0.

Rev = ‘1’: The word to transmit should be written with its most significant bit at bit 31.

Table 689. SPI controller Receive register
31 23 22 21 0

RDATA

31 : 0 Receive data (RDATA) - This register contains valid receive data when the Not empty (NE) bit of the 
Event register is set. The placement of the received word depends on the Mode register fields LEN 
and REV:

For LEN = 0b0000 - The data is placed with its MSb in bit 31 and its LSb in bit 0.

For other lengths and REV = ‘0’ - The data is placed with its MSB in bit 15.

For other lengths and REV = ‘1’ - The data is placed with its LSB in bit 16.

To illustrate this, a transfer of a word with eight bits (LEN = 7) that are all set to one will have the 
following placement:

REV = ‘0’ - 0x0000FF00

REV = ‘1’ - 0x00FF0000

Table 690. SPI Slave select register (optional)
31 SSSZ SSSZ-1 0

R SLVSEL

31 : SSSZ RESERVED (R) - The lower bound of this register is determined by the Capbility register field 
SSSZ if the SSEN field is set to 1. If SSEN is zero bits 31:0 are reserved.

(SSSZ-1) : 0 Slave select (SLVSEL) - If SSEN in the Capability register is 1 the core’s slave select signals are 
mapped to this register on bits (SSSZ-1):0. Software is soley responsible for activating the correct 
slave select signals, the core does not assert or deassert any slave select signal automatically.

Table 686. SPI controller Mask register
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66.4 Vendor and device identifier

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x02D. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

66.5 Configuration options

Table 691 shows the configuration options of the core (VHDL generics).

Table 691.Configuration options

Generic name Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by SPI controller 0 - NAHBIRQ-1 0

fdepth FIFO depth. The FIFO depth in the core is 2fdepth. Note 
that the depth of the transmit and receive queues is FIFO 
depth + 1 since the Transmit and Receive registers can 
hold one word.

1 - 7 1

slvselen Enable Slave Select register. When this value is set to 1 
the core will include a slave select register that controls 
slvselsz slave select signals.

0 - 1 0

slvselsz Number of Slave Select (slvsel) signals that the core will 
generate. These signals can be controlled via the Slave 
select register if the generic slvselen has been set to 1, 
otherwise they are driven to ‘1’.

1 - 32 1

oepol Selects output enable polarity 0 - 1 0
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66.6 Signal descriptions

Table 692 shows the interface signals of the core (VHDL ports).

66.7 Library dependencies

Table 693 shows the libraries used when instantiating the core (VHDL libraries).

66.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.misc.all;

entity spi_ex is
  port (
    clk    : in std_ulogic;
    rstn   : in std_ulogic;
    
    -- SPI signals

Table 692.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

SPII MISO Input Master-Input-Slave-Output data line, not used in 
3-wire mode.

-

MOSI Input Master-Output-Slave-Input data line -

SCK Input Serial Clock -

SPISEL Input Slave select input -

SPIO MISO Output Master-Input-Slave-Output data line, not used in 
3-wire mode.

-

MISOOEN Output Master-Input-Slave-Output output enable, not 
used in 3-wire mode.

Low

MOSI Output Master-Output-Slave-Input -

MOSIOEN Output Master-Output-Slave-Input output enable Low

SCK Output Serial Clock -

SCKOEN Output Serial Clock output enable Low

* see GRLIB IP Library User’s Manual

Table 693.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component, signals SPI component and signal definitions.
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    sck    : inout std_ulogic;
    miso   : inout std_ulogic;
    mosi   : inout std_ulogic;
    spisel : in std_ulogic
    );
end;

architecture rtl of spi_ex is

  -- AMBA signals
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  
  -- SPIsignals
  signal spii : spi_in_type;
  signal spio : spi_out_type;
begin
  
  -- AMBA Components are instantiated here
  ...

  -- SPI controller with FIFO depth 2 and no slave select register
  spictrl0 : spictrl generic map (pindex => 10, pad dr => 10, pirq => 10,
                                  fdepth => 1, slvs elen => 0, slvselsz => 1)
      port map (rstn, clkm, apbi, apbo(10), spii, s pio, open);

    misopad : iopad generic map (tech => padtech)
      port map (miso, spio.miso, spio.misooen, spii .miso);
    mosipad : iopad generic map (tech => padtech)
      port map (mosi, spio.mosi, spio.mosioen, spii .mosi);
    sckpad : iopad generic map (tech => padtech)
      port map (sck, spio.sck, spio.sckoen, spii.sc k);
    spiselpad : inpad generic map (tech => padtech)
      port map (spisel, spii.spisel);
end;
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67 SPIMCTRL - SPI Memory Controller

67.1 Overview

The core maps a memory device connected via the Serial Peripheral Interface (SPI) into AMBA
address space. Read accesses are performed by performing normal AMBA read operations in the
mapped memory area. Other operations, such as writes, are performed by directly sending SPI com-
mands to the memory device via the core’s register interface. The core is highly configurable and sup-
ports most SPI Flash memory devices. The core also has limited, SPI-mode, SD card support.

67.2 Operation

67.2.1 Operational model

The core has two memory areas that can be accessed via the AMBA bus; the I/O area and the ROM
area. The ROM area maps the memory device into AMBA address space and the I/O area is utilized
for status reporting and to issue user commands to the memory device. 

When transmitting SPI commands directly to the device the ROM area should be left untouched. The
core will issue an AMBA ERROR response if the ROM area is accessed when the core is busy per-
forming an operation initiated via I/O registers.

Depending on the type of device attached the core may need to perform an initialization sequence.
Accesses to the ROM area during the initialization sequence receive AMBA error responses. The core
has successfully performed all necessary initialization when the Initialized bit in the core’s status reg-
ister is set, the value of this bit is also propagated to the core’s output signal spio.initialized.

67.2.2 I/O area

The I/O area contains registers that are used when issuing commands directly to the memory device.
By default, the core operates in System mode where it will perform read operations on the memory
device when the core’s ROM area is accessed. Before attempting to issue commands directly to the
memory device, the core must be put into User mode. This is done by setting the User Control
(USRC) bit in the core’s Control register. Care should be taken to not enter User mode while the core
is busy, as indicated by the bits in the Status register. The core should also have performed a success-
ful initialization sequence before User mode accesses (INIT bit in the Status register should be set).

The following steps are performed to issue a command to the memory device after the core has been
put into User mode:

1. Check Status register and verify that the BUSY and DONE bits are cleared. Also verify that the
core is initialized and not in error mode.
2. Optionally enable DONE interrupt by setting the Control register bit IEN.
3. Write command to Transmit register.
4. Wait for interrupt (if enabled) or poll DONE bit in Status register.

Figure 238.  Block diagram
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5. When the DONE bit is set the core has transferred the command and will have new data available in
the Receive register.
6. Clear the Status register’s DONE bit by writing one to its position.

The core should not be brought out of User mode until the transfer completes. Accesses to ROM
address space will receive an AMBA ERROR response when the core is in User mode and when an
operation initiated under User mode is active.

67.2.3 ROM area

The ROM area only supports AMBA read operations. Write operations will receive AMBA ERROR
responses. When a read access is made to the ROM area the core will perform a read operation on the
memory device. If the system has support for AMBA SPLIT responses the core will SPLIT the master
until the read operation on the memory device has finished, unless the read operation is a locked
access. A locked access never receives a SPLIT response and the core inserts wait states instead. If the
system lacks AMBA SPLIT support the core will always insert wait states until the read operation on
the memory device has finished. The core uses the value of the VHDL generic spliten to determine if
the system has AMBA SPLIT support.

When the core is configured to work with a SD card, two types of timeouts are taken into account.
The SD card is expected to respond to a command within 100 bytes and the core will wait for a data
token following a read command for 312500 bytes. If the SD card does not respond within these limits
the core will issue an AMBA error response to the access.

If an error occurs during an access to the ROM area the core will respond with an AMBA ERROR
response. It will also set one or both of the Status register bits Error (ERR) and Timeout (TO). If the
Error (ERR) bit remains set, subsequent accesses to the ROM area will also receive AMBA ERROR
responses. The core can only detect failures when configured for use with a SD card.

67.2.4 Supported memory devices

The core supports a wide range of memory devices due to its configuration options of read instruction,
dummy byte insertion and dual output. Table 694 below lists configurations for some memory
devices. 

When the core is configured for use with a SD card it does not use the VHDL generics readcmd, dum-
mybyte nor dualoutput. All SD cards are initialized to use a block length of four bytes and accesses to
the ROM area lead to a READ_SINGLE_BLOCK command being issued to the card.

When the VHDL generic sdcard is set to 0 the core is configured to issue the instruction defined by
the VHDL generic readcmd to obtain data from the device. After an access to the ROM area the core
will issue the read instruction followed by 24 address bits. If the VHDL generic dummybyte is set to 1
the core will issue a dummy byte following the address. After the possible dummy byte the core
expects to receive data from the device. If the VHDL generic dualoutput is set to 1 the core will read

Table 694.Configurations for some memory devices

Manufacturer Memory device

VHDL generic*

sdcard readcmd** dummybyte dualoutput

SD card SD card 1 - - -

Spansion S25FL-series 0 0x0B 1 0

Winbond W25X-series 0 0x0B 1 0

W25X-series with 
dual output read.

0 0x3B 1 1

* ‘-’ means don’t care
** Available in the core’s Configuration register.
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data on both the MISO and MOSI data line. Otherwise the core will only use the MISO line for input
data.

Many memory devices support both a READ and a FAST_READ instruction. The FAST_READ
instruction can typically be issued with higher device clock frequency compared to the READ instruc-
tion, but requires a dummy byte to be present after the address. The most suitable choice of read
instruction depends on the system frequency and on the memory device’s characteristics.

67.2.5 Clock generation and power-up timing

The core generates the device clock by scaling the system clock. The VHDL generic scaler selects the
divisor to use for the device clock that is used when issuing read instructions. The VHDL generic
altscaler defines an alternate divisor that is used to generate the clock during power-up. This alternate
divisor is used during initialization of SD cards and should be selected to produce a clock of 400 kHz
or less when the core is configured for use with an SD card. The alternate clock can also be used when
issuing user mode commands by setting the Enable Alternate Scaler (EAS) bit in the Control register.

When the core is configured for a non-SD card (VHDL generic sdcard set to 0), the VHDL generic
pwrupcnt specifies how many system clock cycles after reset the core should be idle before issuing
the first command.

67.3 Registers

The core is programmed through registers mapped into AHB address space.

Table 695.GRSLINK registers

APB address offset Register

0x00 Configuration register

0x04 Control register

0x08 Status register

0x0C Receive register

0x10 Transmit register

Table 696. SPIMCTRL Configuration register
31 8 7 0

RESERVED READCMD

31 :8 RESERVED

7:0 Read instruction (READCMD) - Read instruction that the core will use for reading from the memory 
device. When the core is configured to interface with a SD card this field will be set to 0.

Reset value: Implementation dependent

Table 697. SPIMCTRL Control register
31 5 4 3 2 1 0

RESERVED RST CSN EAS IEN USRC

31 :5 RESERVED

4 Reset core (RST) - By writing ‘1’ to this bit the user can reset the core. This bit is automatically 
cleared when the core has been reset. Reset core should be used with care. Writing this bit has the 
same effect as system reset. Any ongoing transactions, both on AMBA and to the SPI device will be 
aborted.
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3 Chip select (CSN) - Controls core chip select signal. This field always shows the level of the core’s 
internal chip select signal. This bit is always automatically set to ‘1’ when leaving User mode by 
writing USRC to ‘0’.

2 Enable Alternate Scaler (EAS) - When this bit is set the SPI clock is divided by using the alternate 
scaler.

1 Interrupt Enable (IEN) - When this bit is set the core will generate an interrupt when a User mode 
transfer completes.

0 User control (USRC) - When this bit is set to ‘1’ the core will accept SPI data via the transmit regis-
ter. Accesses to the memory mapped device area will return AMBA ERROR responses.

Reset value: 0x00000008

Table 698. SPIMCTRL Status register
31 6 5 4 3 2 1 0

RESERVED CD TO ERR INIT BUSY DONE

31:6 RESERVED

5 Card Detect (CD) - This bit shows the value of the core’s CD input signal if the core has been config-
ured to work with an SD card. When using the core with a device that is hot-pluggable it may be nec-
essary to monitor this bit and reset the core if a device has been disconnected and reconnected. This 
bit is only valid if the core has been configured for use with SD cards, otherwise it is always ‘0’.

4 Timeout (TO) - This bit is set to ‘1’ when the core times out while waiting for a response from a SD 
card. This bit is only used when the core is configured for use with a SD card. The state is refreshed 
at every read operation that is performed as a result of an access to the ROM memory area. User 
mode accesses can never trigger a timeout. This bit is read only.

3 Error (ERR) - This bit is set to ‘1’ when the core has entered error state. When the core is in this state 
all accesses to the ROM memory area will receive AMBA ERROR responses. The error state can be 
cleared by writing ‘1’ to this bit. If the core entered error state during a read operation the ROM area 
will be available for read accesses again. This bit is follows the negated errorn output signal. The 
core will only detect errors when configured for use with an SD card. User mode accesses can never 
trigger an error.

2 Initialized (INIT) - This read only bit is set to ‘1’ when the SPI memory device has been initialized. 
Accesses to the ROM area should only be performed when this bit is set to ‘1’.

1 Core busy (BUSY) - This bit is set to ‘1’ when the core is performing an SPI operation.

0 Operation done (DONE) - This bit is set to ‘1’ when the core has transferred an SPI command in user 
mode.

Reset value: 0x00000000

Table 699. SPIMCTRL Receive register
31 8 7 0

RESERVED RDATA

31 :8 RESERVED

7:0 Receive data (RDATA) : Contains received data byte

Reset value: 0x000000UU, where U is undefined

Table 700. SPIMCTRL Transmit register
31 8 7 0

TDATA

Table 697. SPIMCTRL Control register
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67.4 Vendor and device identifier

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x045. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

67.5 Implementation

67.5.1 Technology mapping

The core does not instantiate any technology specific primitives.

67.5.2 RAM usage

The core does not use any RAM components.

67.6 Configuration options

Table 701 shows the configuration options of the core (VHDL generics).

31 :8 RESERVED

7:0 Transmit data (TDATA) - Data byte to transmit

Reset value: 0x00000000

Table 701.Configuration options

Generic name Function Allowed range Default

hindex AHB slave index 0 - (NAHBSLV-1) 0

hirq Interrupt line 0 - (NAHBIRQ-1) 0

faddr ADDR field of the AHB BAR1 defining ROM address 
space. 

0 - 16#FFF# 16#000#

fmask MASK field of the AHB BAR1 defining ROM address 
space.

0 - 16#FFF# 16#FFF#

ioaddr ADDR field of the AHB BAR0 defining register address 
space.

0 - 16#FFF# 16#000#

iomask MASK field of the AHB BAR0 defining register space. 0 - 16#FFF# 16#FFF#

spliten If this generic is set to 1 the core will issue AMBA 
SPLIT responses when it is busy performing an opera-
tion on the memory device. Otherwise the core will 
insert wait states until the operation completes.

0 - 1 0

oepol Select polarity of output enable signals. 0 = active low. 0 - 1 0

sdcard Enable support for SD card 0 - 1 0

readcmd Read instruction of memory device 0 - 16#FF# 16#0B#

dummybyte Output dummy byte after address 0 - 1 0

dualoutput Use dual output when reading data from device 0 - 1 0

scaler Clock divisor used when generating device clock is 

2scaler
1 - 512 1

altscaler Clock divisor used when generating alternate device 

clock is 2altscaler
1 - 512 1

pwrupcnt Number of clock cycles to wait before issuing first com-
mand to memory device

N/A 0

Table 700. SPIMCTRL Transmit register
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67.7 Signal descriptions

Table 702 shows the interface signals of the core (VHDL ports).

67.8 Library dependencies

Table 703 shows the libraries used when instantiating the core (VHDL libraries).

Table 702.Signal descriptions

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

SPII MISO Input Master-input slave-output data line
SD card connection: DAT0

-

MOSI Input Master-output slave-input data line
SD card connection: None

-

CD Input Card detection. Used in SD card mode to detect 
if a card is present. Must be pulled high if this 
functionality is not used.
SD card connection: CD/DAT3

High

SPIO MOSI Output Master-output slave-input data line
SD card connection: CMD

-

MOSIOEN Output Master-output slave-input output enable -

SCK Output SPI clock
SD card connection: CLK

-

CSN Output Chip select
SD card connection: CD/DAT3

Low

CDCSNOEN Output Chip select output enable. If the core is config-
ured to work with an SD card this signal should 
be connected to the I/O pad that determines if 
CSN should drive the CD/DAT3 line. During ini-
tialization the CSN signal does not drive CD/
DAT3 and the core monitors the CD input to see 
if a card is present. When a card has been 
detected CD/DAT3 is used as the chip select sig-
nal via CSN. For other SPI memory devices this 
signal can be left unconnected and the CSN sig-
nal can be connected to an output pad.

-

ERRORN Output Error signal. Negated version of Error bit in the 
core’s Status register.

Low

READY Output When this signal is low the core is busy perform-
ing an operation.

High

INITIALIZED Output This bit goes high when the SPI memory device 
has been initialized and can accept read accesses. 
This signal has the same value as the Initialized 
(INIT) bit in the core’s Status register.

High

* see GRLIB IP Library User’s Manual

Table 703.Library dependencies

Library Package Imported unit(s) Description

GAISLER MEMCTRL Component, signals Component and signal definitions

GRLIB AMBA Signals AMBA signal definitions



643

67.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib, techmap;
use grlib.amba.all;
use techmap.gencomp.all;

library gaisler;
use gaisler.memctrl.all;

entity spimctrl_ex is
  port (
    clk       : in  std_ulogic;
    rstn      : in  std_ulogic;
    -- SPIMCTRL signals
    -- For SD Card
    sd_dat    : in  std_ulogic;
    sd_cmd    : out std_ulogic;
    sd_sck    : out std_ulogic;
    sd_dat3   : inout std_ulogic;
    -- For SPI Flash
    spi_c     : out std_ulogic;
    spi_d     : out std_ulogic;
    spi_q     : in  std_ulogic;
    spi_sn    : out std_ulogic
    );
end;

architecture rtl of spimctrl_ex is
  -- AMBA signals
  signal ahbsi  : ahb_slv_in_type;
  signal ahbso  : ahb_slv_out_vector := (others => ahbs_none);
  ...
  -- SPIMCTRL signals
  signal spmi0, spmi1 : spimctrl_in_type;
  signal spmo0, spmo1 : spimctrl_out_type;
begin
  
  -- AMBA Components are instantiated here
  ...

  -- Two cores are instantiated below. One configur ed for use with an SD card and one
  -- for use with a generic SPI memory device. Usag e of the errorn, ready and 
  -- initialized signals is not shown.

  -- SPMCTRL core, configured for use with SD card
  spimctrl0 : spimctrl
      generic map (hindex => 3, hirq => 3, faddr =>  16#a00#, fmask  => 16#ff0#,
                   ioaddr => 16#100#, iomask => 16# fff#, spliten => CFG_SPLIT, 
                   sdcard => 1, scaler => 1, altsca ler => 7)
      port map (rstn, clk, ahbsi, ahbso(3), spmi0, spmo0);

    sd_miso_pad : inpad generic map (tech => padtec h)
      port map (sd_dat, spmi0.miso);
    sd_mosi_pad : outpad generic map (tech => padte ch)
      port map (sd_cmd, spmo0.mosi);
    sd_sck_pad  : outpad generic map (tech => padte ch)
      port map (sd_clk, spmo0.sck);
    sd_slvsel0_pad : iopad generic map (tech => pad tech)
      port map (sd_dat3, spmo0.csn, spmo0.cdcsnoen,  spmi0.cd);
    -- Alternative use of cd/dat3 if connection det ect is not wanted or available:
    -- sd_slvsel0_pad : outpad generic map (tech =>  padtech)
    --   port map (sd_dat3, spmo0.csn);
    --  spmi0.cd <= ‘1’; -- Must be set if cd/dat3 is not bi-directional

  -- SPMCTRL core, configured for use with generic SPI Flash memory with read
  -- command 0x0B and a dummy byte following the ad dress.
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  spimctrl1 : spimctrl
      generic map (hindex => 4, hirq => 4, faddr =>  16#b00#, fmask  => 16#fff#,
                   ioaddr => 16#200#, iomask => 16# fff#, spliten => CFG_SPLIT, 
                   sdcard => 0, readcmd => 16#0B#, dummybyte => 1, dualoutput => 0,
                   scaler => 1, altscaler => 1)
      port map (rstn, clk, ahbsi, ahbso(4), spmi1, spmo1);

    spi_miso_pad : inpad generic map (tech => padte ch)
      port map (spi_q, spmi1.miso);
    spi_mosi_pad : outpad generic map (tech => padt ech)
      port map (spi_d, spmo1.mosi);
    spi_sck_pad  : outpad generic map (tech => padt ech)
      port map (spi_c, spmo1.sck);
    spi_slvsel0_pad : outpad generic map (tech => p adtech)
      port map (spi_sn, spmo1.csn); 
end;
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68 SRCTRL- 8/32-bit PROM/SRAM Controller

68.1 Overview

SRCTRL is an 8/32-bit PROM/SRAM/IO controller that interfaces external asynchronous SRAM,
PROM and I/O to the AMBA AHB bus. The controller can handle 32-bit wide SRAM and I/O, and
either 8- or 32-bit PROM. 

The controller is configured through VHDL-generics to decode three address ranges: PROM, SRAM
and I/O area. By default PROM area is mapped into address range 0x0 - 0x00FFFFFF, the SRAM area
is mapped into address range 0x40000000 - 0x40FFFFFF, and the I/O area is mapped to 0x20000000
- 0x20FFFFFF.

One chip select is decoded for the I/O area, while SRAM and PROM can have up to four and two
select signals respectively. The controller generates both a common write-enable signal (WRITEN) as
well as four byte-write enable signals (WREN). If the SRAM uses a common write enable signal the
controller can be configured to perform read-modify-write cycles for byte and half-word write
accesses. Number of waitstates is separately configurable for the three address ranges.

A single write-enable signal is generated for the PROM area (WRITEN), while four byte-write enable
signals (RWEN[3:0]) are provided for the SRAM area. If the external SRAM uses common write
enable signal, the controller can be configured to perform read-modify-write cycles for byte and half-
word write accesses.

Number of waitstates is configurable through VHDL generics for both PROM and SRAM areas. 

A signal (BDRIVE) is provided for enabling the bidirectional pads to which the data signals are con-
nected. The oepol generic is used for selecting the polarity of these enable signals. If output delay is
an issue, a vectored output enable signal (VBDRIVE) can be used instead. In this case, each pad has

Figure 239.  8/32-bit PROM/SRAM/IO controller
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its own enable signal driven by a separate register. A directive is placed on these registers so that they
will not be removed during synthesis (if the output they drive is used in the design). 

68.2 8-bit PROM access

The SRCTRL controller can be configured to access a 8-bit wide PROM. The data bus of external
PROM should be connected to the upper byte of the 32-bit data bus, i.e. D[31:24]. The 8-bit mode is
enabled with the prom8en VHDL generic. When enabled, read accesses to the PROM area will be
done in four-byte bursts. The whole 32-bit word is then presented on the AHB data bus. Writes should
be done one byte at a time and the byte should always be driven on bit 31-24 on the AHB data bus
independent of the byte address. 

It is possible to dynamically switch between 8- and 32-bit PROM mode using the BWIDTH[1:0]
input signal. When BWIDTH is “00” then 8-bit mode is selected. If BWIDTH is “10” then 32-bit
mode is selected. Other BWIDTH values are reserved for future use.

SRAM access is not affected by the 8-bit PROM mode. 

68.3 PROM/SRAM waveform

Read accesses to 32-bit PROM and SRAM has the same timing, see figure below.

The write access for 32-bit PROM and SRAM can be seen below.

Figure 240.  32-bit PROM/SRAM/IO read cycle
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If waitstates are configured through the VHDL generics, one extra data cycle will be inserted for each
waitstate in both read and write cycles.

68.4 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed in
burst mode. Burst transfers will be generated when the memory controller is accessed using an AHB
burst request. These includes instruction cache-line fills and burst from DMA masters. The timing of
a burst cycle is identical to the programmed basic cycle with the exception that during read cycles, the
lead-out cycle will only occurs after the last transfer. 

68.5 Registers

The core does not implement any user programmable registers. 

All configuration is done through the VHDL generics.

68.6 Vendor and device identifier

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x008. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

68.7 Configuration options

Table 705 shows the configuration options of the core (VHDL generics).

Table 704.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

romaddr ADDR field of the AHB BAR0 defining PROM address space. 
Default PROM area is 0x0 - 0xFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#FF0#

ramaddr ADDR field of the AHB BAR1 defining SRAM address space. 
Default SRAM area is 0x40000000-0x40FFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining SRAM address space. 0 -16#FFF# 16#FF0#

ioaddr ADDR field of the AHB BAR2 defining IO address space. 
Default IO area is 0x20000000-0x20FFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 -16#FFF# 16#FF0#

ramws Number of waitstates during access to SRAM area 0 - 15 0

romws Number of waitstates during access to PROM area 0 - 15 2

iows Number of waitstates during access to IO area 0 - 15 2

rmw Enable read-modify-write cycles. 0 - 1 0

prom8en Enable 8 - bit PROM accesses 0 - 1 0

oepol Polarity of bdrive and vbdrive signals. 0=active low, 1=active 
high

0 - 1 0

srbanks Set the number of SRAM banks 1 - 5 1

banksz Set the size of bank 1 - 4. 0 = 8 Kbyte, 1 = 16 Kbyte, ... , 13 = 
64Mbyte. 

0 - 13 13

romasel address bit used for PROM chip select. 0 - 27 19
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68.8 Signal description

Table 704 shows the interface signals of the core (VHDL ports).

Table 705.Signal descriptions

Signal name Field Type Function Polarity

CLK N/A Input Clock -

RST N/A Input Reset Low

SRI DATA[31:0] Input Memory data High

BRDYN Input Not used -

BEXCN Input Not used -

WRN[3:0] Input Not used -

BWIDTH[1:0] Input BWIDTH=”00” => 8-bit PROM mode

BWIDTH=”10” => 32-bit PROM mode

-

SD[31:0] Input Not used -

SRO ADDRESS[27:0] Output Memory address High

DATA[31:0] Output Memory data High

RAMSN[4:0] Output SRAM chip-select Low

RAMOEN[4:0] Output SRAM output enable Low

IOSN Output Not used. Driven to ‘1’ (inactive) Low

ROMSN[1:0] Output PROM chip-select Low

RAMN Output Common SRAM chip-select. Asserted when one 
of the RAMSN[4:0] signals is asserted.

Low

ROMN Output Common PROM chip-select. Asserted when one 
of the ROMSN[1:0] signals is asserted.

Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable:

WRN[0] corresponds to DATA[31:24],

WRN[1] corresponds to DATA[23:16],

WRN[2] corresponds to DATA[15:8],

WRN[3] corresponds to DATA[7:0].

Low

MBEN[3:0] Output Byte enable:

MBEN[0] corresponds to DATA[31:24],

MBEN[1] corresponds to DATA[23:16],

MBEN[2] corresponds to DATA[15:8],

MBEN[3] corresponds to DATA[7:0].

Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory 
bus:

BDRIVE[0] corresponds to DATA[31:24],

BDRIVE[1] corresponds to DATA[23:16],

BDRIVE[2] corresponds to DATA[15:8],

BDRIVE[3] corresponds to DATA[7:0].

Low/High2

VBDRIVE[31:0] Output Identical to BDRIVE but has one signal for each 
data bit. Every index is driven by its own regis-
ter. This can be used to reduce the output delay.

Low/High2

READ Output Read strobe High

SA[14:0] Output Not used High
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68.9 Library dependencies

Table 706 shows libraries used when instantiating the core (VHDL libraries).

68.10 Component declaration

The core has the following component declaration.

component srctrl
  generic (
    hindex  : integer := 0;
    romaddr : integer := 0;
    rommask : integer := 16#ff0#;
    ramaddr : integer := 16#400#;
    rammask : integer := 16#ff0#;;
    ioaddr  : integer := 16#200#;
    iomask  : integer := 16#ff0#;
    ramws   : integer := 0;
    romws   : integer := 2;
    iows    : integer := 2;
    rmw     : integer := 0;-- read-modify-write ena ble
    prom8en : integer := 0;
    oepol   : integer := 0;
    srbanks : integer range 1 to 5 := 1;
    banksz  : integer range 0 to 13:= 13;
    romasel : integer range 0 to 27:= 19
  );
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    ahbsi   : in  ahb_slv_in_type;
    ahbso   : out ahb_slv_out_type;
    sri     : in  memory_in_type;
    sro     : out memory_out_type;
    sdo     : out sdctrl_out_type
  );
end component; 

68.11 Instantiation

This example shows how the core can be instantiated. 

The example design contains an AMBA bus with a number of AHB components connected to it
including the memory controller. The external memory bus is defined on the example designs port
map and connected to the memory controller. System clock and reset are generated by GR Clock Gen-
erator and Reset Generator. 

AHBSI 1) Input AHB slave input signals -

AHBSO 1) Output AHB slave output signals -

SDO SDCASN Output Not used. All signals are driven to inactive state. Low

1) See GRLIB IP Library User’s Manual 

2) Polarity is selected with the oepol generic

Table 706.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration

Table 705.Signal descriptions

Signal name Field Type Function Polarity
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Memory controller decodes default memory areas: PROM area is 0x0 - 0xFFFFFF and SRAM area is
0x40000000 - 0x40FFFFF. The 8-bit PROM mode is disabled. Two SRAM banks of size 64 Mbyte
are used and the fifth chip select is disabled.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all;   -- used for I/O pads
use gaisler.misc.all; 
library esa;
use esa.memoryctrl.all;

entity srctrl_ex is
  port (
    clk : in std_ulogic;
    resetn : in std_ulogic;
    pllref : in  std_ulogic; 
    
    -- memory bus
    address  : out   std_logic_vector(27 downto 0);  -- memory bus
    data     : inout std_logic_vector(31 downto 0);
    ramsn    : out   std_logic_vector(4 downto 0);
    ramoen   : out   std_logic_vector(4 downto 0);
    rwen     : inout std_logic_vector(3 downto 0);
    romsn    : out   std_logic_vector(1 downto 0);
    iosn     : out   std_logic;
    oen      : out   std_logic;
    read     : out   std_logic;
    writen   : inout std_logic;
    brdyn    : in    std_logic;
    bexcn    : in    std_logic;
    modesel  : in    std_logic; --PROM width select
-- sdram i/f
    sdcke    : out std_logic_vector ( 1 downto 0);  -- clk en
    sdcsn    : out std_logic_vector ( 1 downto 0);  -- chip sel
    sdwen    : out std_logic;                       -- write en
    sdrasn   : out std_logic;                       -- row addr stb
    sdcasn   : out std_logic;                       -- col addr stb
    sddqm    : out std_logic_vector (7 downto 0);  -- data i/o mask
    sdclk    : out std_logic;                       -- sdram clk output
    sa       : out std_logic_vector(14 downto 0); - - optional sdram address
    sd       : inout std_logic_vector(63 downto 0) -- optional sdram data
       );
end;

architecture rtl of srctrl_ex is

  -- AMBA bus (AHB and APB)
  signal apbi  : apb_slv_in_type;
  signal apbo  : apb_slv_out_vector := (others => a pb_none);
  signal ahbsi : ahb_slv_in_type;
  signal ahbso : ahb_slv_out_vector := (others => a hbs_none);
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);

  -- signals used to connect memory controller and memory bus
  signal memi : memory_in_type;
  signal memo : memory_out_type;

  signal sdo : sdctrl_out_type;  

  signal wprot : wprot_out_type;  -- dummy signal, not used
  signal clkm, rstn : std_ulogic; -- system clock a nd reset

-- signals used by clock and reset generators
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  signal cgi : clkgen_in_type;
  signal cgo : clkgen_out_type;

  signal gnd : std_ulogic;
  
begin
  
  -- AMBA Components are defined here ... 

  -- Clock and reset generators
  clkgen0 : clkgen generic map (clk_mul => 2, clk_d iv => 2, sdramen => 1, 
                                tech => virtex2, sd invclk => 0)
  port map (clk, gnd, clkm, open, open, sdclk, open , cgi, cgo);

  cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pl lref <= pllref;
  
  rst0 : rstgen
  port map (resetn, clkm, cgo.clklock, rstn);  
  
  
  -- Memory controller
srctrl0 : srctrl generic map (rmw => 1, prom8en => 0, srbanks => 2, 
  banksz => 13, ramsel5 => 0)
    port map (rstn, clkm, ahbsi, ahbso(0), memi, me mo, sdo);

  -- I/O pads driving data memory bus data signals
  datapads : for i in 0 to 3 generate
      data_pad : iopadv generic map (width => 8)
      port map (pad => data(31-i*8 downto 24-i*8),
                o => memi.data(31-i*8 downto 24-i*8 ),
                en => memo.bdrive(i),
                i => memo.data(31-i*8 downto 24-i*8 ));
  end generate;

  -- Alternative I/O pad instantiation with vectore d enable instead
  datapads : for i in 0 to 3 generate
      data_pad : iopadvv generic map (width => 8)
      port map (pad => data(31-i*8 downto 24-i*8),
                o => memi.data(31-i*8 downto 24-i*8 ),
                en => memo.bdrive(31-i*8 downto 24- i*8),
                i => memo.data(31-i*8 downto 24-i*8 ));
  end generate;
  
  -- connect memory controller outputs to entity ou tput signals
  address <= memo.address; ramsn <= memo.ramsn; rom sn <= memo.romsn; 
  oen <= memo.oen; rwen <= memo.wrn; ramoen <= memo .ramoen; 
  writen <= memo.writen; read <= memo.read; iosn <=  memo.iosn;  
  sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn; 
  sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;

end;
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69 SSRCTRL- 32-bit SSRAM/PROM Controller

69.1 Overview

The memory controller (SSRCTRL) is an 32-bit SSRAM/PROM/IO controller that interfaces external
Synchronous pipelined SRAM, PROM, and I/O to the AMBA AHB bus. The controller acts as a slave
on the AHB bus and has a configuration register accessible through an APB slave interface. Figure
242 illustrates the connection between the different devices.

The controller is configured by VHDL-generics to decode three address ranges: PROM, SSRAM and
I/O area. By default PROM area is mapped into address range 0x0 - 0x00FFFFFF; the SSRAM area is
mapped into address range 0x40000000 - 0x40FFFFFF; and the I/O area is mapped to 0x20000000 -
0x20FFFFFF.

One chip select is generated for each of the address areas. The controller generates both a common
write-enable signal (WRITEN) as well as four byte-write enable signals (WRN). The byte-write
enable signal enables byte and half-word write access to the SSRAM. 

A signal (BDRIVE) is provided for enabling the bidirectional pads to which the data signals are con-
nected. The oepol generic is used to select the polarity of these enable signals. If output delay is an
issue, a vectored output enable signal (VBDRIVE) can be used instead. In this case, each pad has its
own enable signal driven by a separate register. A directive is placed on these registers so that they
will not be removed during synthesis (in case the output they drive is used in the design). 

The SSRCTRL conteoller can optionally support 16-bit PROM/IO devices. This is enabled through
the BUS16 generic. A 32-bit access to the PROM or IO area will be translated into two 16-bit
accesses with incrementing address.

Figure 242.  32-bit SSRAM/PROM/IO controller
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69.2 SSRAM/PROM waveform

Because the SSRAM (Synchronous pipelined SRAM) has a pipelined structure, the data output has a
latency of three clock cycles. The pipelined structure enables a new memory operation to be issued
each clock cycle. Figure 242 and figure 243 show timing diagrams for the SSRAM read and write
accesses.

As shown in the figure above, the controller always perform a burst read access to the memory. This
eliminates all data output latency except for the first word when a burst read operation is executed.

A write operation takes three clock cycles. On the rising edge of the first clock cycle, the address and
control signals are latched into the memory. On the next rising edge, the memory puts the data bus in
high-impedance mode. On the third rising edge the data on the bus is latched into the memory and the
write is complete. The controller can start a new memory (read or write) operation in the second clock
cycle. In figure 244 this is illustrated by a read operation following the write operation.

Due to the memory automatically putting the data bus in high-impedance mode when a write opera-
tion is performed, the output-enable signal (OEN) is held active low during all SSRAM accesses
(including write operations).

Figure 243.  32-bit SSRAM read cycle
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69.2.1 PROM and IO access

For the PROM and I/O operations, a number of waitstates can be inserted to increase the read and
write cycle. The number of waitstates can be configured separately for the I/O and PROM address
ranges, through a programmable register mapped into the APB address space. After a reset the wait-
states for PROM area is set to its maximum (15). Figure 245 and figure 246 show timing diagrams for
the PROM read and write accesses.

Read accesses to 32-bit PROM and I/O has the same timing, see figure 245

The write access for 32-bit PROM and I/O can be seen in figure 246

The SSRCTRL conteoller can optionally support 16-bit PROM/IO devices. This is enabled through
the BUS16 generic. A 32-bit access to the PROM or IO area will be translated into two 16-bit
accesses with incrementing address. A 16-bit access will result in one bus access only. 8-bit accesses
are not allowed.

16-bit PROM/IO operation is enabled by writing “01” to the romwidth field in SSRAM control regis-
ter. At reset, the romwidth field is set by the MEMI.BWIDTH input signal.

Figure 245.  32-bit PROM/IO read cycle
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Read accesses to 16-bit PROM and I/O has the same timing, see figure 247

The write access for 32-bit PROM and I/O can be seen in figure 248

69.3 Registers

The core is programmed through registers mapped into APB address space.

[3:0]: Prom read waitstates. Defines the number of waitstates during prom read cycles (“0000”=0, “0001”=1,...
“1111”=15).

Table 707.SSRAM controller registers

APB address offset Register

0x00 Memory configuration register

Figure 247.  32-bit PROM/IO read cycle in 16-bit mode
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[7:4]: Prom write waitstates. Defines the number of waitstates during prom write cycles (“0000”=0, “0001”=1,...
“1111”=15).
[9:8]: Prom width. Defines the data with of the prom area (“01”=16, “10”=32).

[10]: Reserved
[11]: Prom write enable. If set, enables write cycles to the prom area. NOT USED.
[17:12]: Reserved
[19]: I/O enable. If set, the access to the memory bus I/O area are enabled. NOT USED.
[23:20]: I/O waitstates. Defines the number of waitstates during I/O accesses (“0000”=0, 

“0001”=1, “0010”=2,..., “1111”=15).
[25]: Bus error (BEXCN) enable. NOT USED.
[26]: Bus ready (BRDYN) enable. NOT USED.
[28:27]:  I/O bus width. Defines the data with of the I/O area (“01”=16, “10”=32).

During power-up (reset), the PROM waitstates fields are set to 15 (maximum) and the PROM bus
width is set to the value of MEMI.BWIDTH. All other fields are initialized to zero.

69.4 Vendor and device identifier

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x00A. For description
of vendor and device identifiers see GRLIB IP Library User’s Manual.

69.5 Configuration options

Table 708 shows the configuration options of the core (VHDL generics).

69.6 Signal descriptions

Table 709 shows the interface signals of the core (VHDL ports).

Table 708.Configuration options

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

pindex APB slave index 0 - NAPBSLV-1 0

romaddr ADDR field of the AHB BAR0 defining PROM address space. 
Default PROM area is 0x0 - 0xFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address space. 0 - 16#FFF# 16#FF0#

ramaddr ADDR field of the AHB BAR1 defining RAM address space. 
Default RAM area is 0x40000000-0x40FFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining RAM address space. 0 -16#FFF# 16#FF0#

ioaddr ADDR field of the AHB BAR2 defining IO address space. 
Default IO area is 0x20000000-0x20FFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 -16#FFF# 16#FF0#

paddr ADDR field of the APB BAR configuration registers address 
space.

0 - 16#FFF# 0

pmask MASK field of the APB BAR configuration registers address 
space.

0 - 16#FFF# 16#FFF#

oepol Polarity of bdrive and vbdrive signals. 0=active low, 1=active 
high

0 - 1 0

bus16 Enable support for 16-bit PROM/IO accesses 0 - 1 0

Table 709.Signal descriptions

Signal name Field Type Function Polarity

CLK N/A Input Clock -
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RST N/A Input Reset Low

SRI DATA[31:0] Input Memory data High

BRDYN Input Not used -

BEXCN Input Not used -

WRN[3:0] Input Not used -

BWIDTH[1:0] Input PROM bus width at reset -

SD[63:0] Input Not used -

CB[7:0] Input Not used -

SCB[7:0] Input Not used -

EDAC Input Not used -

SRO ADDRESS[27:0] Output Memory address High

DATA[31:0] Output Memory data High

SDDATA[63:0] Output Not used -

RAMSN[7:0] Output SSRAM chip-select, only bit 0 is used Low

RAMOEN[7:0] Output Same as OEN Low

IOSN Output I/O chip-select Low

ROMSN[7:0] Output PROM chip-select, only bit 0 is used Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SSRAM byte write enable:

WRN[0] corresponds to DATA[31:24],

WRN[1] corresponds to DATA[23:16],

WRN[2] corresponds to DATA[15:8],

WRN[3] corresponds to DATA[7:0].

Low

MBEN[3:0] Output Not used Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory 
bus:

BDRIVE[0] corresponds to DATA[31:24],

BDRIVE[1] corresponds to DATA[23:16],

BDRIVE[2] corresponds to DATA[15:8],

BDRIVE[3] corresponds to DATA[7:0].

Any BDRIVE[ ] signal can be used for CB[ ].

Low/High2

VBDRIVE[31:0] Output Identical to BDRIVE but has one signal for each 
data bit. Every index is driven by its own regis-
ter. This can be used to reduce the output delay.

Low/High2

SVBDRIVE Output Not used -

READ Output Not used -

SA[14:0] Output Not used -

CB[7:0] Output Not used -

SCB[7:0] Output Not used -

VCDRIVE[7:0] Output Not used -

SVCDRIVE[7:0] Output Not used -

CE Output Not used -

AHBSI 1) Input AHB slave input signals -

Table 709.Signal descriptions

Signal name Field Type Function Polarity



658

69.7 Library dependencies

Table 710 shows libraries used when instantiating the core (VHDL libraries).

69.8 Component declaration

The core has the following component declaration.

component ssrctrl
  generic (
    hindex  : integer := 0;
    pindex  : integer := 0;
    romaddr : integer := 0;
    rommask : integer := 16#ff0#;
    ramaddr : integer := 16#400#;
    rammask : integer := 16#ff0#;
    ioaddr  : integer := 16#200#;
    iomask  : integer := 16#ff0#;
    paddr   : integer := 0;
    pmask   : integer := 16#fff#;

oepol   : integer := 0;
bus16 : integer := 0

  );
  port (
    rst     : in  std_ulogic;
    clk     : in  std_ulogic;
    ahbsi   : in  ahb_slv_in_type;
    ahbso   : out ahb_slv_out_type;
    apbi    : in  apb_slv_in_type;
    apbo    : out apb_slv_out_type;
    sri     : in  memory_in_type;
    sro     : out memory_out_type

  );
end component;

69.9 Instantiation

This example shows how the core can be instantiated. 

The example design contains an AMBA bus with a number of AHB components connected to it,
including the memory controller. The external memory bus is defined in the example designs port
map and connected to the memory controller. System clock and reset are generated by the
Clkgen_ml401 Clock Generator and GR Reset Generator. 

AHBSO 1) Output AHB slave output signals -

APBI 1) Input APB slave input signals -

APBO 1) Output APB slave output signals -

1) See GRLIB IP Library User’s Manual 

2) Polarity is selected with the oepol generic

Table 710.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, component dec-
laration

Table 709.Signal descriptions

Signal name Field Type Function Polarity
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The memory controller decodes default memory areas: PROM area is 0x0 - 0x00FFFFFF, I/O-area is
0x20000000-0x20FFFFFF and RAM area is 0x40000000 - 0x40FFFFFF.

library ieee;
use ieee.std_logic_1164.all;
library grlib, techmap;
use grlib.amba.all;
use grlib.stdlib.all;
use techmap.gencomp.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all;

entity ssrctrl_ex is
 port (
    sys_rst_in: in  std_ulogic;
    sys_clk: in  std_ulogic; -- 100 MHz main clock
    sram_flash_addr : out std_logic_vector(22 downt o 0);
    sram_flash_data : inout std_logic_vector(31 dow nto 0);
    sram_cen  : out std_logic;
    sram_bw   : out std_logic_vector (0 to 3);
    sram_flash_oe_n : out std_ulogic;
    sram_flash_we_n : out std_ulogic;
    flash_ce  : out std_logic;
    sram_clk  : out std_ulogic;
    sram_clk_fb: in  std_ulogic; 
    sram_mode : out std_ulogic;
    sram_adv_ld_n : out std_ulogic;
    sram_zz : out std_ulogic;
    iosn    : out std_ulogic;
);
end;

architecture rtl of ssrctrl_ex is

-- Clock generator component
component clkgen_ml401
  generic (
    clk_mul  : integer := 1; 
    clk_div  : integer := 1;
    freq     : integer := 100000);-- clock frequenc y in KHz
  port (
    clkin   : in  std_logic;
    clk     : out std_logic;-- main clock
    ddrclk  : out std_logic;-- DDR clock
    ddrclkfb: in  std_logic;-- DDR clock feedback
    ddrclk90  : out std_logic;-- DDR 90 clock
    ddrclk180 : out std_logic;-- 180 clock
    ddrclk270 : out std_logic;-- DDR clock
    ssrclk  : out std_logic;-- SSRAM clock
    ssrclkfb: in  std_logic;-- SSRAM clock feedback
    cgi     : in clkgen_in_type;
    cgo     : out clkgen_out_type);
end component; 

-- signals used to connect memory controller and me mory bus
signal memi  : memory_in_type;
signal memo  : memory_out_type;

-- AMBA bus (AHB and APB)
signal apbi  : apb_slv_in_type;
signal apbo  : apb_slv_out_vector := (others => apb _none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahb s_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahb m_none);

-- Signals used by clock and reset generators
signal clkm, rstn, rstraw, srclkl : std_ulogic;
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signal cgi   : clkgen_in_type;
signal cgo   : clkgen_out_type;
signal ddrclkfb, ssrclkfb, ddr_clkl, ddr_clknl : st d_ulogic;

begin

  clkgen0 : clkgen_ml401  -- clock generator
  port map (sys_clk, clkm, ddr_clkl, ddrclkfb, open , ddr_clknl, open, sram_clk, 
      sram_clk_fb, cgi, cgo);

  rst0 : rstgen-- reset generator
  port map (sys_rst_in, clkm, cgo.clklock, rstn, rs traw);

  -- AMBA Components are defined here ...
 
  -- Memory controller
  mctrl0 : ssrctrl generic map (hindex => 0, pindex  => 0)
  port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo (0), memi, memo);
 
  -- connect memory controller outputs to entity ou tput signals
  sram_adv_ld_n <=  ’0’; sram_mode <=  ’0’; sram_zz  <= ’0’;
  sram_flash_addr <= memo.address(24 downto 2); sra m_cen <= memo.ramsn(0); 
  flash_ce <= memo.romsn(0); sram_flash_oe_n <= mem o.oen; iosn <= memo.iosn;
  sram_bw <= memo.wrn; sram_flash_we_n <= memo.writ en;
  
  -- I/O pad instantiation with vectored enable ins tead
  bdr : for i in 0 to 31 generate
      data_pad : iopad generic map (tech => padtech )
      port map (sram_flash_data(i), memo.data(i),
             memo.vbdrive(i), memi.data(i));
  end generate;

end;
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70 SVGACTRL - VGA Controller Core

70.1 Overview

The core is a pixel based video controller (frame buffer), capable of displaying standard and custom
resolutions with variable bit depth and refresh rates. The video controller consists of a synchroniza-
tion unit, main control unit, FIFO unit and an AHB master as shown in the figure below.

70.2 Operation

The core uses external frame buffer memory located in the AHB address space. A frame on the dis-
play is created by fetching the pixel data from memory, and sending it to the screen through an exter-
nal DAC using three 8-bit color vectors. To hide the AHB bus latency, the pixel data is buffered in a
FIFO inside the core. The start address of the frame buffer is specified in the Frame buffer Memory
Position register, and can be anywhere in the AHB address space. In addition to the color vectors the,
video controller also generates HSYNC, VSYNC, CSYNC and BLANK signals control signals.

The video timing is programmable through the Video Length, Front Porch, Sync Length and Line
Length registers. The bit depth selection and enabling of the controller is done through the status reg-
ister. These values makes it possible to display a wide range of resolutions and refresh rates. 

The pixel clock can be either static or a dynamic multiplexed. The frequency of the pixel clock is cal-
culated as  “Horizontal Line Length * Vertical Line Length * refresh rate”. When using a dynamically
multiplexed clock, bits [5:4] in the status register are used to control the clock selector. The dynamic
pixel clocks should be defined in the core’s VHDL generics to allow software to read out the available
pixel clock frequencies.

The core can use bit depths of 8, 16 and 32 bits. When using 32 bits, bits[23:0] are used, when 16 bits
a [5,6,5] color scheme is used and when using 8 bits a color lookup table “CLUT” is used. The CLUT
has 256 addresses each 24 bits wide and the 8 bit values read from memory are used to index the
CLUT to obtain the actual color.
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70.3 Registers

The core is programmed through registers mapped into APB address space.

Table 711.VGA controller registers

APB address offset Register

0x00 Status register

0x04 Video length register

0x08 Front Porch register

0x0C Sync Length register

0x10 Line Length register

0x14 Framebuffer Memory Position register

0x18 Dynamic Clock 0 register

0x1C Dynamic Clock 1 register

0x20 Dynamic Clock 2 register

0x24 Dynamic Clock 3 register

0x28 CLUT Access register

Table 712. VGA controller Status register
31 10 9 8 7 6 5 4 3 2 1 0

RESERVED VPOL HPOL CLKSEL BDSEL RUN VR RST EN

31:10 RESERVED

9 V polarity (VPOL)- Sets the polarity for the vertical sync pulse.

8 H polarity (HPOL) - Sets the polarity for the horizontal sync pulse.

7:6 Clock Select (CLKSEL) Clock selector when using dynamic pixelclock

5:4 Bit depth selector (BDSEL) - “01” = 8-bit mode; “10” = 16-bit mode; “10” or “11” = 32-bit mode

3 Running (RUN) - Displays the current mode active high

2 Vertical Refresh (VR) - Displays current refresh state, active high

1 Reset (RST) - Resets the core

0 Enable (EN) - Enables the core

Table 713. VGA controller Video Length register
31 16 15 0

VRES HRES

31:16 Vertical screen resolution (VRES) - Vertical screen resolution in pixels -1

15:0 Horisontal screen resolution (HRES) - Horizontal screen resolution in pixels -1.

Table 714. VGA controller Front porch register
31 16 15 0

VPORCH HPORCH

31:16 Vertical front porch (VPORCH) - Vertical front porch in pixels.

15:0 Horisontal front porch (HPORCH) - Horizontal front porch in pixels.
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Table 715. VGA controller Sync pulse register
31 16 15 0

VPLEN HPLEN

31:16 Vertical sync pulse length (VPLEN) - Vertical sync pulse length in pixels.

15:0 Horisontal sync pulse length (HPLEN) - Horizontal sync pulse length in pixels.

Table 716. VGA controller Line Length register
31 16 15 0

VLLEN HLLEN

31:16 Vertical line length (VLLEN) - The length of the total line with front and back porch, sync pulse 
length and vertical screen resolution.

15:0 Horisontal line length (HLLEN) - The length of the total line with front and back porch, sync pulse 
length and horizontal screen resolution,

Table 717. VGA controller Framebuffer Memory Position register
31 0

FMEM

31:0 Framebuffer memory position (FMEM) - Holds the memory position of the framebuffer, must be 
aligned on a 1 Kbyte boundary.

Table 718. VGA controller Dynamic clock 0 register
31 0

CLK0

31:0 Dynamic pixel clock 0 (CLK0) - Dynamic pixel clock defined in ps.

Table 719. VGA controller Dynamic clock 1 register
31 0

CLK1

31:0 Dynamic pixel clock 1 (CLK1) - Dynamic pixel clock defined in ps.

Table 720. VGA controller Dynamic clock 2 register
31 0

CLK2

31:0 Dynamic pixel clock 2 (CLK2) - Dynamic pixel clock defined in ps.
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70.4 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x063. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

70.5 Configuration options

Table 723 shows the configuration options of the core (VHDL generics).

Table 721. VGA controller Dynamic clock 3 register
31 0

CLK3

31:0 Dynamic pixel clock 3 (CLK3) - Dynamic pixel clock defined in ps.

Table 722. VGA controller CLUT Access register
31 24 23 16 15 6 7 0

CREG RED GREEN BLUE

31:24 Color lookup table register (CREG) - Color lookup table register to set.

23:16 Red color data (RED) - Red color data to set in the specified register.

15:8 Green color data (GREEN) - Green color data to set in the specified register.

7:0 Blue color data (BLUE) - Blue color data to set in the specified register.

Table 723.Configuration options

Generic name Function Allowed range Default

length Size of the pixel FIFO 3 - 1008 384

part Pixel FIFO part length 1 - 336 128

memtech Memory technology 0 - NTECH 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr 12-bit MSB APB address 0 - 16#FFF# 0

pmask APB address mask 0 - 16#FFF# 16#FFF#

hindex AHB master index 0 - NAHBMST-1 0

hirq Interrupt line 0 - NAHBIRQ-1 0

clk0 Period of dynamic clock 0 in ps 0- 16#FFFFFFFF# 40000

clk1 Period of dynamic clock 1 in ps 0- 16#FFFFFFFF# 20000

clk2 Period of dynamic clock 2 in ps 0- 16#FFFFFFFF# 15385

clk3 Period of dynamic clock 3 in ps 0- 16#FFFFFFFF# 0

burstlen AHB burst length. The core will burst 2burstlen words. 2 - 8 8
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70.6 Signal descriptions

Table 724 shows the interface signals of the core (VHDL ports).

70.7 Library dependencies

Table 725 shows the libraries used when instantiating the core (VHDL libraries).

70.8 Instantiation

This example shows how the core can be instantiated.

library grlib; 
use grlib.amba.all; 
library Gaisler;
use gaiser.misc.all; 
. 
architecture rtl of test is 
signal apbi : apb_slv_in_type; 
signal apbo : apb_slv_out; 
signal vgao : apbvga_out_type; 
signal ahbi : ahb_mst_in_type; 
signal ahbo : ahb_mst_out_type; 
signal clk_sel :std_logic_vector(1 downto 0)); 
signal clkmvga : std_logic; 
begin 
. 
. 
-- VGA Controller 
  vga0 : svgactrl 
  generic map(memtech => memtech, pindex => 6, padd r => 6, hindex => 6, 

Table 724.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input System clock -

VGACLK N/A Input Pixel clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

VGAO HSYNC Output Horizontal sync -

VSYNC Output Vertical sync -

CSYNC Output Composite sync -

BLANK Output Blanking -

VIDEO_OUT_R[7:0] Output Video out, red. -

VIDEO_OUT_G[7:0] Output Video out, green. -

VIDEO_OUT_B[7:0] Output Video out, blue. -

AHBI * Input AHB master input signals -

AHBO * Output AHB master output signals -

CLK_SEL[1:0] N/A Output 2-bit clock selector -

* see GRLIB IP Library User’s Manual

Table 725.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component, signals Component and signal definitions.
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    clk0 => 40000, clk1 => 20000, clk2 => 15385, cl k3 => 0) 
  port map(rstn,clkm,clkmvga, apbi, apbo(6), vgao,a hbmi,ahbmo(6),clk_sel); 
end; 

70.9 Linux-2.6 command line options

A video driver for  SVGACTRL is provided Snapgear Linux (-p27 and later) from Gaisler Research.
The proper kernel command line options must be used for the driver to detect the core. The table
below lists the boot options and the order they should appear in.
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71 SYNCRAM - Single-port RAM generator

71.1 Overview

The single port RAM has a common address bus, and separate data-in and data-out buses. All inputs
are latched on the on the rising edge of clk. The read data appears on dataout directly after the clk ris-
ing edge.

71.2 Configuration options

Table 726 shows the configuration options of the core (VHDL generics).

Table 727 shows the supported technologies for the core.

Table 726.Configuration options

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -

Table 727.Supported technologies

Tech name Technology RAM cell abit range dbit range

altera All Altera devices altsyncram unlimited unlimited

ihp15 IHP 0.25 sram2k (512x32) 2 - 9 unlimited

inferred Behavioral description Tool dependent unlimited unlimited

virtex Xilinx Virtex, VirtexE, Spartan2 RAMB4_Sn 2 - 12 unlimited

virtex2 Xilinx Virtex2, Spartan3, Virtex4,
Spartan3e

RAMB16_Sn 2 - 14 unlimited

axcel Actel AX, RTAX RAM64K36 2 - 12 unlimited

proasic Actel Proasic RAM256x9SST 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9, ram512x18 2 - 12 unlimited

lattice Lattice XP/EC/ECP sp8ka 2 - 13 unlimited

memvirage Virage ASIC RAM hdss1_128x32cm4sw0
hdss1_256x32cm4sw0
hdss1_512x32cm4sw0
hdss1_1024x32cm8sw0

7 - 11 32

memartisan Artisan ASIC RAM sp_256x32m32
sp_512x32m32
sp_1kx32m32
sp_2kx32m32
sp_4kx32m32
sp_8kx32m32
sp_16kx32m32

8 - 14 32

memvirage90 Virage 90 nm ASIC RAM SPRAM_HS_32x30
SPRAM_HS_128x32
SPRAM_HS_256x32
SPRAM_HS_1024x32 

2 - 10 128

eclipse Aeroflex/Quicklogic FPGA RAM128x18_25um
RAM256X9_25um
RAM512X4_25um
RAM1024X2_25um

2 - 10 unlimited

easic90 eASIC 90 nm Nextreme eram, bram 2 - 15 unlimited
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71.3 Signal descriptions

Table 728 shows the interface signals of the core (VHDL ports).

71.4 Library dependencies

Table 729 shows libraries used when instantiating the core (VHDL libraries).

71.5 Component declaration

The core has the following component declaration.

library techmap;
use techmap.gencomp.all;

  component syncram
  generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8);
  port (
    clk      : in std_ulogic;
    address  : in std_logic_vector((abits -1) downt o 0);
    datain   : in std_logic_vector((dbits -1) downt o 0);
    dataout  : out std_logic_vector((dbits -1) down to 0);
    enable   : in std_ulogic;
    write    : in std_ulogic);
  end component;

71.6 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
.

clk      : std_ulogic;
address  : std_logic_vector((abits -1) downto 0);
datain   : std_logic_vector((dbits -1) downto 0);
dataout  : std_logic_vector((dbits -1) downto 0);
enable   : std_ulogic;
write    : std_ulogic);

ram0 : syncram generic map ( tech => tech, abits =>  addrbits, dbits => dbits)
      port map ( clk, addr, datain, dataout, enable , write);

Table 728.Signal descriptions

Signal name Field Type Function Active

CLK N/A Input Clock. All input signals are latched on the rising 
edge of the clock.

-

ADDRESS N/A Input Address bus. Used for both read and write 
access.

-

DATAIN N/A Input Data inputs for write data -

DATAOUT N/A Output Data outputs for read data -

ENABLE N/A Input Chip select High

WRITE N/A Input Write enable High

Table 729.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Constants Technology contants
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72 SYNCRAM_2P - Two-port RAM generator

72.1 Overview

The two-port RAM generator has a one read port and one write port. Each port has a separate address
and data bus. All inputs are registered on the rising edge of clk. The read data appears on dataout
directly after the clk rising edge. Address width, data width and target technology is parametrizable
through generics.

Write-through is supported if the function syncram_2p_write_through(tech) returns 1 for the target
technology.

72.2 Configuration options

Table 730 shows the configuration options of the core (VHDL generics).

Table 731 shows the supported technologies for the core.

Table 730.Configuration options

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -

sepclk If 1, separate clocks (rclk/wclk) are used for the two ports. If 0, 
rclk is used for both ports.

0 - 1 0

Table 731.Supported technologies

Tech name Technology RAM cell abit range dbit range

Inferred Behavioural description Tool dependent unlimited unlimited

altera All Altera devices altsyncram umlimited unlimited

virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited

virtex2 Xilinx Virtex2, Spartan3, Virtex4, 
Spartan3e

RAMB16_Sn 2 - 14 unlimited

axcel Actel AX, RTAX RAM64K36 2 - 12 unlimited

proasic Actel Proasic RAM256x9SST 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9, ram512x18 2 - 12 unlimited

lattice Lattice XP/EC/ECP dp8ka 2 - 13 unlimited

memvirage Virage ASIC RAM hdss2_64x32cm4sw0
hdss2_128x32cm4sw0
hdss2_256x32cm4sw0
hdss2_512x32cm4sw0

6 - 9 32

memartisan Artisan ASIC RAM rf2_256x32m4
rf2_512x32m4

8 - 9 32

eclipse Aeroflex/Quicklogic FPGA RAM128x18_25um
RAM256X9_25um
RAM512X4_25um
RAM1024X2_25um

2 - 10 unlimited

easic90 eASIC 90 nm Nextreme eram 2 - 12 unlimited
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72.3 Signal descriptions

Table 732 shows the interface signals of the core (VHDL ports).

72.4 Library dependencies

Table 733 shows libraries used when instantiating the core (VHDL libraries).

72.5 Component declaration

The core has the following component declaration.

library techmap;
use techmap.gencomp.all;

component syncram_2p
  generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8; sepclk : integer 
:= 0);
  port (
    rclk     : in std_ulogic;
    renable  : in std_ulogic;
    raddress : in std_logic_vector((abits -1) downt o 0);
    dataout  : out std_logic_vector((dbits -1) down to 0);
    wclk     : in std_ulogic;
    write    : in std_ulogic;
    waddress : in std_logic_vector((abits -1) downt o 0);
    datain   : in std_logic_vector((dbits -1) downt o 0));
  end component;

72.6 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;

rclk     : in std_ulogic;
renable  : in std_ulogic;
raddress : in std_logic_vector((abits -1) downto 0) ;
dataout  : out std_logic_vector((dbits -1) downto 0 );
wclk     : in std_ulogic;

Table 732.Signal descriptions

Signal name Field Type Function Active

RCLK N/A Input Read port clock -

RENABLE N/A Input Read enable High

RADDRESS N/A Input Read address bus -

DATAOUT N/A Output Data outputs for read data -

WCLK N/A Input Write port clock -

WRITE N/A Input Write enable High

WADDRESS N/A Input Write address -

DATAIN N/A Input Write data -

Table 733.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Constants Technology contants
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write    : in std_ulogic;
waddress : in std_logic_vector((abits -1) downto 0) ;
datain   : in std_logic_vector((dbits -1) downto 0) );

ram0 : syncram_2p generic map ( tech => tech, abits  => addrbits, dbits => dbits)
      port map ( rclk, renable, raddress, dataout, wclk, write, waddress, datain, enable, 
write);
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73 SYNCRAM_DP - Dual-port RAM generator

73.1 Overview

The dual-port RAM generator has two independent read/write ports. Each port has a separate address
and data bus. All inputs are latched on the on the rising edge of clk. The read data appears on dataout
directly after the clk rising edge. Address width, data width and target technology is parametrizable
through generics. Simultaneous write to the same address is technology dependent, and generally not
allowed.

73.2 Configuration options

Table 734 shows the configuration options of the core (VHDL generics).

Table 735 shows the supported technologies for the core.

Table 734.Configuration options

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -

Table 735.Supported technologies

Tech name Technology RAM cell abit range dbit range

altera All altera devices altsyncram unlimited unlimited

virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited

virtex2 Xilinx Virtex2, Spartan3, Virtex4, 
Spartan3e

RAMB16_Sn 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9 2 - 12 unlimited

lattice Lattice XP/EC/ECP dp8ka 2 - 13 unlimited

memvirage Virage ASIC RAM hdss2_64x32cm4sw0
hdss2_128x32cm4sw0
hdss2_256x32cm4sw0
hdss2_512x32cm4sw0

6 - 9 32

memartisan Artisan ASIC RAM dp_256x32m4
dp_512x32m4
dp_1kx32m4

8 - 10 32

memvirage90 Virage 90 nm ASIC RAM DPRAM_HS_256x20
DPRAM_HS_256x32

2 - 8 128
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73.3 Signal descriptions

Table 736 shows the interface signals of the core (VHDL ports).

73.4 Library dependencies

Table 737 shows libraries used when instantiating the core (VHDL libraries).

73.5 Component declaration

The core has the following component declaration.

library techmap;
use techmap.gencomp.all;

component syncram_dp
  generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8);
  port (
    clk1     : in std_ulogic;
    address1 : in std_logic_vector((abits -1) downt o 0);
    datain1  : in std_logic_vector((dbits -1) downt o 0);
    dataout1 : out std_logic_vector((dbits -1) down to 0);
    enable1  : in std_ulogic;
    write1   : in std_ulogic;
    clk2     : in std_ulogic;
    address2 : in std_logic_vector((abits -1) downt o 0);
    datain2  : in std_logic_vector((dbits -1) downt o 0);
    dataout2 : out std_logic_vector((dbits -1) down to 0);
    enable2  : in std_ulogic;
    write2   : in std_ulogic);
  end component;

73.6 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;
library techmap;

Table 736.Signal descriptions

Signal name Field Type Function Active

CLK1 N/A Input Port1 clock -

ADDRESS1 N/A Input Port1 address -

DATAIN1 N/A Input Port1 write data -

DATAOUT1 N/A Output Port1 read data -

ENABLE1 N/A Input Port1 chip select High

WRITE1 N/A Input Port 1 write enable High

CLK2 N/A Input Port2 clock -

ADDRESS2 N/A Input Port2 address -

DATAIN2 N/A Input Port2 write data -

DATAOUT2 N/A Output Port2 read data -

ENABLE2 N/A Input Port2 chip select High

WRITE2 N/A Input Port 2 write enable High

Table 737.Library dependencies

Library Package Imported unit(s) Description

TECHMAP GENCOMP Constants Technology contants
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use techmap.gencomp.all;

clk1     : in std_ulogic;
address1 : in std_logic_vector((abits -1) downto 0) ;
datain1  : in std_logic_vector((dbits -1) downto 0) ;
dataout1 : out std_logic_vector((dbits -1) downto 0 );
enable1  : in std_ulogic;
write1   : in std_ulogic;
clk2     : in std_ulogic;
address2 : in std_logic_vector((abits -1) downto 0) ;
datain2  : in std_logic_vector((dbits -1) downto 0) ;
dataout2 : out std_logic_vector((dbits -1) downto 0 );
enable2  : in std_ulogic;
write2   : in std_ulogic);

ram0 : syncram_dp generic map ( tech => tech, abits  => addrbits, dbits => dbits)
      port map ( clk1, address1, datain1, dataout1,  enable1, write1, clk2, address2, datain2, 
dataout2, enable2, write2);
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74 TAP - JTAG TAP Controller

74.1 Overview

JTAG TAP Controller provides an Test Access Port according to IEEE-1149 (JTAG) Standard. The
core implements the Test Access Port signals, the synchronous TAP state-machine, a number of JTAG
data registers (depending on the target technology) and an interface to user-defined JTAG data regis-
ters. 

74.2 Operation

74.2.1 Generic TAP Controller

The generic TAP Controller implements JTAG Test Access Point interface with signals TCK, TMS,
TDI and TDO, a synchronous state-machine compliant to the IEEE-1149 standard, JTAG instruction
register and two JTAG data registers: bypass and device identification code register. The core is capa-
ble of shifting and updating the JTAG instruction register, putting the device into bypass mode
(BYPASS instruction) and shifting out the devices identification number (IDCODE instruction).
User-defined JTAG test registers are accessed through user-defined data register interface.

The access to the user-define test data registers is provided through the user-defined data register
interface. The instruction in the TAP controller instruction register appears on the interface as well as
shift-in data and signals indicating that the TAP controller is in Capture-Data-Register, Shift-Data-
Register or Update-Data-Register state. Logic controlling user-defined data registers should observe
value in the instruction register and TAP controller state signals in order to capture data, shift data or
update data-registers.

JTAG test registers such as boundary-scan register can be interfaced to the TAP controller through the
user data register interface.

74.3 Technology specific TAP controllers

The core instantiates technology specific TAP controller for Altera and Xilinx devices.

74.4 Registers

The core implements three JTAG registers: instruction, bypass and device identification code register.

74.5 Vendor and device identifiers

The core does not have vendor and device identifiers since it does not have AMBA interfaces.

Figure 250.  TAP controller block diagram
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74.6 Configuration options

Table 738 shows the configuration options of the core (VHDL generics).

74.7 Signal descriptions

Table 739 shows the interface signals of the core (VHDL ports).

*) If the target technology is Xilinx or Altera the cores JTAG signals TCK, TCKN, TMS, TDI and
TDO are not used. Instead the dedicated FPGA JTAG pins are used. These pins are implicitly made
visible to the core through technology-specific TAP macro instantiation. 

Table 738.Configuration options

Generic Function Allowed range Default

tech Target technology 0 - NTECH 0

irlen Instruction register length (generic tech only) 2 - 8 4

idcode JTAG IDCODE instruction code(generic tech only) 0 - 255 9

manf Manufacturer id. Appears as bits 11-1 in TAP controllers device 
identification register. Used only for generic technology. Default 
is Gaisler Research manufacturer id.

0 - 2047 804 

part Part number (generic tech only). Bits 27-12 in device id. reg. 0 - 65535 0

ver Version number (generic tech only). Bits 31-28 in device id. reg. 0-15 0

trsten Support optional TRST signal (generic tech only) 0 - 1 1

Table 739.Signal declarations

Signal name Field Type Function Active

TRST N/A Input JTAG TRST signal* Low

TCK N/A Input JTAG clock* -

TMS N/A Input JTAG TMS signal* High

TDI N/A Input JTAG TDI signal* High

TDO N/A Output JTAG TDO signal* High

TDOEN N/A Output JTAG TDO enable signal* High

User-defined data register interface

TAPO_TCK N/A Output TCK signal High

TAPO_TDI N/A Output TDI signal High

TAPO_INST[7:0] N/A Output Instruction in the TAP Ctrl instruction register High

TAPO_RST N/A Output TAP Controller in Test-Logic_Reset state High

TAPO_CAPT N/A Output TAP Controller in Capture-DR state High

TAPO_SHFT N/A Output TAP Controller in Shift-DR state High

TAPO_UPD N/A Output TAP Controller in Update-DR state High

TAPO_XSEL1 N/A Output Xilinx User-defined Data Register 1 selected 
(Xilinx tech only)

High

TAPO_XSEL2 N/A Output Xilinx User-defined Data Register 2 selected 
(Xilinx tech only)

High

TAPI_EN1 N/A Input Enable shift-out data port 1 (TAPI_TDO1), when 
disabled data on port 2 is used

High

TAPI_TDO1 N/A Input Shift-out data from user-defined register port 1 High

TAPI_TDO2 N/A Input Shift-out data from user-defined register port 2 High
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74.8 Library dependencies

Table 740 shows libraries used when instantiating the core (VHDL libraries).

74.9 Instantiation

This example shows how the core can be instantiated. 

library ieee;
use ieee.std_logic_1164.all;

library gaisler;
use gaisler.jtag.all;

entity tap_ex is
  port (
    clk : in std_ulogic;
    rst : in std_ulogic;

    -- JTAG signals
    tck  : in std_ulogic; 
    tms  : in std_ulogic;
    tdi  : in std_ulogic;
    tdo  : out std_ulogic
);
end;

architecture rtl of tap_ex is
  
signal gnd : std_ulogic;

signal tapo_tck, tapo_tdi, tapo_rst, tapo_capt : st d_ulogic;
signal tapo_shft, tapo_upd : std_ulogic;
signal tapi_en1, tapi_tdo : std_ulogic;
signal tapo_inst : std_logic_vector(7 downto 0);

begin
  
 gnd <= ‘0’;
 tckn <= not tck;

-- TAP Controller

  tap0 : tap (tech => 0)
    port map (rst, tck, tckn, tms, tdi, tdo, open, tapo_tck, tapo_tdi, tapo_inst, 
      tapo_rst, tapo_capt, tapo_shft, tapo_upd, ope n, open,
       tapi_en1, tapi_tdo, gnd);

-- User-defined JTAG data registers
 
  ... 
 

end;

Table 740.Library dependencies

Library Package Imported unit(s) Description

GAISLER JTAG Component TAP Controller component declaration
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75 USBDCL - USB Debug Communication Link

75.1 Overview

The Universal Serial Bus Debug Communication Link (USBDCL) provides an interface between an
USB 2.0 bus and an AMBA-AHB bus. An external High-/Full-Speed Universal Transceiver Macro-
cell Interface (UTMI) with an 8-bit interface is needed to connect to the USB. The USBDCL is an
AHB master and provides read and write access to the whole AHB address space using a simple pro-
tocol over two USB bulk endpoints. Figure 251 shows how the USBDCL should be connected to the
UTMI.

75.2 Operation

75.2.1 System overview

Figure 252 shows the internal structure of the USBDCL. This section describes the function of the dif-
ferent blocks briefly. 

The Speed Negotiation Engine (SNE) detects connection by monitoring VBUS on the USB connector.
When a steady 5 V voltage is detected the SNE waits for a reset and then starts the High-speed nego-
tiation. When the Speed negotiation and reset procedure is finished the selected speed mode is noti-
fied to the Serial Interface Engine (SIE). 

The SIE is enabled when the SNE notifies that the reset procedure has finished. It then waits for pack-
ets to arrive and processes them according to the USB 2.0 specification. There are four endpoints: one
in/out pair of control type with number 0 (default pipe) and one in/out pair of bulk type with number
1. Data received to an endpoint is stored in the endpoint’s buffer located in block ram. 

The AIE reads the packets from the endpoint buffers and if the packet was received to endpoint 0 the
device request is processed directly and a response is stored in the buffer for IN endpoint 0. This is
also notified to the SIE which transmits the data to the host when the next IN token arrives. Device
requests never access the AHB bus.

USBDCL

Figure 251.  USBDCL connected to an external UTMI device.

UTMI

AHB USBFPGA
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If the packet was received to endpoint 1 it is an AHB command and the AIE performs the operation
on the AHB bus. Read commands arrive to OUT endpoint 1 and the read data from the AHB bus is
stored in the buffer of IN endpoint 1 and transmitted in the same manner as for endpoint 0.

Write commands also arrive to OUT endpoint 1 and are executed on the bus immediately. No reply is
sent for writes.

Each endpoint has two buffers that can hold one max payload packet each. The USBDCL automati-
cally alternates between them when a packet has been received/transmitted. When it operates in high-
speed mode OUT transactions are replied with a ACK handshake if the other buffer (the one to which
the packet is not stored) is empty and with a NYET if is full. A NAK is sent if both are full since the
packet cannot be received.

75.2.2 Protocol

The protocol used for the AHB commands is very simple and consists of two 32-bit control words.
The first word consists of the 32-bit AHB address and the second consists of a read/write bit at bit 31
and the number of words to be written at bits 16 downto 2. All other bits in the second word are
reserved for future use and must be set to 0. The read/write bit must be set to 1 for writes.

Figure 253 shows the layout of a write command. The command should be sent as the data cargo of an
OUT transaction to endpoint 1. The data for a command must be included in the same packet. The
maximum payload is 512 B when running in high-speed mode and 64 B in full-speed mode. Since the
control information takes 8 B the maximum number of bytes per command is 504 B and 56 B respec-
tively. Subword writes are not supported so the number of bytes must be a multiple of four between 0
and 504. 

The words should be sent with the one to be written at the start address first. Individual bytes should
be transmitted msb first, i.e. the one at bits 31-24. 

USBDCL

AHB Master
Interface AIE

SIE

SNE

XCVR_SELECT
RESET
DATAIN(7:0)
CLK
LINESTATE(1:0)
TXREADY
RXVALID
RXACTIVE
DATAOUT(7:0)
RXERROR

Figure 252.  Block diagram of the internal structure of the USBDCL.
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There is no reply sent for writes since the USB handshake mechanism for bulk writes guarantees that
the packet has been correctly received by the target.

Figure 88 shows the layout of read commands and replies. In this case the command only consists of
two words containing the same control information as the two first words for write commands. How-
ever, for reads the r/w bit must be set to 0. 

When the read is performed data is read to the buffer belonging to IN endpoint 1. The reply packet is
sent when the next IN token arrives after all data has been stored to the buffer. The reply packets only
contains the read data (no control information is needed) with the word read from the start address
transmitted first. Individual bytes are sent with most significant byte first, i.e. the byte at bit 31
downto 24.

75.2.3 AHB operations

All AHB operations are performed as incremental bursts of unspecified length. Only word size
accesses are done.

75.3 Registers

The core does not contain any user accessible registers.

75.4 Vendor and device identifier

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x022. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

The USB vendor identifier is 0x1781 and product identifier is 0x0AA0.

Figure 253.  Layout of USBDCL write commands.
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Figure 254.  Layout of USBDCL read commands and replies.
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75.5 Configuration options

Table 741 shows the configuration options of the core (VHDL generics).

75.6 Signal descriptions

Table 742 shows the interface signals of the core (VHDL ports).

75.7 Library dependencies

Table 743 shows libraries used when instantiating the core (VHDL libraries).

75.8 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.usb.all;

entity usbdcl_ex is
  port (
    clk           : in std_ulogic; --AHB Clock
    rstn          : in std_ulogic;
    
    -- usb signals
    usb_clkout    : in std_ulogic;
    usb_d         : inout std_logic_vector(7 downto  0);
    usb_linestate : in std_logic_vector(1 downto 0) ;

Table 741.Configuration options

Generic Function Allowed range Default

hindex AHB master index. 0 - NAHBMST-1 0

memtech Memory technology used for blockrams (endpoint buff-
ers).

0 - NTECH 0

Table 742.Signal descriptions

Signal name Field Type Function Active

UCLK N/A Input USB UTMI Clock -

USBI Input USB UTMI Input signals -

USBO Output USB UTMI Output signals -

HCLK Input AMBA Clock -

HRST Input AMBA Reset Low

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

Table 743.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER USB Signals, component USBDCL component declarations, USB signals



682

    usb_opmode    : out std_logic_vector(1 downto 0 );
    usb_reset     : out std_ulogic;
    usb_rxactive  : in std_ulogic;
    usb_rxerror   : in std_ulogic;
    usb_rxvalid   : in std_ulogic;
    usb_suspend   : out std_ulogic;
    usb_termsel   : out std_ulogic;
    usb_txready   : in std_ulogic;
    usb_txvalid   : out std_ulogic;
    usb_xcvrsel   : out std_ulogic;
    usb_vbus      : in std_ulogic);
end;

architecture rtl of usbdcl_ex is
  constant padtech : integer := inferred;
  constant memtech : integer := inferred;

  -- AMBA signals
  signal ahbmi : ahb_mst_in_type;
  signal ahbmo : ahb_mst_out_vector := (others => a hbm_none);

begin
  
  -- AMBA Components are instantiated here
  ...

  -- USBDCL
  usb_d_pads: for i in 0 to 7 generate
     usb_d_pad: iopad generic map(tech => padtech)
port map (usb_d(i), usbo.dout(i), usbi.rxactive, us bi.din(i));
    end generate;
  
  usbi0pad : inpad generic map (tech => padtech) po rt map (usb_txready,usbi.txready);
  usbi1pad : inpad generic map (tech => padtech) po rt map (usb_rxvalid,usbi.rxvalid);
  usbi2pad : inpad generic map (tech => padtech) po rt map (usb_rxerror,usbi.rxerror);
  usbi3pad : inpad generic map (tech => padtech) po rt map (usb_rxactive,usbi.rxactive);
  usbi4pad : inpad generic map (tech => padtech) po rt map 
(usb_linestate(0),usbi.linestate(0));
  usbi5pad : inpad generic map (tech => padtech) po rt map 
(usb_linestate(1),usbi.linestate(1));
  usbi6pad : inpad generic map (tech => padtech) po rt map (usb_vbus, usbi.vbus);
  usbo0pad : outpad generic map (tech => padtech) p ort map (usb_reset,usbo.reset);
  usbo1pad : outpad generic map (tech => padtech) p ort map (usb_suspend,usbo.suspend);
  usbo2pad : outpad generic map (tech => padtech) p ort map (usb_termsel,usbo.termselect);
  usbo3pad : outpad generic map (tech => padtech) p ort map (usb_xcvrsel,usbo.xcvrselect);
  usbo4pad : outpad generic map (tech => padtech) p ort map (usb_opmode(0),usbo.opmode(0));
  usbo5pad : outpad generic map (tech => padtech) p ort map (usb_opmode(1),usbo.opmode(1));
  usbo6pad : outpad generic map (tech => padtech) p ort map (usb_txvalid,usbo.txvalid);
    
  usb_clk_pad : clkpad generic map (tech => padtech ) port map (usb_clkout, uclk);

  
usb_ctrl : usbdcl
    generic map (
      hindex => 0, memtech => memtech)
    port map (
      uclk, usbi, usbo, clkm, rstn, ahbmi, ahbmo(0) );
end;
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76 WILD2AHB - WildCard Debug Interface with AHB Master Interface

76.1 Overview

The WildCard debug interface provides access to the on-chip AMBA AHB bus through the WildCard
CardBus Controller. Through this debug interface, a 32-bit read or write transfer can be generated to
any address on the AMBA AHB bus.

76.2 WildCard

The WildCard™ is a development board from Annapolis Micro Systems. The WildCard is a PCMCIA
card with the following features:

• 32-bit CardBus interface with multichannel DMA controller and programmable clock generator

• single Processing Element: Virtex™ XCV300E -6 FPGA

• two independent memory ports connected to two 10 ns SSRAM devices

• two independent 15 pin I/O connectors

• Windows® CardBus driver or Linux® CardBus driver

The Local Address and Data (LAD) Bus interface connects the Processing Element (i.e. Xilinx
FPGA) on the WildCard with the proprietary CardBus Controller device. The CardBus Controller
device communicates with the host PC via the CardBus using a WildCard specific API.

The WildCard comes with templates, example VHDL designs and software routines. It is only possi-
ble to access the WildCard via a specific Application Programming Interface (API). The necessary
Windows drivers and API are delivered with the card. To simulate a WildCard system, the VHDL
template design delivered with the WildCard can be used. 

For more information, visit http://www.annapmicro.com

Figure 255.  WildCard Debug Interface block diagram
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Figure 256.  WildCard
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76.3 Operation

The WildCard debug interface implements a simple protocol for access the AMBA AHB bus from the
CardBus Controller device. The WildCard API provides read and write access from the WildCard
CardBus Controller device to the Processing Element (i.e. FPGA), using the Local Address and Data
(LAD) Bus interface. The WildCard debug interface is connected to the LAD bus on one side, and the
AMBA AHB bus on the other side. 

An AMBA write access is performed by writing the data to the Write Data Register, followed by writ-
ing the AMBA address to the Write Address Register which starts the access on the AMBA bus. The
progress of the AMBA access is observed via the Status Register. When the AMBA access is com-
pleted, the Status Registers must be cleared by writing any data to the Status Register. The size of the
data transfer, in number of words, can be specified by writing to the Size Register before writing to
the Write Address Register, this is only required when the size needs to be changed.

An AMBA read access is performed by writing the AMBA address to the Read Address Register
which starts the access on the AMBA bus. The progress of the AMBA access is observed via the Sta-
tus Register. When the AMBA access is completed, the data can be read from the Read Data Register,
and the Status Registers must be cleared by writing any data to the Status Register. The size of the
data transfer, in number of words, can be specified by writing to the Size Register before writing to
the Read Address Register, this is only required when the size needs to be changed. 

The burst capability of the interface can be determined by reading the Version Register, indicating the
size of the largest possible data transfer in number of words.

The WildCard debug interface supports 32-bit word accesses. It supports AMBA retry and split, auto-
matically retrying the access till completed successfully or with an AMBA error. On the completion
of an AMBA access, the Ready bit in the Status Register will be set. If the AMBA access completed
with an AMBA error, the Error bit in the Status Register will also be set. Both bits are cleared when
the Status Register is written to.
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Data

32 bits

Data

13 bits

Left
SSRAM

Left
I/O

Conn

Address

19 bits

Data

32 bits
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LAD Bus
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CardBus
Controller

Configure
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Figure 257.  WildCard block diagram



685

 

Table 744. WildCard registers

Address offset API address Register

0x10000 0x4000 Status register

0x10004 0x4001 Control register (unused)

0x10008 0x4002 Size register

0x1000C 0x4003 Version register (read only)

0x10010 0x4004 Read address register (starts read access) (write only)

0x10020 0x400C Write address register (starts write access) (write only)

0x10200-0x102FF 0x4080-0x40BF Read data (read only)

0x10300-0x103FF 0x40C0-0x40FF Write data (write only)

0x08000 0x2000 Processing Element version register (read only)

0x08000-0x0FFFC 0x2000-0x2FFF Reserved address space

0x10000-0x1FFFC 0x4000-0x7FFF User address space

Table 745. Status register
31 3 2 1 0

“000 ... 0” ERROR ACITVE READY

2 Error AMBA error when access completed and Error=1. Cleared when register written to.

1 Active Access is on-going (read only)

0 Ready Access completed when Ready=1. Cleared when register written to.

Table 746. Size register
31 0

SIZE

31: 0 Size Number of words to be transferred

Table 747.  Version register
31 11 4 3 0

“000 ... 0” BURST LENGTH REVISION

11: 4 Supported burst length in number of words

3: 0 Revision

Table 748.  Read address register
31 0

Read Address

31: 0 Read address (write only)

Table 749.  Write address register
31 0

Write Address

31: 0 Write address (write only)
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76.4 Registers

The core does not implement any registers mapped in the AMBA AHB or APB address space.

76.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Gaisler Research) and device identifier 0x079. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

76.6 Configuration options

Table 753 shows the configuration options of the core (VHDL generics).

Table 750.  Read data
31 0

Read Data

31: 0 Read data (read only)

Table 751.  Write data
31 0

Write Data

31: 0 Write data (write only)

Table 752.  Processing element version
31 16 15 8 7 0

RESERVED MAJOR VERSION MINOR VERSION

31: 16 Reserved (read only)

15: 8 Major version (read only)

731: 0 Minor version (read only)

Table 753.Configuration options

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

burst Burst length = 2 ** burst 0, 3-6 0

syncrst Choose between synchronous and asynchronous reset. 0 - 1 0
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76.7 Signal descriptions

Table 754 shows the interface signals of the core (VHDL ports). 

76.8 Library dependencies

Table 755 shows libraries used when instantiating the core (VHDL libraries).

76.9 Instantiation

This example shows how the core can be instantiated. 

library  ieee;
use      ieee.std_logic_1164.all;

entity wildfpga is
   port (

Table 754.Signal descriptions

Signal name Field Type Function Active

RSTKN N/A Input Reset (PCI clock domain) Low

CLKK N/A Input CardBus clock (PCI clock domain) Falling

RSTFN N/A Input Reset (AHB clock domain) Low

CLKF N/A Input System clock (AHB clock domain) Rising

AHBI * Input AHB Master interface input -

AHBO * Output AHB Master interface output -

LADI Addr_Data Input Shared address/data bus input -

AS_n Address strobe Low

DS_n Data strobe Low

WR_n Write select Low

CS_n Chip select Low

Reg_n Register select Low

LADO Addr_Data Output Shared address/data bus output -

Addr_Data_OE_n Address/data bus output enable High

Ack_n Acknowledge strobe Low

Int_Req_n Interrupt request Low

DMA_0_Data_OK_n DMA channel 0 data OK flag Low

DMA_0_Burst_OK DMA channel 0 burst OK flag High

DMA_1_Data_OK_n DMA channel 1 data OK flag Low

DMA_1_Burst_OK DMA channel 1 burst OK flag High

Reg_Data_OK_n Register space data OK flag Low

Reg_Burst_OK Register space burst OK flag High

Force_K_Clk_n K_Clk forced-run select Low

Reserved Reserved for future use -

*) see GRLIB IP Library User’s Manual

Table 755.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER WILD Signals, component Signals and component declaration
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      ...
      LAD_Bus_Addr_Data:           inout  std_logic _vector (31 downto 0);
      LAD_Bus_AS_n:                in     std_logic ;
      LAD_Bus_DS_n:                in     std_logic ;
      LAD_Bus_WR_n:                in     std_logic ;
      LAD_Bus_CS_n:                in     std_logic ;
      LAD_Bus_Reg_n:               in     std_logic ;
      LAD_Bus_Ack_n:               out    std_logic ;
      LAD_Bus_Int_Req_n:           out    std_logic ;
      LAD_Bus_DMA_0_Data_OK_n:     out    std_logic ;
      LAD_Bus_DMA_0_Burst_OK:      out    std_logic ;
      LAD_Bus_DMA_1_Data_OK_n:     out    std_logic ;
      LAD_Bus_DMA_1_Burst_OK:      out    std_logic ;
      LAD_Bus_Reg_Data_OK_n:       out    std_logic ;
      LAD_Bus_Reg_Burst_OK:        out    std_logic ;
      LAD_Bus_Force_K_Clk_n:       out    std_logic ;
      LAD_Bus_Reserved:            out    std_logic ;
      ...
   );
end entity wildfpga;

library  ieee;
use      ieee.std_logic_1164.all;

library  work;
use      work.config.all;

library  grlib;
use      grlib.amba.all;

library  gaisler;
use      gaisler.wild.all;

library  unisim;
use      unisim.vcomponents.fd;

rchitecture rtl of wildfpga is
   ...
   -- local address and data bus
   signal   ladi:             lad_in_type;
   signal   lado:             lad_out_type;

   -- amba interface
   signal   ahbmi:            ahb_mst_in_type;
   signal   ahbmo:            ahb_mst_out_vector :=  (others => ahbm_none);
   ...
begin
   ...
   ------------------------------------------------ -----------------------------
   -- Local Address and Data Bus to AMBA AHB bus DM A interface
   ------------------------------------------------ -----------------------------
   wild2ahb0: wild2ahb
      generic map (
         hindex   => 1,
         burst    => 0,
         syncrst  => 1)
      port map(rstkn, clkk, rstfn, clkf, ahbmi, ahb mo(1), ladi, lado);

   ------------------------------------------------ -----------------------------
   -- Local Address and Data Bus pads
   ------------------------------------------------ -----------------------------
   addr_data_pad : for i in LAD_Bus_Addr_Data'range  generate
    ad_pad : iopad
      generic map(
         slew     => 1,
         strength => 24)
      port map(
         pad      => LAD_Bus_Addr_Data(i),
         i        => lado.Addr_Data(i),
         en       => lado.Addr_Data_OE_n(i),
         o        => ladi.Addr_Data(i));
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   end generate;

   ladi.AS_n                  <= LAD_Bus_AS_n;
   ladi.DS_n                  <= LAD_Bus_DS_n;
   ladi.WR_n                  <= LAD_Bus_WR_n;
   ladi.CS_n                  <= LAD_Bus_CS_n;
   ladi.Reg_n                 <= LAD_Bus_Reg_n;

   LAD_Bus_Ack_n              <= lado.Ack_n;
   LAD_Bus_Int_Req_n          <= lado.Int_Req_n;
   LAD_Bus_DMA_0_Data_OK_n    <= lado.DMA_0_Data_OK _n;
   LAD_Bus_DMA_0_Burst_OK     <= lado.DMA_0_Burst_O K;
   LAD_Bus_DMA_1_Data_OK_n    <= lado.DMA_1_Data_OK _n;
   LAD_Bus_DMA_1_Burst_OK     <= lado.DMA_1_Burst_O K;
   LAD_Bus_Reg_Data_OK_n      <= lado.Reg_Data_OK_n ;
   LAD_Bus_Reg_Burst_OK       <= lado.Reg_Burst_OK;
   LAD_Bus_Force_K_Clk_n      <= lado.Force_K_Clk_n ;
   LAD_Bus_Reserved           <= lado.Reserved;

  ...
end architecture rtl;
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